WorldWideScience

Sample records for reduced pressure chemical

  1. Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Heinemann, Bernd; Murota, Junichi; Tillack, Bernd

    2014-01-01

    Phosphorus (P) atomic layer doping in SiGe is investigated at temperatures between 100 °C to 600 °C using a single wafer reduced pressure chemical vapor deposition system. SiGe(100) surface is exposed to PH 3 at different PH 3 partial pressures by interrupting SiGe growth. The impact of the SiGe buffer/cap growth condition (total pressure/SiGe deposition precursors) on P adsorption, incorporation, and segregation are investigated. In the case of SiH 4 -GeH 4 -H 2 gas system, steeper P spikes due to lower segregation are observed by SiGe cap deposition at atmospheric (ATM) pressure compared with reduced pressure (RP). The steepness of P spike of ∼ 5.7 nm/dec is obtained for ATM pressure without reducing deposition temperature. This result may be due to the shift of equilibrium of P adsorption/desorption to desorption direction by higher H 2 pressure. Using Si 2 H 6 -GeH 4 -H 2 gas system for SiGe cap deposition in RP, lowering the SiGe growth temperature is possible, resulting in higher P incorporation and steeper P profile due to reduced desorption and segregation. In the case of Si 2 H 6 -GeH 4 -H 2 gas system, the P dose could be simulated assuming a Langmuir-type kinetics model. Incorporated P shows high electrical activity, indicating P is adsorbed mostly in lattice position. - Highlights: • Phosphorus (P) atomic layer doping in SiGe (100) is investigated using CVD. • P adsorption is suppressed by the hydrogen termination of Ge surface. • By SiGe cap deposition at atmospheric pressure, P segregation was suppressed. • By using Si 2 H 6 -based SiGe cap, P segregation was also suppressed. • The P adsorption process is self-limited and follows Langmuir-type kinetics model

  2. Reduced-pressure chemical vapor deposition of boron-doped Si and Ge layers

    International Nuclear Information System (INIS)

    Bogumilowicz, Y.; Hartmann, J.M.

    2014-01-01

    We have studied the in-situ boron (B) doping of germanium (Ge) and silicon (Si) in Reduced Pressure-Chemical Vapor Deposition. Three growth temperatures have been investigated for the B-doping of Ge: 400, 600 and 750 °C at a constant growth pressure of 13300 Pa (i.e. 100 Torr). The B concentration in the Ge:B epilayer increases linearly with the diborane concentration in the gaseous phase. Single-crystalline Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. For the in-situ B doping of Si at 850 °C, two dichlorosilane mass flow ratios (MFR) have been assessed: F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0025 and F[SiH 2 Cl 2 ]/F[H 2 ] = 0.0113 at a growth pressure of 2660 Pa (i.e. 20 Torr). Linear boron incorporation with the diborane concentration in the gas phase has been observed and doping levels in-between 3.5 ∙ 10 17 and 1 ∙ 10 20 cm −3 were achieved. We almost kept the same ratio of B versus Si atoms in the gas phase and in the Si epilayer. By contrast, roughly half of the B atoms present in the gas phase were incorporated in the Ge:B layers irrespective of the growth temperature. X-Ray Diffraction (XRD) allowed us to extract from the angular position of the Ge:B layer diffraction peak the substitutional B concentration. Values close to the B concentrations obtained by 4-probe resistivity measurements were obtained. Ge:B layers were smooth (< 1 m root mean square roughness associated with 20 × 20 μm 2 Atomic Force Microscopy images). Only for high F[B 2 H 6 ]/F[GeH 4 ] MFR (3.2 10 −3 ) did the Ge:B layers became rough; they were however still mono-crystalline (XRD). Above this MFR value, Ge:B layers became polycrystalline. - Highlights: • Boron doping of germanium and silicon in Reduced Pressure-Chemical Vapor Deposition • Linear boron incorporation in Ge:B and Si:B with the diborane flow • Single-crystal Ge:B layers with B concentrations in-between 9 ∙ 10 17 and 1 ∙ 10 20 cm −3 • Single-crystal Si

  3. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    International Nuclear Information System (INIS)

    Choi, B.J.

    1999-01-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure

  4. Reduced Pressure-Chemical Vapour Deposition of Si/SiGe heterostructures for nanoelectronics

    International Nuclear Information System (INIS)

    Hartmann, J.M.; Andrieu, F.; Lafond, D.; Ernst, T.; Bogumilowicz, Y.; Delaye, V.; Weber, O.; Rouchon, D.; Papon, A.M.; Cherkashin, N.

    2008-01-01

    We have first of all quantified the impact of pressure on Si and SiGe growth kinetics. Definite growth rate and Ge concentration increases with the pressure have been evidenced at low temperatures (650-750 deg. C). By contrast, the high temperature (950-1050 deg. C) Si growth rate either increases or decreases with pressure (gaseous precursor depending). We have then described the selective epitaxial growth process we use to form Si or Si 0.7 Ge 0.3 :B raised sources and drains on ultra-thin patterned Silicon-On-Insulator (SOI) substrates. We have afterwards presented the specifics of SiGe virtual substrates and of the tensile-strained Si layers grown on top (used as templates for the elaboration of tensily strained-SOI wafers). The tensile strain, which can be tailored from 1.3 up to 3 GPa, leads to an electron mobility gain by a factor of 2 in n-Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) built on top. High Ge content SiGe virtual substrates can also be used for the elaboration of compressively strained Ge channels, with impressive hole mobility gains (x9) compared to bulk Si. After that, we have described the main structural features of thick Ge layers grown directly on Si (that can be used as donor wafers for the elaboration of GeOI wafers or as the active medium of near infrared photo-detectors). Finally, we have shown how Si/SiGe multilayers can be used for the formation of high performance 3D devices such as multi-bridge channel or nano-beam gate-all-around FETs, the SiGe sacrificial layers being removed thanks to plasma dry etching, wet etching or in situ gaseous HCl etching

  5. Chemical vapour deposition of silicon under reduced pressure in a hot-wall reactor: Equilibrium and kinetics

    International Nuclear Information System (INIS)

    Langlais, F.; Hottier, F.; Cadoret, R.

    1982-01-01

    Silicon chemical vapour deposition (SiH 2 Cl 2 /H 2 system), under reduced pressure conditions, in a hot-wall reactor, is presented. The vapour phase composition is assessed by evaluating two distinct equilibria. The homogeneous equilibrium , which assumes that the vapour phase is not in equilibrium with solid silicon, is thought to give an adequate description of the vapour phase in the case of low pressure, high gas velocities, good temperature homogeneity conditions. A comparison with heterogeneous equilibrium enables us to calculate the supersaturation so evidencing a highly irreversible growth system. The experimental determination of the growth rates reveals two distinct temperature ranges: below 1000 0 C, polycrystalline films are usually obtained with a thermally activated growth rate (+40 kcal mole -1 ) and a reaction order, with respect to the predominant species SiCl 2 , close to one; above 1000 0 C, the films are always monocrystalline and their growth rate exhibits a much lower or even negative activation energy, the reaction order in SiCl 2 remaining about one. (orig.)

  6. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  7. C and Si delta doping in Ge by CH_3SiH_3 using reduced pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Yamamoto, Yuji; Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Mai, Andreas; Tillack, Bernd

    2016-01-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH_3SiH_3 is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H_2 or N_2 carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N_2 as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH_3SiH_3 is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H_2 as carrier gas, lower incorporated C is observed in comparison to Si. CH_3SiH_3 injected with H_2 carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N_2 at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH_3SiH_3 exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH_3SiH_3 adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  8. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Science.gov (United States)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  9. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  10. C and Si delta doping in Ge by CH{sub 3}SiH{sub 3} using reduced pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuji, E-mail: yamamoto@ihp-microelectronics.com [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Ueno, Naofumi; Sakuraba, Masao [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577 (Japan); Murota, Junichi [Micro System Integration Center, Tohoku University, 519-1176, Aramaki aza Aoba, Aoba-ku, Sendai 980-0845 (Japan); Mai, Andreas [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Tillack, Bernd [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Technische Universität Berlin, HFT4, Einsteinufer 25, 10587 Berlin (Germany)

    2016-03-01

    C and Si delta doping in Ge are investigated using a reduced pressure chemical vapor deposition system to establish atomic-order controlled processes. CH{sub 3}SiH{sub 3} is exposed at 250 °C to 500 °C to a Ge on Si (100) substrate using H{sub 2} or N{sub 2} carrier gas followed by a Ge cap layer deposition. At 350 °C, C and Si are uniformly adsorbed on the Ge surface and the incorporated C and Si form steep delta profiles below detection limit of SIMS measurement. By using N{sub 2} as carrier gas, the incorporated C and Si doses in Ge are saturated at one mono-layer below 350 °C. At this temperature range, the incorporated C and Si doses are nearly the same, indicating CH{sub 3}SiH{sub 3} is adsorbed on the Ge surface without decomposing the C−Si bond. On the other hand, by using H{sub 2} as carrier gas, lower incorporated C is observed in comparison to Si. CH{sub 3}SiH{sub 3} injected with H{sub 2} carrier gas is adsorbed on Ge without decomposing the C−Si bond and the adsorbed C is reduced by dissociation of the C−Si bond during temperature ramp up to 550 °C. The adsorbed C is maintained on the Ge surface in N{sub 2} at 550 °C. - Highlights: • C and Si delta doping in Ge is investigated using RPCVD system by CH{sub 3}SiH{sub 3} exposure. • Atomically flat C and Si delta layers are fabricated at 350 °C. • Incorporated C and Si doses are saturated at one mono-layer below 350 °C. • CH{sub 3}SiH{sub 3} adsorption occurred without decomposing C−Si bond. • Adsorbed C is desorbed due to dissociation by hydrogen during postannealing at 550 °C.

  11. Reducing Future International Chemical and Biological Dangers.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez, Patricia Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foley, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for further technology road map development.

  12. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    International Nuclear Information System (INIS)

    Montgomery, C.J.; Cremer, M.A.; Heap, M.P.; Chen, J-Y.; Westbrook, C.K.; Maurice, L.Q.

    1999-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay

  13. Does Improvised Waterbed Reduce the Incidence of Pressure ...

    African Journals Online (AJOL)

    Does Improvised Waterbed Reduce the Incidence of Pressure Ulcers in Patients with Spinal Injury? ... The use of bed replacements markedly reduces the incidence of pressure ... Keywords: Neurological deficits, plastic sachet, table water ...

  14. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  15. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  16. Corona discharge ion mobility spectrometry at reduced pressures

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-01-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P

  17. Reducing maternal mortality: Systolic blood pressure

    African Journals Online (AJOL)

    2006-03-21

    Mar 21, 2006 ... While deaths due to fluid overload have ... of better fluid balance management, we have made .... systolic blood pressure plays a significant role in the .... one looks at the work of Martin et al.5 ... Promoting Healthy Life.

  18. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  19. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  20. Importance of pressure reducing valves (PRVs) in water supply networks.

    Science.gov (United States)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  1. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion

    National Research Council Canada - National Science Library

    Montgomery, Christopher J; Cannon, S. M; Mawid, M. A; Sekar, B

    2002-01-01

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, six different reduced chemical kinetic mechanisms for JP-8 combustion have been generated...

  2. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...

  3. Increasing preferred step rate during running reduces plantar pressures.

    Science.gov (United States)

    Gerrard, James M; Bonanno, Daniel R

    2018-01-01

    Increasing preferred step rate during running is a commonly used strategy in the management of running-related injuries. This study investigated the effect of different step rates on plantar pressures during running. Thirty-two healthy runners ran at a comfortable speed on a treadmill at five step rates (preferred, ±5%, and ±10%). For each step rate, plantar pressure data were collected using the pedar-X in-shoe system. Compared to running with a preferred step rate, a 10% increase in step rate significantly reduced peak pressure (144.5±46.5 vs 129.3±51 kPa; P=.033) and maximum force (382.3±157.6 vs 334.0±159.8 N; P=.021) at the rearfoot, and reduced maximum force (426.4±130.4 vs 400.0±116.6 N; P=.001) at the midfoot. In contrast, a 10% decrease in step rate significantly increased peak pressure (144.5±46.5 vs 161.5±49.3 kPa; P=.011) and maximum force (382.3±157.6 vs 425.4±155.3 N; P=.032) at the rearfoot. Changing step rate by 5% provided no effect on plantar pressures, and no differences in plantar pressures were observed at the medial forefoot, lateral forefoot or hallux between the step rates. This study's findings indicate that increasing preferred step rate by 10% during running will reduce plantar pressures at the rearfoot and midfoot, while decreasing step rate by 10% will increase plantar pressures at the rearfoot. However, changing preferred step rate by 5% will provide no effect on plantar pressures, and forefoot pressures are unaffected by changes in step rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  5. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  6. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  7. Does chocolate reduce blood pressure? A meta-analysis

    Directory of Open Access Journals (Sweden)

    Ried Karin

    2010-06-01

    Full Text Available Abstract Background Dark chocolate and flavanol-rich cocoa products have attracted interest as an alternative treatment option for hypertension, a known risk factor for cardiovascular disease. Previous meta-analyses concluded that cocoa-rich foods may reduce blood pressure. Recently, several additional trials have been conducted with conflicting results. Our study summarises current evidence on the effect of flavanol-rich cocoa products on blood pressure in hypertensive and normotensive individuals. Methods We searched Medline, Cochrane and international trial registries between 1955 and 2009 for randomised controlled trials investigating the effect of cocoa as food or drink compared with placebo on systolic and diastolic blood pressure (SBP/DBP for a minimum duration of 2 weeks. We conducted random effects meta-analysis of all studies fitting the inclusion criteria, as well as subgroup analysis by baseline blood pressure (hypertensive/normotensive. Meta-regression analysis explored the association between type of treatment, dosage, duration or baseline blood pressure and blood pressure outcome. Statistical significance was set at P Results Fifteen trial arms of 13 assessed studies met the inclusion criteria. Pooled meta-analysis of all trials revealed a significant blood pressure-reducing effect of cocoa-chocolate compared with control (mean BP change ± SE: SBP: -3.2 ± 1.9 mmHg, P = 0.001; DBP: -2.0 ± 1.3 mmHg, P = 0.003. However, subgroup meta-analysis was significant only for the hypertensive or prehypertensive subgroups (SBP: -5.0 ± 3.0 mmHg; P = 0.0009; DBP: -2.7 ± 2.2 mm Hg, P = 0.01, while BP was not significantly reduced in the normotensive subgroups (SBP: -1.6 ± 2.3 mmHg, P = 0.17; DBP: -1.3 ± 1.6 mmHg, P = 0.12. Nine trials used chocolate containing 50% to 70% cocoa compared with white chocolate or other cocoa-free controls, while six trials compared high- with low-flavanol cocoa products. Daily flavanol dosages ranged from 30

  8. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  9. Does chocolate reduce blood pressure? A meta-analysis.

    Science.gov (United States)

    Ried, Karin; Sullivan, Thomas; Fakler, Peter; Frank, Oliver R; Stocks, Nigel P

    2010-06-28

    Dark chocolate and flavanol-rich cocoa products have attracted interest as an alternative treatment option for hypertension, a known risk factor for cardiovascular disease. Previous meta-analyses concluded that cocoa-rich foods may reduce blood pressure. Recently, several additional trials have been conducted with conflicting results. Our study summarises current evidence on the effect of flavanol-rich cocoa products on blood pressure in hypertensive and normotensive individuals. We searched Medline, Cochrane and international trial registries between 1955 and 2009 for randomised controlled trials investigating the effect of cocoa as food or drink compared with placebo on systolic and diastolic blood pressure (SBP/DBP) for a minimum duration of 2 weeks. We conducted random effects meta-analysis of all studies fitting the inclusion criteria, as well as subgroup analysis by baseline blood pressure (hypertensive/normotensive). Meta-regression analysis explored the association between type of treatment, dosage, duration or baseline blood pressure and blood pressure outcome. Statistical significance was set at P chocolate compared with control (mean BP change +/- SE: SBP: -3.2 +/- 1.9 mmHg, P = 0.001; DBP: -2.0 +/- 1.3 mmHg, P = 0.003). However, subgroup meta-analysis was significant only for the hypertensive or prehypertensive subgroups (SBP: -5.0 +/- 3.0 mmHg; P = 0.0009; DBP: -2.7 +/- 2.2 mm Hg, P = 0.01), while BP was not significantly reduced in the normotensive subgroups (SBP: -1.6 +/- 2.3 mmHg, P = 0.17; DBP: -1.3 +/- 1.6 mmHg, P = 0.12). Nine trials used chocolate containing 50% to 70% cocoa compared with white chocolate or other cocoa-free controls, while six trials compared high- with low-flavanol cocoa products. Daily flavanol dosages ranged from 30 mg to 1000 mg in the active treatment groups, and interventions ran for 2 to 18 weeks. Meta-regression analysis found study design and type of control to be borderline significant but possibly indirect predictors

  10. Pressure vessel steels: influence of chemical composition on irradiation sensitivity

    International Nuclear Information System (INIS)

    Ghoniem, M.M.; Hammad, F.H.

    1998-01-01

    Neutron irradiation of the steels used in the construction of the nuclear reactor pressure vessels can lead to the embrittlement of these materials, increasing the ductile-to-brittle transition temperature and decreasing the fracture energy, which can limit the plant life. The knowledge of irradiation embrittlement and the means for minimizing such degradation is therefore important in the field of assuring the safety of the nuclear power plants. Irradiation embrittlement is quite a complex process. It involves many variables. The most important of these are irradiation temperature, neutron fluence (neutron dose), neutron flux (neutron dose rate), and chemical composition of the irradiated material. This paper is concerned with the effect of chemical composition, the role of residual and alloying elements in the irradiation embrittlement of nuclear reactor pressure vessel steels in light water reactors. It presents a critical review for the published work in this field through the last 25 years

  11. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  12. Reducing uncertainty in geostatistical description with well testing pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A.C.; He, Nanqun [Univ. of Tulsa, OK (United States); Oliver, D.S. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01

    Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.

  13. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  14. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    Science.gov (United States)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  15. Chemical nickel plating in tartrate solutions with borohydride reducing agent

    International Nuclear Information System (INIS)

    Plokhov, V.A.

    1986-01-01

    The authors investigate the influence of various factors on the rate of chemical nickel plating in strongly alkaline tartrate solutions with a borohydride reducing agent. After 30 min of the process of nickel plating, the final concentration of sodium borohydride decreases to 0.26 g/liter, leading to stoppage of the process. The nickel plating process can be intensified by increasing the concentration of sodium hydroxide in the solution, suppressing hydrolysis of borohydride, and also by introducing additives which suppress hydrolysis of borohydride. For chemical deposition of nickel-boron coatings from tartrate solutions the authors recommend the following composition (g/liter): nickel chloride 15-25, Rochelle salt 450-550, sodium hydroxide 140-160, sodium borohydride 0.8-1.0, thallium nitrate 0.003-0.008. The process temperature is 92-95 C, and the deposition rate is 4-6 um/h

  16. Correlation of chemical evaporation rate with vapor pressure.

    Science.gov (United States)

    Mackay, Donald; van Wesenbeeck, Ian

    2014-09-02

    A new one-parameter correlation is developed for the evaporation rate (ER) of chemicals as a function of molar mass (M) and vapor pressure (P) that is simpler than existing correlations. It applies only to liquid surfaces that are unaffected by the underlying solid substrate as occurs in the standard ASTM evaporation rate test and to quiescent liquid pools. The relationship has a sounder theoretical basis than previous correlations because ER is correctly correlated with PM rather than P alone. The inclusion of M increases the slope of previous log ER versus log P regressions to a value close to 1.0 and yields a simpler one-parameter correlation, namely, ER (μg m(-1) h(-1)) = 1464P (Pa) × M (g mol(-1)). Applications are discussed for the screening level assessment and ranking of chemicals for evaporation rate, such as pesticides, fumigants, and hydrocarbon carrier fluids used in pesticide formulations, liquid consumer products used indoors, and accidental spills of liquids. The mechanistic significance of the single parameter as a mass-transfer coefficient or velocity is discussed.

  17. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  18. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  19. Endoluminal isoproterenol reduces renal pelvic pressure during semirigid ureterorenoscopy

    DEFF Research Database (Denmark)

    Jakobsen, Jørn S; Jung, Helene U; Gramsbergen, Jan B

    2009-01-01

    OBJECTIVE To investigate the effects on the pressure-flow relation of renal pelvic pressure during semirigid ureterorenoscopy and endoluminal perfusion of isoproterenol (ISO) 0.1 microg/mL, with emphasis on local effects and cardiovascular side-effects, as topically administered ISO effectively...... and dose-dependently causes relaxation of the upper urinary tract in pigs with no concomitant cardiovascular side-effects. MATERIALS AND METHODS In anaesthetized female pigs (60 kg), 16 macroscopically normal upper urinary tract systems were subjected to ureterorenoscopy. Via a subcostal incision a 6-F...... catheter was placed in the renal pelvis for pressure measurements, and a semirigid ureteroscope (7.8 F) was inserted retrogradely in the renal pelvis, through which the pelvis was perfused. The blood pressure and heart rate were recorded. The increase in renal pelvic pressure was examined with increasing...

  20. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  1. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  2. Enhancing Documentation of Pressure Ulcer Prevention Interventions: A Quality Improvement Strategy to Reduce Pressure Ulcers.

    Science.gov (United States)

    Jacobson, Therese M; Thompson, Susan L; Halvorson, Anna M; Zeitler, Kristine

    2016-01-01

    Prevention of hospital-acquired pressure ulcers requires the implementation of evidence-based interventions. A quality improvement project was conducted to provide nurses with data on the frequency with which pressure ulcer prevention interventions were performed as measured by documentation. Documentation reports provided feedback to stakeholders, triggering reminders and reeducation. Intervention reports and modifications to the documentation system were effective both in increasing the documentation of pressure ulcer prevention interventions and in decreasing the number of avoidable hospital-acquired pressure ulcers.

  3. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  4. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  5. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  6. Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.

    Science.gov (United States)

    Merrill, Ray M; Frutos, Aaron

    2018-01-01

    Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.

  7. Does Improvised Waterbed Reduce the Incidence of Pressure ...

    African Journals Online (AJOL)

    Jul‑Dec 2015 | Volume 21 | Issue 2. Address for ... There is little evidence that using a pressure ulcer risk scale is better than clinical judgment.[4]. In our center ... plastic bags, with each plastic bag containing exactly 20 sealed sachets of water.

  8. Methods and means for reducing pressure in systems for fire fighting and water spraying in mines

    Energy Technology Data Exchange (ETDEWEB)

    Kozlyuk, A I; Grin' , G V; Yushchenko, Yu N

    1986-01-01

    Valves are evaluated used in water systems for fire fighting and dust suppression in underground black coal mines in the USSR. Specifications of the KR-2, the KR-3 and the R-86 pressure-reducing valves used in deep mines are analyzed. The valves are characterized by low reliability, low capacity and low pressure reducing range. Therefore groups (parallel arrangement) of pressure-reducing valves are used. Using valve groups increases equipment cost. The pressure-reducing systems should consist of no more than 2 valves. The VNIIGD Institute developed the RKGD pressure-reducing valve with the following specifications: inlet pressure 6.87 MPa, outlet pressure from 0.98 to 2.45 MPa, water discharge 100 m/sup 3//h). The RKGD valves are characterized by high reliability but extremely high weight. Therefore, the VNIIGD Institute developed a modified version of pressure-reducing valve, called the PRK (with maximum inlet pressure of 5 MPa, outlet pressure ranging from 0.5 to 1.5 MPa, water discharge 80 m/sup 3//h and weighing 5 kg). Design of the PRK pressure-reducing valve is shown.

  9. Rationale and Design of the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (Reduce LAP-HF) Trial

    DEFF Research Database (Denmark)

    Hasenfuss, Gerd; Gustafsson, Finn; Kaye, David

    2015-01-01

    OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) is characterized by elevated left atrial pressure during rest and/or exercise. The Reduce LAP-HF (Reduce Elevated Left Atrial Pressure in Patients With Heart Failure) trial will evaluate the safety and performance of the Interatrial...... Shunt Device (IASD) System II, designed to directly reduce elevated left atrial pressure, in patients with HFpEF. METHODS: The Reduce LAP-HF Trial is a prospective, nonrandomized, open-label trial to evaluate a novel device that creates a small permanent shunt at the level of the atria. A minimum of 60...... patients with ejection fraction ≥40% and New York Heart Association functional class III or IV heart failure with a pulmonary capillary wedge pressure (PCWP) ≥15 mm Hg at rest or ≥25 mm Hg during supine bike exercise will be implanted with an IASD System II, and followed for 6 months to assess the primary...

  10. The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanearl [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Doyoung [School of Electrical and Electronic Engineering, Ulsan College, 57 Daehak-ro, Nam-gu, Ulsan 680-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-04-01

    Highlights: • Undoped and Ga doped ZnO thin films were deposited using DEZ and TMGa. • Effects of Ga doping using TMGa in Ga doped ZnO were investigated. • Degraded properties from excessive doping were analyzed using chemical bondings. - Abstract: The electrical and chemical properties of low pressure chemical vapor deposition (LP-CVD) Ga doped ZnO (ZnO:Ga) films were systematically investigated using Hall measurement and X-ray photoemission spectroscopy (XPS). Diethylzinc (DEZ) and O{sub 2} gas were used as precursor and reactant gas, respectively, and trimethyl gallium (TMGa) was used as a Ga doping source. Initially, the electrical properties of undoped LP-CVD ZnO films depending on the partial pressure of DEZ and O{sub 2} ratio were investigated using X-ray diffraction (XRD) by changing partial pressure of DEZ from 40 to 140 mTorr and that of O{sub 2} from 40 to 80 mTorr. The resistivity was reduced by Ga doping from 7.24 × 10{sup −3} Ω cm for undoped ZnO to 2.05 × 10{sup −3} Ω cm for Ga doped ZnO at the TMG pressure of 8 mTorr. The change of electric properties of Ga doped ZnO with varying the amount of Ga dopants was systematically discussed based on the structural crystallinity and chemical bonding configuration, analyzed by XRD and XPS, respectively.

  11. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  12. Work Turbochargers under Reduced Pressure in the Suction Pipe

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available In case consumers have a significant need in the compressed air, the use of turbochargers is a promising direction. The turbocharger operation is largely defined by its running conditions, namely parameters of the intake air and cooling conditions.The paper presents the results of experimental studies of turbochargers type 4CI 425MX4 of series "CENTAC" manufactured by INGERSOL-RAND, which were performed under industrial conditions in a mountainous area with difficult climatic conditions. There were, essentially, no researches of running turbochargers in mountainous areas. The combination of low atmospheric pressure, high temperature of intake air, and specific cooling conditions causes abnormal mode of turbocharger operation. The results of theoretical studies of such modes are found only in N.M. Barannikov’s work while there is no mentioned empirical research at all.Experimental studies were conducted under industrial conditions in the form of passive experiment. All measurements were carried out using a standard measuring system included in the system of compressor monitor and control. During the experimental studies temperature regimes at the turbocharger stage were controlled, and turbocharger pressure ratio and weight output were determined.The results of the research can be formulated as follows:- highland conditions and seasonal variations of atmospheric air have a negative impact on the operation of the turbochargers;- specific work value as an indicator of the economical efficiency exceeds that of the nameplate by 12...21 % depending on the climatic conditions.The problem of functioning normalization of the turbochargers seems to be relevant not only for the considered type of compressor, but also for that of the less power. It is proposed to consider two ways:- installation of the fifth additional stage;- mechanical pressurization in the suction pipe by means of blowers of high power.To make final decision it is necessary to conduct

  13. Viscoelastic properties of doped-ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo

    2014-01-01

    The viscoelastic properties of gadolinium-doped ceria (CGO) powder compacts are characterized during sintering and cooling under reduced oxygen partial pressure and compared with conventional sintering in air. Highly defective doped ceria in reducing conditions shows peculiar viscoelastic...

  14. Noise reducing screen devices for in-flow pressure sensors

    Science.gov (United States)

    Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)

    1997-01-01

    An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.

  15. Electronic SSKIN pathway: reducing device-related pressure ulcers.

    Science.gov (United States)

    Campbell, Natalie

    2016-08-11

    This article describes how an interprofessional project in a London NHS Foundation Trust was undertaken to develop an intranet-based medical device-related pressure ulcer prevention and management pathway for clinical staff working across an adult critical care directorate, where life-threatening events require interventions using medical devices. The aim of this project was to improve working policies and processes to define key prevention strategies and provide clinicians with a clear, standardised approach to risk and skin assessment, equipment use, documentation and reporting clinical data using the Trust's CareVue (electronic medical records), Datix (incident reporting and risk-management tool) and eTRACE (online clinical protocol ordering) systems. The process included the development, trial and local implementation of the pathway using collaborative teamwork and the SSKIN care bundle tool. The experience of identifying issues, overcoming challenges, defining best practice and cascading SSKIN awareness training is shared.

  16. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    Science.gov (United States)

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  17. Analysis on reduced chemical kinetic model of N-heptane for HCCI combustion. Paper no. IGEC-1-072

    International Nuclear Information System (INIS)

    Yao, M.; Zheng, Z.

    2005-01-01

    Because of high complexity coupled with multidimensional fluid dynamics, it is difficult to apply detailed chemical kinetic model to simulate practical engines. A reduced model of n-heptane has been developed on the basic of detailed mechanism by sensitivity analysis and reaction path analysis of every stage of combustion. The new reduced mechanism consists of 35 species and 41 reactions, and it is effective in engine condition. The results show that it gives predictions similar to the detailed model in ignition timing, in-cylinder temperature and pressure. Furthermore, the reduced mechanism can be used to simulate boundary condition of partial combustion in good agreement with the detailed mechanism. (author)

  18. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  19. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.; Michoud, Gregoire; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  20. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  1. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.

    2017-01-11

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.

  2. Normal pressure hydrocephalus. Influences on cerebral hemodynamic and cerebrospinal fluid pressure--chemical autoregulation

    International Nuclear Information System (INIS)

    Meyer, J.S.; Tachibana, H.; Hardenberg, J.P.; Dowell, R.E. Jr.; Kitagawa, Y.; Mortel, K.F.

    1984-01-01

    Blood flow in the cerebral gray matter was measured in normal pressure hydrocephalus and Alzheimer disease by 133Xe inhalation. Flow values in the frontal and temporal gray matter increased after lowering cerebrospinal fluid (CSF) pressure by lumbar puncture in normal pressure hydrocephalus (p less than 0.05) and also after shunting. One case with cerebral complications did not improve clinically. In Alzheimer disease the reverse (decreases in flow in the gray matter) occurred after removal of CSF. Normal pressure hydrocephalus was associated with impaired cerebral vasomotor responsiveness during 100% oxygen and 5% carbon dioxide inhalation. This complication was restored toward normal after CSF removal and/or shunting. Cerebral blood flow measurements appear to be useful for confirming the diagnosis of normal pressure hydrocephalus and predicting the clinical benefit from shunting

  3. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion

  4. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  5. Sodium addition and/or oxygen saturation of iohexol during normal and reduced perfusion pressure

    International Nuclear Information System (INIS)

    Baath, L.

    1990-01-01

    The influence on contractile force (CF) and the propensity for ventricular fibrillation (VF) from infusing the non-ionic contrast medium iohexol during normal (75 cm H 2 O) and reduced perfusion pressure (35 cm H 2 O) were investigated in the isolated rabbit heart. Both during normal and reduced perfusion pressure iohexol (150 mg I/ml) with oxygen saturation caused a smaller reduction of CF than iohexol without oxygen. During reduced pressure iohexol with sodium addition (28 mM NaCl) caused less depression of CF than iohexol without sodium. The combination of sodium addition and oxygen saturation had the least influence on CF. Iohexol (350 mg I/ml) without sodium had a similar fibrillatory propensity during both normal and reduced pressure. Enriching iohexol with 28 mM NaCl decreased the risk of VF. The decrease was similar during both normal and reduced pressure. The risk of VF from oxygen saturation of iohexol (350 mg I/ml, without sodium) was similar during both normal and reduced pressure. It is concluded that a small addition of sodium and/or oxygen saturation of a non-ionic monomeric contrast medium have beneficial effects on the heart both during normal perfusion pressure and during ischemia. (orig.)

  6. A reduced fidelity model for the rotary chemical looping combustion reactor

    International Nuclear Information System (INIS)

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    Highlights: • Methodology for developing a reduced fidelity rotary CLC reactor model is presented. • The reduced model determines optimal reactor configuration that meets design and operating requirements. • A 4-order of magnitude reduction in computational cost is achieved with good prediction accuracy. • Sensitivity studies demonstrate importance of accurate kinetic parameters for reactor optimization. - Abstract: The rotary chemical looping combustion reactor has great potential for efficient integration with CO_2 capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel

  7. Choking under monitoring pressure: being watched by the experimenter reduces executive attention.

    Science.gov (United States)

    Belletier, Clément; Davranche, Karen; Tellier, Idriss S; Dumas, Florence; Vidal, Franck; Hasbroucq, Thierry; Huguet, Pascal

    2015-10-01

    Performing more poorly given one's skill level ("choking") is likely in situations that offer an incentive if a certain outcome is achieved (outcome pressure) or when one is being watched by others-especially when one's performance is being evaluated (monitoring pressure). According to the choking literature, outcome pressure is associated with reduced executive control of attention, whereas monitoring pressure is associated with increased, yet counterproductive, attention to skill processes. Here, we show the first evidence that monitoring pressure-being watched by the experimenter-may lead individuals with higher working memory to choke on a classic measure of executive control-just the task effect thought to result from outcome pressure. Not only does this finding help refine our understanding of the processes underlying choking under monitoring pressure, but it also leads to a new look at classic audience effects, with an important implication for experimental psychology.

  8. Chemical and Hydrostatic Pressure in Natrolites: Pressure Induced Hydration of an Aluminogermanate Natrolite

    International Nuclear Information System (INIS)

    Lee, Y.; Kao, C.; Seoung, D.H.; Bai, J.; Kao, C.C.; Parise, J.B.; Vogt, T.

    2010-01-01

    The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na 8 Al 8 Ge 12 O 40 · 8H 2 O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na 8 Al 8 Ge 12 O 40 · 12H 2 O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the two Na-AlGe-NAT structures at ambient conditions with 8 and 12 H 2 O respectively seem to mirror the ones found under hydrostatic pressure between the Na 8 Al 8 Ge 12 O 40 · 8H 2 O and the parantrolite phase Na 8 Al 8 Ge 12 O 40 · 12H 2 O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na 8 Al 8 Ge 12 O 40 · 16H 2 O, revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase, however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only become 7-fold coordinated at higher pressures in the tetragonal structure. When comparing the pressure-induced hydration in the observed natrolite

  9. Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy

    NARCIS (Netherlands)

    Verhage, R. J. J.; Boone, J.; Rijkers, G. T.; Cromheecke, G. J.; Kroese, A. C.; Weijs, T. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2014-01-01

    Background. Transthoracic oesophagectomy requires prolonged one-lung ventilation causing systemic and local inflammatory responses. Application of continuous positive airway pressure (CPAP) to the collapsed lung potentially reduces pulmonary damage, hypoxia, and consequent inflammation. This

  10. Intravenous clonidine administration and its ability to reduce pulmonary arterial pressure in patients undergoing heart surgery

    Directory of Open Access Journals (Sweden)

    Benedito Barbosa João

    2014-01-01

    Full Text Available Objective: Evaluate the ability of clonidine to reduce pulmonary arterial pressure in patients with pulmonary hypertension undergoing heart surgery, either by reducing the pressure values from the direct measurement of pulmonary arterial pressure or by reducing or eliminating the need for intraoperative dobutamine and nitroprusside. Method: Randomized, double-blind, placebo-controlled, comparative study conducted in 30 patients with pulmonary arterial hypertension type 2 undergoing cardiac surgery. Mean pulmonary arterial pressure and dosage of dobutamine and sodium nitroprusside were assessed four times: before intravenous administration of clonidine (2 μg/kg or placebo (T0, 30 min after tested treatment and before cardiopulmonary bypass (T1, immediately after CPB (T2, 10 min after protamine injection (T3. Results: There were no significant differences regarding mean pulmonary arterial pressure at any time of evaluation. There was no significant difference between groups regarding other variables, such as mean systemic arterial pressure, heart rate, total dose of dobutamine, total dose of sodium nitroprusside, and need for fentanyl. Conclusion: Data analysis from patients included in this study allows us to conclude that intravenous clonidine (2 μg/kg was not able to reduce the mean pulmonary arterial pressure in patients with pulmonary hypertension in group 2 (pulmonary venous hypertension, undergoing heart surgery, or reduce or eliminate the need for intraoperative administration of dobutamine and sodium nitroprusside. Keywords: Clonidine, Pulmonary hypertension, Heart surgery

  11. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    Science.gov (United States)

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  12. Environmental biotechnology: Reducing risks from environmental chemicals through biotechnology

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1988-01-01

    This book contains 34 papers on various aspects of hazardous waste management through biotechnology. The articles stress the three basic strategies of waste management; minimize the amount of waste generated; reduce the toxicity of the wastes; and find more satisfactory ways of disposing of wastes. Part I of this collection describes the use of microbial ecology, molecular biology, and other scientific disciplines to combat these problems. Part II describes the application of present technology to current problems. Part III describes the effect of policy and regulations on biotechnology. Individual papers are processed separately for the data base

  13. Prospects for managing turfgrass pests with reduced chemical inputs.

    Science.gov (United States)

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings. Copyright © 2012 by Annual Reviews. All rights reserved.

  14. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  15. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  16. Study of the influence of high hydrostatic pressure on wine chemical and sensorial characteristics

    OpenAIRE

    Santos, Mickael da Costa

    2015-01-01

    During the last years, the use of high hydrostatic pressure (HHP) as a non-thermal technology for preservation or aging of wine has increased substantially in the academic community. However, HHP treated wine has been only analysed after the pressure treatment, with no knowledge available on the effects of HHP during subsequent storage. The results presented in this thesis showed that HHP treatments influence the chemical and sensorial properties of wine during storage. The application of ...

  17. Coarse grain model for coupled thermo-mechano-chemical processes and its application to pressure-induced endothermic chemical reactions

    International Nuclear Information System (INIS)

    Antillon, Edwin; Banlusan, Kiettipong; Strachan, Alejandro

    2014-01-01

    We extend a thermally accurate model for coarse grain dynamics (Strachan and Holian 2005 Phys. Rev. Lett. 94 014301) to enable the description of stress-induced chemical reactions in the degrees of freedom internal to the mesoparticles. Similar to the breathing sphere model, we introduce an additional variable that describes the internal state of the particles and whose dynamics is governed both by an internal potential energy function and by interparticle forces. The equations of motion of these new variables are derived from a Hamiltonian and the model exhibits two desired features: total energy conservation and Galilean invariance. We use a simple model material with pairwise interactions between particles and study pressure-induced chemical reactions induced by hydrostatic and uniaxial compression. These examples demonstrate the ability of the model to capture non-trivial processes including the interplay between mechanical, thermal and chemical processes of interest in many applications. (paper)

  18. Characterization of Nitrated Sugar Alcohols by Atmospheric-Pressure Chemical-Ionization Mass Spectrometry

    Science.gov (United States)

    2016-07-27

    Chemical, Microsystem, and Nanoscale Technology Group MIT-Lincoln Laboratory, Lexington, MA 02420 jude.kelley@ll.mit.edu RATIONALE: The...formed by the loss of NO2, HNO2, NO3, and CH2NO2 groups , and in the presence of dichloromethane chlorinated adduct ions were observed. It was determined...explosives trace detection, such as electrospray ionization ( ESI ) and atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) along

  19. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  20. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  1. Process for carrying out a chemical reaction with ionic liquid and carbon dioxide under pressure

    NARCIS (Netherlands)

    Kroon, M.C.; Shariati, A.; Florusse, L.J.; Peters, C.J.; Van Spronsen, J.; Witkamp, G.J.; Sheldon, R.A.; Gutkowski, K.I.

    2006-01-01

    The invention is directed to a process for carrying out a chemical reaction in an ionic liquid as solvent and CO2 as cosolvent, in which process reactants are reacted in a homogeneous phase at selected pressure and temperature to generate a reaction product at least containing an end-product of the

  2. Charge Accumulation in LDPE and XLPE Conditioned at 80oC under Reduced Pressure

    DEFF Research Database (Denmark)

    Fleming, Robert J.; Henriksen, Mogens; Holbøll, Joachim T.

    1997-01-01

    The effects of thermal conditioning, under reduced pressure, on space accumulation in planar LDPE and XLPE samples under DC stress, have been investigated. The samples were conditioned prior to voltage application by being held at 80oC for 2-3 days in short circuit at rotary pump pressure. Some...... were then cooled to room temperature over a period of at least 6hr, still under rotary pump pressure and in short circuit, while others were cooled to room temperature in less than 1.5hr in the laboratory air. DC fields of 18kV/mm were then applied at room temperature, and space charge accumulation...

  3. Combined non-adaptive light and smell stimuli lowered blood pressure, reduced heart rate and reduced negative affect.

    Science.gov (United States)

    Dong, Shan; Jacob, Tim J C

    2016-03-15

    Bright light therapy has been shown to have a positive impact on seasonal affective disorder (SAD), depression and anxiety. Smell has also has been shown to have effects on mood, stress, anxiety and depression. The objective of this study was to investigate the effect of the combination of light and smell in a non-adaptive cycle. Human subjects were given smell (lemon, lavender or peppermint) and light stimuli in a triangular wave (60scycle) for 15min. Blood pressure and heart rate were monitored before and after each session for 5 consecutive days and a Profile of Mood States (POMS) test was administered before and after the sensory stimulation on days 1, 3 and 5. The light-smell stimulus lowered blood pressure, both systolic and diastolic, and reduced heart rate for all odours compared to control. Of the two sensory stimuli, the odour stimulus contributed most to this effect. The different aromas in the light-smell combinations could be distinguished by their different effects on the mood factors with lemon inducing the greatest mood changes in Dejection-Depression, Anger-Hostility, Tension-Anxiety. In conclusion, combined light and smell stimulation was effective in lowering blood pressure, reducing heart rate and improving mood. The combination was more effective than either smell or light stimuli alone, suggesting that a light-smell combination would be a more robust and efficacious alternative treatment for depression, anxiety and stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods.

    Science.gov (United States)

    Conte, Rogério; Gullich, Letícia M D; Bilibio, Denise; Zanella, Odivan; Bender, João P; Carniel, Naira; Priamo, Wagner L

    2016-12-15

    This work investigates the extraction process of safflower oil using pressurized ethanol, and compares the chemical composition obtained (in terms of fatty acids) with other extraction techniques. Soxhlet and Ultrasound showed maximum global yield of 36.53% and 30.41%, respectively (70°C and 240min). PLE presented maximum global yields of 25.62% (3mLmin(-1)), 19.94% (2mLmin(-1)) and 12.37% (1mLmin(-1)) at 40°C, 100bar and 60min. Palmitic acid showed the lower concentration in all experimental conditions (from 5.70% to 7.17%); Stearic and Linoleic acid presented intermediate concentrations (from 2.93% to 25.09% and 14.09% to 19.06%, respectively); Oleic acid showed higher composition (from 55.12% to 83.26%). Differences between percentages of fatty acids, depending on method were observed. Results may be applied to maximize global yields and select fatty acids, reducing the energetic costs and process time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  6. Achieving uniform layer deposition by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Ok [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Kang, Woo Seok, E-mail: kang@kimm.re.kr [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of); Hur, Min; Lee, Jin Young [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Song, Young-Hoon [Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 305-343 (Korea, Republic of); Department of Environment & Energy Mechanical Engineering, University of Science & Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2015-12-31

    This work investigates the use of plasma-enhanced chemical vapor deposition under atmospheric pressure for achieving uniform layer formation. Electrical and optical measurements demonstrated that the counterbalance between oxygen and precursors maintained the homogeneous discharge mode, while creating intermediate species for layer deposition. Several steps of the deposition process of the layers, which were processed on a stationary stage, were affected by flow stream and precursor depletion. This study showed that by changing the flow streamlines using substrate stage motion uniform layer deposition under atmospheric pressure can be achieved. - Highlights: • Zirconium oxide was deposited by atmospheric-pressure plasma-enhanced chemical vapor deposition. • Homogeneous plasma was maintained by counterbalancing between discharge gas and precursors. • Several deposition steps were observed affected by the gas flow stream and precursor depletion. • Thin film layer was uniformly grown when the substrate underwent a sweeping motion.

  7. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  8. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  9. Reducing the incidence of pressure ulcers in critical care units: a 4-year quality improvement.

    Science.gov (United States)

    Richardson, Annette; Peart, Joanna; Wright, Stephen E; McCullagh, Iain J

    2017-06-01

    Critical care patients often have several risk factors for pressure ulceration and implementing prevention interventions have been shown to decrease risk. We identified a high incidence of pressure ulcers in the four adult critical care units in our organization. Therefore, avoiding pressure ulceration was an important quality priority. We undertook a quality improvement programme aimed at reducing the incidence of pressure ulceration using an evidence-based bundle approach. A bundle of technical and non-technical interventions were implemented supported by clinical leadership on each unit. Important components were evidence appraisals; changes to mattresses; focussed risk assessment alongside mandating patients at very high risk to be repositioned two hourly; and staff training to increase awareness of how to prevent pressure ulcers. Pressure ulcer numbers, incidence and categories were collected continuously and monitored monthly by unit staff. Pressure ulcer rates reduced significantly from 8.08/100 patient admissions to 2.97/100 patient admissions, an overall relative rate reduction of 63% over 4 years. The greatest reduction was seen in the most severe category of pressure ulceration. The average estimated cost saving was £2.6 million (range £2.1-£3.1). A quality improvement programme including technical and non-technical interventions, data feedback to staff and clinical leadership was associated with a sustained reduction in the incidence of pressure ulceration in the critically ill. Strategies used in this programme may be transferable to other critical care units to bring more widespread patient benefit. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. Reducing pressure ulcers in patients with prolonged acute mechanical ventilation: a quasi-experimental study.

    Science.gov (United States)

    Loudet, Cecilia Inés; Marchena, María Cecilia; Maradeo, María Roxana; Fernández, Silvia Laura; Romero, María Victoria; Valenzuela, Graciela Esther; Herrera, Isabel Eustaquia; Ramírez, Martha Teresa; Palomino, Silvia Rojas; Teberobsky, Mariana Virginia; Tumino, Leandro Ismael; González, Ana Laura; Reina, Rosa; Estenssoro, Elisa

    2017-01-01

    To determine the effectiveness of a quality management program in reducing the incidence and severity of pressure ulcers in critical care patients. This was a quasi-experimental, before-and-after study that was conducted in a medical-surgical intensive care unit. Consecutive patients who had received mechanical ventilation for ≥ 96 hours were included. A "Process Improvement" team designed a multifaceted interventional process that consisted of an educational session, a pressure ulcer checklist, a smartphone application for lesion monitoring and decision-making, and a "family prevention bundle". Fifty-five patients were included in Pre-I group, and 69 were included in the Post-I group, and the incidence of pressure ulcers in these groups was 41 (75%) and 37 (54%), respectively. The median time for pressure ulcers to develop was 4.5 [4 - 5] days in the Pre-I group and 9 [6 - 20] days in the Post-I group after admission for each period. The incidence of advanced-grade pressure ulcers was 27 (49%) in the Pre-I group and 7 (10%) in the Post-I group, and finally, the presence of pressure ulcers at discharge was 38 (69%) and 18 (26%), respectively (p pressure ulcers. The duration of mechanical ventilation and the presence of organ failure were positively associated with the development of pressure ulcers, while the multifaceted intervention program acted as a protective factor. A quality program based on both a smartphone application and family participation can reduce the incidence and severity of pressure ulcers in patients on prolonged acute mechanical ventilation.

  11. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  12. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    International Nuclear Information System (INIS)

    Peters, Junenette L.; Patricia Fabian, M.; Levy, Jonathan I.

    2014-01-01

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  13. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Junenette L., E-mail: petersj@bu.edu; Patricia Fabian, M., E-mail: pfabian@bu.edu; Levy, Jonathan I., E-mail: jonlevy@bu.edu

    2014-07-15

    High blood pressure is associated with exposure to multiple chemical and non-chemical risk factors, but epidemiological analyses to date have not assessed the combined effects of both chemical and non-chemical stressors on human populations in the context of cumulative risk assessment. We developed a novel modeling approach to evaluate the combined impact of lead, cadmium, polychlorinated biphenyls (PCBs), and multiple non-chemical risk factors on four blood pressure measures using data for adults aged ≥20 years from the National Health and Nutrition Examination Survey (1999–2008). We developed predictive models for chemical and other stressors. Structural equation models were applied to account for complex associations among predictors of stressors as well as blood pressure. Models showed that blood lead, serum PCBs, and established non-chemical stressors were significantly associated with blood pressure. Lead was the chemical stressor most predictive of diastolic blood pressure and mean arterial pressure, while PCBs had a greater influence on systolic blood pressure and pulse pressure, and blood cadmium was not a significant predictor of blood pressure. The simultaneously fit exposure models explained 34%, 43% and 52% of the variance for lead, cadmium and PCBs, respectively. The structural equation models were developed using predictors available from public data streams (e.g., U.S. Census), which would allow the models to be applied to any U.S. population exposed to these multiple stressors in order to identify high risk subpopulations, direct intervention strategies, and inform public policy. - Highlights: • We evaluated joint impact of chemical and non-chemical stressors on blood pressure. • We built predictive models for lead, cadmium and polychlorinated biphenyls (PCBs). • Our approach allows joint evaluation of predictors from population-specific data. • Lead, PCBs and established non-chemical stressors were related to blood pressure.

  14. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  15. Double Contact During Drop Impact on a Solid Under Reduced Air Pressure

    KAUST Repository

    Li, Erqiang

    2017-11-20

    Drops impacting on solid surfaces entrap small bubbles under their centers, owing to the lubrication pressure which builds up in the thin intervening air layer. We use ultrahigh-speed interference imaging, at 5 Mfps, to investigate how this air layer changes when the ambient air pressure is reduced below atmospheric. Both the radius and the thickness of the air disc become smaller with reduced air pressure. Furthermore, we find the radial extent of the air disc bifurcates, when the compressibility parameter exceeds similar to 25. This bifurcation is also imprinted onto some of the impacts, as a double contact. In addition to the central air disc inside the first ring contact, this is immediately followed by a second ring contact, which entraps an outer toroidal strip of air, which contracts into a ring of bubbles. We find this occurs in a regime where Navier slip, due to rarefied gas effects, enhances the rate gas can escape from the path of the droplet.

  16. A Sharp-Interface Immersed Boundary Method with Improved Mass Conservation and Reduced Spurious Pressure Oscillations.

    Science.gov (United States)

    Seo, Jung Hee; Mittal, Rajat

    2011-08-10

    A method for reducing the spurious pressure oscillations observed when simulating moving boundary flow problems with sharp-interface immersed boundary methods (IBMs) is proposed. By first identifying the primary cause of these oscillations to be the violation of the geometric conservation law near the immersed boundary, we adopt a cut-cell based approach to strictly enforce geometric conservation. In order to limit the complexity associated with the cut-cell method, the cut-cell based discretization is limited only to the pressure Poisson and velocity correction equations in the fractional-step method and the small-cell problem tackled by introducing a virtual cell-merging technique. The method is shown to retain all the desirable properties of the original finite-difference based IBM while at the same time, reducing pressure oscillations for moving boundaries by roughly an order of magnitude.

  17. Does improvised waterbed reduce the incidence of pressure ulcers in patients with spinal injury?

    Directory of Open Access Journals (Sweden)

    Jude-Kennedy C Emejulu

    2015-01-01

    Full Text Available Background: Pressure ulcers are lesions caused by unrelieved pressure over bony prominences, resulting in damage to underlying tissues. The etiology is multifactorial including prolonged immobility. They usually complicate spinal cord injuries with long periods of bed confinement. The use of bed replacements markedly reduces the incidence of pressure ulcers, but the unaffordability of these replacements in low-income countries has necessitated the need to explore cheaper alternatives. Aim and Objective: The aim of this study was to ascertain whether the use of our cheap and locally improvised waterbeds would reduce the incidence of pressure ulcers in patients on prolonged bed confinement due to spinal injury. Methodology: Over a 16-month period, 51 patients (age range 1-80 years with spinal injuries were managed conservatively in our service using improvised waterbeds in 21 (41.2%, while using the regular hospital bed/foam in 30 (58.8%. Biodata, the time interval between injury and presentation to the hospital, nature of the injury, use of improvised waterbed and development of pressure ulcer, were collected, collated, and analyzed. Statistical significance was calculated with the Chi-square test. Results: Most were males (98%, in the age range of 21-30 years (25.5%, and due to fall from heights (35.3%. Of 21 patients who were managed on improvised waterbeds, 6 (28.6% had pressure ulcers, and of the 30 who did not use the waterbed, 17 (56.7% developed ulcers. The c2 = 3.9381, while P = 0.0472. This difference was statistically significant. Conclusion: The improvised waterbed, which is much cheaper than the standard waterbed, was observed to have significantly reduced the incidence of pressure ulcers among our patients. Nonetheless, further studies would still be needed to confirm this observation.

  18. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  19. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  20. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention.

    Science.gov (United States)

    Yeung, Ching-Yan C; Holmes, David F; Thomason, Helen A; Stephenson, Christian; Derby, Brian; Hardman, Matthew J

    2016-11-01

    Pressure ulcers are complex wounds caused by pressure- and shear-induced trauma to skin and underlying tissues. Pressure-reducing devices, such as dressings, have been shown to successfully reduce pressure ulcer incidence, when used in adjunct to pressure ulcer preventative care. While pressure-reducing devices are available in a range of materials, with differing mechanical properties, understanding of how a material's mechanical properties will influence clinical efficacy remains limited. The aim of this study was to establish a standardized ex vivo model to allow comparison of the cell protection potential of two gel-like pressure-reducing devices with differing mechanical properties (elastic moduli of 77 vs. 35 kPa). The devices also displayed differing energy dissipation under compressive loading, and resisted strain differently under constant load in compressive creep tests. To evaluate biological efficacy we employed a new ex vivo porcine skin model, with a confirmed elastic moduli closely matching that of human skin (113 vs. 119 kPa, respectively). Static loads up to 20 kPa were applied to porcine skin ex vivo with subsequent evaluation of pressure-induced cell death and cytokine release. Pressure application alone increased the percentage of epidermal apoptotic cells from less than 2% to over 40%, and increased cellular secretion of the pro-inflammatory cytokine TNF-alpha. Co-application of a pressure-reducing device significantly reduced both cellular apoptosis and cytokine production, protecting against cellular damage. These data reveal new insight into the relationship between mechanical properties of pressure-reducing devices and their biological effects. After appropriate validation of these results in clinical pressure ulcer prevention with all tissue layers present between the bony prominence and external surface, this ex vivo porcine skin model could be widely employed to optimize design and evaluation of devices aimed at reducing pressure

  1. Relationship between the evaporation rate and vapor pressure of moderately and highly volatile chemicals.

    Science.gov (United States)

    van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John

    2008-04-01

    Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.

  2. Applying the three R's: Reduce, reuse, and recycle in the chemical industry.

    Science.gov (United States)

    Mostafa, Mohamed K; Peters, Robert W

    2017-03-01

    Pollution prevention (P2) assessment was conducted by applying the three R's, reduce, reuse, and recycle, in a chemical industry for the purpose of reducing the amount of wastewater generated, reusing paint wastewater in the manufacture of cement bricks, recycling cooling water, and improving water usage efficiency. The results of this study showed that the annual wastewater flow generated from the paint manufacturing can be reduced from 1,100 m 3 to 488.4 m 3 (44.4% reduction) when a high-pressure hose is used. Two mixtures were prepared. The first mixture (A) contains cement, coarse aggregate, fine aggregate, Addicrete BVF, and clean water. The second mixture (B) contains the same components used in the first mixture, except that paint wastewater was used instead of the clean water. The prepared samples were tested for water absorption, toxicity, reactivity, compressive strength, ignitability, and corrosion. The tests results indicated that using paint wastewater in the manufacture of the cement bricks improved the mechanical properties of the bricks. The toxicity test results showed that the metals concentration in the bricks did not exceed the U.S. EPA limits. This company achieved the goal of zero liquid discharge (ZLD), especially after recycling 2,800 m 3 of cooling water. The total annual saving could reach $42,570 with a payback period of 41 days. This research focused on improving the water usage efficiency, reducing the quantity of wastewater generated, and potentially reusing wastewater in the manufacture of cement bricks. Reusing paint wastewater in the manufacture of the bricks prevents the hazardous pollutants in the wastewater (calcium carbonate, styrene acrylic resins, colored pigments, and titanium dioxide) from entering and polluting the surface water and the environment. We think that this paper will help to find the most efficient and cost-effective way to manage paint wastewater and conserve fresh water resources. We also believe that this

  3. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A.

    2002-01-01

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting coating deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl 2 O 4 . The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed

  4. Water cycle and its management for plant habitats at reduced pressures

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Wheeler, Raymond M.; Bucklin, Ray A.

    2004-01-01

    Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.

  5. Effect of hydrostatic and chemical pressure on the exchange interaction in magnetic borocarbide superconductors

    Science.gov (United States)

    Michor, H.; El-Hagary, M.; Naber, L.; Bauer, E.; Hilscher, G.

    2000-03-01

    The investigation of pair-breaking effects in magnetic rare-earth nickel borocarbide superconductors reveals a considerable increase of the magnetic exchange integral Jsf by hydrostatic as well as chemical pressure. In both, Jsf is governed by the R-C distance (or lattice constant a) and is described quantitatively by a simple phenomenological model. Thereby, just two parameters Jsf0=31 meV and ΔJsf/Δa=165 meV/Å explain well the influence of chemical pressure upon the initial depression rates of Tc in solid solutions R'1-xRxNi2B2C with R=Gd, Tb, Dy, Ho and R'=Y and Lu.

  6. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Science.gov (United States)

    Fricke, Lisa; Petroff, David; Desch, Steffen; Lurz, Philipp; Reinhardt, Sebastian; Sonnabend, Melanie; Classen, Joseph; Baum, Petra

    2017-01-01

    Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1) and normal or enhanced in nine patients (group 2). The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1-21 mmHg, p = 0.035) and from 166 to 145 mmHg (8-34 mmHg, p = 0.005), respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3-22 mmHg) greater in group 2 than in group 1 (p = 0.045). Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  7. Using the adaptive SMA composite cylinder concept to reduce radial dilation in composite pressure vessels

    Science.gov (United States)

    Paine, Jeffrey S.; Rogers, Craig A.

    1995-05-01

    Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.

  8. Does dysfunction of the autonomic nervous system affect success of renal denervation in reducing blood pressure?

    Directory of Open Access Journals (Sweden)

    Lisa Fricke

    2017-04-01

    Full Text Available Objectives: Renal denervation is an interventional approach aiming to reduce high blood pressure. Its efficacy is subject of controversial debate. We analyzed autonomic function in patients undergoing renal denervation to identify responders. Methods: A total of 21 patients with treatment-resistant hypertension scheduled for renal denervation were included. Heart rate variability, pupillary function and sympathetic skin response were examined prior to intervention. Before and 1 or 3 months after intervention, 24-h ambulatory blood pressure readings were taken. Results: Patients were stratified according to sympathetic nervous system function. Sympathetic activity was reduced in 12 participants (group 1 and normal or enhanced in nine patients (group 2. The mean of daytime systolic blood pressure decreased in groups 1 and 2 from 168 to 157 mmHg (95% confidence interval for difference, 1–21 mmHg, p = 0.035 and from 166 to 145 mmHg (8–34 mmHg, p = 0.005, respectively. In a linear model, blood pressure reduction was 11.3 mmHg (0.3–22 mmHg greater in group 2 than in group 1 (p = 0.045. Conclusion: Patients with preexisting reduced activity of the sympathetic nervous system benefited less from renal denervation.

  9. Energy and exergy analysis of electricity generation from natural gas pressure reducing stations

    International Nuclear Information System (INIS)

    Neseli, Mehmet Alparslan; Ozgener, Onder; Ozgener, Leyla

    2015-01-01

    Highlights: • Forecasting the recoverable energy from natural gas pressure reduction stations. • Electricity generation through pressure reduction stations via turboexpanders. • A thermodynamics analysis of PRS. - Abstract: Electricity generation or power recovery through pressure reduction stations (PRS) for general use has not been realized in Izmir. The main objective of the present study was to do a case study for calculating electricity to be recovered in one natural gas pressure reduction stations in Izmir. It is the first forecasting study to obtain energy from natural gas pressure-reducing stations in Izmir. Energy can be obtained from natural gas PRS with turbo-expanders instead of using throttle valves or regulators from the PRS. The exergy performance of PRS with TE is evaluated in this study. Exergetic efficiencies of the system and components are determined to assess their individual performances. Based upon pressure change and volumetric flow rate, it can be obtained by recovering average estimated installed capacity and annual energy 494.24 kW, 4113.03 MW h, respectively. In terms of estimated installed capacity power and annual energy, the highest level is 764.88 kW, approximately 6365.34 MW h, in Aliaga PRS. Also it can be seen that CO 2 emission factor average value is 295.45 kg/MW h

  10. Mapping of Drug-like Chemical Universe with Reduced Complexity Molecular Frameworks.

    Science.gov (United States)

    Kontijevskis, Aleksejs

    2017-04-24

    The emergence of the DNA-encoded chemical libraries (DEL) field in the past decade has attracted the attention of the pharmaceutical industry as a powerful mechanism for the discovery of novel drug-like hits for various biological targets. Nuevolution Chemetics technology enables DNA-encoded synthesis of billions of chemically diverse drug-like small molecule compounds, and the efficient screening and optimization of these, facilitating effective identification of drug candidates at an unprecedented speed and scale. Although many approaches have been developed by the cheminformatics community for the analysis and visualization of drug-like chemical space, most of them are restricted to the analysis of a maximum of a few millions of compounds and cannot handle collections of 10 8 -10 12 compounds typical for DELs. To address this big chemical data challenge, we developed the Reduced Complexity Molecular Frameworks (RCMF) methodology as an abstract and very general way of representing chemical structures. By further introducing RCMF descriptors, we constructed a global framework map of drug-like chemical space and demonstrated how chemical space occupied by multi-million-member drug-like Chemetics DNA-encoded libraries and virtual combinatorial libraries with >10 12 members could be analyzed and mapped without a need for library enumeration. We further validate the approach by performing RCMF-based searches in a drug-like chemical universe and mapping Chemetics library selection outputs for LSD1 targets on a global framework chemical space map.

  11. Analysis of insect triacylglycerols using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Kofroňová, Edita; Cvačka, Josef; Jiroš, Pavel; Sýkora, D.; Valterová, Irena

    2009-01-01

    Roč. 111, č. 5 (2009), s. 519-525 ISSN 1438-7697 R&D Projects: GA AV ČR IAA4055403; GA MŠk 2B06007 Institutional research plan: CEZ:AV0Z40550506 Keywords : atmospheric pressure chemical ionization * bumblebees * fat body * NARP-HPLC Subject RIV: CC - Organic Chemistry Impact factor: 1.831, year: 2009

  12. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    Science.gov (United States)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  13. Pressure fluctuation analysis for charging pump of chemical and volume control system of nuclear power plant

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available Equipment Failure Root Cause Analysis (ERCA methodology is employed in this paper to investigate the root cause for charging pump’s pressure fluctuation of chemical and volume control system (RCV in pressurized water reactor (PWR nuclear power plant. RCA project task group has been set up at the beginning of the analysis process. The possible failure modes are listed according to the characteristics of charging pump’s actual pressure fluctuation and maintenance experience during the analysis process. And the failure modes are analysed in proper sequence by the evidence-collecting. It suggests that the gradually untightened and loosed shaft nut in service should be the root cause. And corresponding corrective actions are put forward in details.

  14. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  15. A computational environment for creating and testing reduced chemical kinetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, C.J.; Swensen, D.A.; Harding, T.V.; Cremer, M.A.; Bockelie, M.J. [Reaction Engineering International, Salt Lake City, UT (USA)

    2002-02-01

    This paper describes software called computer assisted reduced mechanism problem solving environment (CARM-PSE) that gives the engineer the ability to rapidly set up, run and examine large numbers of problems comparing detailed and reduced (approximate) chemistry. CARM-PSE integrates the automatic chemical mechanism reduction code CARM and the codes that simulate perfectly stirred reactors and plug flow reactors into a user-friendly computational environment. CARM-PSE gives the combustion engineer the ability to easily test chemical approximations over many hundreds of combinations of inputs in a multidimensional parameter space. The demonstration problems compare detailed and reduced chemical kinetic calculations for methane-air combustion, including nitrogen oxide formation, in a stirred reactor and selective non-catalytic reduction of NOx, in coal combustion flue gas.

  16. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    Science.gov (United States)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  17. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice

    Directory of Open Access Journals (Sweden)

    Anne K. McGavigan

    2017-03-01

    Full Text Available Bariatric surgery, such as vertical sleeve gastrectomy (VSG, causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations.

  18. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Watermelon extract reduces blood pressure but does not change sympathovagal balance in prehypertensive and hypertensive subjects.

    Science.gov (United States)

    Massa, Nayara Moreira Lacerda; Silva, Alexandre Sérgio; Toscano, Luciana Tavares; Silva, Joanna D'arc Gomes Rodrigues; Persuhn, Darlene Camati; Gonçalves, Maria Da Conceição Rodrigues

    2016-08-01

    Previous studies have shown that watermelon extract reduces blood pressure through vasodilation. However, those studies have not verified whether sympathetic nervous activity is influenced by watermelon extract. This study aimed to evaluate the effect of supplementation with watermelon extract for 6 weeks on blood pressure and sympathovagal balance of prehypertensive and hypertensive individuals. Forty volunteers participated in a randomized, double-blind, experimental and placebo-controlled study. They consumed 6 g of watermelon extract daily (n = 20; age 48.7 ± 1.9 years, 10 men) or a placebo (n = 20; age 47.4 ± 1.2 years, 11 men) for 6 weeks. Blood pressure and cardiac autonomic modulation were measured. Watermelon extract promoted a significant reduction in systolic (137.8 ± 3.9 to 126.0 ± 4.0 mmHg, p watermelon extract reduces systolic and diastolic blood pressure in prehypertensive and hypertensive individuals, but does not alter the cardiac autonomic modulation of these individuals.

  20. A novel, intelligent, pressure-sensing colostomy plug for reducing fecal leakage.

    Science.gov (United States)

    Chen, Fei; Li, Zhi-Chao; Li, Qiang; Liang, Fei-Xue; Guo, Xiong-Bo; Huang, Zong-Hai

    2015-06-01

    This study aims to describe and report the effectiveness of a novel, pressure-sensing colostomy plug for reducing fecal leakage. Nine miniature Tibetan pigs, aged 6-8 months, were given colostomies and divided into three groups (n = 3 each group). A novel pressure-sensing colostomy plug was placed in each pig and set to indicate when intestinal pressures of either 5, 10, or 15 mm Hg, respectively, were reached. When the pressure thresholds were reached, the animals' bowels were examined for the presence of stool and/or stomal leakage, and the data were recorded at weeks 1, 4, and 8 after surgery. The colostomy plug calibrated to 15 mm Hg pressure demonstrated the greatest accuracy in predicting the presence of stool in the bowels of study animals, averaging >90% sensitivity. In general, the sensitivity for predicting the presence of stool did not vary significantly over time, though there was a slight increase in accuracy in the 5 mm Hg group at later time-points. The sensitivity for predicting stool in the bowel did not change significantly over time in any of the three groups. Stomal leakage was found to be inversely proportional to the pressure-sensor setting, in that the 15 mm Hg group exhibited the greatest amount of leakage. This difference, however, was found to be significant only at week 1 postsurgery. The intelligent, pressure-sensing colostomy plug was able to accurately predict the presence of stool in the bowel and maintain continence, allowing negligible leakage. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Indigeneous design and development of differential pressure reducing valves for PHWRs (Paper No. 055)

    International Nuclear Information System (INIS)

    Soni, N.L.; Agrawal, R.C.; Chandra, Rajesh

    1987-02-01

    On load fuelling of Pressurised Heavy Water Reactors (PHWRs) is being achieved with the help of Fuelling Machine (F/M). Various actuations are to be carried out inside the F/M magazine pressure housing with the help of high pressure water hydraulic actuators. A constant differential pressure is required to be maintained between pressurized magazine housing and the actuators-supply line for proper operation of the actuators which are to be located inside it. This is achieved with the help of the Differential Pressure Reducing Valve (DPRV). So far these valves have been procured only from a single foreign supplier. In March 1980, the price of each valve was US dollars 3100.00. Dependence on a single foreign supplier may create problems of timely procurement. An effort was made to design and manufacture the DPRV indigensouly meeting the stringent specifications. Theoretical study of single acting DPRV was carried out and design criteria were established. The valve was tested for its performance and was found satisfactory. (author). 8 figs

  2. Abstracts of 2. international conference C-BN and diamond crystallization under reduced pressure

    International Nuclear Information System (INIS)

    1995-01-01

    The important problem and the last advanced one from the view point of electronic materials sciences is the new A III B V compounds creation and investigation of their properties. This domain was the main subject of the 2. International Conference on C-BN and diamond crystallization under reduced pressure. The conference has been divided into 8 sessions. They were: opening address, c-BN, new materials, posters, diamond, applications, posters

  3. Reducing water losses via intelligent pressure management; Reduzierung von Wasserverlusten durch intelligentes Druckmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Oppinger, Peter [VAG-Armaturen GmbH, Mannheim (Germany). Marketing

    2008-03-15

    Leaks in water pipes and leaking municipal water-transmission and piping systems, particularly in developing and threshold countries account for water-losses of up to 50% of the water supplied by the waterworks. This article examines three different solutions for effective pressure management on the basis of an intelligent control system, by means of which water-losses can be reduced to a stable and economically rational level. (orig.)

  4. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method

    DEFF Research Database (Denmark)

    Li, Xiujuan; Chang, Si; Du, Guangsheng

    2012-01-01

    Azithromycin loaded microspheres with blends of poly-l-lactide and ploy-D,L-lactide-co-glycolide as matrices were prepared by the atmosphere-solvent evaporation (ASE) and reduced pressure-solvent evaporation (RSE) method. Both the X-ray diffraction spectra and DSC thermographs demonstrated...... characteristics and release profiles of microspheres. In conclusion, the overall improvement of microspheres in appearance, encapsulation efficiency and controlled drug release through the RSE method could be easily fulfilled under optimal preparation conditions....

  5. A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD

    Science.gov (United States)

    Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd

    2017-12-01

    Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.

  6. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  7. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    Science.gov (United States)

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  8. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  9. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  10. Design of a high-pressure single pulse shock tube for chemical kinetic investigations

    International Nuclear Information System (INIS)

    Tranter, R. S.; Brezinsky, K.; Fulle, D.

    2001-01-01

    A single pulse shock tube has been designed and constructed in order to achieve extremely high pressures and temperatures to facilitate gas-phase chemical kinetic experiments. Postshock pressures of greater than 1000 atmospheres have been obtained. Temperatures greater than 1400 K have been achieved and, in principle, temperatures greater than 2000 K are easily attainable. These high temperatures and pressures permit the investigation of hydrocarbon species pyrolysis and oxidation reactions. Since these reactions occur on the time scale of 0.5--2 ms the shock tube has been constructed with an adjustable length driven section that permits variation of reaction viewing times. For any given reaction viewing time, samples can be withdrawn through a specially constructed automated sampling apparatus for subsequent species analysis with gas chromatography and mass spectrometry. The details of the design and construction that have permitted the successful generation of very high-pressure shocks in this unique apparatus are described. Additional information is provided concerning the diaphragms used in the high-pressure shock tube

  11. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  12. Blood pressure reducing effects of Phalaris canariensis in normotensive and spontaneously hypertensive rats.

    Science.gov (United States)

    Passos, Clévia Santos; Carvalho, Lucimeire Nova; Pontes, Roberto Braz; Campos, Ruy Ribeiro; Ikuta, Olinda; Boim, Mirian Aparecida

    2012-02-01

    The birdseed Phalaris canariensis (Pc) is popularly used as an antihypertensive agent. The aqueous extract of Pc (AEPc) was administered in adult normotensive Wistar rats and spontaneously hypertensive rats (SHR) and in prehypertensive young SHR (SHR(Y), 3 weeks old). Animals received AEPc (400 mg·kg(-1)·day(-1), by gavage) for 30 days, then groups were divided into 2 subgroups: one was treated for another 30 days and the other received water instead of AEPc for 30 days. AEPc reduced systolic blood pressure (SBP) in both adult groups; however, treatment interruption was followed by a gradual return of the SBP to baseline levels. SHR(Y) became hypertensive 30 days after weaning. AEPc minimized the increase in SBP in SHR(Y), but blood pressure rose to levels similar to those in the untreated group with treatment interruption. There were no changes in renal function, diuresis, or Na(+) excretion. Pc is rich in tryptophan, and the inhibition of the metabolism of tryptophan to kynurenine, a potential vasodilator factor, prevented the blood pressure reducing effect of AEPc. Moreover, AEPc significantly reduced sympathoexcitation. Data indicate that the metabolic derivative of tryptophan, kynurenine, may be a mediator of the volume-independent antihypertensive effect of Pc, which was at least in part mediated by suppression of the sympathetic tonus.

  13. Pressure-reducing interventions among persons with pressure ulcers: results from the first three national pressure ulcer prevalence surveys in Sweden.

    Science.gov (United States)

    Bååth, Carina; Idvall, Ewa; Gunningberg, Lena; Hommel, Ami

    2014-02-01

    The overall aim of this study was to describe preventive interventions among persons with pressure ulcer (PU) in three nationwide PU prevalence surveys in Sweden. A cross-sectional research design was used; more than 70 000 persons from different hospitals and nursing homes participated in the three prevalence surveys conducted in March 2011, October 2011 and March 2012. The methodology used was that recommended by the European Pressure Ulcers Advisory Panel. The overall prevalence of PU categories I-IV in hospitals was 16.6%, 14.4% and 16.1%, respectively. Corresponding figures for nursing homes were 14.5%, 14.2% and 11.8%, respectively. Heel protection/floating heels and sliding sheets were more frequently planned for persons with PU category I. Despite the three prevalence studies that have showed high prevalence of PU the use of preventing interventions is still not on an acceptable level. Heel protection/floating heels and sliding sheets were more frequently planned for persons with PUs, and individual-planned repositioning also increased. However, when persons already have a PU they should all have pressure-reducing preventive interventions to prevent the development of more PUs. Preventing PUs presents a challenge even when facilities have prevention programmes. A PU prevention programme requires an enthusiastic leader who will maintain the team's focus and direction for all staff involved in patient care. © 2013 John Wiley & Sons, Ltd.

  14. Impact of chemical peeling combined with negative pressure on human skin.

    Science.gov (United States)

    Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J

    2016-10-01

    In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P peeling alone (P < 0.05). Chemodermabrasion can temporarily impair skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  16. Surgical treatment reduces blood pressure in children with unilateral congenital hydronephrosis.

    Science.gov (United States)

    Al-Mashhadi, Ammar; Nevéus, Tryggve; Stenberg, Arne; Karanikas, Birgitta; Persson, A Erik G; Carlström, Mattias; Wåhlin, Nils

    2015-04-01

    Renal disorders can cause hypertension, but less is known about the influence of hydronephrosis on blood pressure. Hydronephrosis due to pelvo-ureteric junction obstruction (PUJO) is a fairly common condition (incidence in newborns of 0.5-1%). Although hypertensive effects of hydronephrosis have been suggested, this has not been substantiated by prospective studies in humans [1-3]. Experimental studies with PUJO have shown that animals with induced hydronephrosis develop salt-sensitive hypertension, which strongly correlate to the degree of obstruction [4-7]. Moreover, relief of the obstruction normalized blood pressure [8]. In this first prospective study our aim was to study the blood pressure pattern in pediatric patients with hydronephrosis before and after surgical correction of the ureteral obstruction. Specifically, we investigated if preoperative blood pressure is reduced after surgery and if split renal function and renographic excretion curves provide any prognostic information. Twelve patients with unilateral congenital hydronephrosis were included in this prospective study. Ambulatory blood pressure (24 h) was measured preoperatively and six months after surgery. Preoperative evaluations of bilateral renal function by Tc99m-MAG3 scintigraphy, and renography curves, classified according to O'Reilly, were also performed. As shown in the summary figure, postoperative systolic (103 ± 2 mmHg) and diastolic (62 ± 2 mmHg) blood pressure were significantly lower than those obtained preoperatively (110 ± 4 and 69 ± 2 mmHg, respectively), whereas no changes in circadian variation or pulse pressure were observed. Renal functional share of the hydronephrotic kidney ranged from 11 to 55%. There was no correlation between the degree of renal function impairment and the preoperative excretory pattern, or between the preoperative excretory pattern and the blood pressure reduction postoperatively. However, preoperative MAG3 function of the affected kidney correlated

  17. Evaluation of chemical immersion treatments to reduce microbial populations in fresh beef.

    Science.gov (United States)

    Kassem, Ahmed; Meade, Joseph; Gibbons, James; McGill, Kevina; Walsh, Ciara; Lyng, James; Whyte, Paul

    2017-11-16

    The aim of the current study was to assess the ability of a number of chemicals (acetic Acid (AA), citric acid (CA) lactic acid (LA), sodium decanoate (SD) and trisodium phosphate (TSP)) to reduce microbial populations (total viable count, Campylobacter jejuni, Escherichia coli, Salmonella typhimurium and Listeria monocytogenes) on raw beef using an immersion system. The following concentrations of each chemical were used: 3 & 5% for AA, CA, LA, SD and 10 &12% for TSP. Possible synergistic effects of using combinations of two chemicals sequentially (LA+CA and LA+AA) were also investigated. L*, a* and b* values were measured before and after treatments and ΔE* values were calculated in order to determine any changes in the color of meat due to the use of these chemicals. In general, all chemical treatments resulted in significantly (p0.05). The application of combinations of chemical immersion treatments (LA3%+AA3% and LA3%+CA3%) did not result in further significant reductions in microbial populations when compared to single chemical treatments (P3 immediately after treatment and after 24h storage. The remaining treatments did not result in significant changes to the color of raw beef. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Magnetic Correlations in URu2Si2 under Chemical and Hydrostatic Pressure

    Science.gov (United States)

    Williams, Travis; Aczel, Adam; Broholm, Collin; Buyers, William; Leao, Juscelino; Luke, Graeme; Rodriguez-Riviera, Jose; Stone, Matthew; Wilson, Murray; Yamani, Zahra

    URu2Si2 has been an intense area of study for the last 30 years due to a mysterious hidden order phase that appears below T0 = 17.5 K. The hidden order phase has been shown to be extremely sensitive to perturbations, being destroyed quickly by the application of a magnetic field, hydrostatic or uniaxial pressure, and chemical doping. While attempting to understand the properties of URu2Si2, neutron scattering has found spin correlations that are intimately related to this hidden order phase and which are also suppressed with these perturbations. Here, I will outline some recent neutron scattering work to study these correlations in two exceptional cases where the hidden order phase is enhanced: hydrostatic pressure and chemical pressure using Fe- and Os-doping. In both of these cases, T0 increases before an antiferromagnetic phase emerges. By performing a careful analysis of the neutron data, we show that these two phases are much more related than had been previously appreciated. This implies that the hidden order is likely compatible with an antiferromagnetic ground state, placing constraints on the nature of the missing order parameter.

  19. Study of discharges produced by surface waves under medium and high pressure: application to chemical analysis

    International Nuclear Information System (INIS)

    Laye epouse Granier, Agnes

    1986-01-01

    This report deals with the study of microwave discharges produced in argon gas by surface waves in the 20-760 Torr pressure range. Application to chemical analysis by emission optical spectroscopy is also investigated. First of all we study the propagation of a surface wave in a bounded plasma in which the effective collision frequency for momentum transfer ν is higher than the excitation one. The axial electron density profile is determined from two diagnostic techniques, i.e., phase variations of the wave field and Stark broadening of H β line. Then we deduce the discharge characteristics ν, θ (maintaining power of an electron-ion pair) and E eff (effective electric field for discharge sustaining) from the electron density profile. Then an energy balance of the discharge is developed. It explains the change of operating conditions in the 20-50 Torr range. At low pressure the discharge is governed by ambipolar diffusion whereas at high pressure, the electrons are mainly lost by volume recombination of Ar 2 + . Finally, we report on chemical analysis experiment of gases (optimum sensibility in found near 100 Torr) and of metallic solutions sprayed by a graphite oven. Performances of such a design and ICP plasma torches are compared. (author) [fr

  20. Effects of High Hydrostatic Pressure on the Physical, Microbial, and Chemical Attributes of Oysters (Crassostrea virginica).

    Science.gov (United States)

    Lingham, Talaysha; Ye, Mu; Chen, Haiqiang; Chintapenta, Lathadevi Karuna; Handy, Eunice; Zhao, Jing; Wu, Changqing; Ozbay, Gulnihal

    2016-05-01

    The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P oysters HHP treated at 300 MPa at 0 °C in lipid oxidation values. The highest pressure (500 MPa) treatment in this study, significantly (P oysters at 3 wk was significantly higher (P oysters [300 MPa, (RT); 450 MPa (0 °C); and 500 MPa (0 °C)]. HHP treatments of oysters were not significantly different in pH, percent salt extractable protein (SEP), and total lipid values compared to control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters. © 2016 Institute of Food Technologists®

  1. [A project to reduce the incidence of facial pressure ulcers caused by prolonged surgery with prone positioning].

    Science.gov (United States)

    Lee, Wen-Yi; Lin, Pao-Chen; Weng, Chia-Hsing; Lin, Yi-Lin; Tsai, Wen-Lin

    2012-06-01

    We observed in our institute a 13.6% incidence of prolonged surgery (>4 hours) induced facial pressure ulcers that required prone positioning. Causes identified included: (1) customized silicon face pillows used were not suited for every patient; (2) our institute lacked a standard operating procedure for prone positioning; (3) our institute lacked a postoperative evaluation and audit procedure for facial pressure ulcers. We designed a strategy to reduce post-prolonged surgery facial pressure ulcer incidence requiring prone positioning by 50% (i.e., from 13.6% to 6.8%). We implemented the following: (1) Created a new water pillow to relieve facial pressure; (2) Implemented continuing education pressure ulcer prevention and evaluation; (3) Established protocols on standard care for prone-position patients and proper facial pressure ulcer identification; (4) Established a face pressure ulcers accident reporting mechanism; and (5) Established an audit mechanism facial pressure ulcer cases. After implementing the resolution measures, 116 patients underwent prolonged surgery in a prone position (mean operating time: 298 mins). None suffered from facial pressure ulcers. The measures effectively reduced the incidence of facial pressure ulcers from 13.6% to 0.0%. The project used a water pillow to relieve facial pressure and educated staff to recognize and evaluate pressure ulcers. These measures were demonstrated effective in reducing the incidence of facial pressure ulcers caused by prolonged prone positioning.

  2. Evidence-based blood pressure reducing actions of electroacupuncture: mechanisms and clinical application.

    Science.gov (United States)

    Longhurst, John C; Tjen-A-Looi, Stephanie C

    2017-10-25

    Hypertension is a serious world-wide health problem as it increases cardiovascular atherosclerotic risk, stroke and attending morbidity and mortality. Both systolic and diastolic blood pressures and particularly systolic pressure increase with aging. The downsides from pharmacological therapy have led to consideration of additional treatments, including acupuncture, which evokes endogenous neural-hormonal systems to lower blood pressure. Using basic science studies to guide clinical approaches to research, it is apparent that low frequency, low intensity electroacupuncture reduces sympathetic outflow in approximately 70% of patients with mild to moderate hypertension who are off antihypertensive drugs. Systolic and, to a lesser extent, diastolic arterial blood pressures can be lowered over two to four weeks for prolonged periods, lasting as long as one month, after cessation of an eight weeks of once weekly stimulation. Many questions about long-term therapy, treatment of resistant patients and efficacy in patients on medication remain to be studied. Current data, however, suggest that there may be a role of acupuncture in treatment of hypertension.

  3. Are Pressure Vests Beneficial at Reducing Stress in Anxious and Fearful Dogs?

    Directory of Open Access Journals (Sweden)

    Louise Anne Buckley

    2018-03-01

    Full Text Available PICO questionIn fearful or anxious dogs does wearing a pressure vest, compared to not wearing one, result in reduced behavioural and physiological signs of stress? Clinical bottom lineFour studies of variable quality and limitations were identified that investigated the use of pressure vests, using various physiological and behavioural proxy measures of anxiety. Most behavioural outcome measures associated with a positive effect were subjective assessments, with unblinded assessors. Subjectively, many of the owners believed that pressure vests had a positive effect on their dogs’ anxiety levels.The take home message for the veterinary professional is that pressure vests may have small but beneficial effects on canine anxiety click to tweet and that habituating the dog to the vest, assessing for comfort and using repeatedly may improve the likelihood of any benefit. However, the owner should be cautioned that they should not expect their dog’s anxiety to be fully alleviated or prevented, and it may have no beneficial effect at all. 

  4. Intelligent Pressure Management to Reduce Leakage in Urban Water Supply Networks, A Case Study of Sarafrazan District, Mashhad

    OpenAIRE

    Mohammad Soltani Asl; Mahmoud Faghfour Maghrebi

    2009-01-01

    Water losses are inevitable in urban water distribution systems. The two approaches adopted nowadays to combat this problem include management of hydraulic parameters such as pressure and leakage detection in the network. Intellitgent pressure management is a suitable technique for controlling leakage and reducing damages due to high operating pressures in a network. This paper aims to investigate the effects of pressure reduction on leakage. The EPANET 2.10 software is used to simulate the w...

  5. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  6. Sterilization and Decontamination of Surfaces Contaminated With Biological and Chemical Warfare Agents Using Atmospheric Pressure Plasma Discharges

    National Research Council Canada - National Science Library

    Garate, Eusebio

    1999-01-01

    ... based on the application of an atmospheric pressure plasma. We used both a DC corona and dielectric barrier discharge for the sterilization tests which were conducted on a variety of substrates including metals and chemically resistant fabrics...

  7. Intelligent Pressure Management to Reduce Leakage in Urban Water Supply Networks, A Case Study of Sarafrazan District, Mashhad

    Directory of Open Access Journals (Sweden)

    Mohammad Soltani Asl

    2009-09-01

    Full Text Available Water losses are inevitable in urban water distribution systems. The two approaches adopted nowadays to combat this problem include management of hydraulic parameters such as pressure and leakage detection in the network. Intellitgent pressure management is a suitable technique for controlling leakage and reducing damages due to high operating pressures in a network. This paper aims to investigate the effects of pressure reduction on leakage. The EPANET 2.10 software is used to simulate the water distribution network in the Sarafrazan District,Mashhad, assuming leakage from network nodes. The results are then used to develop a pressure variation program based on the patterns obtained from the simulation, which is applied to the pressure reducing valve. The results show that pressure management can reduce nightly leakage by up to 35% while maintaining a more uniform pressure distribution. Implementation of the time-dependent pressure pattern by applying programmable pressure reducing valves in a real urban water distribution network is feasible and plays a key role in reducing water losses to leakage.

  8. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    Science.gov (United States)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  9. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    Science.gov (United States)

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Can disorder act as a chemical pressure? An optical study of the Hubbard model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-05-01

    The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.

  11. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    Science.gov (United States)

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn-Ni-Ge system

    Science.gov (United States)

    Taubel, Andreas; Gottschall, Tino; Fries, Maximilian; Faske, Tom; Skokov, Konstantin P.; Gutfleisch, Oliver

    2017-11-01

    The magnetic, structural and thermomagnetic properties of the MM’X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition. We obtained very large isothermal entropy changes Δ S_iso of up to -37.8 J kg-1 K-1 based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K GPa-1 ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

  13. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    Directory of Open Access Journals (Sweden)

    L. Dai

    2018-03-01

    Full Text Available The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO  =  7.12, 7.27 and 7.64 % weight percent was measured using a complex impedance spectroscopic technique at 623–1073 K and 1.5 GPa and a frequency range of 10−1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35–0.52 and 0.76–0.87 eV at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+ in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie–Sulu ultrahigh-pressure metamorphic belt. However, the conductivity–depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  14. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  15. Determination of sulfonamides in meat by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Kim, Dal Ho; Choi, Jong Oh; Kim, Jin Seog; Lee, Dai Woon

    2002-01-01

    Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) has been used for the determination of sulfonamides in meat. Five typical sulfonamides were selected as target compounds, and beef meat was selected as a matrix sample. As internal standards, sulfapyridine and isotope labeled sulfamethazine ( 13 C 6 -SMZ) were used. Compared to the results of recent reports, our results have shown improved precision to a RSD of 1.8% for the determination of sulfamethazine spiked with 75 ng/g level in meat

  16. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sensor...... bonding to create vacuum cavities. The exposed part of the sensor is perfectly flat such that it can be coated with corrosion resistant thin films. Hysteresis is an inherent problem in touch mode capacitive pressure sensors and a technique to significantly reduce it is presented....... with a discrete components electronics circuit for signal conditioning. Using an AC bridge electronics circuit a resolution of 8 mV/mbar is achieved. The large signal is obtained due to a novel membrane structure utilizing closely packed hexagonal elements. The sensor is fabricated in a process based on fusion...

  17. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  18. Placental Growth Factor Reduces Blood Pressure in a Uteroplacental Ischemia Model of Preeclampsia in Nonhuman Primates.

    Science.gov (United States)

    Makris, Angela; Yeung, Kristen R; Lim, Shirlene M; Sunderland, Neroli; Heffernan, Scott; Thompson, John F; Iliopoulos, Jim; Killingsworth, Murray C; Yong, Jim; Xu, Bei; Ogle, Robert F; Thadhani, Ravi; Karumanchi, S Ananth; Hennessy, Annemarie

    2016-06-01

    An imbalance in the angiogenesis axis during pregnancy manifests as clinical preeclampsia because of endothelial dysfunction. Circulating soluble fms-like tyrosine kinase 1 (sFLT-1) increases and placental growth factor (PlGF) reduces before and during disease. We investigated the clinical and biochemical effects of replenishing the reduced circulating PlGF with recombinant human PlGF (rhPlGF) and thus restoring the angiogenic balance. Hypertensive proteinuria was induced in a nonhuman primate (Papio hamadryas) by uterine artery ligation at 136 days gestation (of a 182-day pregnancy). Two weeks after uteroplacental ischemia, rhPlGF (rhPlGF, n=3) or normal saline (control, n=4) was administered by subcutaneous injection (100 μg/kg per day) for 5 days. Blood pressure was monitored by intra-arterial radiotelemetry and sFLT-1 and PlGF by ELISA. Uteroplacental ischemia resulted in experimental preeclampsia evidenced by increased blood pressure, proteinuria, and endotheliosis on renal biopsy and elevated sFLT-1. PlGF significantly reduced after uteroplacental ischemia. rhPlGF reduced systolic blood pressure in the treated group (-5.2±0.8 mm Hg; from 132.6±6.6 mm Hg to 124.1±7.6 mm Hg) compared with an increase in systolic blood pressure in controls (6.5±3 mm Hg; from 131.3±1.5 mm Hg to 138.6±1.5 mm Hg). Proteinuria reduced in the treated group (-72.7±55.7 mg/mmol) but increased in the control group. Circulating levels of total sFLT-1 were not affected by the administration of PlGF; however, a reduction in placental sFLT-1 mRNA expression was demonstrated. There was no significant difference between the weights or lengths of the neonates in the rhPlGF or control group; however, this study was not designed to assess fetal safety or outcomes. Increasing circulating PlGF by the administration of rhPlGF improves clinical parameters in a primate animal model of experimental preeclampsia. © 2016 American Heart Association, Inc.

  19. The influence of chemicals on water quality in a high pressure separation rig

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Einar E.; Hemmingsen, Paal V.; Mediaas, Heidi; Svarstad, May Britt E.; Westvik, Arild

    2006-03-15

    In the research laboratory of Statoil at Rotvoll, Trondheim, a high pressure experimental rig used for separation and foaming studies has been developed. There have been several studies to ensure that the high pressure separation rig produces reliable and consistent results with regard to the water-in-oil and oil-in-water contents. The results are consistent with available field data and, just as important, consistent when changing variables like temperature, pressure drop and water cut. The results are also consistent when changing hydrodynamic variables like flow velocity and mixing point (using different choke valves) and when using oil with and without gas saturation. At equal experimental conditions, the high pressure separation rig is able to differentiate between separation characteristics of oil and water from different fields and from different wells at the same field. The high pressure separation and foam rig can be used from -10 deg C to 175 deg C and at pressures up to 200 bar. Crude oil and water are studied under relevant process conditions with respect to temperature, pressure, shear, water cut and separation time. In the present work the influence of chemicals on the oil and water quality has been studied. Chemicals have been mixed into the oil and/or water beforehand or added in situ (on-stream; simulated well stream). The amount of oil in the water after a given residence time in the separation cell has been measured. The results from the high pressure rig show that some demulsifiers, with their primary purpose of giving less water in oil, also have influence on the water quality. Improvement of water quality has been observed as well as no effect or aggravation. The experimental results have been compared to results from bottle tests at the field. The results from the bottle tests and from the laboratory are not corresponding, and only a full-scale field test can tell which of them are the correct results, if any. (Experience from corresponding

  20. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    Science.gov (United States)

    Škoro, Nikola; Puač, Nevena; Živković, Suzana; Krstić-Milošević, Dijana; Cvelbar, Uroš; Malović, Gordana; Petrović, Zoran Lj.

    2018-01-01

    Today's reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ's efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

  1. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    Science.gov (United States)

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  2. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    Science.gov (United States)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  3. Mozart, but not the Beatles, reduces systolic blood pressure in patients with myocardial infarction.

    Science.gov (United States)

    Gruhlke, Luiza Carolina; Patrício, Marcelo Coelho; Moreira, Daniel Medeiros

    2015-12-01

    Music reduces systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) in various clinical situations, but it is unclear whether these changes occur in post-infarction patients. The aim is to evaluate the effects of music on patients with acute myocardial infarction (MI). We evaluated patients with MI and we measured SBP, DBP, HR and double product (DP) two times before the intervention and one time every fifteen minutes with an ambulatory blood pressure monitor. We divided the patients into 3 groups: a group listening to music by Mozart; another listening to a Beatles collection and a third one listening to the radio news. Outcomes were the change in mean SBP, DBP, HR and DP with intervention. We enrolled 60 patients (20 in each group). SBP was significantly reduced in the Mozart group (variation of –7.2 ± 8.5 mmHg) compared to the Beatles group (–1.3 ± 6.2 mmHg) (P = 0.021) and the radio news group (0.6 ± 8.7 mmHg) (P = 0.003). DP was significantly reduced in the Mozart group compared with the News group (–668.5 ± 773.2 vs 31.6 ± 722.1 mmHg) (P = 0.006). There were no differences in DBP and HR. Patients with MI who listened Mozart had a reduction in SBP and DP compared to those who listened to the Beatles or the news.

  4. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-01-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  5. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  6. Triggering the Chemical Instability of an Ionic Liquid under High Pressure.

    Science.gov (United States)

    Faria, Luiz F O; Nobrega, Marcelo M; Temperini, Marcia L A; Bini, Roberto; Ribeiro, Mauro C C

    2016-09-01

    Ionic liquids are an interesting class of materials due to their distinguished properties, allowing their use in an impressive range of applications, from catalysis to hypergolic fuels. However, the reactivity triggered by the application of high pressure can give rise to a new class of materials, which is not achieved under normal conditions. Here, we report on the high-pressure chemical instability of the ionic liquid 1-allyl-3-methylimidazolium dicyanamide, [allylC1im][N(CN)2], probed by both Raman and IR techniques and supported by quantum chemical calculations. Our results show a reaction occurring above 8 GPa, involving the terminal double bond of the allyl group, giving rise to an oligomeric product. The results presented herein contribute to our understanding of the stability of ionic liquids, which is of paramount interest for engineering applications. Moreover, gaining insight into this peculiar kind of reactivity could lead to the development of new or alternative synthetic routes to achieve, for example, poly(ionic liquids).

  7. Development of a test method for distillation of diesel-biodiesel-alcohols mixtures at reduced pressure

    Science.gov (United States)

    Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.

    2017-10-01

    Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.

  8. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum

    2013-08-07

    An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.

  9. Using the area under the curve to reduce measurement error in predicting young adult blood pressure from childhood measures.

    Science.gov (United States)

    Cook, Nancy R; Rosner, Bernard A; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S

    2004-11-30

    Tracking correlations of blood pressure, particularly childhood measures, may be attenuated by within-person variability. Combining multiple measurements can reduce this error substantially. The area under the curve (AUC) computed from longitudinal growth curve models can be used to improve the prediction of young adult blood pressure from childhood measures. Quadratic random-effects models over unequally spaced repeated measures were used to compute the area under the curve separately within the age periods 5-14 and 20-34 years in the Bogalusa Heart Study. This method adjusts for the uneven age distribution and captures the underlying or average blood pressure, leading to improved estimates of correlation and risk prediction. Tracking correlations were computed by race and gender, and were approximately 0.6 for systolic, 0.5-0.6 for K4 diastolic, and 0.4-0.6 for K5 diastolic blood pressure. The AUC can also be used to regress young adult blood pressure on childhood blood pressure and childhood and young adult body mass index (BMI). In these data, while childhood blood pressure and young adult BMI were generally directly predictive of young adult blood pressure, childhood BMI was negatively correlated with young adult blood pressure when childhood blood pressure was in the model. In addition, racial differences in young adult blood pressure were reduced, but not eliminated, after controlling for childhood blood pressure, childhood BMI, and young adult BMI, suggesting that other genetic or lifestyle factors contribute to this difference. 2004 John Wiley & Sons, Ltd.

  10. Spontaneous condensation of CHF2Cl vapour at high reduced pressures

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Kissau, G.; Lippig, V.; Schorsch, R.

    1977-01-01

    Spontaneous condensation at high reduced pressures was investigated in stationary jets of difluoromonochlormethane vapour (refrigerant R 22) expanding within an annular Laval nozzle. The onset of condensation in the so-called Wilson point was determined by measuring the static pressure along the nozzle axis. For 33 expansions carried out with the same nozzle geometry at different stagnation conditions - with dew points ranging from 32 to 64 per cent of the critical pressure - the Wilson points can be represented by a common Wilson line, which can be extended to the critical point. Considering the real gas properties of the supersaturated vapour, one obtains nucleation rates for the states on the measured Wilson line, which are considerably lower than those resulting from the usual ideal-gas calculation, the difference amounting from 4 to 9 orders of magnitude in the investigated region. A comparison with the collision rate of single molecules shows that the nucleation rates calculated for the real gas according to the classical Volmer-Frenkel thoery are plausible. An adequate interpretation of the experimental results on CHF 2 Cl with the Lothe-Pound theory, however, seems not possible, since the nucleation rate due to that theory would nearly attain and - at higher densities - even exceed the molecular collision rate. (orig.) [de

  11. The application of air pressure difference in reducing indoor radon concentration

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Tso, M.Y.W.

    2000-01-01

    In densely populated tropical cities like Hong Kong, people usually live and work inside high-rise buildings. And because of the hot and humid climate, air conditioning systems are used throughout the year, particularly in commercial buildings. Previous territory-wide surveys have shown that over 10% of commercial buildings in Hong Kong have indoor radon concentrations above 200 Bq m -3 . Since the major source of indoor radon in high-rise buildings is the building materials, increasing ventilation and applying radon barriers on wall surfaces seem to be the only ways to reduce the indoor radon concentration. But it was noted that the ventilation rate the many commercial buildings are not efficient enough to remove the radon because of various reasons such as energy saving, lack of maintenance, etc. In this study, radon mitigation was achieved by reducing the rate of radon exhaled from the building materials. A special laboratory, which has the capability of simulating any meteorological conditions that could be faced by high-rise buildings in Hong Kong, was built. The reduction of radon exhalation rate by applying pressure difference and temperature difference across walls was studied in the laboratory. This paper summarizes the results and tactics for applying pressure difference in existing commercial buildings. A new technique of reducing radon exhalation rate in new buildings by depressurizing the interior of walls was also developed. Tunnels can be embedded in the concrete walls of new buildings during construction. By using simple vacuum pumps, radon exhalation rate from the walls can be reduced significantly by depressurizing the tunnels. The feasibility and applicability of the technique is presented in this paper. (author)

  12. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  13. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  14. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  15. Pressure-dependent {sup 13}C chemical shifts in proteins: origins and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilton, David J. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom); Kitahara, Ryo [Ritsumeikan University, College of Pharmaceutical Sciences (Japan); Akasaka, Kazuyuki [Kinki University, Department of Biotechnological Science, School of Biology-Oriented Science and Technology (Japan); Williamson, Mike P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)], E-mail: m.williamson@sheffield.ac.uk

    2009-05-15

    Pressure-dependent {sup 13}C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH{sub 3}, CH{sub 2} and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the {gamma}-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual {sup 13}C{alpha} shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas {sup 13}C{beta} shifts retain significant dependence on local compression, making them less useful as structural restraints.

  16. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Marcelo Mendonça Mota

    2014-07-01

    Full Text Available Background: Resistance exercise effects on cardiovascular parameters are not consistent. Objectives: The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods: Wistar rats were divided into three groups: control group (n = 8; sedentary diabetic (n = 8; and trained diabetic (n = 8. Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results: A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2% and an increase in the trained diabetic group (95 ± 3% without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05 in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05 in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg as compared to the sedentary diabetic group. Conclusions: Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.

  17. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Fontes, Milene Tavares; Barreto, André Sales; Araújo, João Eliakim dos Santos [Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil); Oliveira, Antônio Cesar Cabral de; Wichi, Rogério Brandão [Departamento de Educação Física - UFS, São Cristóvão, SE (Brazil); Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Departamento de Fisiologia - Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil)

    2014-07-15

    Resistance exercise effects on cardiovascular parameters are not consistent. The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats.

  18. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    International Nuclear Information System (INIS)

    Mota, Marcelo Mendonça; Silva, Tharciano Luiz Teixeira Braga da; Fontes, Milene Tavares; Barreto, André Sales; Araújo, João Eliakim dos Santos; Oliveira, Antônio Cesar Cabral de; Wichi, Rogério Brandão; Santos, Márcio Roberto Viana

    2014-01-01

    Resistance exercise effects on cardiovascular parameters are not consistent. The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 ± 2%) and an increase in the trained diabetic group (95 ± 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 ± 5 to 126.7 ± 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 ± 5 to 105.1 ± 4 mmHg) as compared to the sedentary diabetic group. Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats

  19. The role of magnetic energy on plasma localization during the glow discharge under reduced pressure

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-06-01

    Full Text Available In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case. In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction.

  20. Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure.

    Science.gov (United States)

    Lipe, J A; Morgan, P W

    1972-12-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO(2) (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO(2) effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO(2) and reduced pressure delayed dehiscence. CO(2) and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits.

  1. Ethylene: Response of Fruit Dehiscence to CO2 and Reduced Pressure 1

    Science.gov (United States)

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. PMID:16658260

  2. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    Directory of Open Access Journals (Sweden)

    Hayat Zerrouki

    Full Text Available Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm, pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes. The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.

  3. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  4. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    Lower, Mark D [ORNL; Christopher, Timothy W [ORNL; Oland, C Barry [ORNL

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  5. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    Science.gov (United States)

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  6. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    NOS(-/-) and iNOS(-/-) PVL mice, after which time levels returned to the respective baseline. Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism.

  7. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates

    International Nuclear Information System (INIS)

    Zhao, Hong Jian; Chen, Xiang Ming; Ren, Wei; Bellaiche, L

    2013-01-01

    First-principles calculations are performed to investigate structural and magnetic behaviors of rare-earth orthochromates as a function of ‘chemical’ pressure (that is, the rare-earth ionic radius), epitaxial misfit strain and hydrostatic pressure. From a structural point of view, (i) ‘chemical’ pressure significantly modifies antipolar displacements, Cr–O–Cr bond angles and the resulting oxygen octahedral tiltings; (ii) hydrostatic pressure mostly changes Cr–O bond lengths; and (iii) misfit strain affects all these quantities. The correlations between magnetic properties (Néel temperature and weak ferromagnetic moments) and unit cell volume are similar when varying the misfit strain or hydrostatic pressure, but differ from those associated with the ‘chemical’ pressure. Origins of such effects are also discussed. (paper)

  8. Chemical compatibility study of lithium titanate with Indian reduced activation ferritic martensitic steel

    International Nuclear Information System (INIS)

    Sonak, Sagar; Jain, Uttam; Haldar, Rumu; Kumar, Sanjay

    2015-01-01

    Highlights: • Chemical compatibility between Li_2TiO_3 and Indian RAFM steel has been studied at ITER operating temperature. • The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. • The layer grew in a parabolic manner as a function of heating time. • Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer. - Abstract: Chemical compatibility between lithium titanate and Indian reduced activation ferritic-martensitic steel (In-RAFMS) was studied for the first time under ITER operating temperature. Lithium titanate required for the study was synthesized in-house. Coupons of In-RAFMS were packed inside lithium titanate powder and heated at 550 °C up to 900 h under inert argon atmosphere. The lithium titanate chemically reacted with ferritic martensitic steel to form a brittle and non-adherent oxide layer. The layer grew in a parabolic manner as a function of heating time. Microstructural and phase evolution of this oxide layer was studied using XRD, SEM and EPMA. Iron and chromium enriched zones were found within the oxide layer. Diffusion of oxygen (from Li_2TiO_3) appears to be controlling the oxide layer.

  9. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S.

    2013-01-01

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium

  10. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Narasimhan, S.V.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2013-06-15

    Graphical abstract: SEM of the U-DBP coated stainless steel coupon before and after exposure to chemical formulation containing acid permanganate at 80 °C. -- Highlights: •Combination of oxidation and reduction processes efficiently dissolves U-DBP deposits. •NP and NAC formulations are compatible with SS-304. •Dissolved uranium and added chemicals are effectively removed via ion exchangers. -- Abstract: Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium.

  11. Effect of the chemical pressure by the addition of interstitials in CePd3:

    International Nuclear Information System (INIS)

    Nieva, G.L.

    1988-01-01

    The effect of the 'chemical pressure' on the intermediate valence compound CePd 3 , is studied by means of specific heat measurements with and without magnetic field. The addition of interstitials in the cubic structure on the alloys CePd 3 A H (A = B, Be, Si) is analyzed. At low interstitial concentration the thermal and magnetic properties that characterize the evolution of the Ce valence show a universal behaviour with the volume displaced by the interstitial. For higher concentrations two different behaviours were found in the trivalent state: a) With the larger interstitials, Be and Si, the system evolves toward a long range antiferromagnetic order; b) With the smaller interstitial, B, the system evolves toward a concentrated Kondo state. (Author) [es

  12. Equivalence of chemical and external pressures in RCoLnO

    Energy Technology Data Exchange (ETDEWEB)

    Prando, Giacomo; Ortix, Carmine; Kataev, Vladislav [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW), Dresden (Germany); Profeta, Gianni [SPIN-CNR e Dipartimento di Fisica, Universita dell' Aquila (Italy); Sanna, Samuele [Dipartimento di Fisica, Universita di Pavia (Italy); Khasanov, Rustem [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Pal, Anand; Awana, Veer [National Physical Laboratory (CSIR), New Delhi (India); Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW), Dresden (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany); De Renzi, Roberto [Dipartimento di Fisica, Universita di Parma e CNISM (Italy)

    2015-07-01

    We report on the local magnetic properties of the series of ferromagnetic (FM) materials RCoLnO (R = La, Pr, Nd, Sm; Ln = As, P) as investigated by means of muon spin spectroscopy under pressure P and electron spin resonance (ESR). The effect of P is shown to be quantitatively equivalent to the chemical lattice shrinkage triggered by the different ionic radii of R ions. This is verified for both experimental-dependent quantities (i.e., magnetic field at the muon site) and for intrinsically material-dependent properties (i.e., FM critical temperature T{sub C}). Results of ESR in a wide range of temperature and magnetic field clearly display that magnetism is of localized nature, despite the overall metallic behaviour of these materials.

  13. Translation Effects in Fluorine Doped Tin Oxide Thin Film Properties by Atmospheric Pressure Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Mohammad Afzaal

    2016-10-01

    Full Text Available In this work, the impact of translation rates in fluorine doped tin oxide (FTO thin films using atmospheric pressure chemical vapour deposition (APCVD were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200 plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200 preferred orientation. For low dopant concentration levels, atomic force microscope (AFM studies showed a reduction in roughness (and lower optical haze with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.

  14. Evaluation of a dilute chemical decontaminant for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Velmurugan, S.; Narasimhan, S.V.; Mathur, P.K.; Venkateswarlu, K.S.

    1991-01-01

    In this paper a dilute chemical decontamination formulation based on ethylene diamine tetraacetic acid, oxalic acid, and citric acid is evaluated for its efficacy in removing oxide layers in a pressurized heavy water reactor (PHWR). An ion exchange system that is specifically suited for fission product-dominated contamination in a PHWR is suggested for the reagent regeneration stage of the decontamination process. An attempt has been made to understand the redeposition behavior of various isotopes during the decontamination process. The polarographic method of identifying the species formed in the dissolution process is explained. Electrochemical measurements are employed to follow the course of oxide removal during the dissolution process. Scanning electron micrographs of metal coupons before and after the dissolution process exemplify the involvement of base metal in the formation of a ferrous oxalate layer. Material compatibility tests between the decontaminant and carbon steel, Monel-400, and Zircaloy-2 are reported

  15. Maca reduces blood pressure and depression, in a pilot study in postmenopausal women.

    Science.gov (United States)

    Stojanovska, L; Law, C; Lai, B; Chung, T; Nelson, K; Day, S; Apostolopoulos, V; Haines, C

    2015-02-01

    Lepidium meyenii (Maca) has been used for centuries for its fertility-enhancing and aphrodisiac properties. In an Australian study, Maca improved anxiety and depressive scores. The effects of Maca on hormones, lipids, glucose, serum cytokines, blood pressure, menopausal symptoms and general well-being in Chinese postmenopausal women were evaluated. A randomized, double-blind, placebo-controlled, cross-over study was conducted in 29 postmenopausal Hong Kong Chinese women. They received 3.3 g/day of Maca or placebo for 6 weeks each, in either order, over 12 weeks. At baseline, week 6 and week 12, estradiol, follicle stimulating hormone (FSH), sex hormone binding globulin (SHBG), thyroid stimulating hormone (TSH), full lipid profiles, glucose and serum cytokines were measured. The Greene Climacteric, SF-36 Version 2, Women's Health Questionnaire and Utian Quality of Life Scales were used to assess the severity of menopausal symptoms and health-related quality of life. There were no differences in estradiol, FSH, TSH, SHBG, glucose, lipid profiles and serum cytokines amongst those who received Maca as compared to the placebo group; however, significant decreases in diastolic blood pressure and depression were apparent after Maca treatment. Maca did not exert hormonal or immune biological action in the small cohort of patients studied; however, it appeared to reduce symptoms of depression and improve diastolic blood pressure in Chinese postmenopausal women. Although results are comparable to previous similar published studies in postmenopausal women, there might be a cultural difference among the Chinese postmenopausal women in terms of symptom reporting.

  16. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  17. Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy.

    Science.gov (United States)

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2015-11-01

    The literature on massage therapy effects on knee pain suggests that pain was reduced based on self-report, but little is known about range of motion (ROM) effects. Medical School staff and faculty who had knee arthritis pain were randomly assigned to a moderate pressure massage therapy or a waitlist control group (24 per group). Self-reports included the WOMAC (pain, stiffness and function) and the Pittsburgh Sleep Quality Index. ROM and ROM-related pain were assessed before and after the last sessions. The massage group showed an immediate post-massage increase in ROM and a decrease in ROM-associated pain. On the last versus the first day of the study, the massage group showed greater increases in ROM and decreases in ROM-related pain as well as less self-reported pain and sleep disturbances than the waitlist control group. These data highlight the effectiveness of moderate pressure massage therapy for increasing ROM and lessening ROM-related pain and long-term pain and sleep disturbances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reduced chemical kinetic mechanisms for NOx emission prediction in biomass combustion

    DEFF Research Database (Denmark)

    Houshfar, Ehsan; Skreiberg, Øyvind; Glarborg, Peter

    2012-01-01

    Because of the complex composition of biomass, the chemical mechanism contains many different species and therefore a large number of reactions. Although biomass gas‐phase combustion is fairly well researched and understood, the proposed mechanisms are still complex and need very long computational...... time and powerful hardware resources. A reduction of the mechanism for biomass volatile oxidation has therefore been performed to avoid these difficulties. The selected detailed mechanism in this study contains 81 species and 703 elementary reactions. Necessity analysis is used to determine which...... reactions and chemical species, that is, 35 species and 198 reactions, corresponding to 72% reduction in the number of reactions and, therefore, improving the computational time considerably. Yet, the model based on the reduced mechanism predicts correctly concentrations of NOx and CO that are essentially...

  19. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  20. Pressure drop characteristics in tight-lattice bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Kureta, Masatoshi; Yoshida, Hiroyuki; Akimoto, Hajime

    2004-01-01

    The reduced-moderation water reactor (RMWR) consists of several distinctive structures; a triangular tight-lattice configuration and a double-flat core. In order to design the RMWR core from the point of view of thermal-hydraulics, an evaluation method on pressure drop characteristics in the rod bundles at the tight-lattice configuration is required. In this study, calculated results by the Martinelli-Nelson's and Hancox's correlations were compared with experimental results in 4 x 5 rod bundles and seven-rod bundles. Consequently, the friction loss in two-phase flows becomes smaller at the tight-lattice configuration with the hydraulic diameter less than about 3 mm. This reason is due to the difference of the configuration between the multi-rod bundle and the circular tube and due to the effect of the small hydraulic diameter on the two-phase multiplier. (author)

  1. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  2. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere

    International Nuclear Information System (INIS)

    Kim, Hyeon Hwan; Kim, Hyeong Joon

    2006-01-01

    Carbon nanotubes (CNTs) were grown using a DC arc discharge process in an air atmosphere and relevant process parameters were investigated. Without using an inert gas, multi walled carbon nanotubes could be synthesized in the deposit area of the cathode even in an air atmosphere, but single walled carbon nanotubes were not detected in the soot area despite using the same process conditions as in the inert gas. The air pressure for the highest yield of multi walled CNTs was 300 Torr. In addition, the quantity of amorphous carbon and other nanoparticles in the process chamber was remarkably reduced by this technique, showing that an efficient, feasible method of large scale CNT fabrication could be achieved by the arc discharge process

  3. Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers

    Directory of Open Access Journals (Sweden)

    Aisha Al-Saygh

    2017-01-01

    Full Text Available A novel flexible nanocomposite pressure sensor with a tensile strength of about 47 MPa is fabricated in this work. Nanolayers of titanium dioxide (titania nanolayers, TNL synthesized by hydrothermal method are used to reinforce the polyvinylidene fluoride (PVDF by simple solution mixing. A hybrid composite is prepared by incorporating the TNL (2.5 wt % with reduced graphene oxide (rGO (2.5 wt % synthesized by improved graphene oxide synthesis to form a PVDF/rGO-TNL composite. A comparison between PVDF, PVDF/rGO (5 wt %, PVDF/TNL (5 wt % and PVDF/rGO-TNL (total additives 5 wt % samples are analyzed for their sensing, thermal and dielectric characteristics. The new shape of additives (with sharp morphology, good interaction and well distributed hybrid additives in the matrix increased the sensitivity by 333.46% at 5 kPa, 200.7% at 10.7 kPa and 246.7% at 17.6 kPa compared to the individual PVDF composite of TNL, confirming its possible application in fabricating low cost and light weight pressure sensing devices and electronic devices with reduced quantity of metal oxides. Increase in the β crystallinity percentage and removal of α phase for PVDF was detected for the hybrid composite and linked to the improvement in the mechanical properties. Tensile strength for the hybrid composite (46.91 MPa was 115% higher than that of the neat polymer matrix. Improvement in the wettability and less roughness in the hybrid composites were observed, which can prevent fouling, a major disadvantage in many sensor applications.

  4. Molecular hydrogen ameliorates several characteristics of preeclampsia in the Reduced Uterine Perfusion Pressure (RUPP) rat model.

    Science.gov (United States)

    Ushida, Takafumi; Kotani, Tomomi; Tsuda, Hiroyuki; Imai, Kenji; Nakano, Tomoko; Hirako, Shima; Ito, Yumiko; Li, Hua; Mano, Yukio; Wang, Jingwen; Miki, Rika; Yamamoto, Eiko; Iwase, Akira; Bando, Yasuko K; Hirayama, Masaaki; Ohno, Kinji; Toyokuni, Shinya; Kikkawa, Fumitaka

    2016-12-01

    Oxidative stress plays an important role in the pathogenesis of preeclampsia. Recently, molecular hydrogen (H 2 ) has been shown to have therapeutic potential in various oxidative stress-related diseases. The aim of this study is to investigate the effect of H 2 on preeclampsia. We used the reduced utero-placental perfusion pressure (RUPP) rat model, which has been widely used as a model of preeclampsia. H 2 water (HW) was administered orally ad libitum in RUPP rats from gestational day (GD) 12-19, starting 2 days before RUPP procedure. On GD19, mean arterial pressure (MAP) was measured, and samples were collected. Maternal administration of HW significantly decreased MAP, and increased fetal and placental weight in RUPP rats. The increased levels of soluble fms-like tyrosine kinase-1 (sFlt-1) and diacron reactive oxygen metabolites as a biomarker of reactive oxygen species in maternal blood were decreased by HW administration. However, vascular endothelial growth factor level in maternal blood was increased by HW administration. Proteinuria, and histological findings in kidney were improved by HW administration. In addition, the effects of H 2 on placental villi were examined by using a trophoblast cell line (BeWo) and villous explants from the placental tissue of women with or without preeclampsia. H 2 significantly attenuated hydrogen peroxide-induced sFlt-1 expression, but could not reduce the expression induced by hypoxia in BeWo cells. H 2 significantly attenuated sFlt-1 expression in villous explants from women with preeclampsia, but not affected them from normotensive pregnancy. The prophylactic administration of H 2 attenuated placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress. These results support the theory that H 2 has a potential benefit in the prevention of preeclampsia. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    International Nuclear Information System (INIS)

    Herrmann, H.W.; Henins, I.; Park, J.; Selwyn, G.S.

    1999-01-01

    The atmospheric pressure plasma jet (APPJ) [A. Schuetze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O 2 /H 2 O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O 2 * , He * ) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products. copyright 1999 American Institute of Physics

  6. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)

    Science.gov (United States)

    Herrmann, H. W.; Henins, I.; Park, J.; Selwyn, G. S.

    1999-05-01

    The atmospheric pressure plasma jet (APPJ) [A. Schütze et al., IEEE Trans. Plasma Sci. 26, 1685 (1998)] is a nonthermal, high pressure, uniform glow plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O), which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz rf. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains neutral metastable species (e.g., O2*, He*) and radicals (e.g., O, OH). This reactive effluent has been shown to be an effective neutralizer of surrogates for anthrax spores and mustard blister agent. Unlike conventional wet decontamination methods, the plasma effluent does not cause corrosion and it does not destroy wiring, electronics, or most plastics, making it highly suitable for decontamination of sensitive equipment and interior spaces. Furthermore, the reactive species in the effluent rapidly degrade into harmless products leaving no lingering residue or harmful by-products.

  7. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  8. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric; Mathieu, Olivier; Morones, Anibal; Ravi, Sankar; Keesee, Charles; Hargis, Joshua; Vivanco, Jose

    2014-12-01

    This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds of syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.

  9. Pressure dependence of side chain 13C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-10-01

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of 13 C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH 2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H N , N and C α the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically 13 C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  10. Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices.

    Science.gov (United States)

    Liu, Chengyuan; Yang, Jiuzhong; Wang, Jian; Hu, Yonghua; Zhao, Wan; Zhou, Zhongyue; Qi, Fei; Pan, Yang

    2016-10-01

    Extractive atmospheric pressure photoionization (EAPPI) mass spectrometry was designed for rapid qualitative and quantitative analysis of chemicals in complex matrices. In this method, an ultrasonic nebulization system was applied to sample extraction, nebulization, and vaporization. Mixed with a gaseous dopant, vaporized analytes were ionized through ambient photon-induced ion-molecule reactions, and were mass-analyzed by a high resolution time-of-flight mass spectrometer (TOF-MS). After careful optimization and testing with pure sample solution, EAPPI was successfully applied to the fast screening of capsules, soil, natural products, and viscous compounds. Analysis was completed within a few seconds without the need for preseparation. Moreover, the quantification capability of EAPPI for matrices was evaluated by analyzing six polycyclic aromatic hydrocarbons (PAHs) in soil. The correlation coefficients (R (2) ) for standard curves of all six PAHs were above 0.99, and the detection limits were in the range of 0.16-0.34 ng/mg. In addition, EAPPI could also be used to monitor organic chemical reactions in real time. Graphical Abstract ᅟ.

  11. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    Science.gov (United States)

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  12. Differing prognostic value of pulse pressure in patients with heart failure with reduced or preserved ejection fraction

    DEFF Research Database (Denmark)

    Jackson, Colette E; Castagno, Davide; Maggioni, Aldo P

    2015-01-01

    ) and 5008 with HF-PEF (828 deaths). Pulse pressure was analysed in quintiles in a multivariable model adjusted for the previously reported Meta-Analysis Global Group in Chronic Heart Failure prognostic variables. Heart failure and reduced ejection fraction patients in the lowest pulse pressure quintile had...... in patients with HF-PEF [ejection fraction (EF) ≥ 50%] and HF-REF. METHODS AND RESULTS: Data from 22 HF studies were examined. Preserved left ventricular ejection fraction (LVEF) was defined as LVEF ≥ 50%. All-cause mortality at 3 years was evaluated in 27 046 patients: 22 038 with HF-REF (4980 deaths......AIMS: Low pulse pressure is a marker of adverse outcome in patients with heart failure (HF) and reduced ejection fraction (HF-REF) but the prognostic value of pulse pressure in patients with HF and preserved ejection fraction (HF-PEF) is unknown. We examined the prognostic value of pulse pressure...

  13. Creatine supplementation reduces sleep need and homeostatic sleep pressure in rats.

    Science.gov (United States)

    Dworak, Markus; Kim, Tae; Mccarley, Robert W; Basheer, Radhika

    2017-06-01

    Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders. © 2017 European Sleep Research Society.

  14. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  15. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  16. Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines

    Science.gov (United States)

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-12-01

    Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.

  17. Development of a general model for determination of thermal conductivity of liquid chemical compounds at atmospheric pressure

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Ilani‐Kashkouli, Poorandokht; Sattari, Mehdi

    2013-01-01

    In this communication, a general model for representation/presentation of the liquid thermal conductivity of chemical compounds (mostly organic) at 1 atm pressure for temperatures below normal boiling point and at saturation pressure for temperatures above the normal boiling point is developed...... using the Gene Expression Programming algorithm. Approximately 19,000 liquid thermal conductivity data at different temperatures related to 1636 chemical compounds collected from the DIPPR 801 database are used to obtain the model as well as to assess its predictive capability. The parameters...

  18. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  19. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  20. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  1. Chemically stabilized reduced graphene oxide/zirconia nanocomposite: synthesis and characterization

    Science.gov (United States)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Enamul Hoque, Md; Podder, Jiban

    2017-11-01

    In this research, chemical method was used to fabricate reduced graphene oxide/zirconia (rGO/ZrO2) nanocomposite. X-ray Diffraction analysis (XRD) was carried out to examine the crystalline structure of the nanocomposites. The nanocomposite prepared here has average crystallite size of 14 nm. The surface morphology was observed using scanning electron microscopic analysis (SEM) coupled with electron dispersion spectroscopy (EDS) to detect the chemical element over the surface of the nanocomposites. High-resolution Transmission electron microscopic analysis (HR-TEM) was carried out to determine the particle size and shape of the nanocomposites. The optical property of the prepared samples was determined using UV-visible absorption spectrum. The functional groups were identified using FTIR and Raman spectroscopic analysis. Efficient, cost effective and properly optimized synthesis process of rGO/ZrO2 nanocomposite can ensure the presence of infiltrating graphene network inside the ZrO2 matrix to enhance the electrical properties of the hybrid composites up to a greater scale. Thus the dielectric constant, dielectric loss and AC conductivity of the prepared sample was measured at various frequencies and temperatures. The analytical results obtained here confirmed the homogeneous dispersion of ZrO2 nanostructures over the surface of reduced graphene oxide nanosheets. Overall, the research demonstrated that the rGO/ZrO2 nano-hybrid structure fabricated here can be considered as a promising candidate for applications in nanoelectronics and optoelectronics.

  2. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Pozna?, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was

  3. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury

    NARCIS (Netherlands)

    Butler, JE; Ribot-Ciscar, E; Zijdewind, Inge; Thomas, CK

    The aim of this study was to evaluate whether increases in blood pressure, and presumably muscle perfusion pressure, improve the endurance of thenar muscles paralyzed chronically by cervical spinal cord injury (SCI). Resting mean arterial pressure (MAP) was low in all eight subjects (64 +/- 2 mmHg).

  4. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    Science.gov (United States)

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  5. Characterization of nitrated sugar alcohols by atmospheric-pressure chemical-ionization mass spectrometry.

    Science.gov (United States)

    Ostrinskaya, Alla; Kelley, Jude A; Kunz, Roderick R

    2017-02-28

    The nitrated sugar alcohols mannitol hexanitrate (MHN), sorbitol hexanitrate (SHN) and xylitol pentanitrate (XPN) are in the same class of compounds as the powerful military-grade explosive pentaerythritol tetranitrate (PETN) and the homemade explosive erythritol tetranitrate (ETN) but, unlike for PETN and ETN, ways to detect MHN, SHN and XPN by mass spectrometry (MS) have not been fully investigated. Atmospheric-pressure chemical-ionization mass spectrometry (APCI-MS) was used to detect ions characteristic of nitrated sugar alcohols. APCI time-of-flight mass spectrometry (APCI-TOF MS) and collision-induced dissociation tandem mass spectrometry (CID MS/MS) were used for confirmation of each ion assignment. In addition, the use of the chemical ionization reagent dichloromethane was investigated to improve sensitivity and selectivity for detection of MHN, SHN and XPN. All the nitrated sugar alcohols studied followed similar fragmentation pathways in the APCI source. MHN, SHN and XPN were detectable as fragment ions formed by the loss of NO 2 , HNO 2 , NO 3 , and CH 2 NO 2 groups, and in the presence of dichloromethane chlorinated adduct ions were observed. It was determined that in MS/MS mode, chlorinated adducts of MHN and SHN had the lowest limits of detection (LODs), while for XPN the lowest LOD was for the [XPN-NO 2 ] - fragment ion. Partially nitrated analogs of each of the three compounds were also present in the starting materials, and ions attributable to these compounds versus those formed from in-source fragmentation of MHN, SHN, and XPN were distinguished and assigned using liquid chromatography APCI-MS and ESI-MS. The APCI-MS technique provides a selective and sensitive method for the detection of nitrated sugar alcohols. The methods disclosed here will benefit the area of explosives trace detection for counterterrorism and forensics. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Application of the cubic-plus-association equation of state to mixtures with polar chemicals and high pressures

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    was given to low pressures and liquid-liquid equilibria. In this work, CPA is applied to two classes of mixtures containing polar chemicals for which high-pressure data are available: acetone-containing systems and dimethyl ether mixtures. They are of both scientific and industrial importance. Moreover, CPA......The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...... to conventional models such as MHV2. Very good results are also obtained for multicomponent vapor-liquid-liquid equilibria for mixtures containing gases, water, and dimethyl ether. Finally, it is shown that high-pressure SLE can be predicted based on interaction parameters obtained from low-pressure SLE data....

  7. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    Day, S D; Wong, F G; Gordon, S R; Wong, L L; Rebak, R B

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  8. Diet and exercise training reduce blood pressure and improve autonomic modulation in women with prehypertension.

    Science.gov (United States)

    Sales, Allan R K; Silva, Bruno M; Neves, Fabricia J; Rocha, Natália G; Medeiros, Renata F; Castro, Renata R T; Nóbrega, Antonio C L

    2012-09-01

    Despite mortality from heart disease has been decreasing, the decline in death in women remains lower than in men. Hypertension (HT) is a major risk factor for cardiovascular disease. Therefore, approaches to prevent or delay the onset of HT would be valuable in women. Given this background, we investigated the effect of diet and exercise training on blood pressure (BP) and autonomic modulation in women with prehypertension (PHT). Ten women with PHT (39 ± 6 years, mean ± standard deviation) and ten with normotension (NT) (35 ± 11 years) underwent diet and exercise training for 12 weeks. Autonomic modulation was assessed through heart rate (HR) and systolic BP (SBP) variability, using time and frequency domain analyses. At preintervention, women with PHT had higher SBP (PHT: 128 ± 7 vs. NT: 111 ± 6 mmHg, p 0.05). Moreover, reduction in SBP was associated with augmentation in SDNN (r = -0.46, p diet and exercise training reduced SBP in women with PHT, and this was associated with augmentation in parasympathetic and probably reduction in sympathetic cardiac modulation.

  9. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    International Nuclear Information System (INIS)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-01-01

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes

  10. Osmotic Pressure of Aqueous Electrolyte Solutions via Molecular Simulations of Chemical Potentials: Application to NaCl.

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Moučka, F.; Nezbeda, Ivo

    2016-01-01

    Roč. 407, Sl (2016), s. 76-83 ISSN 0378-3812 Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : osmotic pressure * chemical potential * molecular simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.473, year: 2016

  11. Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks.

    Science.gov (United States)

    Nunes, Cláudia; Santos, Mickael C; Saraiva, Jorge A; Rocha, Sílvia M; Coimbra, Manuel A

    During last years, scientific research on high hydrostatic pressure (HHP) as a nonthermal processing technology for preservation or aging of wine has increased substantially. HHP between 200 and 500MPa is able to inactivate bacteria and yeasts in red and white wines, suggesting that it may be used for wine preservation. However, these treatments have been shown to promote changes on sensorial and physicochemical characteristics in both red and white wines, not immediately in the first month, but along storage. The changes are observed in wine color, aroma, and taste due mainly to reactions of phenolic compounds, sugars, and proteins. These reactions have been associated with those observed during wine aging, leading to aged-like wine characteristics perceived by sensorial analysis. This chapter will present the influence of HHP technology on wine chemical and sensorial characteristics, criticaly discussing its potentialities and drawbacks. The appropriate use of HHP, based on the scientific knowledge of the reactions occuring in wine promoted by HHP, will allow to exploit this technology for wine production achieving distinct characteristics to address particular market and consumer demands. © 2017 Elsevier Inc. All rights reserved.

  12. Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging.

    Science.gov (United States)

    Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang

    2013-09-01

    Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. © 2013 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.

  13. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  14. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  15. Investigation on the relation between pressure drops and fluid chemical treatment

    International Nuclear Information System (INIS)

    Brun, C.; Engler, N.; Berthollon, G.; Muller, T.; Sala, B.; Combrade, P.; Turluer, G.

    2002-01-01

    Variations of primary coolant flow rate were sometimes observed on some plants some years ago. These variations come from variations of pressure drops in the various zones of the primary system. After many investigations, these changes were attributed to variations of physical and chemical conditions. One specific difficulty was to explain the level of head loss variations with the low amount of oxide present in a primary circuit. Another one was to account for the formation of deposits under high water velocity conditions. Therefore, Framatome-ANP launched laboratory tests to reproduce the observed head loss variations, identify the conditions of their occurrence and try to identify the root mechanisms. A small loop - called EMILIE - was implemented in the laboratories of the Technical Centre of Framatome-ANP in Le Creusot. It allows us to study the effect of the water chemistry and velocity, as well as the nature of the circuit surfaces on the occurrence of head loss variations and their relation with the amount, nature and morphology of oxide deposits. This paper summarizes the first results obtained and briefly discusses a possible mechanism. (authors)

  16. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  17. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  18. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  19. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    Science.gov (United States)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  20. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  1. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Erlach, Markus Beck; Koehler, Joerg [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Crusca, Edson [University of São Paulo, Physics Institute of São Carlos (Brazil); Kremer, Werner [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany); Munte, Claudia E. [University of São Paulo, Physics Institute of São Carlos (Brazil); Kalbitzer, Hans Robert, E-mail: hans-robert.kalbitzer@biologie.uni-regensburg.de [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)

    2016-06-15

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms {sup 1}H{sup α}, {sup 13}C{sup α} and {sup 13}C′ in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH{sub 2} (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B{sub 1} and B{sub 2} are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.Graphical Abstract.

  2. Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus.

    Science.gov (United States)

    Gowler, Camden D; Leon, Kristoffer E; Hunter, Mark D; de Roode, Jacobus C

    2015-06-01

    In tri-trophic systems, herbivores may benefit from their host plants in fighting parasitic infections. Plants can provide parasite resistance in two contrasting ways: either directly, by interfering with the parasite, or indirectly, by increasing herbivore immunity or health. In monarch butterflies, the larval diet of milkweed strongly influences the fitness of a common protozoan parasite. Toxic secondary plant chemicals known as cardenolides correlate strongly with parasite resistance of the host, with greater cardenolide concentrations in the larval diet leading to lower parasite growth. However, milkweed cardenolides may covary with other indices of plant quality including nutrients, and a direct experimental link between cardenolides and parasite performance has not been established. To determine if the anti-parasitic activity of milkweeds is indeed due to secondary chemicals, as opposed to nutrition, we supplemented the diet of infected and uninfected monarch larvae with milkweed latex, which contains cardenolides but no nutrients. Across three experiments, increased dietary cardenolide concentrations reduced parasite growth in infected monarchs, which consequently had longer lifespans. However, uninfected monarchs showed no differences in lifespan across treatments, confirming that cardenolide-containing latex does not increase general health. Our results suggest that cardenolides are a driving force behind plant-derived resistance in this system.

  3. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

    Science.gov (United States)

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-01-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  4. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity

    Directory of Open Access Journals (Sweden)

    Abdulmajid Alshaibani

    2017-02-01

    Full Text Available Catalytic hydrogenation of sunflower oil was studied in order to improve the conversion and to reduce the trans-isomerization selectivity. The hydrogenation was performed using Pd–B/γ-Al2O3 prepared catalyst and Pd/Al2O3 commercial catalyst under similar conditions. The Pd–B/γ-Al2O3 catalyst was prepared by wet impregnation and chemical reduction processes. It was characterized by Brunauer–Emmett–Teller surface area analysis (BET, X-ray powder diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The result of sunflower oil hydrogenation on Pd–B/γ-Al2O3 catalyst showed a 17% higher conversion and a 23% lower trans-isomerization selectivity compared to the commercial Pd/Al2O3 catalyst. The chemical reduction of palladium supported catalyst using potassium borohydride (KBH4 has affected the Pd–B/γ-Al2O3 catalyst’s structure and particle size. These most likely influenced its catalytic performance toward higher conversion and lower trans-isomerization selectivity.

  5. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  6. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  7. Reducing risk of pressure sores: effects of watch prompts and alarm avoidance on wheelchair push-ups.

    Science.gov (United States)

    White, G W; Mathews, R M; Fawcett, S B

    1989-01-01

    People who use wheelchairs are at risk for developing pressure sores. Regular pressure relief, in the form of a wheelchair push-up, is one way to reduce the likelihood of pressure sores. We examined the effects of antecedent (i.e., instructions, audible prompts) and consequent (i.e., alarm avoidance) events on wheelchair push-ups, using a multiple baseline analysis with 2 participants with spina bifida. Results suggest that the combined procedure was more effective than either antecedent or consequent events alone, and there is some evidence suggesting maintenance of effects over time. PMID:2793635

  8. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...

  9. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  10. Sulphate chemistry under pressurized oxidizing, reducing and fluctuating conditions; Sulfatkemi under trycksatta oxiderande, reducerande och fluktuerande foerhaallanden

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Yrjas, P.; Backman, P. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 deg C. Previously, the maximum has been attributed to the sintering of sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this work the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) has been studied. In the pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}. SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results from the experiments showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 deg C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, play a more important role concerning the sulfur capture in fluidized bed combustors. (orig.)

  11. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    International Nuclear Information System (INIS)

    Mohammadi, Abdolreza R; Chiao, Mu; Bennington, Chad P J

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm 2 ) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa) −1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  12. Pressure reducing capacity of felt: a feasibility study using a new portable system with thin sensors.

    Science.gov (United States)

    Deschamps, Kevin; Messier, Benjamin

    2015-03-01

    Pressure redistribution and off-loading is a vital component in the management of the foot in diabetes. In the present study, a new portable system encompassing thin piezoresistors was tested for clinical utility and efficacy with respect to a commonly used pressure relieving dressing for the foot in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Bivens, Tiffany B; Adams-Huet, Beverley; Levine, Benjamin D; Fu, Qi

    2013-01-01

    Cardiovascular risk remains high in patients with hypertension even with adequate blood pressure (BP) control. One possible mechanism may be sympathetic activation via the baroreflex. We tested the hypothesis that chronic inhibition of renin reduces BP without sympathetic activation, but diuresis augments sympathetic activity in elderly hypertensives. Fourteen patients with stage-I hypertension (66 ± 5 (SD) years) were treated with a direct renin inhibitor, aliskiren (n= 7), or a diuretic, hydrochlorothiazide (n= 7), for 6 months. Muscle sympathetic nerve activity (MSNA), BP, direct renin and aldosterone were measured during supine and a graded head-up tilt (HUT; 5 min 30° and 20 min 60°), before and after treatment. Sympathetic baroreflex sensitivity (BRS) was assessed. Both groups had similar BP reductions after treatment (all P < 0.01), while MSNA responses were different between hydrochlorothiazide and aliskiren (P= 0.006 pre/post × drug). Both supine and upright MSNA became greater after hydrochlorothiazide treatment (supine, 72 ± 18 post vs. 64 ± 15 bursts (100 beats)−1 pre; 60° HUT, 83 ± 10 vs. 78 ± 13 bursts (100 beats)−1; P= 0.002). After aliskiren treatment, supine MSNA remained unchanged (69 ± 13 vs. 64 ± 8 bursts (100 beats)−1), but upright MSNA was lower (74 ± 15 vs. 85 ± 10 bursts (100 beats)−1; P= 0.012 for pre/post × posture). Direct renin was greater after both treatments (both P < 0.05), while upright aldosterone was greater after hydrochlorothiazide only (P= 0.002). The change in upright MSNA by the treatment was correlated with the change of aldosterone (r= 0.74, P= 0.002). Upright sympathetic BRS remained unchanged after either treatment. Thus, chronic renin inhibition may reduce upright MSNA through suppressed renin activity, while diuresis may evoke sympathetic activation via the upregulated renin–angiotensin–aldosterone system, without changing intrinsic sympathetic baroreflex function in elderly hypertensive

  14. Effect of chemicals (benzimidazole, methyl thiophanate and potassium) in reducing ozone injury to vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Shibukawa, S; Ota, Y

    1973-01-01

    Following the previous report on the effect of methyl thiophanate for reducing the damages of photochemical oxidants on agricultural produce, effective concentrations and time factors were studied, and the results were compared with that of benzimidazole. Spinach and radishes were grown in pots, and 21, 11, 6, and 3 days prior to ozone exposure tests, 6.25-100 micrograms of benzimidazole and 77.5-310 micrograms of methyl thiophanate solutions were injected into the various pot soils. Exposure to 0.25 ppm O/sub 3/ was given for four hours to spinach and for 2.5 hours to radishes. In all cases, benzimidazole showed a remarkable effect on reducing the damages of O/sub 3/, especially when injected 5-11 days prior to the exposure. Methyl thiophanate was very effective for radishes but had no effect on spinach. Whether this was due to an insufficient amount of chemicals or due to its selectivity is not clear at this stage of the experiments.

  15. What role can nurse leaders play in reducing the incidence of pressure sores?

    Science.gov (United States)

    Wurster, Joan

    2007-01-01

    Pressure sores have plagued the nursing profession for many years as a major health care problem in terms of a patient's suffering and financial cost. Pressure sores are increasingly common in hospitalized patients in the United States with a 63% increase from 1993 to 2003. The nurse leader is accountable for the occurrence of pressure sores, a nurse-sensitive indicator, by a scorecard which is benchmarked against other facilities. The nurse leader must take a systematic approach in the prevention of pressure sores, with the strategy being consistent and motivating to the staff in order to improve patient outcome. The chief nursing officer, the unit manager, and the bedside nurse must all collaborate to prevent tissue injury in patients at risk for developing pressure sores and to promote wound healing in patients with existing breakdown.

  16. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    Science.gov (United States)

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  17. Brief pressure overload of the left ventricle reduces myocardial infarct size via activation of protein kinase C.

    Science.gov (United States)

    Tang, Chia-Yu; Lai, Chang-Chi; Chiang, Shu-Chiung; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2015-09-01

    We have previously reported that brief pressure overload of the left ventricle reduced myocardial infarct (MI) size. However, the role of protein kinase C (PKC) remains uncertain. In this study, we investigated whether pressure overload reduces MI size by activating PKC. MI was induced by a 40-minute occlusion of the left anterior descending coronary artery and a 3-hour reperfusion in anesthetized Sprague-Dawley rats. MI size was determined using triphenyl tetrazolium chloride staining. Brief pressure overload was achieved by two 10-minute partial snarings of the ascending aorta, raising the systolic left ventricular pressure 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions and 10-minute reperfusions. Dimethyl sulfoxide (vehicle) or calphostin C (0.1 mg/kg, a specific inhibitor of PKC) was administered intravenously as pretreatment. The MI size, expressed as the percentage of the area at risk, was significantly reduced in the pressure overload group and the ischemic preconditioning group (19.0 ± 2.9% and 18.7 ± 3.0% vs. 26.1 ± 2.6% in the control group, where p overload and ischemic preconditioning (25.2 ± 2.4% and 25.0 ± 2.3%, where p overload of the left ventricle reduced MI size. Since calphostin C significantly limited the decrease of MI size, our results suggested that brief pressure overload reduces MI size via activation of PKC. Copyright © 2015. Published by Elsevier Taiwan.

  18. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.

    Science.gov (United States)

    Erhard, Daniela; Pohnert, Georg; Gross, Elisabeth M

    2007-08-01

    The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.

  19. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts.

    Science.gov (United States)

    Tao, Leiling; Hoang, Kevin M; Hunter, Mark D; de Roode, Jacobus C

    2016-09-01

    The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies

  20. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  1. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  2. Reducing non value adding aluminium alloy in production of parts through high pressure die casting

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2010-10-01

    Full Text Available in the cast part feed system, including overflows. CSIR intends using the results of this research for further development and application of high temperature die construction materials in high pressure die casting processes of light metal alloys...

  3. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  4. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus

    DEFF Research Database (Denmark)

    Botfield, Hannah F; Uldall, Maria S; Westgate, Connar S J

    2017-01-01

    Current therapies for reducing raised intracranial pressure (ICP) under conditions such as idiopathic intracranial hypertension or hydrocephalus have limited efficacy and tolerability. Thus, there is a pressing need to identify alternative drugs. Glucagon-like peptide-1 receptor (GLP-1R) agonists...

  5. Positioning bedridden patients to reduce interface pressures over the sacrum and great trochanter.

    Science.gov (United States)

    Yoshikawa, Y; Maeshige, N; Sugimoto, M; Uemura, M; Noguchi, M; Terashi, H

    2015-07-01

    In this study, we evaluated the effect of hip-joint rotation on the interface pressure over the sacrum and greater trochanter with a new protocol for positioning of bedridden elderly patients. The interface pressure values over the sacrum and greater trochanter in bedridden patients were evaluated. These were collected in the supine position, 90° lateral position, and 30° and 40° laterally inclined positions with external rotation or neutral positioning of the hip joint. Each interface pressure was assessed with a device measuring pressure distribution, after which, the peak pressure index (PPI) was calculated. In the 17 patients examined, the PPI over the sacrum in the supine position was significantly greater than that in other positions. In the 30° and 40° laterally inclined positions, the PPIs over the greater trochanter were significantly lower in the neutral position of the hip joint compared with those in the external rotation position. Our findings revealed the effects of hip-joint rotation on the interface pressure for the greater trochanter, possibly due to the increased distance between the greater trochanter and the sacrum caused by neutral position of the hip joint. The results demonstrate that it is to best place the hip joint in a neutral position when the legs are in contact with the bed in order to distribute the pressure over the greater trochanter in the 30° and 40° laterally inclined positions. These results can be applied to the clinical setting to improve patient positioning and decrease pressure ulcers. The authors declare that they have no competing financial interests.

  6. The turn team: a novel strategy for reducing pressure ulcers in the surgical intensive care unit.

    Science.gov (United States)

    Still, Mary D; Cross, Linda C; Dunlap, Martha; Rencher, Rugenia; Larkins, Elizabeth R; Carpenter, David L; Buchman, Timothy G; Coopersmith, Craig M

    2013-03-01

    Pressure ulcers cause significant morbidity and mortality in the surgical intensive care unit (SICU). The purpose of this study was to determine if a dedicated team tasked with turning and repositioning all hemodynamically stable SICU patients could decrease the formation of pressure ulcers. A total of 507 patients in a 20-bed SICU in a university hospital were assessed for pressure ulcers using a point prevalence strategy, between December 2008 and September 2010, before and after implementation of a team tasked with turning and repositioning all hemodynamically stable patients every 2 hours around the clock. At baseline, when frequent turning was encouraged but not required, a total of 42 pressure ulcers were identified in 278 patients. After implementation of the turn team, a total of 12 pressure ulcers were identified in 229 patients (p < 0.0001). The preintervention group included 34 stage I and II ulcers and 8 higher stage ulcers. After implementation of the turn team, there were 7 stage I and II ulcers and 5 higher stage ulcers. The average Braden score was 16.5 in the preintervention group and 13.4 in the postintervention group (p = 0.04), suggesting that pressure ulcers were occurring in higher risk patients after implementation of the turn team. A team dedicated to turning SICU patients every 2 hours dramatically decreased the incidence of pressure ulcers. The majority of stage I and stage II ulcers appear to be preventable with an aggressive intervention aimed at pressure ulcer prevention. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  7. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  8. Reducing the attractiveness of chemical plants to terrorist attacks: dehorning rhinos

    NARCIS (Netherlands)

    Khakzad Rostami, N.

    2017-01-01

    The terrorist attacks to two French chemical facilities in June and July 2015 raised the flag about the attractiveness of chemical plants to terrorist groups and the imminent risk of similar attacks in western countries. Although the 9/11 terrorist attacks in the US put the security of chemical

  9. The physico-chemical radioiodine species in the exhaust air of a pressurized water reactor (PWR2)

    International Nuclear Information System (INIS)

    Deuber, H.

    1981-12-01

    In a German pressurized water reactor, the physico-chemical 131 I species were determined in the plant exhaust and in the individual exhausts during 6 months. These measurements aimed in particular at determining the percentage and the source of the radiologically decisive elemental 131 I released to the environment. The retention of the 131 I species by iodine filters was also investigated. 20 to 30% of the 131 I discharged with the plant exhaust consisted of elemental iodine. This was largely released with the unfiltered exhaust from the chemical laboratory hoods and from the annular compartment. (orig.) [de

  10. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    International Nuclear Information System (INIS)

    Bi, Shuguang; Zhang, Liying; Mu, Chenzhong; Liu, Ming; Hu, Xiao

    2017-01-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm"3) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp"2 graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  11. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    Science.gov (United States)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  12. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Shuguang [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Zhang, Liying, E-mail: LY.Zhang@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Mu, Chenzhong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Liu, Ming, E-mail: LIUMING@ntu.edu.sg [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Hu, Xiao [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2017-08-01

    Graphical abstract: The electromagnetic interference shielding behavior and proposed mechanisms of ultralight free-standing 3D graphene aerogels. - Highlights: • The electromagnetic interference (EMI) shielding properties and mechanisms of ultralight 3D graphene aerogels (GAs) were systematically studied with respect to both the unique porous network and the intrinsic properties of the graphene sheets. • Thickness of the shielding material played a critical role on EMI SE. • By compressing the porous GAs into compact film didnt increase the EMI SE despite the increased electrical conductivity and connectivity. EMI SE is highly dependent on the effective amounts of the materials response to the EM waves. - Abstract: Graphene was recently demonstrated to exhibit excellent electromagnetic interference (EMI) shielding performance. In this work, ultralight (∼5.5 mg/cm{sup 3}) graphene aerogels (GAs) were fabricated through assembling graphene oxide (GO) using freeze-drying followed by a chemical reduction method. The EMI shielding properties and mechanisms of GAs were systematically studied with respect to the intrinsic properties of the reduced graphene oxide (rGO) sheets and the unique porous network. The EMI shielding effectiveness (SE) of GAs was increased from 20.4 to 27.6 dB when the GO was reduced by high concentration of hydrazine vapor. The presence of more sp{sup 2} graphitic lattice and free electrons from nitrogen atoms resulted in the enhanced EMI SE. Absorption was the dominant shielding mechanism of GAs. Compressing the highly porous GAs into compact thin films did not change the EMI SE, but shifted the dominant shielding mechanism from absorption to reflection.

  13. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  14. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

    2003-03-06

    Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

  15. Sensitive detection of rutin based on {beta}-cyclodextrin-chemically reduced graphene/Nafion composite film

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kunping; Wei Jinping [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2011-05-30

    Highlights: > {beta}-CD-graphene composite obtained via a simple sonication-induced assembly. > Accelerating electron transfer on electrode to amplify the electrochemical signal. > A highly sensitive electrochemical sensor for rutin detection. > Good selectivity and reproducibility for the detection of rutin in real samples. - Abstract: An electrochemical sensor based on chemically reduced graphene (CRG) was developed for the sensitive detection of rutin. To construct the base of the sensor, a novel composite was initially fabricated and used as the substrate material by combining CRG and {beta}-cyclodextrin ({beta}-CD) via a simple sonication-induced assembly. Due to the high rutin-loading capacity on the electrode surface and the upstanding electric conductivity of graphene, the electrochemical response of the fabricated sensor was greatly enhanced and displayed excellent analytical performance for rutin detection from 6.0 x 10{sup -9} to 1.0 x 10{sup -5} mol L{sup -1} with a low detection limit of 2.0 x 10{sup -9} mol L{sup -1} at 3{sigma}. Moreover, the proposed electrochemical sensor also exhibited good selectivity and acceptable reproducibility and could be used for the detection of rutin in real samples. Therefore, the present work offers a new way to broaden the analytical applications of graphene in pharmaceutical analysis.

  16. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  17. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    Science.gov (United States)

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Brownfield management opportunities to reduce the back pressure effects on the gas wells

    Directory of Open Access Journals (Sweden)

    Stefanescu Dan-Paul

    2017-01-01

    Full Text Available Gas mature fields are associated with challenges to optimize the hydrocarbon flow from reservoir to the sales point in a cost effective manner due to declining well productivity. Laslau Mare field is a mature gas field in Transylvanian basin (Mures County developed in 1970s and is producing∼99% methane with low water-gas ratio. As any brown field, the state of depleted reservoir will generate several constraints for gas flow from formation to surface facilities and further to delivery point. During the exploitation has been observed that the operation conditions are facing with unstable pressure in the system due to low demand. Therefore, the back pressure effect will affect the wells in terms of inability to unload the bottomhole accumulated liquids and the reservoir will suffer a higher pressure drawdown. The best fit-for-purpose solution to overcome the above challenges is represented by installation of group compressor. Laslau Mare field has 3 group compressors running and shows positive results, especially when external pressure fluctuates continuously. This paper explain the challenges seen in 2016 in Laslau Mare field with back pressure effects and how the compression overcome them, and also other solutions that should be considered to optimize the well production.

  19. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    OpenAIRE

    Aceves-Mijares, M.; González-Fernández, A. A.; López-Estopier, R.; Luna-López, A.; Berman-Mendoza, D.; Morales, A.; Falcony, C.; Domínguez, C.; Murphy-Arteaga, R.

    2012-01-01

    Silicon Rich Oxide (SRO) has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD). In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept th...

  20. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2017-04-01

    Full Text Available Reduction of leakages in a water distribution system (WDS is one of the major concerns of water industries. Leakages depend on pressure, hence installing pressure reducing valves (PRVs in the water network is a successful techniques for reducing leakages. Determining the number of valves, their locations, and optimal control setting are the challenges faced. This paper presents a new algorithm-based rule for determining the location of valves in a WDS having a variable demand pattern, which results in more favorable optimization of PRV localization than that caused by previous techniques. A multiobjective genetic algorithm (NSGA-II was used to determine the optimized control value of PRVs and to minimize the leakage rate in the WDS. Minimum required pressure was maintained at all nodes to avoid pressure deficiency at any node. Proposed methodology is applied in a benchmark WDS and after using PRVs, the average leakage rate was reduced by 6.05 l/s (20.64%, which is more favorable than the rate obtained with the existing techniques used for leakage control in the WDS. Compared with earlier studies, a lower number of PRVs was required for optimization, thus the proposed algorithm tends to provide a more cost-effective solution. In conclusion, the proposed algorithm leads to more favorable optimized localization and control of PRV with improved leakage reduction rate.

  1. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    Science.gov (United States)

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  2. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Alternative Shape of Suction Caisson to Reduce Risk of Buckling under high Pressure

    DEFF Research Database (Denmark)

    Madsen, Søren; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    Using large suction caissons for offshore wind turbines is an upcoming technology also referred to as bucket foundations. During operation the bucket foundation is loaded by a large overturning moment from the wind turbine and the wave loads. However, during installation the bucket is loaded...... cylindrical monopod foundation made of steel. In this paper, an alternative design/shape of the suction caisson, having a smaller risk of buckling under high pressure is presented. The risk of structural buckling is addressed using numerical methods to determine the buckling pressures of the re...

  4. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    International Nuclear Information System (INIS)

    Yang, Meng; Sasaki, Shinichirou; Suzuki, Ken; Miura, Hideo

    2016-01-01

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  5. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  6. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.

    2017-10-02

    distributions as soft data. The method honors the fluid material balance and geological features from the coarse model. A workflow is outlined to address uncertainties in geological properties that can be reduced by integrating dynamic data such as sweep efficiency from interwell tracers. We provide several test cases and demonstrate the applicability of the proposed method to improve the history-match of a chemical EOR pilot. Further, we evaluate the fitness of different heterogeneity measures for grid-ranking of CEOR processes.

  7. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  8. Reducing the pressure drag of a D-shaped bluff body using linear feedback control

    Science.gov (United States)

    Dalla Longa, L.; Morgans, A. S.; Dahan, J. A.

    2017-12-01

    The pressure drag of blunt bluff bodies is highly relevant in many practical applications, including to the aerodynamic drag of road vehicles. This paper presents theory revealing that a mean drag reduction can be achieved by manipulating wake flow fluctuations. A linear feedback control strategy then exploits this idea, targeting attenuation of the spatially integrated base (back face) pressure fluctuations. Large-eddy simulations of the flow over a D-shaped blunt bluff body are used as a test-bed for this control strategy. The flow response to synthetic jet actuation is characterised using system identification, and controller design is via shaping of the frequency response to achieve fluctuation attenuation. The designed controller successfully attenuates integrated base pressure fluctuations, increasing the time-averaged pressure on the body base by 38%. The effect on the flow field is to push the roll-up of vortices further downstream and increase the extent of the recirculation bubble. This control approach uses only body-mounted sensing/actuation and input-output model identification, meaning that it could be applied experimentally.

  9. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes

  10. [Reduced risk of stroke recurrence due to hypotensive medication, irrespective of the initial blood pressure

    NARCIS (Netherlands)

    Lenders, J.W.M.; Thien, Th.

    2002-01-01

    The 'Perindopril protection against recurrent stroke study' (PROGRESS) demonstrated that for patients with a history of stroke or transient ischaemic attack during the previous 5 years, a blood-pressure-lowering regimen based on the combination of a diuretic and an angiotensin-converting enzyme

  11. Low pulmonary artery flush perfusion pressure combined with high positive end-expiratory pressure reduces oedema formation in isolated porcine lungs

    International Nuclear Information System (INIS)

    Schumann, Stefan; Schließmann, Stephan J; Wagner, Giskard; Goebel, Ulrich; Priebe, Hans-Joachim; Guttmann, Josef; Kirschbaum, Andreas

    2010-01-01

    Flush perfusion of the pulmonary artery with organ protection solution is a standard procedure before lung explantation. However, rapid flush perfusion may cause pulmonary oedema which is deleterious in the lung transplantation setting. In this study we tested the hypotheses that high pulmonary perfusion pressure contributes to the development of pulmonary oedema and positive end-expiratory pressure (PEEP) counteracts oedema formation. We expected oedema formation to increase weight and decrease compliance of the lungs on the basis of a decrease in alveolar volume as fluid replaces alveolar air spaces. The pulmonary artery of 28 isolated porcine lungs was perfused with a low-potassium dextrane solution at low (mean 27 mmHg) or high (mean 40 mmHg) pulmonary artery pressure (PAP) during mechanical ventilation at low (4 cmH 2 O) or high (8 cmH 2 O) PEEP, respectively. Following perfusion and storage, relative increases in lung weight were smaller (p < 0.05) during perfusion at low PAP (62 ± 32% and 42 ± 26%, respectively) compared to perfusion at high PAP (133 ± 54% and 87 ± 30%, respectively). Compared to all other PAP–PEEP combinations, increases in lung weight were smallest (44 ± 9% and 27 ± 12%, respectively), nonlinear intratidal lung compliance was largest (46% and 17% respectively, both p < 0.05) and lung histology showed least infiltration of mononuclear cells in the alveolar septa, and least alveolar destruction during the combination of low perfusion pressure and high PEEP. The findings suggest that oedema formation during pulmonary artery flush perfusion in isolated and ventilated lungs can be reduced by choosing low perfusion pressure and high PEEP. PAP–PEEP titration to minimize pulmonary oedema should be based on lung mechanics and PAP monitoring

  12. 76 FR 41365 - Impact of Reducing the Mixture Concentration Threshold for Commercial Schedule 2A Chemical...

    Science.gov (United States)

    2011-07-13

    ... Schedule 2A Chemical Activities Under the Chemical Weapons Convention Regulations; Proposed Rule #0;#0;Federal Register / Vol. 76 , No. 134 / Wednesday, July 13, 2011 / Proposed Rules#0;#0; [[Page 41366... OPCW's 14th Conference of the States Parties, which was held in The Hague, the Netherlands, on December...

  13. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  14. Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy

    Science.gov (United States)

    Adverse intrauterine environments are associated with increased risk of later disease, including cardiovascular disease and hypertension. As a potential bioindicator of such an adverse environment, we measured blood pressure (BP), renal nephron endowment, renal glucocorticoid rec...

  15. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  16. Isoflurane rescue therapy for bronchospasm reduces intracranial pressure in a patient with traumatic brain injury.

    Science.gov (United States)

    Gradisek, Primoz; Dolenc, Simon

    2016-01-01

    To assess the unusual use of a volatile anaesthetic for treatment of life-threatening bronchospasm in a patient with traumatic brain injury (TBI). Case report. This study presents a previously healthy 30-year-old man with severe TBI and bronchospasm-induced acute hypercapnia. He was treated with inhaled isoflurane in combination with monitoring of intracranial pressure (ICP) and regional cerebral blood flow (rCBF). Three-day-long isoflurane treatment resolved drug-refractory bronchospasm, decreased airway pressure and improved gas exchange, even at a low end-tidal concentration (0.3-0.5 vol%). Although rCBF was increased by 18 ml min(-1) 100 g(-1) during isoflurane treatment, there was a significant decrease in ICP (21 (SD = 3) mmHg, 9 (SD = 5) mmHg, 2 (SD = 3) mmHg; during pre-treatment, treatment and post-treatment, respectively; p < 0.001). Improved autoregulation due to lower partial pressure of carbon dioxide, restoration of carbon dioxide reactivity, isoflurane-induced regional differences in rCBF and improved microcirculation may have been responsible for the prompt and long-lasting normalization of ICP. The patient had no TBI-related disability at 6 months post-injury. Isoflurane at a low dose can be an effective and safe treatment option for drug-refractory bronchospasm in a patient with traumatic intracranial hypertension, provided that multimodality neuromonitoring is used.

  17. An information, education and communication module to reduce dietary salt intake and blood pressure among tea garden workers of Assam

    Directory of Open Access Journals (Sweden)

    Prasanta K. Borah

    2018-03-01

    Full Text Available Objective: High salt diet increases blood pressure. Tea garden workers (TGW of Assam, India have high (60.8% prevalence of hypertension (HTN, which may be due to consumption of extra salt (salt as side dish and salted tea at work place and home. The present study evaluated an information, education and communication (IEC module to reduce salt intake and blood pressure among TGW. Methods: Two tea gardens (usual care and intervention were selected at random covering a total population of 13,458. The IEC module consisting of poster display, leaflets, health rally, documentary show, individual and group discussion was introduced in the intervention garden targeting study participants, health care providers, key stake holders, school children and teachers. IEC intervention was continued for one year. Participants from usual care and intervention were followed at three monthly intervals and BP and other information were compared after one year. Results: A total of 393 study participants (Non intervention: 194; intervention: 199 were included. After one year of follow up, consumption of extra salt was reduced significantly in the intervention participants (66.3 vs. 45.5%, p = 0.000. Intention to treat analysis revealed significant reduction in systolic [−6.4 (−8.6 to −4.2] and diastolic [−6.9 (−8.1 to −5.7] blood pressure after one year. Prevalence of HTN was reduced significantly (52.5 vs. 40.0%, p = 0.02 among them. Conclusions: Our IEC module created awareness about risk of hypertension associated with high salt intake and could reduce dietary salt intake and BP. Keywords: Blood pressure, Dietary salt, Hypertension, Tea garden worker

  18. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    Science.gov (United States)

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  19. Advanced Cookware and Techniques for Food Preparation at Reduced Pressure and Gravity, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and Cornell University propose to develop a galley architecture taking into account the design constraints of the space habitat, such as reduced...

  20. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate

  1. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  2. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    Science.gov (United States)

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  3. The value of reducing hospital-acquired pressure ulcer prevalence: an illustrative analysis.

    Science.gov (United States)

    Spetz, Joanne; Brown, Diane S; Aydin, Carolyn; Donaldson, Nancy

    2013-04-01

    The aim of this study was to assess the cost savings associated with implementing nursing approaches to prevent hospital-acquired pressure ulcers (HAPU). Hospitals face substantial costs associated with the treatment of HAPUs. Interventions have been demonstrated as effective for HAPU prevention and management, but it is widely perceived that preventative measures are expensive and, thus, may not be a good use of resources. A return-on-investment (ROI) framework from the Agency for Healthcare Research and Quality (AHRQ) Quality Indicators Toolkit was used for this study. The researchers identified achievable improvements in HAPU rates from data from the Collaborative Alliance for Nursing Outcomes and measured costs and savings associated with HAPU reduction from published literature. The analysis produced a baseline ROI ratio of 1.61 and net savings of $127.51 per patient. Hospital-acquired pressure ulcer surveillance and prevention can be cost saving for hospitals and should be considered by nurse executives as a strategy to support quality outcomes.

  4. Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Boyd, Meredith

    2010-01-01

    SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.

  5. Lower blasthole pressures: a means of reducing costs when blasting rocks of low to moderate strength

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, T.N.; Gibson, I.M.

    1988-03-01

    From a purely mechanical viewpoint, each explosive charge should produce a peak blasthole pressure (P/sub b/) that just fails to crush (i.e. pulverise or plastically deform) the rock which surrounds it. Where P/sub b/ exceeds a critical value, some explosion energy is wasted in crushing an annular section of rock immediately around each charge. As a rock's dynamic compressive breaking strain decreases, so should P/sub b/ (Hagan, 1977b). This paper reviews information on, and anticipates the blasting performance of, bulk charges having effective densities which are as low as about 40% of that for ammonium nitrate fuel oil (ANFO). It also outlines the potential advantages of extending the reaction periods of charges, even to the extent that explosive reactions continue after the blasthole wall and stemming have started to move. The paper then proceeds to define situations in which the use of such lower-pressure charges is likely to result in greatest reductions in mining costs. Some methods of applying bulk charges having effective densities in the 0.3-0.8 g cm/sup -3/ range and/or lower reaction rates are suggested. 15 refs., 3 figs.

  6. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    International Nuclear Information System (INIS)

    Mirbach, M.

    1975-01-01

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10 -8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k 5 = 3 x 10 6 M -1 sec -1 . (orig./HK) [de

  7. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bhatnagar, Nitu; Sangeeta, Jha; Bhowmik, Shantanu; Gupta, Govind; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric p ressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surface energy, resulting in improving the adhesion characteristics of the PEEK/Epoxy adhesive system. Also, the roughness of the treated surfaces is largely increased as confirmed by AFM observation. These results can be explained by the fact that the atmospheric pressure plasma treatment of PEEK surface yields several oxygen functionalities on hydrophobic surface, which play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the PEEK/Epoxy adhesive system. (authors)

  8. Rates of chemical reaction and atmospheric heating during core debris expulsion from a pressurized vessel

    International Nuclear Information System (INIS)

    Powers, D.A.; Tarbell, W.W.; Brockman, J.E.; Pilch, M.

    1986-01-01

    Core debris may be expelled from a pressurized reactor vessel during a severe nuclear reactor accident. Experimental studies of core debris expulsion from pressurized vessels have established that the expelled material can be lofted into the atmosphere of the reactor containment as particulate 0.4 to 2 mm in diameter. These particles will vigorously react with steam and oxygen in the containment atmosphere. Data on such reactions during tests with 80 kg of expelled melt will be reported. A model of the reaction rates based on gas phase mass transport will be described and shown to account for atmospheric heating and aerosol generation observed in the tests

  9. Experience with dilute chemical decontamination in Indian Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Velmurugan, S.; Rufus, A.L.; Sathyaseelan, V.S.; Subramanian, Veena; Mittal, V.K.; Narasimhan, S.V.

    2010-01-01

    Dilute Chemical Decontamination (DCD) process has been used in several full system and components of nuclear coolant systems to effectively remove the radioactive contaminants that causes radiation field and consequent MANREM problem. The DCD process uses chemicals in very low concentrations (millimolar) and dissolves the oxide film along with the activity incorporated in the oxide film. In DCD process operated under the regenerative mode, the chemical formulation spent in the process of oxide dissolution is replenished by passing through cation exchange columns. Finally, after achieving sufficient decontamination of the system/component, the added decontamination chemicals along with the activities and metal ions released during the process are removed by mixed bed ion exchange columns and the system is restored to normal operating condition in few days time. In PHWRs, the regenerative DCD process is applied for full primary coolant system decontamination. The chemicals are added directly to the heavy water coolant with the fuel in the core. In Indian PHWRs (MAPS-1 and 2, RAPS-1 and 2, NAPS-1 and 2 and KAPS-1), the process has been applied eleven times. A chemical formulation based on NTA, Citric acid and Ascorbic acid has been applied seven times with good results. Decontamination factors in the range 2-30 have been obtained in different components with good MANREM savings in the subsequent maintenance works. Efforts are on to modify the process to take care of the challenges posed by antimony isotope. An inhibitor (Rodine-92B) based process was successfully tested in NAPS-2 for removing antimony isotopes ( 122 Sb and 124 Sb). Further refining of the antimony removal process is being worked out. Similarly, the process is being modified to effectively remove the hotspot causing stellite particles in the moderator system of PHWRs. A permanganate based process has been developed and tested in several adjustor rod drive mechanisms in KAPS and NAPS. The experience of

  10. Evaluation of corrosion behaviour of tantalum coating obtained by low pressure chemical vapor deposition using electrochemical polarization

    Science.gov (United States)

    Levesque, A.; Bouteville, A.; de Baynast, H.; Laveissière, B.

    2002-06-01

    antalum coatings are elaborated on titanium substrates through Low Pressure Chemical Vapor Deposition from tantalum pentachloride-hydrogen gaseous phase at a deposition temperature of 800 °C and a total pressure of 3.3 mbar. The aim of this paper is to evaluate the effectiveness of this tantalum coating in corrosive solution. Optical Microscopy and Scanning Electron Microscopy observations reveal that deposits are of 1.7 μm in thickness and conformal. The corrosion resistance of tantalum coated titanium substrates is quantified through standard potentiodynamic polarization method. Even for tantalum coatings exhibiting some defects as pores, the corrosion current density is as low as 0.25 mA/cm^2.in very agressive solutions like kroll reagent (HN03/HF).

  11. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  12. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    Science.gov (United States)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  13. Chemical methods for the use of niobium from pressure vessel cladding as a fast neutron dosimeter

    International Nuclear Information System (INIS)

    Karnani, Hari

    1986-08-01

    the steel samples from the cladding of a pressure vessel of an operating nuclear power reactor were obtained by scraping. The cladding material of the pressure vessel contained about 0.5 % niobium. It was desired to use the niobium as a dosimeter for estimating fast fluences at the pressure vessel. The weak radiation from the reaction product 93m Nb cannot be measured in the presence of other elements and interfering activities. A method was developed to separate niobium from other metals present; the concentration and yield of niobium were determined spectrophotometrically. The irradiated niobium was electrodeposited from aqueous solutions on copper discs. The amount of the deposited niobium was determined by a radiochemical method which makes use of its own radioactivity - measured with a liquid scintillation counter - and the known starting mass of niobium. It was possible to determine the deposited niobium masses (5 to 200 microgram) with a desired degree of accuracy. The absolute emission rate of X-rays could then be measured without any self-absorption or interference from other activities. The mass of niobium on each preparate and its X-ray emission rate, later on, were used as basic experimental data for the estimation of last neutron doses at the pressure vessel

  14. Capabilities for measuring physical and chemical properties of rocks at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. (comp.)

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  15. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  16. Instability of supercritical porosity in highly doped ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Esposito, Vincenzo

    2015-01-01

    The thermomechanical behavior and microstructural evolution of low relative density (∼0.40) gadolinium-doped ceria are characterized under oxidative and reducing conditions at high temperatures. The electronic defects generated in the structure by Ce4+ to Ce3+ reduction play an important role on ...

  17. Strategies to reduce the environmental impact of an aluminium pressure die casting plant: A scenario analysis

    NARCIS (Netherlands)

    Neto, B.; Kroeze, C.; Hordijk, L.; Costa, C.; Pulles, M.P.J.

    2009-01-01

    This study explores a model (MIKADO) to analyse scenarios for the reduction of the environmental impact of an aluminium die casting plant. Our model calculates the potential to reduce emissions, and the costs associated with implementation of reduction options. In an earlier paper [Neto, B., Kroeze,

  18. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  19. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  20. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  1. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  2. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  3. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production

    NARCIS (Netherlands)

    Mans, R.; Daran, J.G.; Pronk, J.T.

    2018-01-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical

  4. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments.

  5. Chemical equilibrium calculations for the high pressure and temperature dissociation of liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Ree, F.H.

    1987-07-01

    Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments

  6. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  7. Statin therapy reduces the likelihood of suboptimal blood pressure control among Ugandan adult diabetic patients

    Directory of Open Access Journals (Sweden)

    Lumu W

    2017-02-01

    Full Text Available William Lumu,1 Leaticia Kampiire,2 George Patrick Akabwai,3 Daniel Ssekikubo Kiggundu,4 Davis Kibirige5 1Department of Medicine and Diabetes/Endocrine Unit, Mengo Hospital, 2Infectious Disease Research Collaboration, 3Baylor College of Medicine Children’s Foundation, 4Nephrology Unit, Mulago National Referral and Teaching Hospital, 5Department of Medicine, Uganda Martyrs Hospital Lubaga, Kampala, Uganda Background: Hypertension is one of the recognized risk factors of cardiovascular diseases in adult diabetic patients. High prevalence of suboptimal blood pressure (BP control has been well documented in the majority of studies assessing BP control in diabetic patients in sub-Saharan Africa. In Uganda, there is a dearth of similar studies. This study evaluated the prevalence and correlates of suboptimal BP control in an adult diabetic population in Uganda.Patients and methods: This was a cross-sectional study that enrolled 425 eligible ambulatory adult diabetic patients attending three urban diabetic outpatient clinics over 11 months. Data about their sociodemographic characteristics and clinical history were collected using pre-tested questionnaires. Suboptimal BP control was defined according to the 2015 American Diabetes Association standards of diabetes care guideline as BP levels ≥140/90 mmHg.Results: The mean age of the study participants was 52.2±14.4 years, with the majority being females (283, 66.9%. Suboptimal BP control was documented in 192 (45.3% study participants and was independently associated with the study site (private hospitals; odds ratio 2.01, 95% confidence interval 1.18–3.43, P=0.01 and use of statin therapy (odds ratio 0.5, 95% confidence interval 0.26–0.96, P=0.037.Conclusion: Suboptimal BP control was highly prevalent in this study population. Strategies to improve optimal BP control, especially in the private hospitals, and the use of statin therapy should be encouraged in adult diabetic patients

  8. Chemical disinfectants can reduce potato blackleg caused by ‘Dickeya solani’

    NARCIS (Netherlands)

    Czajkowski, R.L.; Boer, de W.J.; Wolf, van der J.M.

    2013-01-01

    Treatments of tubers with chemical disinfectants (70 % ethanol, 1 % sodium hypochlorite, 2 % copper sulphate, 5 % peracetic acid, 10 % hydrogen peroxide, 1 % MennoClean (benzoic acid), 5 % trisodium phosphate and 0.2 % caffeine) were evaluated for control of blackleg caused by ‘D. solani’. All

  9. Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    DEFF Research Database (Denmark)

    Fernández-Marín, Hermógenes; Zimmerman, Jess K; Nash, David R

    2009-01-01

    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia a...

  10. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    Science.gov (United States)

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    International Nuclear Information System (INIS)

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-01-01

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m 2 (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site

  12. A Clinical Nurse Specialist-Led Interprofessional Quality Improvement Project to Reduce Hospital-Acquired Pressure Ulcers.

    Science.gov (United States)

    Fabbruzzo-Cota, Christina; Frecea, Monica; Kozell, Kathryn; Pere, Katalin; Thompson, Tamara; Tjan Thomas, Julie; Wong, Angela

    2016-01-01

    The purpose of this clinical nurse specialist-led interprofessional quality improvement project was to reduce hospital-acquired pressure ulcers (HAPUs) using evidence-based practice. Hospital-acquired pressure ulcers (PUs) have been linked to morbidity, poor quality of life, and increasing costs. Pressure ulcer prevention and management remain a challenge for interprofessional teams in acute care settings. Hospital-acquired PU rate is a critical nursing quality indicator for healthcare organizations and ties directly with Mount Sinai Hospital's (MSH's) mission and vision, which mandates providing the highest quality care to patients and families. This quality improvement project, guided by the Donabedian model, was based on the Registered Nurses' Association of Ontario Best Practice Guideline Risk Assessment & Prevention of Pressure Ulcers. A working group was established to promote evidence-based practice for PU prevention. Initiatives such as documentation standardization, development of staff education and patient and family educational resources, initiation of a hospital-wide inventory for support surfaces, and procurement of equipment were implemented to improve PU prevention and management across the organization. An 80% decrease in HAPUs has been achieved since the implementation of best practices by the Best Practice Guideline Pressure Ulcer working group. The implementation of PU prevention strategies led to a reduction in HAPU rates. The working group will continue to work on building interprofessional awareness and collaboration in order to prevent HAPUs and promote an organizational culture that supports staff development, teamwork and communication. This quality improvement project is a successful example of an interprofessional clinical nurse specialist-led initiative that impacts patient/family and organization outcomes through the identification and implementation of evidence-based nursing practice.

  13. Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition

    International Nuclear Information System (INIS)

    Chen, Y.; Sun, Z.; Li, Y.N.; Tay, B.K.

    2006-01-01

    A new approach to synthesize carbon nanotube (CNT) powders has been achieved by using the floating catalyst method below atmospheric pressure. Scanning electron microscopy, Raman spectroscopy and high-resolution transmission electron microscopy were utilized to characterize the CNTs samples. Using ferrocene (FeC 10 H 10 ) as catalyst precursor, cyclohexane (C 6 H 12 ) as carbon source, H 2 as carrier gas and thiophene (C 4 H 4 S) as promoter, it is found that the pressure of 15 kPa, temperature of 650 deg. C and H 2 flow rate of 60 sccm would be the optimization condition for synthesis of high quality CNTs. This method is economical and easily scalable for synthesis of CNTs

  14. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives.

    Science.gov (United States)

    Grassi, Davide; Necozione, Stefano; Lippi, Cristina; Croce, Giuseppe; Valeri, Letizia; Pasqualetti, Paolo; Desideri, Giovambattista; Blumberg, Jeffrey B; Ferri, Claudio

    2005-08-01

    Consumption of flavanol-rich dark chocolate (DC) has been shown to decrease blood pressure (BP) and insulin resistance in healthy subjects, suggesting similar benefits in patients with essential hypertension (EH). Therefore, we tested the effect of DC on 24-hour ambulatory BP, flow-mediated dilation (FMD), and oral glucose tolerance tests (OGTTs) in patients with EH. After a 7-day chocolate-free run-in phase, 20 never-treated, grade I patients with EH (10 males; 43.7+/-7.8 years) were randomized to receive either 100 g per day DC (containing 88 mg flavanols) or 90 g per day flavanol-free white chocolate (WC) in an isocaloric manner for 15 days. After a second 7-day chocolate-free period, patients were crossed over to the other treatment. Noninvasive 24-hour ambulatory BP, FMD, OGTT, serum cholesterol, and markers of vascular inflammation were evaluated at the end of each treatment. The homeostasis model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), and insulin sensitivity index (ISI) were calculated from OGTT values. Ambulatory BP decreased after DC (24-hour systolic BP -11.9+/-7.7 mm Hg, Pbenefit if included as part of a healthy diet for patients with EH.

  15. Performance of core modifications to reduce the reactor pressure vessel fluence

    International Nuclear Information System (INIS)

    Kiehlmann, H.D.; Lisdat, R.; Sommer, D.

    1997-01-01

    It's often discussed that nuclear power plants (NPP) are designed for an operation of 40 years equivalent to 32 full power years (FPY) assuming a load factor of 0.8. Such fixed plant life times are subjects of US operating licenses but not, as in most other countries, in the Federal Republic of Germany. Here the operating licenses are issued for an indefinite period. However, the German utilities are continuously upgrading their plants to attain a safety level that meets all current requirements. These upgrading measures also include the replacement of bigger components like e.g. the steam generator. The reactor pressure vessel (RPV), however, has a special status. Unlike most other components of a NPP which most likely will be exchanged during its service life a replacement or annealing treatment of the RPV certainly require more efforts to be economically justified. Thus the embrittlement of the RPV has an essential impact on the life time of a NPP. The end-of-life (EOL) RPV material toughness in essential depends on the steel quality and the accumulated neutron fluence. For a given NPP the reduction of the neutron flux at the inner surface of the RPV is the only way to limit its embrittlement. The resulting modifications for the core loadings in combination with the insertion of additional core components like steel elements are described and the impact on core performance and RPV fluence considered. (UK)

  16. Trials on some synthesis related to chemical evolution under high pressure and gamma irradiation

    International Nuclear Information System (INIS)

    Inaki, Yoshiaki; Okada, Toshimi; Takahara, Toru; Takemoto, Kiichi

    1978-01-01

    The radiation-induced reaction of mono- and dicarboxylic acids with urea was studied both in bulk and in methanol solution. A series of mono- and dicarboxylic acids and acid amides as well as urea were obtained commercially, and purified in the usual manner. Radiation-induced reaction was carried out in test tubes at room temperature by irradiating with the γ-ray from a Co-60 source. Acrylic acid and urea were mixed at first in a test tube, and melted by heating. After the irradiation, water insoluble polymer was obtained. The polymer may have partly crosslinked nature. In case of the reaction of acrylic acid and acrylamide with urea, it was found that polymers were the main products. The reaction of malic acid with formamide was also studied under high pressure. It was found that the reaction afforded both fumaric and malic acid under atmospheric pressure, and the reaction seems to be somewhat different under high pressure. From the results, it is suggested that adenine and its relevant compounds could only be produced by the reactions of malic and maleic acid with urea, and not with formamide in the presence of polyphosphoric acid. (Kato, T.)

  17. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    Science.gov (United States)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  18. Digoxin derivatives with selectivity for the α2β3 isoform of Na,K-ATPase potently reduce intraocular pressure.

    Science.gov (United States)

    Katz, Adriana; Tal, Daniel M; Heller, Dan; Habeck, Michael; Ben Zeev, Efrat; Rabah, Bilal; Bar Kana, Yaniv; Marcovich, Arie L; Karlish, Steven J D

    2015-11-03

    The ciliary epithelium in the eye consists of pigmented epithelial cells that express the α1β1 isoform of Na,K-ATPase and nonpigmented epithelial cells that express mainly the α2β3 isoform. In principle, a Na,K-ATPase inhibitor with selectivity for α2β3 that penetrates the cornea could effectively reduce intraocular pressure, with minimal systemic or local toxicity. We have recently synthesized perhydro-1,4-oxazepine derivatives of digoxin by NaIO4 oxidation of the third digitoxose and reductive amination with various R-NH2 substituents and identified derivatives with significant selectivity for human α2β1 over α1β1 (up to 7.5-fold). When applied topically, the most α2-selective derivatives effectively prevented or reversed pharmacologically raised intraocular pressure in rabbits. A recent structure of Na,K-ATPase, with bound digoxin, shows the third digitoxose approaching one residue in the β1 subunit, Gln84, suggesting a role for β in digoxin binding. Gln84 in β1 is replaced by Val88 in β3. Assuming that alkyl substituents might interact with β3Val88, we synthesized perhydro-1,4-oxazepine derivatives of digoxin with diverse alkyl substituents. The methylcyclopropyl and cyclobutyl derivatives are strongly selective for α2β3 over α1β1 (22-33-fold respectively), as determined either with purified human isoform proteins or intact bovine nonpigmented epithelium cells. When applied topically on rabbit eyes, these derivatives potently reduce both pharmacologically raised and basal intraocular pressure. The cyclobutyl derivative is more efficient than Latanoprost, the most widely used glaucoma drug. Thus, the conclusion is that α2β3-selective digoxin derivatives effectively penetrate the cornea and inhibit the Na,K-ATPase, hence reducing aqueous humor production. The new digoxin derivatives may have potential for glaucoma drug therapy.

  19. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  2. Process and device for reducing the pressure in the saftey containment of a nuclear reactor plant

    International Nuclear Information System (INIS)

    Stiefel, M.

    1984-01-01

    Part of the gaseous contents of the safety containment are drawn off. Hydrogen up to a maximum of 3.5% by volume is added to this gas. Part of the oxygen content of the gas is burnt with the hydrogen in the well-known way. The gas reduced in oxygen content is returned to the safety containment. The water produced in the reaction is taken back with the gas to the safety containment in the form of steam and is condensed there. (orig./HP) [de

  3. Optimization of solar cell performance using atmospheric pressure chemical vapour deposition deposited TCOs

    Czech Academy of Sciences Publication Activity Database

    Yates, H.M.; Evans, P.; Sheel, D.W.; Hodgkinson, J.L.; Sheel, P.; Dagkaldiran, U.; Gordijn, A.; Finger, F.; Remeš, Zdeněk; Vaněček, Milan

    2009-01-01

    Roč. 25, č. 8 (2009), s. 789-796 ISSN 1938-5862. [International Chemical Vapor Deposition Symposium (CVD-XVII) /17./. Wien, 04.10.2009-09.10.2009] Grant - others:European Community(XE) Project (STREP) of the 6. FP Institutional research plan: CEZ:AV0Z10100521 Keywords : solar cells * TCO * CVD Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Conde, O.

    2011-01-01

    Chromia (Cr 2 O 3 ) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr 2 O 3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr 2 O 3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO) 6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm -2 and a partial pressure ratio of O 2 to Cr(CO) 6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s -1 and mean particle sizes of 1.85 μm were measured for these films.

  5. Reduced chemical mechanisms for ammonia/methane co-firing for gas turbine applications

    OpenAIRE

    Xiao, Hua; Howard, M.S.; Valera Medina, Agustin; Dooley, S.; Bowen, Philip John

    2017-01-01

    Energy storage is one of the major challenges facing the world towards its challenging 2050 climate-change targets. A potential enabler of a low-carbon economy is the energy vector hydrogen. However, issues associated with hydrogen have led to consider other molecules such as ammonia as a potential candidate for chemical storage. Apart from its relatively high stability under atmospheric temperature, ammonia has the added attraction that it can also be sold on international markets or be used...

  6. Methods to reduce intraocular pressure on secondary glaucoma after severe eye burns

    Directory of Open Access Journals (Sweden)

    A. V. Solovieva

    2014-07-01

    Full Text Available Purpose: Show the results of treatment of secondary glaucoma after severe eye burns.Methods: We observed 70 patients (108 eyes with severe burns the eyes and their consequences, secondary glaucoma was observed in 40 patients (58 eyes. All patients with secondary glaucoma received traditional antihypertensive therapy, with its failure to resort to antiglaucomatous surgery. Cataract extraction performed in 24 cases, 16 of them in combination with other surgery: the reconstruction of the anterior chamber, penetrating keratoplasty, sinustrabeculectomy, diode laser cyclocoagulation. Diode laser cy- clocoagulation performed 42 times in 8 of them in combination with other antiglaucomatous surgery: cataract surgery, reconstruction of the anterior chamber. Sinustrabeculectomy in patients with secondary glaucoma was performed in 7 cases, 4 of them with collagen implant drainage. Ahmed glaucoma drainage implant performed in 5 cases.Results: In 23 out of 58 (39.6% of long-term compensation glaucoma IOP was achieved antihypertensive therapy without sur- gery. After cataract extraction resistant compensated IOP was achieved in 10 cases, a temporary (1 to 42 months — in 11 cases, IOP is not reduced in 2 cases. After completing diode laser cyclocoagulation stable normalization of IOP occurred in 16 cases, the temporary (from 1 month to 2 years — in 20 cases, 4 cases of IOP reduction was not achieved. As a result sinustrabeculectomy in 4 cases IOP decreased, in one case the hypotensive effect is not there. After implantation Ahmed glaucoma valve in 2 cases was achieved stable normalization of IOP, in the 2 cases — the temporary; in 1 case developed endophthalmitis, and the device was removed.Conclusion: the immediate effect of antiglaucomatous treatment was 96.6%, but the high incidence of IOP decompensation (73.7% suggesting the need for continuous follow-up patients after severe eye burn injury, and a readiness to use other methods to reduce IOP.

  7. Methods to reduce intraocular pressure on secondary glaucoma after severe eye burns

    Directory of Open Access Journals (Sweden)

    A. V. Solovieva

    2012-01-01

    Full Text Available Purpose: Show the results of treatment of secondary glaucoma after severe eye burns.Methods: We observed 70 patients (108 eyes with severe burns the eyes and their consequences, secondary glaucoma was observed in 40 patients (58 eyes. All patients with secondary glaucoma received traditional antihypertensive therapy, with its failure to resort to antiglaucomatous surgery. Cataract extraction performed in 24 cases, 16 of them in combination with other surgery: the reconstruction of the anterior chamber, penetrating keratoplasty, sinustrabeculectomy, diode laser cyclocoagulation. Diode laser cy- clocoagulation performed 42 times in 8 of them in combination with other antiglaucomatous surgery: cataract surgery, reconstruction of the anterior chamber. Sinustrabeculectomy in patients with secondary glaucoma was performed in 7 cases, 4 of them with collagen implant drainage. Ahmed glaucoma drainage implant performed in 5 cases.Results: In 23 out of 58 (39.6% of long-term compensation glaucoma IOP was achieved antihypertensive therapy without sur- gery. After cataract extraction resistant compensated IOP was achieved in 10 cases, a temporary (1 to 42 months — in 11 cases, IOP is not reduced in 2 cases. After completing diode laser cyclocoagulation stable normalization of IOP occurred in 16 cases, the temporary (from 1 month to 2 years — in 20 cases, 4 cases of IOP reduction was not achieved. As a result sinustrabeculectomy in 4 cases IOP decreased, in one case the hypotensive effect is not there. After implantation Ahmed glaucoma valve in 2 cases was achieved stable normalization of IOP, in the 2 cases — the temporary; in 1 case developed endophthalmitis, and the device was removed.Conclusion: the immediate effect of antiglaucomatous treatment was 96.6%, but the high incidence of IOP decompensation (73.7% suggesting the need for continuous follow-up patients after severe eye burn injury, and a readiness to use other methods to reduce IOP.

  8. Development and validation of a generic reduced chemical kinetic mechanism for CFD spray combustion modelling of biodiesel fuels

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Ho, Jee Hou

    2015-01-01

    In this reported work, a generic reduced biodiesel chemical kinetic mechanism, with components of methyl decanoate (C11H22O2, MD), methyl-9-decenoate (C11H20O2, MD9D) and n-heptane (C7H16) was built to represent the methyl esters of coconut, palm, rapeseed and soybean. The reduced biodiesel...... and detailed mechanism predictions, for each zero-dimensional (0D) auto-ignition and extinction process using CHEMKIN-PRO. Maximum percentage errors of less than 40.0% were recorded when the predicted ignition delay (ID) periods for coconut, palm, rapeseed and soybean methyl esters were compared to those...

  9. Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas

    Directory of Open Access Journals (Sweden)

    Hamdi Mohamed

    2009-01-01

    Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.

  10. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    forces. Raising the operating temperature offers a means to boost performance, as both ionic transport and reaction kinetics are exponentially activated with temperature. Indeed, we have demonstrated alkaline electrolysis cells operating at 200-250 °C and 20-50 bar at very high efficiencies and power...... been established enabling experiments with gaseous or liquids reactants/products at cell sizes of up to 25 cm2. Efforts are currently directed towards the investigation of the intrinsic activity of mixed oxides for the oxygen evolution reaction at elevated temperatures and pressures...

  11. Surface chemical structure of poly(ethylene naphthalate) films during degradation in low-pressure high-frequency plasma treatments

    Science.gov (United States)

    Kamata, Noritsugu; Yuji, Toshifumi; Thungsuk, Nuttee; Arunrungrusmi, Somchai; Chansri, Pakpoom; Kinoshita, Hiroyuki; Mungkung, Narong

    2018-06-01

    The surface chemical structure of poly(ethylene naphthalate) (PEN) films treated with a low-pressure, high-frequency plasma was investigated by storing in a box at room temperature to protect the PEN film surface from dust. The functional groups on the PEN film surface changed over time. The functional groups of –C=O, –COH, and –COOH were abundant in the Ar + O2 mixture gas plasma-treated PEN samples as compared with those in untreated PEN samples. The changes occurred rapidly after 2 d following the plasma treatment, reaching steady states 8 d after the treatment. Hydrophobicity had an inverse relationship with the concentration of these functional groups on the surface. Thus, the effect of the low-pressure high-frequency plasma treatment on PEN varies as a function of storage time. This means that radical oxygen and oxygen molecules are clearly generated in the plasma, and this is one index to confirm that radical reaction has definitely occurred between the gas and the PEN film surface with a low-pressure high-frequency plasma.

  12. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. An eco design strategy for high pressure die casting components: microstructural analysis applied to mass reducing processes

    International Nuclear Information System (INIS)

    Suarez-Pena, B.; Asensio-Lozano, J.

    2009-01-01

    In this work the study focused on the possibility of use of new aluminium alloys with optimized microstructures that ensure the mechanical properties requested for cast components made by high pressure die casting. The objective was to check the possibility of manufacture of structurally sound eco-steps for escalators with reduced structural integrity. The former arises as a result of a new redesign of the traditional steps aiming at a significant weight reduction. The experimental results show that it is feasible to cut the use of materials during processing and therefore to reduce the impact of the components during its lifetime, whilst the performance and safety standards are kept identical or even improved. (Author) 17 refs

  14. Tailgate test kit for determining appropriate sediment reducing chemicals and dose rates : final report.

    Science.gov (United States)

    2017-07-01

    This study develops a Tailgate Test Kit to be used in the field to test flocculants for reducing turbidity in construction stormwater discharge. Turbidity of stormwater runoff at construction sites varies depending on which site soils are exposed to ...

  15. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  16. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  17. How to reduce hospital-acquired pressure ulcers on a neuroscience unit with a skin and wound assessment team.

    Science.gov (United States)

    McGuinness, Janice; Persaud-Roberts, Sherry; Marra, Susan; Ramos, Jeannine; Toscano, Diane; Policastro, Linda; Epstein, Nancy E

    2012-01-01

    In 2008, the incidence of hospital acquired pressure ulcers (HAPUs) continued to increase on a neuroscience unit that included both neurosurgical and neurological patients in a 14-bed intensive care unit, and in a 18-bed floor unit. To reduce HAPUs, several changes were instituted in 2008; (1) turning patients every 1-2 h/repositioning, (2) specialty beds, and (3) a "skin and wound assessment team (SWAT)" that included one (or two) "expert" nurses/nursing assistants who made rounds on all the patients in the unit at least once a week. They would examine patients from "head to toe", document/measure all pressure ulcers, and educate primary nurses/nurse assistants on the plan/products needed for the patients wound care based on their assessments. In 2010, further measures included: (1) adding eight Stryker beds, (2) adding pressure relieving heel protector boots, and (3) requiring that all new hospital orientees work one shift (7.5 h) shadowing the SWAT team. The SWAT team initially decreased HAPUs by 48% in 2009; this reduction was further increased in 2010 (57%), and 2011 (61%). Additionally, in 2010, the SWAT team was required to educate nurses in all other units. By 2011, all nurses had to complete the hospital acquired pressure ulcer prevention tutorial. Since instituting a specialized SWAT team for our neuroscience unit, the incidence of HAPUs (cost estimated for grade IV, US $129,248) was decreased by 48% in 2009, by 57% in 2010, and by 61% in 2011. The SWAT program is now hospital-wide.

  18. Resistance training alone reduces systolic and diastolic blood pressure in prehypertensive and hypertensive individuals: meta-analysis.

    Science.gov (United States)

    de Sousa, Evitom Corrêa; Abrahin, Odilon; Ferreira, Ana Lorena Lima; Rodrigues, Rejane Pequeno; Alves, Erik Artur Cortinhas; Vieira, Rodolfo Paula

    2017-11-01

    The purpose of this study was to evaluate the effects of resistance training alone on the systolic and diastolic blood pressure in prehypertensive and hypertensive individuals. Our meta-analysis, followed the guidelines of PRISMA. The search for articles was realized by November 2016 using the following electronic databases: BIREME, PubMed, Cochrane Library, LILACS and SciELO and a search strategy that included the combination of titles of medical affairs and terms of free text to the key concepts: 'hypertension' 'hypertensive', 'prehypertensive', 'resistance training', 'strength training', and 'weight-lifting'. These terms were combined with a search strategy to identify randomized controlled trials (RCTs) and identified a total of 1608 articles: 644 articles BIREME, 53 SciELO, 722 PubMed, 122 Cochrane Library and 67 LILACS. Of these, five RCTs met the inclusion criteria and provided data on 201 individuals. The results showed significant reductions for systolic blood pressure (-8.2 mm Hg CI -10.9 to -5.5;I 2 : 22.5% P valor for heterogeneity=0.271 and effect size=-0.97) and diastolic blood pressure (-4.1 mm Hg CI -6.3 to -1.9; I 2 : 46.5% P valor for heterogeneity=0.113 and effect size=-0.60) when compared to group control. In conclusion, resistance training alone reduces systolic and diastolic blood pressure in prehypertensive and hypertensive subjects. The RCTs studies that investigated the effects of resistance training alone in prehypertensive and hypertensive patients support the recommendation of resistance training as a tool for management of systemic hypertension.

  19. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats.

    Science.gov (United States)

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; zhao, Yan; Yang, Shucai; Sun, Changhao

    2015-12-25

    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Mandl, R.

    1991-01-01

    Based on the occurrence of a number of plant incidents during low power and shutdown operating conditions, the Nuclear Regulatory Commission (NRC) has initiated several programs to better quantify risk during these periods. One specific issue of interest is the loss of residual heat removal (RHR) under reduced coolant inventory conditions. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-3 experimental facility at Siemens-KWU to supply applicable data. Recently, an effort has been undertaken at the Idaho National Engineering Laboratory (INEL) to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following loss of vital AC power and consequent loss of the RHR system during reduced inventory operation. The thermal-hydraulic response of a nuclear steam supply system (NSSS) with a closed reactor coolant system (RCS) to loss of residual heat removal cooling capability is investigated in this report. The specific processes investigated include: boiling of the coolant in the core and reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, the heat transfer mechanisms on the primary and secondary sides of the steam generators, the effects of air or other noncondensible gas on the heat transfer processes, and void fraction distributions on the primary side of the system. Mathematical models of these physical processes were developed and validated against experimental data from the PKL 3B 4.5 Experiment

  1. Antenatal hypoxia induces programming of reduced arterial blood pressure response in female rat offspring: role of ovarian function.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available In utero exposure to adverse environmental factors increases the risk of cardiovascular disease in adulthood. The present study tested the hypothesis that antenatal hypoxia causes a gender-dependent programming of altered arterial blood pressure response (BP in adult offspring. Time-dated pregnant rats were divided into normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation groups. The experiments were conducted in adult offspring. Antenatal hypoxia caused intrauterine growth restriction, and resulted in a gender-dependent increase Angiotensin II (Ang II-induced BP response in male offspring, but significant decrease in BP response in female offspring. The baroreflex sensitivity was not significantly altered. Consistent with the reduced blood pressure response, antenatal hypoxia significantly decreased Ang II-induced arterial vasoconstriction in female offspring. Ovariectomy had no significant effect in control animals, but significantly increased Ang II-induced maximal BP response in prenatally hypoxic animals and eliminated the difference of BP response between the two groups. Estrogen replacement in ovariectomized animals significantly decreased the BP response to angiotensin II I only in control, but not in hypoxic animals. The result suggests complex programming mechanisms of antenatal hypoxia in regulation of ovary function. Hypoxia-mediated ovary dysfunction results in the phenotype of reduced vascular contractility and BP response in female adult offspring.

  2. Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils

    Energy Technology Data Exchange (ETDEWEB)

    Paterek, J.R.; Bogan, W.W.; Lahner, L.M.; Trbovic, V.

    2003-03-06

    Conducted research in the following major focus areas: (1) Development of mild extraction approaches to estimate bioavailable fraction of crude oil residues in contaminated soils; (2) Application of these methods to understand decreases in toxicity and increases in sequestration of hydrocarbons over time, as well as the influence of soil properties on these processes; (3) Measurements of the abilities of various bacteria (PAH-degraders and others more representative of typical soil bacteria) to withstand oxidative treatments (i.e. Fenton's reaction) which would occur in CBT; and (4) Experiments into the biochemical/genetic inducibility of PAH degradation by compounds formed by the chemical oxidation of PAH.

  3. A fast chemical route for the synthesis of TBHQ functionalized reduced graphene oxide and its electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Subhasis; Sen, Pintu, E-mail: psen@vecc.gov.in; Bandyopadhyay, S.K.

    2016-02-01

    A fast chemical route for the synthesis of tertiary butyl hydroquinone (TBHQ) functionalized reduced graphene oxide (FRGO) and their application as high performance electrode materials for supercapacitors have been reported. Reductions of chemically exfoliated graphene oxides (GO) in the presence of small amount of TBHQ (1–2 wt % with respect to GO) at various time periods were investigated through XRD, FTIR and Raman studies. Reappearance of broad diffraction peak close to graphite peak (002) reveals an efficient method of reduction of different oxygen containing functional groups present in GO/FGO resulting in a decrease of interlayer d-spacing (∼3.5 Å). Absence of the absorption peaks in FTIR for –C=O, t-O–H, epoxide and alkoxy groups supports the complete reduction of GO to FRGO by hydrazine hydrate within a short time period of 4 h reduction under reflux condition. A large red shift in UV spectrum of FRGO – 4 h (270 nm) reveals the complete reduction of graphene oxide. The average crystallite sp{sup 2} domains sizes have been estimated through Raman spectroscopy. Plausible mechanism of TBHQ assisted fast chemical reduction of FGO has been enumerated. 1.5 wt % TBHQ in FRGO shows the best electrochemical performance where TBHQ not only acts as a reducing agent during functionalization, but also plays as an active redox molecule for enhanced capacitance of 200 F/g. - Highlights: • A fast chemical route has been adopted for the synthesis of TBHQ functionalized RGO. • The kinetics of chemical reduction becomes faster in the presence of TBHQ. • The FTIR spectrum of functionalized RGO supports the complete reduction process. • TBHQ also plays a vital role for enhancing capacitance of functionalized RGO.

  4. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women.

    Science.gov (United States)

    Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M

    2015-10-01

    Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, Pdiet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, Pdiet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, Pdiet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.

  5. In place chemical cleaning of Will County Unit 4 high pressure turbine for efficiency recovery

    International Nuclear Information System (INIS)

    Cloffi, S.J.

    1989-01-01

    Due to the proliferation of nuclear units and the economic penalties associated with nuclear unit's following load, the fossil industry has had to switch gears in their mode of operation. A fossil unit must be able to cycle on and off if it is to remain useful to system power supply. Furthermore, a fossil unit is indispensable if it can go to a low load at night and ramp up during the day to meet load demand. Despite the cautions, warnings, and lack of information from turbine and boiler manufactures, Will County Unit 4 achieved such minimum load operation in November 1987. Within the year, Unit 4 experienced numerous cycle chemistry upsets and a steady decline in turbine capability. In depth turbine testing coupled with the chemistry characteristics reveal the cause to be copper deposits on the second and third stages of the high pressure turbine. This paper details the investigation, remedial action, and possible solutions to this turbine capability problem

  6. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles

    International Nuclear Information System (INIS)

    Wu Tao; Gao Jianping; Xu Xiaoyang; Qiu Haixia; Wang Wei; Gao Chunjuan

    2013-01-01

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu 2 O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet–visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu 2 O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue. (paper)

  7. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity

    International Nuclear Information System (INIS)

    Sharapova, Angelica; Ol'khovich, Marina; Blokhina, Svetlana; Perlovich, German

    2017-01-01

    Highlights: • Vapor pressures of antituberculosis thioacetazone were determined by transpiration method. • Solubilities of the TAZ in four modeling solvents were measured at different temperatures. • Temperature dependence of octanol/buffer pH 7.4 partition coefficients was obtained. • Thermodynamics parameters of solubility, sublimation, solvation and transfer were calculated. - Abstract: Vapor pressure of thioacetazone (TAZ) has been determined in the temperature range of 404.15–429.15 K by the transpiration method. The obtained data were used to calculate the standard molar enthalpy of sublimation that was found to be 164.1 kJ/mol at T = 298.15 K. The drug solubility was measured at seven temperatures from 288.15 to 318.15 K in modeling solvents: octanol, hexane and aqueous buffers pH 2.0 and 7.4 by the saturation shake-flask method by using spectrophotometric analysis. It has been found that TAZ has poor solubility in hexane and buffer solutions and limited solubility in octanol. The experimental data were well correlated by van’t Hoff and modified Apelblat equations. A temperature dependence of TAZ partition coefficient in the octanol/buffer pH 7.4 system has been derived. The partition coefficient value in this system (logP = 1.82) refers to the optimal interval for oral absorption drugs. The thermodynamic parameters of sublimation, solubility, solvation and transfer have been determined based on experimental data. The dominant effect of enthalpy and entropy contributions to the Gibbs energy of the investigated processes has been revealed.

  8. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Science.gov (United States)

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  10. Plant Materials as an Appropriate Replacement for Reducing Environmental Risk of using Chemical Insecticides (Case Study: Colorado Potato Beetle

    Directory of Open Access Journals (Sweden)

    Akram taghizadeh sarokolaei

    2017-10-01

    Full Text Available Introduction Natural and human hazards arising from the use of chemical pesticides to reduce pest damage are significantly increased. In this way, tend to use alternatives with similar efficacy and less risk like plant to control pests has increased. Therefore, it seems that plant compounds can be used as alternatives to chemical insecticides to protect agricultural products in the future. These compounds have no harmful and negative effects on nature and are safer than chemical insecticides; they decompose rapidly, do not remain in soil and water and have no effect on non-target populations. One of the important agricultural products around the world is potato and a major pest of it around the world and in Iran that damage the product is Colorado potato beetle, Leptinotarsa decemlineata (Say. Nowadays chemical control is the most common method to control of this pest but causes resistance. According to the Colorado potato beetle resistant to conventional chemical pesticides for controlling them, in recent year tendency to use insecticide with plant origin become more for this pest.One of the most important plant compounds are essential oils. Due to the low risk of essential oils to humans and the environment and their insecticidal effect, we motivated to investigate the insecticidal effects of three important medicinal plants on Colorado potato beetle for reducing the environmental hazards arising from the use of chemical insecticides. Materials and methods Three insecticides thiamethoxam, diniteforane, imidacloprid were bought and three essential oils Satureja khuzistanica Jamzad, Ocimum basilicum L. and Mentha spicata L. were gathered in spring then dried in shade at room temperature and for later use in special plastic bags were stored at -24 ° C. With Clevenger essential oils were extracted. In the spring and summer 4th instars larvae of Leptinotarsa decemlineata Say from potato fields of Ardabil plain collected. Investigation against this

  11. Applying chemical stimuli on feathers to reduce feather pecking in laying hens

    NARCIS (Netherlands)

    Harlander Matauschek, A.; Rodenburg, T.B.

    2011-01-01

    Recent studies have shown that spraying a distasteful substance (quinine) on a bird's feather cover reduced short-term feather pecking. The present experiment evaluated if other substances offer similar or better protection against feather pecking. One hundred and twenty birds were divided into 12

  12. Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents

    Science.gov (United States)

    Tucker, Mark D.

    2014-06-03

    A reduced weight DF-200 decontamination formulation that is stable under high temperature storage conditions. The formulation can be pre-packed as an all-dry (i.e., no water) or nearly-dry (i.e., minimal water) three-part kit, with make-up water (the fourth part) being added later in the field at the point of use.

  13. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISKIN OIL-IMPACTED SOILS

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; W.W.Bogan; V. Trbovic; W. Sullivan

    2003-01-07

    The drilling and operation of gas/petroleum exploratory wells and the operations of natural gas and petroleum production wells generate a number of waste materials that are usually stored and/or processed at the drilling/operations site. Contaminated soils result from drilling operations, production operations, and pipeline breaks or leaks where crude oil and petroleum products are released into the surrounding soil or sediments. In many cases, intrinsic biochemical remediation of these contaminated soils is either not effective or is too slow to be an acceptable approach. This project targeted petroleum-impacted soil and other wastes, such as soil contaminated by: accidental release of petroleum and natural gas-associated organic wastes from pipelines or during transport of crude oil or natural gas; production wastes (such as produced waters, and/or fuels or product gas). Our research evaluated the process designated Chemically-Accelerated Biotreatment (CAB) that can be applied to remediate contaminated matrices, either on-site or in situ. The Gas Technology Institute (GTI) had previously developed a form of CAB for the remediation of hydrocarbons and metals at Manufactured Gas Plant (MGP) sites and this research project expanded its application into Exploration and Production (E&P) sites. The CAB treatment was developed in this project using risk-based endpoints, a.k.a. environmentally acceptable endpoints (EAE) as the treatment goal. This goal was evaluated, compared, and correlated to traditional analytical methods (Gas Chromatography (GC), High Precision Liquid Chromatography (HPLC), or Gas Chromatography-Mass Spectrometry (CGMS)). This project proved that CAB can be applied to remediate E&P contaminated soils to EAE, i.e. those concentrations of chemical contaminants in soil below which there is no adverse affect to human health or the environment. Conventional approaches to risk assessment to determine ''how clean is clean'' for soils

  14. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges

    International Nuclear Information System (INIS)

    Paulussen, Sabine; Verheyde, Bert; Tu Xin; Sels, Bert; De Bie, Christophe; Martens, Tom; Petrovic, Dragana; Bogaerts, Annemie

    2010-01-01

    The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO 2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O 2 . The discharge obtained in CO 2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO 2 -conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO 2 conversion of 30% is achieved at a flow rate of 0.05 L min -1 , a power density of 14.75 W cm -3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min -1 , a power density of 11 W cm -3 and a discharge frequency of 30 kHz.

  15. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  16. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  17. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  18. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek

    2012-02-10

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek; Pasha, Farhan Ahmad; De Mallmann, Aimery; Norsic, Sé bastien; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2012-01-01

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  1. Chemical changes in non-reduced catalysts used for ammonia synthesis

    International Nuclear Information System (INIS)

    Peev, T.M.; Kyrova, Z.; Bojinova, A.I.

    1980-01-01

    Samples of non-reduced industrial catalysts CA-1 for ammonia synthesis were studied by using Moessbauer spectroscopy. The conditions of the normal storing of this catalyst were changed. After 6 months it was found that under the influence of moisture and air oxygen a considerable part of the magnetite was converted to α-Fe 2 O 3 , α-FeOOH and γ-FeOOH. (author)

  2. Synthesis of reduced graphene oxide (rGO) via chemical reduction

    International Nuclear Information System (INIS)

    Thakur, Alpana; Rangra, V. S.; Kumar, Sunil

    2015-01-01

    Natural flake Graphite was used as the starting material for the graphene synthesis. In the first step flake graphite was treated with oxidizing agents under vigorous conditions to obtain graphite oxide. Layered graphite oxide decorated with oxygen has large inter-layer distance leading easy exfoliation into single sheets by ultrasonication giving graphene oxide. In the last step exfoliated graphene oxide sheets were reduced slowly with the help of reducing agent to obtain fine powder which is labeled as reduced graphene oxide (rGO). This rGO was further characterized by X-Ray Diffraction (XRD), Scanning Tunneling Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy techniques. XRD pattern shows peaks corresponding to (002) graphitic lattice planes indicating the formation of network of sp 2 like carbon structure. SEM images show the ultrathin, wrinkled, paper-like morphology of graphene sheets. IR study shows that the graphite has been oxidized to graphite oxide with the presence of various absorption bands confirming the presence of oxidizing groups. The FTIR spectrum of rGO shows no sharp peaks confirming the efficient reduction of rGO. The Raman spectrum shows disorder in the graphene sheets

  3. Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance

    KAUST Repository

    Bai, Yaocai; Baby, Rakhi Raghavan; Chen, Wei; Alshareef, Husam N.

    2013-01-01

    Three kinds of reduced graphene oxides are prepared by hydrothermal reduction under different pH conditions and their pseudocapacitive performances are evaluated using full-cell supercapacitor devices. The pH values are found to have great influence on the performance of the supercapacitors, achieving the highest specific capacitance value reported for hydrothermal reduced graphene oxide supercapacitors. Acidic and neutral media yield reduced graphene oxides with more oxygen-functional groups and lower surface areas but with broader pore size distributions than those in basic medium. The graphene produced in the basic solution (nitrogen-doped graphene) presents mainly electrochemical double layer (ECDL) behavior with specific capacitance of 185 F g-1, while the graphene produced under neutral or acidic conditions show both ECDL and pseudocapacitive behavior with specific capacitance of 225 F g-1 (acidic) and 230 F g-1 (neutral), respectively, at a constant current density of 1 A g-1. The influence of pH on cycling performance and electrochemical impedance of the supercapacitive devices is also presented. © 2013 Elsevier B.V. All rights reserved.

  4. Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance

    KAUST Repository

    Bai, Yaocai

    2013-07-01

    Three kinds of reduced graphene oxides are prepared by hydrothermal reduction under different pH conditions and their pseudocapacitive performances are evaluated using full-cell supercapacitor devices. The pH values are found to have great influence on the performance of the supercapacitors, achieving the highest specific capacitance value reported for hydrothermal reduced graphene oxide supercapacitors. Acidic and neutral media yield reduced graphene oxides with more oxygen-functional groups and lower surface areas but with broader pore size distributions than those in basic medium. The graphene produced in the basic solution (nitrogen-doped graphene) presents mainly electrochemical double layer (ECDL) behavior with specific capacitance of 185 F g-1, while the graphene produced under neutral or acidic conditions show both ECDL and pseudocapacitive behavior with specific capacitance of 225 F g-1 (acidic) and 230 F g-1 (neutral), respectively, at a constant current density of 1 A g-1. The influence of pH on cycling performance and electrochemical impedance of the supercapacitive devices is also presented. © 2013 Elsevier B.V. All rights reserved.

  5. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    Full Text Available Wei-Wei Zhang,1,2 Feng Bai,1 Jin Wang,1 Rong-Hua Zheng,1 Li-Wang Yang,1 Erskine A James,3 Zhi-Qing Zhao1,4 1Department of Physiology, Shanxi Medical University, 2Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China; 3Department of Internal Medicine, Navicent Health, Macon, 4Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA Abstract: Angiotensin II (Ang II is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC. In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05 and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19

  6. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  7. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  8. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Science.gov (United States)

    Wallenhorst, L. M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-07-01

    In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  9. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  11. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  12. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    Science.gov (United States)

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  13. The impact of high hydrostatic pressure on the functionality and consumer acceptability of reduced sodium naturally cured wieners.

    Science.gov (United States)

    Pietrasik, Z; Gaudette, N J; Johnston, S P

    2017-07-01

    The effects of high pressure processing (HPP; 600MPa for 3min at 8°C) on the quality and shelf life of reduced sodium naturally-cured wieners was studied. HPP did not negatively impact processing characteristics and assisted in extending shelf life of all wiener treatments up to a 12week storage period. At week 8, HPP wieners received higher acceptability scores, indicating HPP can effectively extend the sensory quality of products, including sodium reduced formulations containing natural forms of nitrite. Substitution of 50% NaCl with modified KCl had negative effect on textural characteristics of conventionally cured wieners but not those processed with celery powder as a source of nitrite. Celery powder favorably affected hydration of textural properties of wieners, and consumer acceptability of juiciness and texture was higher compared to nitrite. Sodium reduction, independent of curing agent, negatively impacted flavor acceptability, while only nitrite containing reduced sodium wieners scored significantly lower than both regular salt wieners for texture, juiciness and saltiness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  15. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  16. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  17. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors.

    Science.gov (United States)

    Galstyan, Vardan; Comini, Elisabetta; Kholmanov, Iskandar; Ponzoni, Andrea; Sberveglieri, Veronica; Poli, Nicola; Faglia, Guido; Sberveglieri, Giorgio

    2016-01-01

    A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  18. Conceptual study of multiphase structure of high uranium density alloys to reduce chemical interaction

    International Nuclear Information System (INIS)

    Savchenko, A.

    2014-01-01

    The basic factor that limits the serviceability of fuel elements developing in the framework of RERTR Program (transition from HEU to LEU fuel of research reactors) is interaction between U10Mo fuel and aluminium matrix . Interaction results in extra swelling of fuels, disappearance of a heat conducting matrix, a temperature rise in the fuel centre, penetration porosity, etc. Several methods exist to prevent fuel-matrix interaction. In terms of simplifying fuel element fabrication technology and reducing interaction, doping of fuel is the most optimal version

  19. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

    Directory of Open Access Journals (Sweden)

    Vardan Galstyan

    2016-10-01

    Full Text Available A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  20. Seawater-sediment interaction at elevated temperatures and pressures: implications for the near field chemical environment

    International Nuclear Information System (INIS)

    Seyfried, W.E. Jr.; Thornton, E.C.; Janecky, D.R.

    1981-01-01

    Results of four experiments are reported which document chemical exchange and mineralogic modification during seawater-sediment interaction at 200 0 to 300 0 C, 500 bars. Sediments used for this study are from MPG-1 (central North Pacific). Experimental conditions (T, P, W/R) were chosen to be reasonably analogous to conditions which will characterize the near field environment; that is a zone within approximately 1 m of the buried waste canister. In general, the major element chemistry of seawater was similarly modified in all experiments. The aqueous concentrations of Ca, Mg, Sr, and SO 4 decreased and SiO 2 /sub (aq)/, Na, K, and ΣCO 2 increased relative to values in seawater prior to reaction with sediments. pH decreased and remained distinctly acid. Con comitantly significant concentrations of heavy metals entered seawater from the sediments during reaction. Dissolution of Mn-rich phases profoundly affected alteration processes. For example, reaction of MnO 2 components of the smectite-rich sediment (Pacific smectite) with seawater created an unusually oxidizing milieu (fO 2 = 10 -7 74 ), and resulted in dissolution of significant quantities of Au from the reaction cell. Although illite-quartz-Fe-chlorite (sediment B)-seawater interaction also created a relatively oxidizing environment, this environment was not capable of oxidizing Au. Thus, in this regard (oxidation potential) sediment mineralogy exerts a strong influence. Mineralogic modification of sediment B at 200 0 and 300 0 C was minor and characterized by partial dissolution of illite and exchange of Fe for Mg in chlorite. In contrast the smectite-rich sediment, which, prior to reaction with seawater contained a poorly crystalline smectite phase, clinoptilolite, and amorphous material, recrystallized totally to a well defined smectite mineral. Anhydrite was abundantly present amongst the alteration products of all experiments

  1. Control of substrate oxidation in MOD cerawwwmic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Science.gov (United States)

    Tanaka, Teruya; Muroga, Takeo

    2014-12-01

    An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.

  2. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P mechanical ventilation and ICU stay.

  3. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    Science.gov (United States)

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  4. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.

    Science.gov (United States)

    Ren, Wurong; Perumal, Jayakumar; Wang, Jun; Wang, Hao; Sharma, Siddharth; Kim, Dong-Pyo

    2014-02-21

    Two types of whole ceramic-like microreactors were fabricated from inorganic polymers, polysilsesquioxane (POSS) and polyvinylsilazane (PVSZ), that were embedded with either perfluoroalkoxy (PFA) tube or polystyrene (PS) film templates, and subsequently the templates were removed by physical removal (PFA tube) or thermal decomposition (PS). A POSS derived ceramic-like microreactor with a 10 cm long serpentine channel was obtained by an additional "selective blocking of microchannel" step and subsequent annealing at 300 °C for 1 h, while a PVSZ derived ceramic-like microreactor with a 14 cm long channel was yielded by a co-firing process of the PVSZ-PS composite at 500 °C for 2 h that led to complete decomposition of the film template leaving a microchannel behind. The obtained whole ceramic-like microfluidic devices revealed excellent chemical and thermal stabilities in various solvents, and they were able to demonstrate unique chemical performance at high temperature or/and high pressure conditions such as Michaelis-Arbuzov rearrangement at 150-170 °C, Wolff-Kishner reduction at 200 °C, synthesis of super-paramagnetic Fe3O4 nanoparticles at 320 °C and isomerisation of allyloxybenzene to 2-allylphenol (250 °C and 400 psi). These economic ceramic-like microreactors fabricated by a facile non-lithographic method displayed excellent utility under challenging conditions that is superior to any plastic microreactors and comparable to glass and metal microreactors with high cost.

  5. Synthesis and characterization of graphene layers prepared by low-pressure chemical vapor deposition using triphenylphosphine as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mastrapa, G.C.; Maia da Costa, M.E.H. Maia [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Larrude, D.G., E-mail: dunigl@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ (Brazil)

    2015-09-15

    The synthesis of a single-layer graphene using a low-pressure Chemical Vapor Deposition (CVD) system with triphenylphosphine as precursor is reported. The amount of triphenylphosphine used as precursor was in the range of 10–40 mg. Raman spectroscopy was employed to analyze samples prepared with 10 mg of the precursor, and these spectra were found typical of graphene. The Raman measurements indicate that the progressive degradation of graphene occurs as the amount of triphenylphosphine increases. X-ray photoelectron spectroscopy measurements were performed to investigate the different chemical environments involving carbon and phosphorous atoms. Scanning electron microscopy and transmission electron microscopy were also employed and the results reveal the formation of dispersed nanostructures on top of the graphene layer, In addition, the number of these nanostructures is directly related to the amount of precursor used for sample growth. - Highlights: • We grow graphene using the solid precursor triphenylphosphine. • Raman analysis confirms the presence of monolayer graphene. • SEM images show the presence of small dark areas dispersed on the graphene surface. • Raman I{sub D}/I{sub G} ratio increases in the dark region of the graphene surface.

  6. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization.

    LENUS (Irish Health Repository)

    Walsh, Sarah K

    2012-01-31

    Preeclampsia is associated with widespread maternal vascular dysfunction, which is thought to be mediated by circulating factor(s). The aim of the study was to characterize vascular function in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia and to investigate the role of plasma factors in mediating any observed changes in vascular reactivity. Mean arterial blood pressure and vascular function were measured in RUPP and control rats. Mesenteric vessels from both virgin and pregnant rats were exposed for 1 hour or overnight to plasma from both RUPP and control rats and their vascular function assessed. RUPP rats were characterized by severe hypertension, restricted fetal growth, and reduced placental weight (P<0.001). Vasorelaxation was impaired in resistance vessels from RUPP compared with control rats (acetylcholine: R(max) 70+\\/-3 versus 92+\\/-1 [NP] and 93+\\/-3% [sham], P<0.01; bradykinin: 40+\\/-2 versus 62+\\/-2 [NP] and 59+\\/-4% [sham], P<0.001). Incubation of vessels from pregnant (but not virgin) animals with RUPP plasma overnight resulted in an attenuation of vasorelaxant responses (acetylcholine: 63+\\/-7 versus 86+\\/-2%, P<0.05; bradykinin: 35+\\/-5 versus 55+\\/-6%, P<0.001). The residual relaxant response in RUPP plasma-treated vessels was not further attenuated after treatment with N(omega)-nitro-l-arginine methyl ester (acetylcholine: 57+\\/-7 versus 63+\\/-7%, ns; bradykinin: 37+\\/-5 versus 35+\\/-5%, ns). The RUPP rat model is characterized by an impaired response to vasodilators which may be attributable to one or more circulating factors. This plasma-mediated endothelial dysfunction appears to be a pregnancy-dependent effect. Furthermore, nitric oxide-mediated vasorelaxation appears to be absent in RUPP plasma-treated vessels.

  7. (−-Epicatechin Reduces Blood Pressure and Improves Left Ventricular Function and Compliance in Deoxycorticosterone Acetate-Salt Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Douglas Jackson

    2018-06-01

    Full Text Available (−-Epicatechin (E is a flavanol found in green tea and cocoa and has been shown to attenuate tumour necrosis factor alpha (TNF-α-mediated inflammation, improve nitric oxide levels, promote endothelial nitric oxide synthase (eNOS activation and inhibit NADPH oxidase. This study investigated the effect of 28 days of low epicatechin dosing (1 mg/kg/day on the cardiovascular function of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Wistar rats (n = 120, 8 weeks of age underwent uninephrectomy and were randomised into four groups (uninephrectomy (UNX, UNX + E, DOCA, DOCA + E. DOCA and DOCA + E rats received 1% NaCl drinking water along with subcutaneous injections of 25 mg deoxycorticosterone-acetate (in 0.4 mL of dimethylformamide every fourth day. UNX + E and DOCA + E rats received 1 mg/kg/day of epicatechin by oral gavage. Single-cell micro-electrode electrophysiology, Langendorff isolated-heart assessment and isolated aorta and mesenteric organ baths were used to assess cardiovascular parameters. Serum malondialdehyde concentration was used as a marker of oxidative stress. Myocardial stiffness was increased and left ventricular compliance significantly diminished in the DOCA control group, and these changes were attenuated by epicatechin treatment (p < 0.05. Additionally, the DOCA + E rats showed significantly reduced blood pressure and malondialdehyde concentrations; however, there was no improvement in left ventricular hypertrophy, electrophysiology or vascular function. This study demonstrates the ability of epicatechin to reduce blood pressure, prevent myocardial stiffening and preserve cardiac compliance in hypertrophied DOCA-salt rat hearts.

  8. Fluctuation-Coupling of Cathode Cavity Pressure and Arc Voltage in a dc Plasma Torch with a Long Inter-Electrode Channel at Reduced Pressure

    International Nuclear Information System (INIS)

    Cao Jin-Wen; Huang He-Ji; Pan Wen-Xia

    2014-01-01

    Fluctuations of cathode cavity pressure and arc voltage are observed experimentally in a dc plasma torch with a long inter-electrode channel. The results show that they have the same frequency of around 4 kHz under typical experimental conditions. The observed phase difference between the pressure and the voltage, which is influenced by the path length between the pressure sensor and the cathode cavity, varies with different input powers. Combined with numerical simulation, the position of the pressure perturbation origin is estimated, and the results show that it is located at 0.01–0.05 m upstream of the inter-electrode channel outlet

  9. Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers.

    Science.gov (United States)

    Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H

    2013-09-01

    The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3-δ thin films investigated by chemical capacitance measurements.

    Science.gov (United States)

    Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen

    2018-05-03

    La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.

  11. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3–δ thin films investigated by chemical capacitance measurements

    Science.gov (United States)

    Rupp, Ghislain M.; Fleig, Jürgen

    2018-01-01

    La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421

  12. Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system.

    Directory of Open Access Journals (Sweden)

    Giuseppina Mattace Raso

    Full Text Available Palmitoylethanolamide (PEA, a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR. Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF, and renin angiotensin system (RAS modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the

  13. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Physical and chemical evolution of reduced organic matter in the ISM

    Science.gov (United States)

    Jenniskens, Peter; Blake, David F.

    1995-01-01

    Icy mantles on interstellar grains have been a topic of study in airborne astronomy. Recent laboratory analog studies of the yield of organic residue from UV photolyzed ices have shown that this mechanism can be the most significant source of complex reduced organic matter in the interstellar medium. However, the total yield is a function of the occurrence of heating events that evaporate the ice, i.e. T is greater than 130 K, and the mechanism for such events is debated. Recently, we proposed that the recombination of radicals in the ice does not need high temperature excursions and, instead, occurs during a structural transformation of water ice at temperatures in the range 38 - 68 K.

  15. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy.

  16. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)

    1991-01-01

    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  17. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW

    Directory of Open Access Journals (Sweden)

    Marc Henry

    2013-12-01

    Full Text Available The consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Ministry of Health, Labour and Welfare for the cure of gastro-intestinal disorders. Today, these devices are freely available in several countries and can be easily purchased without reserve. The commercial information included with the device recommends the consumption of 1–1.5 L of water per day, not only for gastro-intestinal disorders but also for numerous other illnesses such as diabetes, cancer, inflammation, etc. Academic research in Japan on this subject has been undergoing since 1990 only but has established that the active ingredient is dissolved dihydrogen that eliminates the free radical HO• in vivo. In addition, it was demonstrated that degradation of the electrodes during functioning of the device releases very reactive nanoparticles of platinum, the toxicity of which has not yet been clearly proven. This report recommends alerting health authorities of the uncontrolled availability of these devices used as health products, but which generate drug substances and should therefore be sold according to regulatory requirements.

  18. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Science.gov (United States)

    Engström, J. E.; Leck, C.

    2011-08-01

    The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the

  19. Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes

    Science.gov (United States)

    Harborne, A. R.; Renaud, P. G.; Tyler, E. H. M.; Mumby, P. J.

    2009-09-01

    Disease has dramatically reduced populations of the herbivorous urchin Diadema antillarum Philippi on Caribbean reefs, contributing to an increased abundance of macroalgae and reduction of coral cover. Therefore, recovery of D. antillarum populations is critically important, but densities are still low on many reefs. Among the many potential factors limiting these densities, the focus of this study is on predation pressure by fishes. Marine reserves provide opportunities to examine large-scale manipulations of predator-prey interactions and, therefore, D. antillarum densities were compared inside and outside a reserve in The Bahamas (Exuma Cays Land and Sea Park; ECLSP). Urchins and their fish predators were surveyed at nine sites inside and outside the ECLSP. Because of lower fishing effort, the total biomass of urchin predators, weighted by their dietary preferences for urchins, was significantly higher inside the ECLSP. Furthermore, fish community structure was significantly different inside the Park because of the increased biomass of the majority of species. No urchins were seen inside the ECLSP and this was significantly lower than the density of 0.04 urchin m-2 outside the Park. Regression analysis indicated that the relationship between the biomass of urchin predators and the proportion of transects containing urchins was non-linear, suggesting that small increases in fish biomass dramatically reduce urchin abundances. The link between lower density of urchins and higher density of their predators inside the ECLSP is strengthened by discounting five alternative primary mechanisms (variations in macroalgal cover, larval supply, environmental setting, density of other urchin species and abundance of predators not surveyed). Caribbean marine reserves have an important conservation role, but increased fish predation appears to reduce densities of D. antillarum. Urchins currently have limited functional significance on Bahamian reefs, but any future recovery of

  20. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    International Nuclear Information System (INIS)

    Jan, Yih-Kuen; Liao, Fuyuan; Lee, Bernard; Foreman, Robert D

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague–Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = −10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. (paper)

  1. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.

    Science.gov (United States)

    Park, Soo-Yeon; Do, Gyeong-Min; Lee, Sena; Lim, Yeni; Shin, Jae-Ho; Kwon, Oran

    2014-09-01

    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Electrical stimulation-induced Gluteal and Hamstring muscle activation can reduce sitting pressure in individuals with a spinal cord injury

    NARCIS (Netherlands)

    Janssen, T. W J; De Koning, A.; Legemate, K. J A; Smit, C. A J

    2010-01-01

    Individuals with spinal cord injury (SCI) are at high risk of developing pressure sores, in part due to high sitting pressures under the buttocks. PURPOSE: To evaluate the effect of ES-induced activation of the gluteal and hamstring muscles on the sitting pressure in individuals with SCI. METHODS:

  3. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    International Nuclear Information System (INIS)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-01-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC) n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC) n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  4. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Science.gov (United States)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-06-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called "interphase" between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC-TiC)n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC-TiC)n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  5. Control of substrate oxidation in MOD ceramic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Teruya, E-mail: teru@nifs.ac.jp; Muroga, Takeo

    2014-12-15

    Highlights: • A Cr{sub 2}O{sub 3} layer was produced on a ferritic steel substrate with a reduced-pressure. • The Cr{sub 2}O{sub 3} layer prevents further substrate oxidation in following coating process. • The Cr{sub 2}O{sub 3} layer has a function as a hydrogen permeation barrier. • A smooth MOD Er{sub 2}O{sub 3} coating was successfully made on the Cr{sub 2}O{sub 3} layer by dip coating. • The Cr{sub 2}O{sub 3} layer would enhance flexibility in MOD coating process and performances. - Abstract: An Er{sub 2}O{sub 3} ceramic coating fabricated using the metal–organic decomposition (MOD) method on a Cr{sub 2}O{sub 3}-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr{sub 2}O{sub 3} layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10{sup −3} Pa and 5 Pa. The Cr{sub 2}O{sub 3} layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe{sub 2}O{sub 3}, which has been considered to degrade coating performance. An MOD Er{sub 2}O{sub 3} coating with a smooth surface was successfully obtained on a Cr{sub 2}O{sub 3}-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr{sub 2}O{sub 3} layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr{sub 2}O{sub 3} layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr{sub 2}O{sub 3} and MOD oxide ceramic.

  6. Varying Eu2+ magnetic order by chemical pressure in EuFe2(As1-xPx)2

    Science.gov (United States)

    Zapf, S.; Wu, D.; Bogani, L.; Jeevan, H. S.; Gegenwart, P.; Dressel, M.

    2011-10-01

    Based on low-field magnetization measurements on a series of single crystals, we present a scheme of the Eu2+ spin alignment in EuFe2(As1-xPx)2. We explain observations of the Eu2+ ordering previously reported, reconciling different existing phase diagrams. The magnetic moments of the Eu2+ ions are slightly canted, yielding a ferromagnetic contribution along the c direction that becomes stronger with pressure, until superconductivity sets in. The spin-density wave as well as the superconducting phase coexist with an antiferromagnetic interlayer coupling of the canted spins. Reducing the interlayer distance finally leads to a ferromagnetic Eu2+ interlayer coupling and to the suppression of superconductivity.

  7. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  8. Continuous positive airway pressure reduces blood pressure in patients with obstructive sleep apnea; a systematic review and meta-analysis with 1000 patients.

    Science.gov (United States)

    Schein, Andressa S O; Kerkhoff, Alessandra C; Coronel, Christian C; Plentz, Rodrigo D M; Sbruzzi, Graciele

    2014-09-01

    Obstructive sleep apnea (OSA) may lead to the development of hypertension and therapy with continuous positive airway pressure (CPAP) can promote reduction in blood pressure. The objective of this study is to review systematically the effects of CPAP on blood pressure in patients with OSA. The search was conducted in the following databases, from their beginning until February 2013: MEDLINE, Embase, Cochrane CENTRAL, Lilacs and PEDro. In addition, a manual search was performed on references of published studies. Randomized clinical trials (RCTs) that used CPAP compared with placebo CPAP or subtherapeutic CPAP for treatment of patients with OSA and that evaluated office SBP and DBP and 24-h ambulatory blood pressure were selected. Sixteen RCTs were included among 3409 publications, totaling 1166 patients. The use of CPAP resulted in reductions in office SBP [-3.20  mmHg; 95% confidence interval (CI) -4.67 to -1.72] and DBP (-2.87  mmHg; 95% CI -5.18 to -0.55); in night-time SBP (-4.92  mmHg; 95% CI -8.70 to -1.14); in mean 24-h blood pressure (-3.56  mmHg; 95% CI -6.79 to -0.33), mean night-time blood pressure (-2.56  mmHg; 95% CI -4.43 to -0.68) and 24-h DBP (-3.46  mmHg; 95% CI -6.75 to -0.17). However, no significant change was observed in daytime SBP (-0.74  mmHg; 95% CI -3.90 to 2.41) and daytime DBP (-1.86  mmHg; 95% CI -4.55 to 0.83). Treatment with CPAP promoted significantly but small reductions in blood pressure in individuals with OSA. Further studies should be performed to evaluate the effects of long-term CPAP and the impact on cardiovascular risk.

  9. Combination therapy with lercanidipine and enalapril reduced central blood pressure augmentation in hypertensive patients with metabolic syndrome.

    Science.gov (United States)

    Ghiadoni, Lorenzo; Bruno, Rosa Maria; Cartoni, Giulia; Stea, Francesco; Magagna, Armando; Virdis, Agostino; Grassi, Davide; Ferri, Claudio; Taddei, Stefano

    2017-05-01

    Arterial stiffness and blood pressure (BP) augmentation are independent predictors of cardiovascular events. In a randomized, open, parallel group study we compared the effect on these parameters of combination therapy with an ACE-inhibitor plus calcium channel blocker or thiazide diuretic in 76 hypertensive patients with metabolic syndrome uncontrolled by ACE-inhibitor monotherapy. After 4weeks run-in with enalapril (ENA, 20mg), patients were randomized to a combination therapy with lercanidipine (LER, 10-20mg) or hydrochlorothiazide (HCT, 12.5-25mg) for 24weeks. Aortic stiffness (carotid to femoral pulse wave velocity, PWV), central BP values and augmentation (augmentation index, AIx) were measured by applanation tonometry. The two groups showed similar office and central BP after run-in. Office (ENA/LER: from 149.1±4.9/94.5±1.5 to 131.7±8.1/82.2±5.3; ENA/HCT: from 150.3±4.7/94.7±2.1 to 133.1±7.1/82.8±5.3mmHg) and central BP (ENA/LER 127.4±17.1/85.2±12.1 to 120.5±13.5/80.0±9.5mmHg; ENA/HCT 121.6±13.4/79.3±9.5mmHg) were similarly reduced after 24weeks. PWV was comparable after run-in and not differently reduced by the two treatments (ENA/LER from 8.6±1.5 to 8.1±1.3m/s, pmetabolic syndrome not controlled by ENA alone. These results indicate a positive effect of the combination of ENA/LER on central BP augmentation, suggesting a potential additive role for cardiovascular protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A Comprehensive Program to Reduce Rates of Hospital-Acquired Pressure Ulcers in a System of Community Hospitals.

    Science.gov (United States)

    Englebright, Jane; Westcott, Ruth; McManus, Kathryn; Kleja, Kacie; Helm, Colleen; Korwek, Kimberly M; Perlin, Jonathan B

    2018-03-01

    The prevention of hospital-acquired pressure ulcers (PrUs) has significant consequences for patient outcomes and the cost of care. Providers are challenged with evaluating available evidence and best practices, then implementing programs and motivating change in various facility environments. In a large system of community hospitals, the Reducing Hospital Acquired-PrUs Program was developed to provide a toolkit of best practices, timely and appropriate data for focusing efforts, and continuous implementation support. Baseline data on PrU rates helped focus efforts on the most vulnerable patients and care situations. Facilities were empowered to use and adapt available resources to meet local needs and to share best practices for implementation across the system. Outcomes were measured by the rate of hospital-acquired PrUs, as gathered from patient discharge records. The rate of hospital-acquired stage III and IV PrUs decreased 66.3% between 2011 and 2013. Of the 149 participating facilities, 40 (27%) had zero hospital-acquired stage III and IV PrUs and 77 (52%) had a reduction in their PrU rate. Rates of all PrUs documented as present on admission did not change during this period. A comparison of different strategies used by the most successful facilities illustrated the necessity of facility-level flexibility and recognition of local workflows and patient demographics. Driven by the combination of a repository of evidence-based tools and best practices, readily available data on PrU rates, and local flexibility with processes, the Reducing Hospital Acquired-PrUs Program represents the successful operationalization of improvement in a wide variety of facilities.

  11. Nasal continuous positive airway pressure therapy in a non-tertiary neonatal unit: reduced need for up-transfers.

    Science.gov (United States)

    Kiran, Sai; Murki, Srinivas; Pratap, Oleti Tejo; Kandraju, Hemasree; Reddy, Anupama

    2015-02-01

    To evaluate the need for up-transfer after starting of nasal continuous positive airway pressure (n-CPAP) services in a Level II special newborn care unit (SNCU). Five hundred fifty infants admitted to Level II SNCU, 252 infants during one year prior to introduction of n-CPAP (retrospective data from case records and electronic data base) and 298 infants during one year after introduction of n-CPAP services (prospective data in predefined case reporting form) were evaluated in this before and after intervention trial. The primary outcome was proportion of infants needing up-transfers from Level II SNCU for any indication. Baseline demographic data like birth weight, gestation and other perinatal factors were similar between the two epochs. Among the infants admitted to Level II SNCU, up-transfer for any reason was significantly higher in the pre-CPAP epoch compared with CPAP epoch (n = 93, 36 % vs. n = 74, 24.8 %, p = 0.002, OR 0.56, 95 % CI 0.38 to 0.83). However parent desired up-transfers were similar between the two epochs (n = 9, 3 % vs. n = 16, 5 %, p = 0.40). Introduction of n-CPAP treatment modality reduced up-transfers in subgroups of very low birth weight infants (VLBW) (n = 20, 74 % vs. n = 15, 37 %, p = 0.003) and also in preterm infants (n = 50, 54 % vs. n = 34, 32 %, p = 0.002). Introduction of n-CPAP services in a non-tertiary care neonatal unit, significantly reduced the need for up-transfers, especially in VLBW and preterm infants.

  12. Low-pressure chemical vapour deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    The feasibility of volatile precursor low-pressure chemical vapor deposition (LPCVD) for the production of LiCoO2 cathodes for all solid-state microbatteries was examined. To test this feasibility, and gain insight into the deposition behavior, the influence of the deposition parameters on the

  13. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  14. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, van der I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Loey, van A.

    2011-01-01

    The impact of thermal, high pressure (HP) and pulsed electric field (PEF) processing for mild pasteurization of orange juice was compared on a fair basis, using processing conditions leading to an equivalent degree of microbial inactivation. Examining the effect on specific chemical and biochemical

  15. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  16. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    Science.gov (United States)

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  17. Analysis of polycyclic aromatic hydrocarbons using desorption atmospheric pressure chemical ionization coupled to a portable mass spectrometer.

    Science.gov (United States)

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K; Taylor, Stephen; Cooks, R Graham

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[k]fluoranthene, dibenz[a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  18. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  19. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R

    2012-04-27

    The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Atmospheric Pressure Chemical Ionization Gas Chromatography Mass Spectrometry for the Analysis of Selected Emerging Brominated Flame Retardants in Foods

    Science.gov (United States)

    Lv, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2017-03-01

    Emerging brominated flame retardants (eBFRs) other than polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and their derivatives in foods have been in focus in recent years due to their increasing production volumes, indefinite information on toxicities and the lack of data on occurrence in environments, foods as well as humans. In this study, gas chromatography was coupled to an atmospheric pressure chemical ionization-tandem mass spectrometry (APGC-MS/MS) for the analysis of six eBFRs in pork, chicken, egg, milk and fish. A short section of unpacked capillary column coupled to the end of the analytical column was applied to improve the chromatographic behaviors of high boiling point compounds. The method was comprehensively validated with method limit of quantification (mLOQ) lower than 8 pg/g wet weight (w.w.). Samples from Chinese Total Diet study were quantified following the validated APGC-MS/MS method. 2,3,4,5-pentabromo-6-ethylbenzene (PBEB), hexabromobenzene (HBB), pentabromotoluene (PBT) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were most frequently detected in samples. The highest concentration was found in fish with 351.9 pg/g w.w. of PBT. This is the first report on the presence of PBT in food samples with non-ignorable concentrations and detection rate.

  1. Atmospheric Pressure Chemical Ionization Gas Chromatography Mass Spectrometry for the Analysis of Selected Emerging Brominated Flame Retardants in Foods.

    Science.gov (United States)

    Lv, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2017-03-10

    Emerging brominated flame retardants (eBFRs) other than polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and their derivatives in foods have been in focus in recent years due to their increasing production volumes, indefinite information on toxicities and the lack of data on occurrence in environments, foods as well as humans. In this study, gas chromatography was coupled to an atmospheric pressure chemical ionization-tandem mass spectrometry (APGC-MS/MS) for the analysis of six eBFRs in pork, chicken, egg, milk and fish. A short section of unpacked capillary column coupled to the end of the analytical column was applied to improve the chromatographic behaviors of high boiling point compounds. The method was comprehensively validated with method limit of quantification (mLOQ) lower than 8 pg/g wet weight (w.w.). Samples from Chinese Total Diet study were quantified following the validated APGC-MS/MS method. 2,3,4,5-pentabromo-6-ethylbenzene (PBEB), hexabromobenzene (HBB), pentabromotoluene (PBT) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were most frequently detected in samples. The highest concentration was found in fish with 351.9 pg/g w.w. of PBT. This is the first report on the presence of PBT in food samples with non-ignorable concentrations and detection rate.

  2. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  3. Experimental study of the processes accompanying argon breakdown in a long discharge tube at a reduced pressure

    Energy Technology Data Exchange (ETDEWEB)

    Meshchanov, A. V.; Ionikh, Yu. Z., E-mail: y.ionikh@spbu.ru; Shishpanov, A. I.; Kalinin, S. A. [St. Petersburg State University (Russian Federation)

    2016-10-15

    Results are presented from experimental studies of the breakdown stage of a low-pressure discharge (1 and 5 Torr) in a glass tube the length of which (75 cm) is much larger than its diameter (2.8 cm). Breakdowns occurred under the action of positive voltage pulses with an amplitude of up to 9.4 kV and a characteristic rise time of 2–50 μs. The discharge current in the steady-state mode was 10–120 mA. The electrode voltage, discharge current, and radiation from the discharge gap were detected simultaneously. The dynamic breakdown voltage was measured, the prebreakdown ionization wave was recorded, and its velocity was determined. The dependence of the discharge parameters on the time interval between voltage pulses (the socalled “memory effect”) was analyzed. The memory effect manifests itself in a decrease or an increase in the breakdown voltage and a substantial decrease in its statistical scatter. The time interval between pulses in this case can reach 0.5 s. The effect of illumination of the discharge tube with a light source on the breakdown was studied. It is found that the irradiation of the anode region of the tube by radiation with wavelengths of ≤500 nm substantially reduces the dynamic breakdown voltage. Qualitative explanations of the obtained results are offered.

  4. Application of high pressure processing to reduce verotoxigenic E. coli in two types of dry-fermented sausage.

    Science.gov (United States)

    Omer, M K; Alvseike, O; Holck, A; Axelsson, L; Prieto, M; Skjerve, E; Heir, E

    2010-12-01

    The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log(10) CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log(10) CFU/g and 3.3 log(10) CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log(10) CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  5. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  6. Reduced thermal budget processing of Y--Ba--Cu--O high temperature superconducting thin films by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y--Ba--Cu--O (YBCO) on MgO and SrTiO 3 substrates by RIP assisted MOCVD. By using a mixture of N 2 O and O 2 as the oxygen source films deposited initially at 600 degree C for 1 min and then at 740 degree C for 30 min are primarily c-axis oriented and with zero resistance being observed at 84 and 89 K for MgO and SrTiO 3 substrates, respectively. The zero magnetic field current densities at 77 K for MgO and SrTiO 3 substrates are 1.2x10 6 and 1.5x10 6 A/cm 2 , respectively. It is envisaged that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  7. Mechanisms controlling temperature dependent mechanical and electrical behavior of SiH4 reduced chemically vapor deposited W

    International Nuclear Information System (INIS)

    Joshi, R.V.; Prasad, V.; Krusin-Elbaum, L.; Yu, M.; Norcott, M.

    1990-01-01

    The effects of deposition temperature on growth, composition, structure, adhesion properties, stress, and resistivity of chemically vapor deposited W deposited purely by SiH 4 reduction of WF 6 are discussed. At lower deposition temperatures, due to incomplete Si reduction reaction, a small amount of Si is incorporated in the film. This elemental Si in W is responsible for the observed high stresses and high resistivities over a wide temperature range. With the increase in the deposition temperature, the conversion of incorporated Si as well as the initial Si reduction are taking place, stimulating increased grain growth and thereby relieving stress and reducing resistivity. The optimum values for stress and resistivity are achieved around 500 degree C, as Si content is at its minimum. At higher temperatures the reaction between residual Si and W, is the prime cause of resistivity increase

  8. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  9. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    Science.gov (United States)

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  10. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial.

    Science.gov (United States)

    Doménech, Mónica; Roman, Pilar; Lapetra, José; García de la Corte, Francisco J; Sala-Vila, Aleix; de la Torre, Rafael; Corella, Dolores; Salas-Salvadó, Jordi; Ruiz-Gutiérrez, Valentina; Lamuela-Raventós, Rosa-María; Toledo, Estefania; Estruch, Ramón; Coca, Antonio; Ros, Emilio

    2014-07-01

    The PREvención con DIeta MEDiterránea (PREDIMED) trial showed that Mediterranean diets (MedDiets) supplemented with either extravirgin olive oil or nuts reduced cardiovascular events, particularly stroke, compared with a control, lower fat diet. The mechanisms of cardiovascular protection remain unclear. We evaluated the 1-year effects of supplemented MedDiets on 24-hour ambulatory blood pressure (BP), blood glucose, and lipids. Randomized, parallel-design, controlled trial was conducted in 2 PREDIMED sites. Diets were ad libitum, and no advice on increasing physical activity or reducing sodium intake was given. Participants were 235 subjects (56.5% women; mean age, 66.5 years) at high cardiovascular risk (85.4% with hypertension). Adjusted changes from baseline in mean systolic BP were -2.3 (95% confidence interval [CI], -4.0 to -0.5) mm Hg and -2.6 (95% CI, -4.3 to -0.9) mm Hg in the MedDiets with olive oil and the MedDiets with nuts, respectively, and 1.7 (95% CI, -0.1 to 3.5) mm Hg in the control group (P<0.001). Respective changes in mean diastolic BP were -1.2 (95% CI, -2.2 to -0.2), -1.2 (95% CI, -2.2 to -0.2), and 0.7 (95% CI, -0.4 to 1.7) mm Hg (P=0.017). Daytime and nighttime BP followed similar patterns. Mean changes from baseline in fasting blood glucose were -6.1, -4.6, and 3.5 mg/dL (P=0.016) in the MedDiets with olive oil, MedDiets with nuts, and control diet, respectively; those of total cholesterol were -11.3, -13.6, and -4.4 mg/dL (P=0.043), respectively. In high-risk individuals, most with treated hypertension, MedDiets supplemented with extravirgin olive oil or nuts reduced 24-hour ambulatory BP, total cholesterol, and fasting glucose. http://www.clinicaltrials.gov. Unique identifier: ISRCTN35739639. © 2014 American Heart Association, Inc.

  11. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  12. Sleep Apnea Related Risk of Motor Vehicle Accidents is Reduced by Continuous Positive Airway Pressure: Swedish Traffic Accident Registry Data

    Science.gov (United States)

    Karimi, Mahssa; Hedner, Jan; Häbel, Henrike; Nerman, Olle; Grote, Ludger

    2015-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is associated with an increased risk of motor vehicle accidents (MVAs). The rate of MVAs in patients suspected of having OSA was determined and the effect of continuous positive airway pressure (CPAP) was investigated. Design: MVA rate in patients referred for OSA was compared to the rate in the general population using data from the Swedish Traffic Accident Registry (STRADA), stratified for age and calendar year. The risk factors for MVAs, using demographic and polygraphy data, and MVA rate before and after CPAP were evaluated in the patient group. Setting: Clinical sleep laboratory and population based control (n = 635,786). Patients: There were 1,478 patients, male sex 70.4%, mean age 53.6 (12.8) y. Interventions: CPAP. Measurements and Results: The number of accidents (n = 74) among patients was compared with the expected number (n = 30) from a control population (STRADA). An increased MVA risk ratio of 2.45 was found among patients compared with controls (P accident risk was most prominent in the elderly patients (65–80 y, seven versus two MVAs). In patients, driving distance (km/y), EDS (Epworth Sleepiness score ≥ 16), short habitual sleep time (≤ 5 h/night), and use of hypnotics were associated with increased MVA risk (odds ratios 1.2, 2.1, 2.7 and 2.1, all P ≤ 0.03). CPAP use ≥ 4 h/night was associated with a reduction of MVA incidence (7.6 to 2.5 accidents/1,000 drivers/y). Conclusions: The motor vehicle accident risk in this large cohort of unselected patients with obstructive sleep apnea suggests a need for accurate tools to identify individuals at risk. Sleep apnea severity (e.g., apnea-hypopnea index) failed to identify patients at risk. Citation: Karimi M, Hedner J, Häbel H, Nerman O, Grote L. Sleep apnea related risk of motor vehicle accidents is reduced by continuous positive airway pressure: Swedish traffic accident registry data. SLEEP 2015;38(3):341–349. PMID:25325460

  13. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Directory of Open Access Journals (Sweden)

    J. E. Engström

    2011-08-01

    Full Text Available The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed.

    One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter.

    Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season or pristine air from the Southern Indian Ocean (summer monsoon. The two ways of correction (optical and chemical lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm−1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm−1. A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter

  14. The generation and physical, chemical, biological analysis of the reduced noncolloidal 99TcmO4- products

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Ciyi; Xie Wenhui; Hu Silong; Jin Xiumu

    2007-01-01

    Objective: It was found previously that the reduced noncolloidal 99 Tc m O 4 - products ( 99 Tc m - Rs) were avid for tumors. The physical, chemical and biological characteristics of 99 Tc m -Rs were thus investigated. Methods: Water was removed from generator eluate of sodium pertechnetate (Na 99 Tc m O 4 ) by a pump after adding appropriate amount of acetonitrile. Analysis of 99 Tc m -Rs and its analogue reduced noncolloidal rhenium (Re-Rs) were performed with thin layer chromatography (TLC), electrophoresis, dual phase distribution, membrane passing, and spectroscopy. The uptake and biodistribution of 99 Tc m -Rs in H460 cell culture, tumor bearing SD rats and myocardial ischemic models were studied in comparison with 99 Tc m O 4 - . Images were acquired with a γ camera. Results: The content of 99 Tc m -Rs was > 90% when the reduction reaction was carried out in acetonitrile. The physical, chemical and biological characteristics were different between 99 Tc m -Rs and 99 Tc m O 4 - . The organic elements (such as C, H and N) could not be identified in the main products of Re-Rs (the analogue of 99 Tc m -Rs). Significant accumulation of 99 Tc m -Rs in tumors and ischemic myocardium were noted. In H460 tumor bearing mice, the activity ratios of tumor/ blood and tumor/muscle were 3.05 ± 0.34 and 10.38 ± 1.21 at 2 h after intravenous injection of 99 Tc m -Rs. Acidification, hypoxia or adding calcium could increase H460 cells uptake of 99 Tc m -Rs, but not 99 Tc m O 4 - . The labeling efficiency of sodium dimercaptopropane sulfonate with 99 Tc m -Rs increased in the hypoxic and calcium loaded condition. Improvement of nonspecific binding of 99 Tc m -Rs to biomolecules under hypoxia and calcium overload condition might be the mechanism underlined. Using acetonitrile as the mobile phase, TLC showed two peaks of activities on silica gel plate with Rf value of 1.0 and 0.78 respectively, the later was similar in biodistribution to 99 Tc m O 4 - in normal tissues and

  15. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension.

    Science.gov (United States)

    Son, Won-Mok; Sung, Ki-Dong; Cho, Jae-Min; Park, Song-Young

    2017-03-01

    Postmenopausal women exhibit elevated brachial-ankle pulse wave velocity (baPWV), an indicator of arterial stiffness, which is associated with an increased risk of cardiovascular events and mortality. The purpose of this study is to examine the impact of combined resistance and aerobic exercise training on baPWV, blood pressure (BP), and cardiovascular fitness in postmenopausal women with stage 1 hypertension. Twenty postmenopausal women (age, 75 ± 2 y; systolic BP, 152 ± 2 mm Hg, diastolic BP, 95 ± 3 mm Hg) were randomly assigned to a "no-exercise" (CON, n = 10) or combined exercise (EX, n = 10) group. The EX group performed resistance and aerobic exercise for 12 weeks, 3 times per week. Exercise intensity was increased gradually, from 40% to 70% of heart rate reserve, every 4 weeks. BaPWV, BP, blood nitrite/nitrate, endothelin-1 (ET-1), cardiovascular fitness, and body composition were measured before and after the 12-week intervention. BP, baPWV (-1.2 ± 0.4 m/s), ET-1 (-2.7 ± 0.3 μmol/mL), nitrite/nitrate (+4.5 ± 0.5 μM), functional capacity, and body composition were significantly improved (P exercise training improves arterial stiffness, BP, ET-1, blood nitrite/nitrate, functional capacity, and body composition in postmenopausal women with stage 1 hypertension. Thus, this study provides evidence that combined exercise training is a useful therapeutic method to improve cardiovascular health which can reduce cardiovascular disease risk in postmenopausal women with hypertension.

  16. Dermal application of nitric oxide releasing acidified nitrite-containing liniments significantly reduces blood pressure in humans.

    Science.gov (United States)

    Opländer, Christian; Volkmar, Christine M; Paunel-Görgülü, Adnana; Fritsch, Thomas; van Faassen, Ernst E; Mürtz, Manfred; Grieb, Gerrit; Bozkurt, Ahmet; Hemmrich, Karsten; Windolf, Joachim; Suschek, Christoph V

    2012-02-15

    Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  18. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    NARCIS (Netherlands)

    Wang, Jiong-Wei; Fontes, Magda S. C.; Wang, Xiaoyuan; Chong, Suet Yen; Kessler, Elise L.; Zhang, Ya-Nan; de Haan, Judith J.; Arslan, Fatih; de Jager, Saskia C. A.; Timmers, Leo; van Veen, Toon A. B.; Lam, Carolyn S. P.; de Kleijn, Dominique P. V.

    2017-01-01

    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure

  19. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  20. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH randomized controlled trial.

    Science.gov (United States)

    Witham, Miles D; Price, Rosemary J G; Struthers, Allan D; Donnan, Peter T; Messow, Claudia-Martina; Ford, Ian; McMurdo, Marion E T

    2013-10-14

    Observational data link low 25-hydroxyvitamin D levels to both prevalent blood pressure and incident hypertension. No clinical trial has yet examined the effect of vitamin D supplementation in isolated systolic hypertension, the most common pattern of hypertension in older people. To test whether high-dose, intermittent cholecalciferol supplementation lowers blood pressure in older patients with isolated systolic hypertension. Parallel group, double-blind, placebo-controlled randomized trial. Primary care clinics and hospital clinics. Patients 70 years and older with isolated systolic hypertension (supine systolic blood pressure >140 mm Hg and supine diastolic blood pressure blood pressure, 24-hour blood pressure, arterial stiffness, endothelial function, cholesterol level, insulin resistance, and b-type natriuretic peptide level during 12 months. A total of 159 participants were randomized (mean age, 77 years). Mean baseline office systolic blood pressure was 163/78 mm Hg. Mean baseline 25-hydroxyvitamin D level was 18 ng/mL. 25-Hydroxyvitamin D levels increased in the treatment group compared with the placebo group (+8 ng/mL at 1 year, P blood pressure (−1 [−6 to 4]/−2 [−4 to 1] mm Hg at 3 months and 1 [−2 to 4]/0 [−2 to 2] mm Hg overall treatment effect). No significant treatment effect was evident for any of the secondary outcomes (24-hour blood pressure, arterial stiffness, endothelial function, cholesterol level, glucose level, and walking distance). There was no excess of adverse events in the treatment group, and the total number of falls was nonsignificantly lower in the group receiving vitamin D (36 vs 46, P = .24). Vitamin D supplementation did not improve blood pressure or markers of vascular health in older patients with isolated systolic hypertension. isrctn.org Identifier: ISRCTN92186858.

  1. Characterization of InP/GaAs/Si structures grown by atmospheric pressure metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Pearton, S.J.; Short, K.T.; Macrander, A.T.; Abernathy, C.R.; Mazzi, V.P.; Haegel, N.M.; Al-Jassim, M.M.; Vernon, S.M.; Haven, V.E.

    1989-01-01

    The thickness dependence of material quality of InP-GaAs-Si structures grown by atmospheric pressure metalorganic chemical vapor deposition was investigated. The InP thickness was varied from 1--4 μm, and that of the GaAs from 0.1--4 μm. For a given thickness of InP, its ion channeling yield and x-ray peak width were essentially independent of the GaAs layer thickness. The InP x-ray peak widths were typically 400--440 arcsec for 4-μm-thick layers grown on GaAs. The GaAs x-ray widths in turn varied from 320--1000 arcsec for layer thicknesses from 0.1--4 μm. Cross-sectional transmission electron microscopy showed high defect densities at both the InP-GaAs and GaAs-Si interfaces. In 4-μm-thick InP layers the average threading dislocation density was in the range (3--8) x 10 8 cm -2 with a stacking fault density within the range (0.4--2) x 10 8 cm 2 . The He + ion channeling yield near the InP surface was similar to that of bulk InP (chi/sub min/∼4%), but rose rapidly toward the InP-GaAs heterointerface where it was typically around 50% for 1-μm-thick InP layers. All samples showed room-temperature luminescence, while at 4.4 K, exciton-related transitions, whose intensity was a function of the InP thickness, were observed

  2. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry.

    Science.gov (United States)

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-11-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. © 2017 The Authors. Rapid Communications in Mass

  3. Efficacy of a brief multifactorial adherence-based intervention on reducing the blood pressure of patients with poor adherence: protocol for a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Llobera Joan

    2010-09-01

    Full Text Available Abstract Background Lowering of blood pressure by antihypertensive drugs reduces the risks of cardiovascular events, stroke, and total mortality. However, poor adherence to antihypertensive medications reduces their effectiveness and increases the risk of adverse events. In terms of relative risk reduction, an improvement in medication adherence could be as effective as the development of a new drug. Methods/Design The proposed randomized controlled trial will include patients with a low adherence to medication and uncontrolled blood pressure. The intervention group will receive a multifactorial intervention during the first, third, and ninth months, to improve adherence. This intervention will include motivational interviews, pill reminders, family support, blood pressure self-recording, and simplification of the dosing regimen. Measurement The primary outcome is systolic blood pressure. The secondary outcomes are diastolic blood pressure, proportion of patients with adequately controlled blood pressure, and total cost. Discussion The trial will evaluate the impact of a multifactorial adherence intervention in routine clinical practice. Ethical approval was given by the Ethical Committee on Human Research of Balearic islands, Spain (approval number IB 969/08 PI. Trial registration Current controlled trials ISRCTN21229328

  4. Tea saponin reduces the damage of Ectropis obliqua to tea crops, and exerts reduced effects on the spiders Ebrechtella tricuspidata and Evarcha albaria compared to chemical insecticides

    Directory of Open Access Journals (Sweden)

    Chi Zeng

    2018-03-01

    Full Text Available Background Tea is one of the most economically important crops in China. However, the tea geometrid (Ectropis obliqua, a serious leaf-feeding pest, causes significant damage to tea crops and reduces tea yield and quality. Spiders are the most dominant predatory enemies in the tea plantation ecosystem, which makes them potentially useful biological control agents of E. obliqua. These highlight the need for alternative pest control measures. Our previous studies have shown that tea saponin (TS exerts insecticidal activity against lepidopteran pests. Here, we investigate whether TS represents a potentially new alternative insecticide with no harm to spiders. Methods We investigated laboratory bioactivities and the field control properties of TS solution against E. obliqua. (i A leaf-dip bioassay was used to evaluate the toxicity of TS to 3rd-instar E. obliqua larvae and effects of TS on the activities of enzymes glutathione-S-transferase (GST, acetylcholinesterase (AChE, carboxylesterase (CES and peroxidase (POD of 3rd-instar E. obliqua larvae in the laboratory. (ii Topical application was used to measure the toxicity of 30% TS (w/v and two chemical insecticides (10% bifenthrin EC and 50% diafenthiuron SC to two species of spider, Ebrechtella tricuspidata and Evarcha albaria. (iii Field trials were used to investigate the controlling efficacy of 30% TS against E. obliqua larvae and to classify the effect of TS to spiders in the tea plantation. Results The toxicity of TS to 3rd-instar E. obliqua larvae occurred in a dose-dependent manner and the LC50 was 164.32 mg/mL. Activities of the detoxifying-related enzymes, GST and POD, increased in 3rd-instar E. obliqua larvae, whereas AChE and CES were inhibited with time by treatment with TS. Mortalities of E. tricuspidata and E. albaria after 48 h with 30% TS treatment (16.67% and 20%, respectively were significantly lower than those with 10% bifenthrin EC (80% and 73.33%, respectively and 50

  5. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers.

    Science.gov (United States)

    Lenton, Gavin K; Doyle, Tim L A; Saxby, David J; Billing, Dan; Higgs, Jeremy; Lloyd, David G

    2018-04-01

    Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.

  6. New fundamental equations of thermodynamics for systems in chemical equilibrium at a specified partial pressure of a reactant and the standard transformed formation properties of reactants

    International Nuclear Information System (INIS)

    Alberty, R.A.; Oppenheim, I.

    1993-01-01

    When temperature, pressure, and the partial pressure of a reactant are fixed, the criterion of chemical equilibrium can be expressed in terms of the transformed Gibbs energy G' that is obtained by using a Legendre transform involving the chemical potential of the reactant that is fixed. For reactions of ideal gases, the most natural variables to use in the fundamental equation are T, P', and P B , where P' is the partial pressure of the reactants other than the one that is fixed and P B is the partial pressure of the reactant that is fixed. The fundamental equation for G' yields the expression for the transformed entropy S', and a transformed enthalpy can be defined by the additional Legendre transform H'=G'+TS'. This leads to an additional form of the fundamental equation. The calculation of transformed thermodynamic properties and equilibrium compositions is discussed for a simple system and for a general multireaction system. The change, in a reaction, of the binding of the reactant that is at a specified pressure can be calculated using one of the six Maxwell equations of the fundamental equation in G'

  7. Electroconvulsive therapy substantially reduces symptom severity and social disability associated with multiple chemical sensitivity: a case report

    DEFF Research Database (Denmark)

    Elberling, Jesper; Gulmann, Nils; Rasmussen, Alice

    2010-01-01

    Multiple chemical sensitivity (MCS) is a chronic nonallergic, multisymptom disorder triggered by common environmental chemicals in concentrations considered nontoxic for most individuals. The condition may lead to loss of occupation and social isolation, and no effective treatment has been reported...

  8. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  9. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  10. High pressure stability analysis and chemical bonding of Ti{sub 1-x}Zr{sub x}N alloy: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Mamta; Gupta, Dinesh C., E-mail: sosfizix@gmail.com, E-mail: mamta-physics@yahoo.co.in [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior – 474 011 (India)

    2016-05-23

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti{sub 1-x}Zr{sub x}N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  11. Short communication: Is consumption of a cheese rich in angiotensin-converting enzyme-inhibiting peptides, such as the Norwegian cheese Gamalost, associated with reduced blood pressure?

    Science.gov (United States)

    Nilsen, R; Pripp, A H; Høstmark, A T; Haug, A; Skeie, S

    2014-05-01

    Epidemiological and clinical studies have shown that angiotensin-converting enzyme (ACE)-inhibiting peptides derived from dairy products may decrease blood pressure. These peptides have been identified in many cheeses, and Gamalost, a traditional Norwegian cheese, is particularly rich in these peptides. The aim of this cross-sectional study was to examine whether frequency of Gamalost intake was associated with blood pressure in a Norwegian population sample. Blood pressure and other clinical measurements, including the factors of metabolic syndrome, were obtained from 168 participants (56% female, mean age = 51 yr) who completed a questionnaire about dietary habits and other health-related factors. Mean Gamalost intake was 2 servings per week. The prevalence of hypertension was 23.8% in the population, with mean systolic and diastolic blood pressures of 128 and 78 mmHg, respectively. Intake of Gamalost was inversely associated with systolic blood pressure. Each increase in frequency unit of Gamalost intake corresponded to a reduction in systolic blood pressure of 0.72 mmHg, after controlling for sex, age, education, waist circumference, physical activity, smoking status, and dairy food intake. Results from this study indicate that consumption of Gamalost (or other foods rich in ACE-inhibiting peptides) may reduce blood pressure. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    Science.gov (United States)

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  13. Development of a higher capacity, lower pressure drop steam/water separator with reduced primary-to-secondary spacing

    International Nuclear Information System (INIS)

    Pruster, W.P.; Kidwell, J.H.; Eaton, A.M.; Wall, J.R.

    1985-01-01

    The goal of this development effort was to double the steam flow capacity of an existing module steam/water separator design without significantly increasing the pressure drop while simultaneously minimizing the vertical distance (spacing) between the primary and secondary separation stages. The development work included extensive air/water and steam/water testing. The steam/water tests were performed at a common pressure of 300 psia (2.1 MPa) with comparable water and steam flows

  14. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    Science.gov (United States)

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  15. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children.

    Science.gov (United States)

    Farpour-Lambert, Nathalie J; Aggoun, Yacine; Marchand, Laetitia M; Martin, Xavier E; Herrmann, François R; Beghetti, Maurice

    2009-12-15

    The aim of this study was to determine the effects of physical activity on systemic blood pressure (BP) and early markers of atherosclerosis in pre-pubertal obese children. Hypertension and endothelial dysfunction are premature complications of obesity. We performed a 3-month randomized controlled trial with a modified crossover design: 44 pre-pubertal obese children (age 8.9 + or - 1.5 years) were randomly assigned (1:1) to an exercise (n = 22) or a control group (n = 22). We recruited 22 lean children (age 8.5 + or - 1.5 years) for baseline comparison. The exercise group trained 60 min 3 times/week during 3 months, whereas control subjects remained relatively inactive. Then, both groups trained twice/week during 3 months. We assessed changes at 3 and 6 months in office and 24-h BP, arterial intima-media thickness (IMT) and stiffness, endothelial function (flow-mediated dilation), body mass index (BMI), body fat, cardiorespiratory fitness (maximal oxygen consumption [VO(2)max]), physical activity, and biological markers. Obese children had higher BP, arterial stiffness, body weight, BMI, abdominal fat, insulin resistance indexes, and C-reactive protein levels, and lower flow-mediated dilation, VO(2)max, physical activity, and high-density lipoprotein cholesterol levels than lean subjects. At 3 months, we observed significant changes in 24-h systolic BP (exercise -6.9 + or - 13.5 mm Hg vs. control 3.8 + or - 7.9 mm Hg, -0.8 + or - 1.5 standard deviation score [SDS] vs. 0.4 + or - 0.8 SDS), diastolic BP (-0.5 + or - 1.0 SDS vs. 0 + or - 1.4 SDS), hypertension rate (-12% vs. -1%), office BP, BMI z-score, abdominal fat, and VO(2)max. At 6 months, change differences in arterial stiffness and IMT were significant. A regular physical activity program reduces BP, arterial stiffness, and abdominal fat; increases cardiorespiratory fitness; and delays arterial wall remodeling in pre-pubertal obese children. (Effects of Aerobic Exercise Training on Arterial Function and

  16. Silver Nanowire Embedded Colorless Polyimide Heater for Wearable Chemical Sensors: Improved Reversible Reaction Kinetics of Optically Reduced Graphene Oxide.

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Sang-Joon; Jang, Ji-Soo; Lee, Ji-Hyun; Kim, Il-Doo

    2016-09-14

    Optically reduced graphene oxide (ORGO) sheets are successfully integrated on silver nanowire (Ag NW)-embedded transparent and flexible substrate. As a heating element, Ag NWs are embedded in a colorless polyimide (CPI) film by covering Ag NW networks using polyamic acid and subsequent imidization. Graphene oxide dispersed aqueous solution is drop-coated on the Ag NW-embedded CPI (Ag NW-CPI) film and directly irradiated by intense pulsed light to obtain ORGO sheets. The heat generation property of Ag NW-CPI film is investigated by applying DC voltage, which demonstrates unprecedentedly reliable and stable characteristics even in dynamic bending condition. To demonstrate the potential application in wearable chemical sensors, NO 2 sensing characteristic of ORGO is investigated with respect to the different heating temperature (22.7-71.7 °C) of Ag NW-CPI film. The result reveals that the ORGO sheets exhibit high sensitivity of 2.69% with reversible response/recovery sensing properties and minimal deviation of baseline resistance of around 1% toward NO 2 molecules when the temperature of Ag NW-CPI film is 71.7 °C. This work first demonstrates the improved reversible NO 2 sensing properties of ORGO sheets on flexible and transparent Ag NW-CPI film assisted by Ag NW heating networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. STUDIES ON XYLANASE AND LACCASE ENZYMATIC PREBLEACHING TO REDUCE CHLORINE-BASED CHEMICALS DURING CEH AND ECF BLEACHING

    Directory of Open Access Journals (Sweden)

    Vasanta V. Thakur,

    2012-02-01

    Full Text Available The biobleaching efficiency of xylanase and laccase enzymes was studied on kraft pulps from wood and nonwood based raw materials employed in the Indian paper industry. Treatment of these pulps with xylanase enzyme could result in improved properties, showing 2.0% ISO gain in pulp brightness and/or reducing the demand of chlorine-based bleach chemicals by up to 15% with simultaneous reduction of 20 to 25% in AOX generation in bleach effluents. Further, mill-scale trial results revealed that enzymatic prebleaching can be successfully employed with xylanases to reach the same bleach boosting efficacy. Laccase bleaching was also studied on hardwood pulp at a pH around 8.0, where most of the pulp mills in India are operating, in contrast to earlier studies on laccase enzyme bleaching, which were conducted at acidic pHs, i.e. 4.0 to 5.0. In case of laccase bleaching, interesting results were found wherein a bleach-boosting effect was observed even at pH 8.0. Further studies carried out with HOBT as mediator in comparison to the commonly used and expensive ABTS laccase mediator system (LMS resulted in improvement of the bleaching efficiency with reduction in demand of chlorine dioxide by more than 35%. Potential for further reduction was indicated by the brightness gain, when compared with a control using the DE(pD bleach sequence.

  18. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  19. Structural, Chemical, and Mechanical Properties of Pressure Garments as a Function of Simulated Use and Repeated Laundering.

    Science.gov (United States)

    Malara, Megan M; Kim, Jayne Y; Clark, J Alexander; Blackstone, Britani N; Ruegsegger, Mark A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M

    2018-06-13

    Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.

  20. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    Science.gov (United States)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  1. High pressure ices are not the end of the story for large icy moons habitability: experimental studies of salts effects on high pressure ices and the implications for icy worlds large hydrosphere structure and chemical evolution

    Science.gov (United States)

    Journaux, Baptiste; Abramson, Evan; Brown, J. Michael; Bollengier, Olivier

    2017-10-01

    The presence of several phases of deep high-pressure ices in large icy moons hydrosphere has often been pointed as a major limitation for the habitability of an uppermost ocean. As they are gravitationally stable bellow liquid H2O, they are thought to act as a chemical barrier between the rocky bed and the ocean. Solutes, including salt species such as NaCl and MgSO4, have been suggested inside icy world oceans from remote sensing, magnetic field measurements and chondritic material alteration models. Unfortunately, the pressures and temperatures inside these hydrospheres are very different from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors.Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions.In particular brines have been measured to be sometimes more dense than the high pressure ices at melting conditions, possibly creating several oceanic layer "sandwiched" in between two ices shells or in contact with the rocky bed.Other effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds.We will present the latest results obtained in-situ using diamond anvil cell high pressure allowing to probe the density, chemistry and thermodynamic properties of high pressure ice and aqueous solutions in equilibrium with Na-Mg-SO4-Cl ionic species.We will also discuss the new

  2. Tuning the electronic structure of bulk FeSe with chemical pressure using quantum oscillations and angle resolved photoemission spectroscopy (ARPES)

    Science.gov (United States)

    Coldea, Amalia

    FeSe is a unique and intriguing superconductor which can be tuned into a high temperature superconducting state using applied pressure, chemical intercalation and surface doping. In the absence of magnetism, the structural transition in FeSe is believed to be electronically driven, with the orbital degrees of freedom playing an important part. This scenario supports the stabilization of a nematic state in FeSe, which manifests as a Fermi surface deformation in the presence of strong interactions, as detected by ARPES. Another manifestation of the nematicity is the enhanced nematic susceptibility determined from elastoresistance measurements under applied strain. Isovalent Sulphur substitution onto the Selenium site constitutes a chemical pressure, which subtly modifies the electronic structure of FeSe, suppressing the structural transition without inducing high temperature superconductivity. I will present the evolution of the electronic structure with chemical pressure in FeSe, as determined from quantum oscillations and ARPES studies and I will discuss the suppression of the nematic electronic state and the role of electronic correlations. Experiments were performed at high magnetic field facilities in Tallahassee, Nijmegen and Toulouse and Diamond Light Source, UK. This work is mainly supported by EPSRC, UK (EP/I004475/1, EP/I017836/1) and I acknowledge my collaborators from Refs. .

  3. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    Science.gov (United States)

    Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien

    2014-10-01

    A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Extraction of Kinetic Parameters for the Chemical Vapor Deposition of Polycrystalline Silicon at Medium and Low Pressures

    NARCIS (Netherlands)

    Holleman, J.; Verweij, J.F.; Verweij, Jan F.

    1993-01-01

    The deposition of silicon (Si) from silane (SiH4) was studied in the silane pressure range from 0.5 to 100 Pa (0.005 to1 mbar) and total pressure range from 10 to 1000 Pa using N2 or He as carrier gases. The two reaction paths, namely,heterogeneous and homogeneous decomposition could be separated by

  5. Self-regulation and social pressure reduce prejudiced responding and increase the motivation to be non-prejudiced.

    Science.gov (United States)

    Buzinski, Steven G; Kitchens, Michael B

    2017-01-01

    Self-regulation constrains the expression of prejudice, but when self-regulation falters, the immediate environment can act as an external source of prejudice regulation. This hypothesis derives from work demonstrating that external controls and internal self-regulation can prompt goal pursuit in the absence of self-imposed controls. Across four studies, we found support for this complementary model of prejudice regulation. In Study 1, self-regulatory fatigue resulted in less motivation to be non-prejudiced, compared to a non-fatigued control. In Study 2, strong (vs. weak) perceived social pressure was related to greater motivation to be non-prejudiced. In Study 3, dispositional self-regulation predicted non-prejudice motivation when perceived social pressure was weak or moderate, but not when it was strong. Finally, in Study 4 self-regulatory fatigue increased prejudice when social pressure was weak but not when it was strong.

  6. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China); Institute of High Performance Computing, A-star (Singapore); Ji, Min; Jiao, Qi; Huang, Qian; Huang, Zuohua [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-04-15

    Flame propagation of premixed nitrogen diluted natural gas/hydrogen/air mixtures was studied in a constant volume combustion bomb under various initial pressures. Laminar burning velocities and Markstein lengths were obtained for the diluted stoichiometric fuel/air mixtures with different hydrogen fractions and diluent ratios under various initial pressures. The results showed that both unstretched flame speed and unstretched burning velocity are reduced with the increase in initial pressure (except when the hydrogen fraction is 80%) as well as diluent ratio. The velocity reduction rate due to diluent addition is determined mainly by hydrogen fraction and diluent ratio, and the effect of initial pressure is negligible. Flame stability was studied by analyzing Markstein length. It was found that the increase of initial pressure and hydrogen fraction decreases flame stability and the flame tends to be more stable with the addition of diluent gas. Generally speaking, Markstein length of a fuel with low hydrogen fraction is more sensitive to the change of initial pressure than that of a one with high hydrogen fraction. (author)

  7. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  8. From Serendipity to Rational Design: Tuning the Blue Trigonal Bipyramidal Mn3+ Chromophore to Violet and Purple through Application of Chemical Pressure.

    Science.gov (United States)

    Li, Jun; Lorger, Simon; Stalick, Judith K; Sleight, Arthur W; Subramanian, M A

    2016-10-03

    We recently reported that an allowed d-d transition of trigonal bipyramidal (TBP) Mn 3+ is responsible for the bright blue color in the YIn 1-x Mn x O 3 solid solution. The crystal field splitting between a'(d z 2 ) and e'(d x 2 -y 2 , d xy ) energy levels is very sensitive to the apical Mn-O distance. We therefore applied chemical pressure to compress the apical Mn-O distance in YIn 1-x Mn x O 3 , move the allowed d-d transition to higher energy, and thereby tune the color from blue to violet/purple. This was accomplished by substituting smaller cations such as Ti 4+ /Zn 2+ and Al 3+ onto the TBP In/Mn site, which yielded novel violet/purple phases. The general formula is YIn 1-x-2y-z Mn x Ti y Zn y Al z O 3 (x = 0.005-0.2, y = 0.1-0.4, and z ≤ 0.1), where the color darkens with the increasing amount of Mn. Higher y or small additions of Al provide a more reddish hue to the resulting purple colors. Substituting other rare earth cations for Y has little impact on color. Crystal structure analysis by neutron powder diffraction confirms a shorter apical Mn-O distance compared with that in the blue YIn 1-x Mn x O 3 . Magnetic susceptibility measurements verify the 3+ oxidation state for Mn. Diffuse reflection spectra were obtained over the wavelength region 200-2500 nm. All samples show excellent near-infrared reflectance comparable to that of commercial TiO 2 , making them ideal for cool pigment applications such as energy efficient roofs of buildings and cars where reducing solar heat to save energy is desired. In a comparison with commercial purple pigments, such as Co 3 (PO 4 ) 2 , our pigments are much more thermally stable and chemically inert, and are neither toxic nor carcinogenic.

  9. Extraction Tools for Identification of Chemical Contaminants in Estuarine and Coastal Waters to Determine Toxic Pressure on Primary Producers

    NARCIS (Netherlands)

    Booij, P; Sjollema, S.B.; Leonards, P.E.G.; de Voogt, P.; Stroomberg, G.J.; Vethaak, A.D.; Lamoree, M.H.

    2013-01-01

    The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study.

  10. CHF experiments of tight pitch lattice rod bundles under PWR pressure condition for development of reduced moderation water reactor

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Nakatsuka, Toru; Yoritsune, Tsutomu

    2002-10-01

    In order to improve plutonium utilization, design studies of reduced moderation water reactors which have hard neutron energy spectrum have been carried out at Division of Energy System Research of Japan Atomic Energy Research Institute (JAERI). At present, triangle, tight pitch lattice cores with about 1 mm gap width between fuel rods have been focused in the neutronic core design. Since a degradation of the heat removal from the fuel rods is worried, an evaluation of heat removal capability i.e. critical heat flux becomes one of important evaluation items in the feasibility study. However, any of published data base, which can be applicable to the evaluation on such narrow gap width cores, does not exist. Therefore, in the present study, in order to accumulate applicable data and to confirm applicability of an evaluation methodology of critical heat flux, basic experiments on the critical heat flux were performed using the test sections consisted of 7 heater rods bundles with the gap widths of 1.5, 1.0 and 0.6 mm under the PWR pressure conditions. The present report describes the experimental apparatus, experimental conditions and accumulated data. Analysis results of the data and the applicability of the evaluation methodology used for the design work are also discussed in this report. As the results of the experiment, it was found that the critical heat flux increased as the mass flux and the inlet subcooling increased. In the region of the mass flux less than about 2,000 kg/m 2 /s, the critical heat flux decreased as the gap width decreased. In the larger mass flux region, obvious trend of effects of the gap width on critical heat flux were not observed due to data scatterings. The flow-area-averaged thermal-equilibrium quality at the CHF position was in the higher ranges from 0.3 to 0.8 in the cases of gap widths of 1.0 and 0.6 mm, and 0.1 to 0.3 in the 1.5 mm case. Based on the experimental results such that the CHFs occurred in the higher quality range and

  11. Tyrosine improves cognitive performance and reduces blood pressure in cadets after one week of combat training course

    NARCIS (Netherlands)

    Deijen, J.B.; Wientjes, C.J.E.; Vullinghs, H.F.M.; Cloin, P.A.; Langeveld, J.J.

    1999-01-01

    The effect of the amino acid tyrosine on cognitive task performance were studied on a group of 21 cadets during a demanding military combat training course. In addition, the effects on mood, blood pressure and the norepinephrine metabolite MHPG were determined. Ten subjects received five daily doses

  12. WATER EXTRACT OF PURPLE SWEET POTATO TUBERS REDUCES BLOOD PRESSURE 0F HYPERTENSIVE RATS INDUCED BY NaCl

    Directory of Open Access Journals (Sweden)

    I MADE JAWI

    2013-04-01

    Full Text Available Compliance of hypertensive patients to take medication is one of many determinant factors to achieve successful treatment. Side effects and the expensive price of drugs are the causes of the incompliance of patients taking the medication. Utilization of herbal medicine is a new hope to resolve the issue. Purple sweet potato tuber is a plant part that expected has beneficial effect in lowering blood pressure because it contains anthocyanins which are antioxidants and can preserve endothelial function. To prove these hypothesis, a study was conducted with randomized control group pre and post-test design. The  study was done on 20 adult male Wistar rats that were divided into two groups of 10 rats.  Both groups of rats were made hypertensive by administering high doses of NaCl. Control group of rats given only NaCl alone for 14 days. Treatment group were given NaCl and water extract of purple sweet potato tuber with a dose of 4 cc per day for 14 days. Before treatment and during treatment, blood pressure were taken everyday with special sphygmomanometer. The results