WorldWideScience

Sample records for reduce escherichia coli

  1. Escherichia coli growth under modeled reduced gravity

    Science.gov (United States)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  2. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  3. Escherichia Coli

    Science.gov (United States)

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  4. Mechanisms of Reduced Susceptibility to Ciprofloxacin in Escherichia coli Isolates from Canadian Hospitals

    Directory of Open Access Journals (Sweden)

    Patricia J Baudry-Simner

    2012-01-01

    Full Text Available OBJECTIVE: To determine whether plasmid-mediated quinolone resistance (PMQR determinants play a role in the increasing resistance to fluoroquinolones among Escherichia coli isolates in Canadian hospitals, and to determine the mechanisms of reduced susceptibility to ciprofloxacin in a recent collection of 190 clinical E coli isolates.

  5. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates

    Science.gov (United States)

    Ohkoshi, Yasuo; Sato, Toyotaka; Suzuki, Yuuki; Yamamoto, Soh; Shiraishi, Tsukasa; Ogasawara, Noriko

    2017-01-01

    In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear. PMID:28197413

  6. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Yasuo Ohkoshi

    2017-01-01

    Full Text Available In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.

  7. Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates.

    Science.gov (United States)

    Ohkoshi, Yasuo; Sato, Toyotaka; Suzuki, Yuuki; Yamamoto, Soh; Shiraishi, Tsukasa; Ogasawara, Noriko; Yokota, Shin-Ichi

    2017-01-01

    In recent years, multidrug resistance of Escherichia coli has become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screened E. coli clinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fos genes) and mutations in murA that underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter and sn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P of uhpT that encodes G6P transporter expression. Nucleotide sequences of the uhpT, uhpA, glpT, ptsI, and cyaA shared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction of uhpT function is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations in murA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.

  8. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ali Shakerimoghaddam

    2017-04-01

    Full Text Available Objective(s: This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC strains. Materials and Methods: Minimum inhibitory concentration (MIC of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determined by microtiter plate assay. The expression level of the flu gene was assessed by Real-Time PCR assay. Results: MIC and sub-MIC ZnO-np concentrations reduced biofilm formation by 50% and 33.4%, respectively. Sub-MIC ZnO-np concentration significantly reduced the flu gene expression in the UPEC isolates (P

  9. Evaluation of household sanitizers for reducing levels of Escherichia coli on iceberg lettuce.

    Science.gov (United States)

    Vijayakumar, Chitra; Wolf-Hall, Charlene E

    2002-10-01

    Diluted solutions of various household sanitizers (apple cider vinegar, white vinegar, bleach, and a reconstituted lemon juice product) were tested for their effectiveness in reducing counts of inoculated Escherichia coli and naturally present aerobic, mesophilic bacteria on lettuce. Sanitization treatments were carried out at 4 degrees C and at room temperature (ca. 21 degrees C) with and without agitation and at different exposure times (0, 1, 5, and 10 min). Of the sanitizers tested, 35% white vinegar (1.9% acetic acid) was the most effective in reducing E. coli levels (with a 5-log10 reduction after 5 min with agitation and after 10 min without agitation) and in reducing aerobic plate counts (with a >2-log10 reduction after 10 min with agitation). Lettuce samples treated with diluted household sanitizers were analyzed for consumer acceptability by sensory evaluation using a 9-point hedonic scale. The sanitized samples did not differ in acceptability (P > 0.05), except for samples treated with white vinegar. Samples treated with the white vinegar for 10 min were noticeably sour and slightly wilted in appearance. Consumer acceptability was maintained with all sanitization treatments, including those involving 35% white vinegar.

  10. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production

    Directory of Open Access Journals (Sweden)

    Yoon Byoung

    2009-01-01

    Full Text Available Abstract Background Deletion of large blocks of nonessential genes that are not needed for metabolic pathways of interest can reduce the production of unwanted by-products, increase genome stability, and streamline metabolism without physiological compromise. Researchers have recently constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome. Results Here we describe the reengineering of the MDS42 genome to increase the production of the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant threonine operon (thrA*BC, deleted the genes that encode threonine dehydrogenase (tdh and threonine transporters (tdcC and sstT, and introduced a mutant threonine exporter (rhtA23 in MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered with the same threonine-specific modifications described above. And transcriptional analysis revealed the effect of the deletion of non-essential genes on the central metabolism and threonine pathways in MDS-205. Conclusion This result demonstrates that the elimination of genes unnecessary for cell growth can increase the productivity of an industrial strain, most likely by reducing the metabolic burden and improving the metabolic efficiency of cells.

  11. Comparison of the effectiveness of acidified sodium chlorite and sodium hypochlorite in reducing Escherichia coli.

    Science.gov (United States)

    Elano, Rachel Ramos; Kitagawa, Tomoko; Bari, Md Latiful; Kawasaki, Susumu; Kawamoto, Shinichi; Inatsu, Yasuhiro

    2010-12-01

    This study was designed to compare the effectiveness of acidified sodium chlorite (ASC) and sodium hypochlorite (NaClO) in reducing several Escherichia coli strains isolated from different retail meat and fresh produce. Forty nonpathogenic E. coli strains were isolated and used in this study. A type strain of E. coli (JCM 1649) and four O157:H7 serotypes of E. coli (CR-3, MN-28, MY-29, and DT-66) were used as reference. In vitro assay results revealed that the viable cell counts of each isolated E. coli strain and control strains exhibited a reduction of ∼ 4.3 ± 0.9 log and 7.8 ± 1.7 log CFU/mL after a 3-minute exposure to 100 mg/L NaClO and 20 mg/L ASC (pH 4.6), respectively, at 25°C, when compared with the viable bacterial counts obtained from phosphate-buffered saline. The one exception was the flocs-forming strain, which showed a reduction of only 1.0 log CFU/mL with both disinfectants. However, reductions of only 1.7 ± 0.3 log and 1.9 ± 0.4 log CFU/g were observed in lettuce after 5 minutes of washing with NaClO and ASC, respectively. On the other hand, reductions of 1.6 ± 0.2 log and 1.6 ± 0.4 log CFU/g were observed in spinach after 5 minutes of washing with NaClO and ASC, respectively. No reduction in the population was observed after washing the inoculated, fresh-cut vegetables with distilled water only. No significant difference in the reduction of E. coli was observed among all the tested strains with both sanitizers in the in vivo assay. These data suggest that the tested sanitizers exhibit a similar reduction of the surface-attached E. coli on leafy vegetables irrespective of the strain source.

  12. Taxonomy Icon Data: Escherichia coli [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Escherichia coli Escherichia coli Escherichia_coli_L.png Escherichia_coli_NL.png Escherich...ia_coli_S.png Escherichia_coli_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+co...li&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NL http://biosciencedbc.jp/taxono...my_icon/icon.cgi?i=Escherichia+coli&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Escherichia+coli&t=NS ...

  13. PATHOGENIC ESCHERICHIA COLI

    Science.gov (United States)

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  14. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  15. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    Directory of Open Access Journals (Sweden)

    Hayat Zerrouki

    Full Text Available Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm, pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes. The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.

  16. Escherichia coli Morphological Changes and Lipid A Removal Induced by Reduced Pressure Nitrogen Afterglow Exposure

    Science.gov (United States)

    Zerrouki, Hayat; Rizzati, Virginie; Bernis, Corinne; Nègre-Salvayre, Anne; Sarrette, Jean Philippe; Cousty, Sarah

    2015-01-01

    Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria. PMID:25837580

  17. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  18. Use of probiotics to reduce faecal shedding of Shiga toxin-producing Escherichia coli in sheep.

    Science.gov (United States)

    Rigobelo, E E C; Karapetkov, N; Maestá, S A; Avila, F A; McIntosh, D

    2015-03-01

    Shiga toxin-producing Escherichia coli (STEC) are zoonotic, foodborne pathogens of humans. Ruminants, including sheep, are the primary reservoirs of STEC and there is a need to develop intervention strategies to reduce the entry of STEC into the food chain. The initiation of the majority of bacterial, enteric infections involves colonisation of the gut mucosal surface by the pathogen. However, probiotic bacteria can serve to decrease the severity of infection via a number of mechanisms including competition for receptors and nutrients, and/or the synthesis of organic acids and bacteriocins that create an environment unfavourable for pathogen development. The aim of the current study was to determine whether the administration of a probiotic mixture to sheep experimentally infected with a non-O157 STEC strain, carrying stx1, stx2 and eae genes, was able to decrease faecal shedding of the pathogen. The probiotic mixture contained Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus lactis, Streptococcus thermophilus and Enterococcus faecium. The numbers of non-O157 STEC in faecal samples collected from sheep receiving daily doses of the probiotic mixture were significantly lower at the 3rd, 5th and 6th week post-inoculation when compared to the levels recorded in untreated animals. It was concluded that administration of the probiotic mixture reduced faecal shedding of non-O157 STEC in sheep, and holds potential as a pre-harvest intervention method to reduce transmission to humans.

  19. Chloramphenicol- and tetracycline-resistant uropathogenic Escherichia coli (UPEC) exhibit reduced virulence potential.

    Science.gov (United States)

    Starcic Erjavec, Marjanca; Rijavec, Matija; Krizan-Hergouth, Veronika; Fruth, Angelika; Zgur-Bertok, Darja

    2007-11-01

    It is well documented that uropathogenic Escherichia coli (UPEC) isolates resistant to nalidixic acid have reduced virulence potential. Our goal was to assess whether UPEC isolates resistant to chloramphenicol, tetracycline and streptomycin also exhibit reduced virulence potential. Among 110 human UPEC isolates, the prevalences of the virulence factors fimH, papC, papGII, papGIII, sfa/focDE, afa, hlyA, cnf1, usp, ibeA, fyuA, iroN, iucD, ireA, and K1 and K5 capsules as well as of pathotypes, phylogenetic groups, O antigens and a pathogenicity island (PAI) marker were compared between chloramphenicol-, tetracycline-, streptomycin- and, as a control, nalidixic acid-resistant and -susceptible strains. Our findings show that among human UPEC isolates, not only nalidixic acid-resistant but also chloramphenicol- and tetracycline-resistant isolates have reduced virulence potential compared with susceptible strains. To our knowledge, this is the first report of a statistically significant reduction in virulence traits among chloramphenicol- and tetracycline-resistant isolates.

  20. Pterin and folate salvage. Plants and Escherichia coli lack capacity to reduce oxidized pterins.

    Science.gov (United States)

    Noiriel, Alexandre; Naponelli, Valeria; Gregory, Jesse F; Hanson, Andrew D

    2007-03-01

    Dihydropterins are intermediates of folate synthesis and products of folate breakdown that are readily oxidized to their aromatic forms. In trypanosomatid parasites, reduction of such oxidized pterins is crucial for pterin and folate salvage. We therefore sought evidence for this reaction in plants. Three lines of evidence indicated its absence. First, when pterin-6-aldehyde or 6-hydroxymethylpterin was supplied to Arabidopsis (Arabidopsis thaliana), pea (Pisum sativum), or tomato (Lycopersicon esculentum) tissues, no reduction of the pterin ring was seen after 15 h, although reduction and oxidation of the side chain of pterin-6-aldehyde were readily detected. Second, no label was incorporated into folates when 6-[(3)H]hydroxymethylpterin was fed to cultured Arabidopsis plantlets for 7 d, whereas [(3)H]folate synthesis from p-[(3)H]aminobenzoate was extensive. Third, no NAD(P)H-dependent pterin ring reduction was found in tissue extracts. Genetic evidence showed a similar situation in Escherichia coli: a GTP cyclohydrolase I (folE) mutant, deficient in pterin synthesis, was rescued by dihydropterins but not by the corresponding oxidized forms. Expression of a trypanosomatid pterin reductase (PTR1) enabled rescue of the mutant by oxidized pterins, establishing that E. coli can take up oxidized pterins but cannot reduce them. Similarly, a GTP cyclohydrolase I (fol2) mutant of yeast (Saccharomyces cerevisiae) was rescued by dihydropterins but not by most oxidized pterins, 6-hydroxymethylpterin being an exception. These results show that the capacity to reduce oxidized pterins is not ubiquitous in folate-synthesizing organisms. If it is lacking, folate precursors or breakdown products that become oxidized will permanently exit the metabolically active pterin pool.

  1. ESCHERICHIA COLI REDOX MUTANTS AS MICROBIAL CELL FACTORIES FOR THE SYNTHESIS OF REDUCED BIOCHEMICALS

    Directory of Open Access Journals (Sweden)

    Jimena A. Ruiz

    2012-10-01

    Full Text Available Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate, under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level.

  2. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts

    OpenAIRE

    Kim, Jung-Hun; Wang, Chonglong; Jang, Hui-Jung; Cha, Myeong-Seok; Park, Ju-Eon; Jo, Seon-Yeong; Choi, Eui-Sung; Kim, Seon-Won

    2016-01-01

    Background Isoprene, a volatile C5 hydrocarbon, is an important platform chemical used in the manufacturing of synthetic rubber for tires and various other applications, such as elastomers and adhesives. Results In this study, Escherichia coli MG1655 harboring Populus trichocarpa isoprene synthase (PtispS) and the exogenous mevalonate (MVA) pathway produced 80 mg/L isoprene. Codon optimization and optimal expression of the ispS gene via adjustment of the RBS strength and inducer concentration...

  3. Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Buckholtz, Gavin A.; Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Anderton, William D.; Schimoler, Patrick J. [Orthopaedic Biomechanics Research Laboratory, Allegheny General Hospital, Pittsburgh, PA 15212 (United States); Roudebush, Shana L.; Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Miller, Mark C. [Orthopaedic Biomechanics Research Laboratory, Allegheny General Hospital, Pittsburgh, PA 15212 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2016-08-01

    A new composite bioceramic consisting of calcium aluminum oxide (CaAlO) and hydroxyapatite (HA) was functionalized with the synthetic antimicrobial peptide Inverso-CysHHC10. CaAlO is a bioceramic that can be mold cast easily and quickly at room temperature. Improved functionality was previously achieved through surface reactions. Here, composites containing 0–5% HA (by mass) were prepared and the elastic modulus and modulus of rupture were mechanically similar to non-load bearing bone. The addition of hydroxyapatite resulted in increased osteoblast attachment (> 180%) and proliferation (> 140%) on all composites compared to 100% CaAlO. Antimicrobial peptide (AMP) immobilization was achieved using an interfacial alkene-thiol click reaction. The linked AMP persisted on the composite (> 99.6% after 24 h) and retained its activity against Escherichia coli based on N-phenylnaphthylamine uptake and bacterial turbidity tests. Overall, this simple scaffold system improves osteoblast activity and reduces bacterial activity. - Highlights: • Calcium aluminum oxide and hydroxyapatite were cast into a composite material. • Osteoblast attachment and proliferation were significantly increased on composites. • An active antimicrobial peptide was linked to and remained stable on the composite. • Bacterial turbidity and NPN uptake tests showed modified composites had an effect equal to a 10 μM Inverso-CysHHC10 solution. • Antimicrobial peptide linkage did not affect the increased osteoblast performance.

  4. Diarrheagenic Escherichia coli.

    Science.gov (United States)

    Gomes, Tânia A T; Elias, Waldir P; Scaletsky, Isabel C A; Guth, Beatriz E C; Rodrigues, Juliana F; Piazza, Roxane M F; Ferreira, Luís C S; Martinez, Marina B

    2016-12-01

    Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

  5. Risk factors for ESBL-producing Escherichia coli on pig farms : A longitudinal study in the context of reduced use of antimicrobials

    NARCIS (Netherlands)

    Dohmen, Wietske; Dorado-García, Alejandro; Bonten, Marc J M; Wagenaar, Jaap A; Mevius, Dik; Heederik, Dick J J

    2017-01-01

    The presence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) in food animals is a public health concern. This study aimed to determine prevalence of ESBL-E. coli on pig farms and to assess the effect of reducing veterinary antimicrobial use (AMU) and farm management

  6. Risk factors for ESBL-producing Escherichia coli on pig farms : A longitudinal study in the context of reduced use of antimicrobials

    NARCIS (Netherlands)

    Dohmen, Wietske; Dorado-García, Alejandro; Bonten, Marc J M|info:eu-repo/dai/nl/123144337; Wagenaar, Jaap A; Mevius, Dik; Heederik, Dick J J

    2017-01-01

    The presence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) in food animals is a public health concern. This study aimed to determine prevalence of ESBL-E. coli on pig farms and to assess the effect of reducing veterinary antimicrobial use (AMU) and farm management pra

  7. Sodium chlorate reduces presence of Escherichia coli in feces of lambs and ewes managed in shed-lambing systems

    Science.gov (United States)

    Our objective was to establish doses of orally-administered NaClO3 that reduced presence of generic Escherichia coli in intestines of ewes and neonatal lambs managed in a shed-lambing system. Neonatal lambs (n = 32; age = 7.1 ± 1.2 d; BW = 6.8 ± 1.0 kg) and yearling ewes (n = 44; BW = 74.8 ± 5.6 kg)...

  8. Zoonotic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wasteson Yngvild

    2002-03-01

    Full Text Available Escherichia coli is a normal inhabitant of the gastrointestinal tract of all warm-blooded animals, but variants of this species is also among the important etiological agents of enteritis and several extraintestinal diseases. The E. coli strains that cause diarrhoeal illness are categorised into pathogenicity groups based on virulence properties, mechanisms of pathogenicity, clinical symptoms and serology. The five main categories include enterotoxinogenic E. coli (ETEC, enteropathogenic E. coli (EPEC, enteroaggregative E. coli (EAggEC, enteroinvasive E. coli (EIEC and Shiga (Vero toxin-producing E. coli (STEC/VTEC. From a zoonotic point of view, STEC is the only E. coli pathogenicity group of major interest, as the shiga toxin-producing strains are able to cause severe disease in humans when being transmitted through the food chain from their animal reservoirs. The focus of this manuscript is therefore on STEC; pathogenicity factors, disease, the reservoirs and on-farm ecology, transmission into the food chain, growth and survival in food and in the environment, and the shiga toxin-encoding bacteriophages.

  9. Efficacy of acidified sodium chlorite treatments in reducing Escherichia coli O157:H7 on Chinese cabbage.

    Science.gov (United States)

    Inatsu, Yasuhiro; Bari, Md Latiful; Kawasaki, Susumu; Isshiki, Kenji; Kawamoto, Shinichi

    2005-02-01

    Efficacy of acidified sodium chlorite for reducing the population of Escherichia coli O157:H7 pathogens on Chinese cabbage leaves was evaluated. Washing leaves with distilled water could reduce the population of E. coli O157:H7 by approximately 1.0 log CFU/g, whereas treating with acidified chlorite solution could reduce the population by 3.0 log CFU/g without changing the leaf color. A similar level of reduction was achieved by washing with sodium chlorite solution containing various organic acids. However, acidified sodium chlorite in combination with a mild heat treatment reduced the population by approximately 4.0 log CFU/g without affecting the color, but it softened the leaves. Moreover, the efficacy of the washing treatment was similar at low (4 degrees C) and room (25 degrees C) temperatures, indicating that acidified sodium chloride solution could be useful as a sanitizer for surface washing of fresh produce.

  10. Temporal Changes in Resistance Mechanisms in Colonizing Escherichia coli Isolates with Reduced Susceptibility to Fluoroquinolones

    Science.gov (United States)

    Han, Jennifer H.; Nachamkin, Irving; Tolomeo, Pam; Mao, Xiangqun; Bilker, Warren B.; Lautenbach, Ebbing

    2013-01-01

    The objective of this study was to characterize the temporal variability of fluoroquinolone resistance mechanisms among Escherichia coli colonizing the gastrointestinal tract of hospitalized patients. Patients with new fluoroquinolone-resistant E. coli (FQREC) colonization were followed with serial fecal sampling until discharge or death. Genetic mechanism(s) of resistance for all FQREC isolates were characterized, including mutations in gyrA and parC and efflux pump overexpression. Of 451 subjects, 73 (16.2%) became newly colonized with FQREC. There was significant variability in regard to temporal changes in resistance mechanisms and levofloxacin MICs among isolates from individual patients. Compared to patients with transient colonization, patients with persistent colonization were more likely to have a urinary catheter (P=0.04), diarrhea (P=0.04), and a longer duration of hospitalization (22 and 9.0 mean days, respectively; P=0.01) prior to sampling. Our data demonstrate the significant variability of resistance mechanisms in colonizing E. coli isolates among hospitalized patients. PMID:23719087

  11. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7.

    Science.gov (United States)

    Abuladze, Tamar; Li, Manrong; Menetrez, Marc Y; Dean, Timothy; Senecal, Andre; Sulakvelidze, Alexander

    2008-10-01

    A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (10(10), 10(9), and 10(8) PFU/ml) resulted in statistically significant reductions (P = E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 10(9) PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 +/- 4 h posttreatment of tomato samples) to 100% (at 24 +/- 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.

  12. Use of steam condensing at subatmospheric pressures to reduce Escherichia coli O157:H7 numbers on bovine hide.

    Science.gov (United States)

    McEvoy, J M; Doherty, A M; Sheridan, J J; Blair, I S; McDowell, D A

    2001-11-01

    This study used a laboratory-scale apparatus to apply subatmospheric steam to bovine hide pieces inoculated with Escherichia coli O157:H7 in maximum recovery diluent (MRD) and in high-liquid content and low-liquid content fecal suspensions (HLC fecal and LLC fecal, respectively). The survival of the organism in fecal clods, which were stored for 24 days in a desiccated state, was assessed. Inoculated fecal clods were also treated with subatmospheric steam. Steam treatment at 80 +/- 2 degrees C for 20 s reduced E. coli O157:H7 concentrations on hide inoculated to initial concentrations of approximately 7 log10 CFU/g by 5.46 (MRD inoculum), 4.17 (HLC fecal inoculum), and 5.99 (LLC fecal inoculum) log10 CFU/g. The reductions achieved in samples inoculated with LLC feces were larger than in samples inoculated with HLC feces (P Steam treatment (20 s) of 3-day-old clods reduced surviving E. coli O157:H7 numbers from 4.20 log10 CFU/g to below the limit of detection of the assay used (1.20 log10 CFU/g). This study shows that steam condensing at or below 80 +/- 2 degrees C can reduce E. coli O157:H7 when present on bovine hide, reducing the risk of cross contamination to the carcass during slaughter and dressing.

  13. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Tang, Yulong; Tan, Bie; Xiong, Xia; Li, Fengna; Ren, Wenkai; Kong, Xiangfeng; Qiu, Wei; Hardwidge, Philip R; Yin, Yulong

    2015-10-01

    Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy.

  14. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88.

    Science.gov (United States)

    Liu, P; Piao, X S; Thacker, P A; Zeng, Z K; Li, P F; Wang, D; Kim, S W

    2010-12-01

    Seventy-two barrows (Landrace × Large White, initial BW of 4.9 ± 0.3 kg and 17 ± 3 d old) were used to determine if dietary chito-oligosaccharides can replace antibiotics as a means to reduce signs associated with infection in weaned pigs challenged with Escherichia coli. Pigs were assigned to 1 of 4 treatments in a randomized complete block design using 6 pens per treatment with 3 pigs per pen. The treatments consisted of pigs fed the unsupplemented corn-soybean meal diet challenged or unchallenged with E. coli K88 and pigs fed the same diet supplemented with 160 mg of chito-oligosaccharides or 100 mg of cyadox/kg and challenged with E. coli K88. On d 7, 1 group of pigs fed the unsupplemented diet, as well as all pigs fed diets containing chito-oligosaccharides or cyadox, were orally dosed with 30 mL of an alkaline broth containing E. coli K88. Another group of pigs fed the unsupplemented diet was orally dosed with 30 mL of sterilized alkaline broth. Fecal consistency was visually assessed each morning from d 7 to 14. Blood samples were collected at 0, 24, 48, and 168 h postinfection. On d 14 postchallenge, all pigs were killed to evaluate intestinal morphology and determine E. coli concentrations in the intestine. During the postchallenge period (wk 2), unsupplemented pigs challenged with E. coli had decreased (P diarrhea incidence, E. coli counts in the intestine, plasma interleukin-1β, plasma IL-10, and IGA-positive cells in the jejunal and ileal lamina propria, compared with unchallenged pigs. Supplementation with cyadox largely mitigated these effects. Although chito-oligosaccharide reduced the incidence of diarrhea, the growth performance of E. coli-challenged pigs supplemented with chito-oligosaccharide was not better than that of unsupplemented pigs challenged with E. coli. Therefore, chito-oligosaccharide, at the amount used in this experiment, does not seem to be an effective substitute for antibiotics as a growth promoter for newly weaned pigs

  15. PART I. ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Sanaa Mahdi Oraibi

    2016-11-01

    Full Text Available The presence of Escherichia coli in the air of facilities involved in management and composting of post-slaughter poultry wastes in selected plants of West Western Pomerania region was studied. Measurements were made on four dates in a variety of weather conditions during the year. The study was conducted at 5 objects that differ in the type of waste and the degree of preparation for composting. These were: chemical treatment and preliminary processing plant, liquid wastes reservoir, platform for preparation of materials for composting, storage of biological sediments, and composting facility. Measurement of bacteria count was carried out in accordance with the applicable procedures on selective chromogenic TBX medium. The assays revealed the presence of E. coli at all test objects, but not always on all measurement dates. It has been shown that the presence of E. coli was from 20 to 3047 CFU∙m-3 of air, although the largest quantities were most frequently detected in the air of the building for post-slaughter waste pre-treatment in chemical treatment plant.

  16. Shiga toxin-producing Escherichia coli (STEC) O22:H8 isolated from cattle reduces E. coli O157:H7 adherence in vitro and in vivo.

    Science.gov (United States)

    Martorelli, L; Albanese, A; Vilte, D; Cantet, R; Bentancor, A; Zolezzi, G; Chinen, I; Ibarra, C; Rivas, M; Mercado, E C; Cataldi, A

    2017-09-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria responsible for food-associated diseases. Clinical features include a wide range of symptoms such as diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome (HUS), a life-threatening condition. Our group has observed that animals naturally colonized with STEC strains of unknown serotype were not efficiently colonized with E. coli O157:H7 after experimental infection. In order to assess the basis of the interference, three STEC strains were isolated from STEC persistently-colonized healthy cattle from a dairy farm in Buenos Aires, Argentina. The three isolated strains are E. coli O22:H8 and carry the stx1 and stx2d genes. The activatable activity of Stx2d was demonstrated in vitro. The three strains carry the adhesins iha, ehaA and lpfO113. E. coli O22:H8 formed stronger biofilms in abiotic surface than E. coli O157:H7 (eae+, stx2+) and displayed a more adherent phenotype in vitro towards HeLa cells. Furthermore, when both serotypes were cultured together O22:H8 could reduce O157:H7 adherence in vitro. When calves were intragastrically pre-challenged with 10(8) CFU of a mixture of the three STEC strains and two days later challenged with the same dose of the strain E. coli O157:H7 438/99, the shedding of the pathogen was significantly reduced. These results suggest that E. coli O22:H8, a serotype rarely associated with human illness, might compete with O157:H7 at the bovine recto-anal junction, making non-O157 carrying-calves less susceptible to O157:H7 colonization and shedding of the bacteria to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Conventional curing practices reduce generic Escherichia coli and Salmonella spp. on dry bulb onions produced with contaminated irrigation water.

    Science.gov (United States)

    Emch, Alexander W; Waite-Cusic, Joy G

    2016-02-01

    Food Safety Modernization Act (FSMA) has emphasized microbial risks associated with irrigation water. Treasure Valley (eastern Oregon/western Idaho) has the highest yield of dry bulb onions in the country; however, their irrigation water is often non-compliant with current industry and proposed federal standards for fresh produce. Conventional curing practices may provide a mechanism to mitigate irrigation water quality to comply with FSMA regulations. Dry bulb onions were grown in Owyhee silt loam and Semiahmoo muck soils in greenhouses and irrigated with water containing a cocktail of rifampicin-resistant generic Escherichia coli and Salmonella spp. (4.80 log CFU/ml). To mimic conventional practices, mature onions remained undisturbed in soil without irrigation for 12 days prior to being lifted and cured for 16 additional days. Surviving generic E. coli and Salmonella spp. were selectively enumerated on using standard plating (Hektoen Enteric Agar with rifampicin; HE + rif) or most probable number (lactose broth with rifampicin; HE + rif) methods. Generic E. coli and Salmonella spp. on onions decreased 0.19-0.26 log CFU/g·d during the initial 12 days of finishing. At lifting, generic E. coli and Salmonella spp. had been reduced to <1 CFU/g and persisted through the end of curing. This study demonstrates conventional curing practices as an effective mitigation strategy for dry bulb onions produced with water of poor microbiological quality.

  18. Lipid Isolated from a Leishmania donovani Strain Reduces Escherichia coli Induced Sepsis in Mice through Inhibition of Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Subhadip Das

    2014-01-01

    Full Text Available Sepsis is the reflection of systemic immune response that manifests in the sequential inflammatory process in presence of infection. This may occur as a result of gram-negative bacterial sepsis including Escherichia coli infection that gives rise to excessive production of inflammatory mediators and causes severe tissue injuries. We have reported earlier that the lipid of attenuated Leishmania donovani suppresses the inflammatory responses in arthritis patients. Using heat killed E. coli stimulated macrophages, we have now investigated the effect of leishmanial total lipid (LTL isolated from Leishmania donovani (MHO/IN/1978/UR6 for amelioration of the inflammatory mediators and transcriptional factor with suppression of TLR4-CD14 expression. To evaluate the in vivo effect, E. coli induced murine sepsis model was used focusing on the changes in different parameter(s of lung injury caused by sepsis, namely, edema, vascular permeability, and pathophysiology, and the status of different cytokine-chemokine(s and adhesion molecule(s. Due to the effect of LTL, E. coli induced inflammatory cytokine-chemokine(s levels were significantly reduced in serum and bronchoalveolar lavage fluid simultaneously. LTL also improved the lung injury and suppressed the cell adhesion molecules in lung tissue. These findings indicate that LTL may prove to be a potential anti-inflammatory agent and provide protection against gram-negative bacterial sepsis with pulmonary impairment.

  19. Irradiation and chlorination effectively reduces Escherichia coli O157:H7 inoculated on cilantro (Coriandrum sativum) without negatively affecting quality.

    Science.gov (United States)

    Foley, Denise; Euper, Megan; Caporaso, Fred; Prakash, Anuradha

    2004-10-01

    Cilantro (Coriandrum sativum) inoculated with Escherichia coli O157:H7 at levels approximating 10(7) CFU/g was dipped in 200 ppm chlorine solution followed by low-dose gamma irradiation. Samples were plated on tryptic soy agar containing 50 microg/ml nalidixic acid (TSAN) as well as TSAN plates with two 7-ml layers of basal yeast extract agar (TSAN-TAL). Levels of E. coli O157:H7 recovered from both types of media were determined over 11 days. Chlorination alone reduced counts by just over 1.0 log cycle, whereas irradiation at 1.05 kGy resulted in a 6.7-log reduction, and a combination of irradiation and chlorination reduced counts more than 7 log cycles. Trained panels performed analytical sensory tests at time intervals for 14 days to detect changes in yellowing, tip burn, browning, black rot, sliminess, off-aroma, and off-flavor. Sensory tests found no significant differences among attributes over time or dose in samples irradiated at 1.08 to 3.85 kGy. This study showed that combination treatments of chlorination and low-dose irradiation can significantly reduce levels of E. coli O157:H7 in fresh cilantro while maintaining product quality.

  20. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2011-05-01

    Full Text Available Abstract Background The eukaryotic RNase ribonuclease/angiogenin inhibitors (RI are a protein group distinguished by a unique structure - they are composed of hydrophobic leucine-rich repeat motifs (LRR and contain a high amount of reduced cysteine residues. The members of this group are difficult to produce in E. coli and other recombinant hosts due to their high aggregation tendency. Results In this work dithiothreitol (DTT was successfully applied for improving the yield of correctly folded ribonuclease/angiogenin inhibitor in E. coli K12 periplasmic and cytoplasmic compartments. The feasibility of the in vivo folding concepts for cytoplasmic and periplasmic production were demonstrated at batch and fed-batch cultivation modes in shake flasks and at the bioreactor scale. Firstly, the best secretion conditions of RI in the periplasmic space were evaluated by using a high throughput multifactorial screening approach of a vector library, directly with the Enbase fed-batch production mode in 96-well plates. Secondly, the effect of the redox environment was evaluated in isogenic dsbA+ and dsbA- strains at the various cultivation conditions with reducing agents in the cultivation medium. Despite the fusion to the signal peptide, highest activities were found in the cytoplasmic fraction. Thus by removing the signal peptide the positive effect of the reducing agent DTT was clearly proven also for the cytoplasmic compartment. Finally, optimal periplasmic and cytoplasmic RI fed-batch production processes involving externally added DTT were developed in shake flasks and scaled up to the bioreactor scale. Conclusions DTT highly improved both, periplasmic and cytoplasmic accumulation and activity of RI at low synthesis rate, i.e. in constructs harbouring weak recombinant synthesis rate stipulating genetic elements together with cultivation at low temperature. In a stirred bioreactor environment RI folding was strongly improved by repeated pulse addition

  1. Escherichia coli Uropathogenesis In Vitro

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Khandige, Surabhi; Madelung, Michelle

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) strains are capable of invading bladder epithelial cells (BECs) on the bladder luminal surface. Based primarily on studies in mouse models, invasion is proposed to trigger an intracellular uropathogenic cascade involving intracellular bacterial proliferation...

  2. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...

  3. Asymptomatic bacteriuria Escherichia coli strains

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Nielsen, E.M.; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast...

  4. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation.

    Science.gov (United States)

    Bichai, Françoise; Polo-López, M Inmaculada; Fernández Ibañez, Pilar

    2012-11-15

    Low-cost disinfection methods to allow safe use of recycled wastewater for irrigation can have important beneficial implications in the developing world. This study aims to assess the efficiency of solar disinfection to reduce microbial contamination of lettuce crops when solar-treated wastewater effluents are used for irrigation. The irrigation study was designed as a complete experimental loop, including (i) the production of irrigation water through solar disinfection of real municipal wastewater treatment plant effluents (WWTPE), (ii) the watering of cultivated lettuce crops at the end of solar treatment, and (iii) the detection of microbial contamination on the irrigated crops 24 h after irrigation. Solar disinfection was performed using two types of reactors: (i) 20-L batch borosilicate glass reactors equipped with CPC to optimize solar irradiation, and (ii) 1.5-L PET bottles, i.e. the traditional SODIS recipients commonly used for disinfection of drinking water in developing communities. Both solar and H(2)O(2)-aided solar disinfection processes were tested during ≤5 h exposure of WWTPE, and Escherichia coli inactivation was analysed. A presence/absence detection method was developed to analyse lettuce leaves sampled 24 h after watering for the detection of E. coli. Results of inactivation assays show that solar disinfection processes can bring down bacterial concentrations of >10(3)-10(4)E. coli CFU mL(-1) in real WWTPE to <2 CFU/mL (detection limit). The absence of E. coli on most lettuce samples after irrigation with solar-disinfected effluents (26 negative samples/28) confirmed an improved safety of irrigation practices due to solar treatment, while crops irrigated with raw WWTPE showed contamination.

  5. [Reducing centers on the surface of Escherichia coli bacteria and their role in copper-induced plasma membrane permeability].

    Science.gov (United States)

    Lebedev, V S; Veselovskiĭ, A V; Deĭnega, E Iu; Fedorov, Iu I

    2000-01-01

    The reducing properties of Escherichia coli and their role in the induction of nonselective cationic permeability of plasma membrane by the action of Cu2+ ions were studied. The ability of cells to reduce exogenous dithiopyridine was shown to be maximal in freshly collected culture and to decrease upon starvation or exhaustion of bacteria by dinitrophenol, in the presence of other oxidants of cell thiols in the medium, and after the disturbance of the barrier properties of membrane by tetrachloracetic acid or butanol. The alkylation of cell thiols accessible for N-ethyl maleimide completely disrupted the reducing activity of bacteria. These data are consistent with the conception that the reduction of dithiopyridine and Cu2+ ions by bacteria occurs on the thiol-containing centers of the cell surface, which are continuously reduced by the transfer of cell reducing equivalents from the inner to the outer surface of plasma membrane. The analysis of data on the effect of external oxidizing and reducing agents on the copper-induced plasmolysis of bacteria showed that the induction of membrane permeability by the action of copper can occur upon interaction with critical targets on the surface of Cu+ ions formed in the periplasmic space in the reaction of Cu2+ ions with reducing centers.

  6. Thermoresponsive oligomers reduce Escherichia coli O157:H7 biofouling and virulence.

    Science.gov (United States)

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Hyun Seob; Kim, Jintae; Kim, Seong-Cheol; Cho, Moo Hwan; Lee, Jintae

    2014-01-01

    Thermoresponsive polymers have potential biomedical applications for drug delivery and tissue engineering. Here, two thermoresponsive oligomers were synthesized, viz. oligo(N-isopropylacrylamide) (ONIPAM) and oligo(N-vinylcaprolactam) (OVCL), and their anti-biofouling abilities investigated against enterohemorrhagic E. coli O157:H7, which produces Shiga-like toxins and forms biofilms. Biofilm formation (biofouling) is closely related to E. coli O157:H7 infection and constitutes a major mechanism of antimicrobial resistance. The synthetic OVCL (MW 679) and three commercial OVCLs (up to MW 54,000) at 30 μg ml(-1) were found to inhibit biofouling by E. coli O157:H7 at 37 °C by more than 80% without adversely affecting bacterial growth. The anti-biofouling activity of ONIPAM was weaker than that of OVCL. However, at 25 °C, ONIPAM and OVCL did not affect E. coli O157:H7 biofouling. Transcriptional analysis showed that OVCL temperature-dependently downregulated curli genes in E. coli O157:H7, and this finding was in line with observed reductions in fimbriae production and biofouling. In addition, OVCL downregulated the Shiga-like toxin genes stx1 and stx2 in E. coli O157:H7 and attenuated its in vivo virulence in the nematode Caenorhabditis elegans. These results suggest that OVCL has potential use in antivirulence strategies against persistent E. coli O157:H7 infection.

  7. Impact of antibiotic use during hospitalization on the development of gastrointestinal colonization with Escherichia coli with reduced fluoroquinolone susceptibility.

    Science.gov (United States)

    Han, Jennifer H; Bilker, Warren B; Nachamkin, Irving; Tolomeo, Pam; Mao, Xiangqun; Fishman, Neil O; Lautenbach, Ebbing

    2013-10-01

    Infections due to fluoroquinolone-resistant Escherichia coli (FQREC) are associated with significant morbidity and mortality. Fluoroquinolone resistance likely arises at the level of gastrointestinal colonization. The objective of this study was to identify risk factors for the development of FQREC gastrointestinal tract colonization in hospitalized patients, including the impact of antibiotics prescribed during hospitalization. A prospective cohort study was conducted from 2002 to 2004 within a university health system. Hospitalized patients initially colonized with fluoroquinolone-susceptible E. coli were followed up with serial fecal sampling for new FQREC colonization or until hospital discharge or death. A Cox proportional hazards regression model was developed to identify risk factors for new FQREC colonization, with antibiotic exposure modeled as time-varying covariates. Of 395 subjects, 73 (18.5%) became newly colonized with FQREC. Length of stay before sampling (hazard ratio [HR], 1.02 [95% confidence interval (CI), 1.1-1.03]; P = .003) and malignancy (HR, 0.37 [95% CI, 0.21-0.67]; P = .001) were significantly associated with the development of FQREC colonization. In addition, receipt of a first-generation cephalosporin (HR, 1.19 [95% CI, 1.10-1.29]; P antibiotic use in implementing strategies to reduce the development of new FQREC colonization. Future studies are needed to identify risk factors for infection in hospitalized patients newly colonized with FQREC.

  8. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets

    NARCIS (Netherlands)

    Konstantinov, S.R.; Smidt, H.; Akkermans, A.D.L.; Casini, L.; Trevisi, P.; Mazzoni, M.; Filippi, de S.; Bosi, P.; Vos, de W.M.

    2008-01-01

    The microbial community in the guts of mammals is often seen as an important potential target in therapeutic and preventive interventions. The aim of the present study was to determine whether enterotoxigenic Escherichia coli (ETEC) F4 infection in young animals might be counteracted by a probiotic

  9. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets

    NARCIS (Netherlands)

    Konstantinov, S.R.; Smidt, H.; Akkermans, A.D.L.; Casini, L.; Trevisi, P.; Mazzoni, M.; Filippi, de S.; Bosi, P.; Vos, de W.M.

    2008-01-01

    The microbial community in the guts of mammals is often seen as an important potential target in therapeutic and preventive interventions. The aim of the present study was to determine whether enterotoxigenic Escherichia coli (ETEC) F4 infection in young animals might be counteracted by a probiotic

  10. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.

    Science.gov (United States)

    Zhu, Xinna; Tan, Zaigao; Xu, Hongtao; Chen, Jing; Tang, Jinlei; Zhang, Xueli

    2014-07-01

    Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.

  11. Lactococcus garvieae carries a chromosomally encoded pentapeptide repeat protein that confers reduced susceptibility to quinolones in Escherichia coli producing a cytotoxic effect.

    Science.gov (United States)

    Gibello, Alicia; Díaz de Alba, Paula; Blanco, M Mar; Machuca, Jesus; Cutuli, M Teresa; Rodríguez-Martínez, José Manuel

    2014-09-01

    This study characterises a chromosomal gene of Lactococcus garvieae encoding a pentapeptide repeat protein designated as LgaQnr. This gene has been implicated in reduced susceptibility to quinolones in this bacterium, which is of relevance to both veterinary and human medicine. All of the L. garvieae isolates analysed were positive for the lgaqnr gene. The expression of lgaqnr in Escherichia coli reduced the susceptibility to quinolones, producing an adverse effect. The reduced susceptibility to ciprofloxacin was 16-fold in E. coli ATCC 25922 and 32-fold in E. coli DH10B, compared to the control strains. The minimum inhibitory concentration of nalidixic acid was also increased 4 or 5-fold. The effect of the expression of lgaqnr in E. coli was investigated by electron microscopy and was observed to affect the structure of the cell and the inner membrane of the recombinant cells.

  12. Orphan Toxin OrtT (YdcX of Escherichia coli Reduces Growth during the Stringent Response

    Directory of Open Access Journals (Sweden)

    Sabina Islam

    2015-01-01

    Full Text Available Toxin/antitoxin (TA systems are nearly universal in prokaryotes; toxins are paired with antitoxins which inactivate them until the toxins are utilized. Here we explore whether toxins may function alone; i.e., whether a toxin which lacks a corresponding antitoxin (orphan toxin is physiologically relevant. By focusing on a homologous protein of the membrane-damaging toxin GhoT of the Escherichia coli GhoT/GhoS type V TA system, we found that YdcX (renamed OrtT for orphan toxin related to tetrahydrofolate is toxic but is not part of TA pair. OrtT is not inactivated by neighboring YdcY (which is demonstrated to be a protein, nor is it inactivated by antitoxin GhoS. Also, OrtT is not inactivated by small RNA upstream or downstream of ortT. Moreover, screening a genomic library did not identify an antitoxin partner for OrtT. OrtT is a protein and its toxicity stems from membrane damage as evidenced by transmission electron microscopy and cell lysis. Furthermore, OrtT reduces cell growth and metabolism in the presence of both antimicrobials trimethoprim and sulfamethoxazole; these antimicrobials induce the stringent response by inhibiting tetrahydrofolate synthesis. Therefore, we demonstrate that OrtT acts as an independent toxin to reduce growth during stress related to amino acid and DNA synthesis.

  13. Mutant prevention concentrations of pradofloxacin for susceptible and mutant strains of Escherichia coli with reduced fluoroquinolone susceptibility.

    Science.gov (United States)

    Marcusson, Linda L; Komp Lindgren, Patricia; Olofsson, Sara K; Hughes, Diarmaid; Cars, Otto

    2014-10-01

    Pharmacodynamic and mutant prevention properties of the fluoroquinolone pradofloxacin (PRA) were measured against a set of 17 Escherichia coli strains carrying no, one or two known mutations conferring reduced fluoroquinolone susceptibility. The strains included susceptible wild-types, isogenic constructed mutants, isogenic selected mutants and clinical isolates. The effectiveness of PRA was determined with regard to preventing the selection of resistant mutants, using static and changing concentrations of drug. Ciprofloxacin was used as a reference drug. Minimum inhibitory concentrations (MICs) and mutant prevention concentrations (MPCs) of PRA for the susceptible wild-type strains were in the range 0.012-0.016mg/L and 0.2-0.3mg/L, respectively, giving a mean±standard deviation mutant prevention index (MPI=MPC/MIC) of 17.7±1.1. The mean MPI PRA of the 14 mutant strains was 19.2±12, and the mean MPI across all 17 strains was 18.9±10.8. In an in vitro kinetic model in which PRA was diluted with a half-life of 7h to mimic in vivo conditions, an initial concentration of PRA of 1.6-2.4mg/L (8-10× MPC), giving a PRA AUC/MPC ratio of 73-92, and a T>MPC of 21-23h was sufficient to prevent the selection of resistant mutants from the three susceptible wild-type strains. Dosing to reduce selection for antibiotic resistance in veterinary therapy has a role in reducing the reservoir of resistant mutants. We conclude that a level of dosing that prevents the selection of resistant mutants during therapy should be achievable in vivo. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Preparation of Highly Dispersed Reduced Graphene Oxide Decorated with Chitosan Oligosaccharide as Electrode Material for Enhancing the Direct Electron Transfer of Escherichia coli.

    Science.gov (United States)

    Luo, Zhimin; Yang, Dongliang; Qi, Guangqin; Yuwen, Lihui; Zhang, Yuqian; Weng, Lixing; Wang, Lianhui; Huang, Wei

    2015-04-29

    Water-dispersed reduced graphene oxide/chitosan oligosaccharide (RGO-CTSO) was prepared by chemical reduction of graphene oxide and synchronous functionalization with biocompatible chitosan oligosaccharide (CTSO). ζ potential measurement indicated that RGO-CTSO was highly stable in the acidic aqueous solution. RGO-CTSO was used to modify glassy carbon electrode (GCE) as the growth template of Escherichia coli (E. coli). The enhanced direct electron transfer of E. coli on the RGO-CTSO-modified GCE was studied by cyclic voltammetry. Compared with GCE or RGO-modified GCE, RGO-CTSO-modified GCE was more suitable for the adhesion growth of E. coli to improve direct electron transfer. The biocompatibility and versatility of RGO-CTSO made it promising for use as an anode material in microbial fuel cells.

  15. Characterization of 4-Hydroxyphenylacetate 3-Hydroxylase (HpaB) of Escherichia coli as a Reduced Flavin Adenine Dinucleotide-Utilizing Monooxygenase

    OpenAIRE

    2000-01-01

    4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH2)-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH2 in ...

  16. Shiga Toxin Producing Escherichia coli.

    Science.gov (United States)

    Bryan, Allen; Youngster, Ilan; McAdam, Alexander J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli.

  17. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short-ter...... mechanism for emergence of antibiotic resistance.......Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short......-term tolerance, respectively, to this drug class. Here, we show that chaperonin GroEL/GroES over-expression accelerates acquisition of streptomycin resistance and reduces susceptibility to several other antibiotics following sub-lethal streptomycin antibiotic exposure. Chaperonin buffering could provide a novel...

  18. Efficacy of octenidine hydrochloride for reducing Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on cattle hides.

    Science.gov (United States)

    Baskaran, Sangeetha Ananda; Upadhyay, Abhinav; Upadhyaya, Indu; Bhattaram, Varunkumar; Venkitanarayanan, Kumar

    2012-06-01

    The efficacy of octenidine hydrochloride (OH; 0.025, 0.15, and 0.25%) for inactivating Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes on cattle hides was investigated at 23°C in the presence and absence of bovine feces. All tested concentrations of OH were effective in decreasing more than 5.0 log CFU of bacteria/cm(2) in 5 min (P < 0.01). The results suggest that OH could be used to decontaminate cattle hides; however, further studies under commercial settings are necessary to validate these results.

  19. ß-Phenylethylamine as a novel nutrient treatment to reduce bacterial contamination due to Escherichia coli O157:H7 on beef meat.

    Science.gov (United States)

    Lynnes, Ty; Horne, S M; Prüß, B M

    2014-01-01

    Bacterial infection by Escherichia coli O157:H7 through the consumption of beef meat or meat products is an ongoing problem, in part because bacteria develop resistances towards chemicals aimed at killing them. In an approach that uses bacterial nutrients to manipulate bacteria into behaviors or cellular phenotypes less harmful to humans, we screened a library of 95 carbon and 95 nitrogen sources for their effect on E. coli growth, cell division, and biofilm formation. In the initial screening experiment using the Phenotype MicroArray(TM) technology from BioLog (Hayward, CA), we narrowed the 190 starting nutrients down to eight which were consecutively tested as supplements in liquid beef broth medium. Acetoacetic acid (AAA) and ß-phenylethylamine (PEA) performed best in this experiment. On beef meat pieces, PEA reduced the bacterial cell count by 90% after incubation of the PEA treated and E. coli contaminated meat pieces at 10°C for one week. © 2013.

  20. Resistance of Escherichia coli to nourseothricin (streptothricin): reduced penetrability of the cell wall as an additional, possibly unspecific mechanism.

    Science.gov (United States)

    Seltmann, G

    1989-01-01

    The resistance of E. coli strains to the antibiotic nourseothricin is known to be caused by an acetyltransferase acetylating the beta-lysine chain of the antibiotic. In addition, most of the resistant strains exhibit reduced penetrability of the outer membrane, presumably caused by a reduced amount of available negative charges. This was shown using crystal violet, Congo red, or the hydrophobic antibiotic novobiocin as indicators.

  1. Quantitatively understanding reduced xylose fermentation performance in AFEX™ treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11.

    Science.gov (United States)

    Jin, Mingjie; Balan, Venkatesh; Gunawan, Christa; Dale, Bruce E

    2012-05-01

    Reduced xylose fermentation performance has been an issue during fermentation of AFEX™ hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) or Escherichia coli KO11. To better understand why fermentation performance is reduced, we quantitatively studied the effects of compounds present in the fermentation broth on xylose consumption. The compounds include biomass degradation products, ethanol and fermentation metabolites. The xylose consumption capability of E. coli KO11 was almost totally inhibited by the presence of both degradation products and ethanol. On the other hand, for S. cerevisiae 424A, 89% reduction of xylose consumption rate was found during hydrolysate fermentation. Degradation products, ethanol and fermentation metabolites were responsible for 32%, 24% and 33% of such reduction, respectively. Those results suggest that to further improve the xylose fermentation in hydrolysate, strains should be selected not only for degradation products tolerance but also for ethanol and fermentation metabolites tolerance.

  2. Risk factors for ESBL-producing Escherichia coli on pig farms: A longitudinal study in the context of reduced use of antimicrobials

    Science.gov (United States)

    Bonten, Marc J. M.; Wagenaar, Jaap A.; Mevius, Dik; Heederik, Dick J. J.

    2017-01-01

    The presence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) in food animals is a public health concern. This study aimed to determine prevalence of ESBL-E. coli on pig farms and to assess the effect of reducing veterinary antimicrobial use (AMU) and farm management practices on ESBL-E. coli occurrence on pig farms. During 2011–2013, 36 Dutch conventional pig farms participated in a longitudinal study (4 sampling times in 18 months). Rectal swabs were taken from 60 pigs per farm and pooled per 6 pigs within the same age category. Presence of ESBL-E. coli was determined by selective plating and ESBL genes were characterized by microarray, PCR and gene sequencing. An extensive questionnaire on farm characteristics and AMU as Defined Daily Dosages per Animal Year (DDDA/Y) was available for the 6-month periods before each sampling moment. Associations between the presence of ESBL-E. coli-positive pigs and farm management practices were modelled with logistic regression. The number of farms with ESBL-E. coli carrying pigs decreased from 16 to 10 and the prevalence of ESBL-E. coli-positive pooled pig samples halved from 27% to 13%. Overall, the most detected ESBL genes were blaCTX-M-1, blaTEM-52 and blaCTX-M-14. The presence of ESBL-E. coli carrying pigs was not related to total AMU, but it was strongly determined by the presence or absence of cephalosporin use at the farm (OR = 46.4, p = 0.006). Other farm management factors, related with improved biosecurity, were also plausibly related to lower probabilities for ESBL-E. coli-positive farms (e.g. presence of a hygiene lock, pest control delivered by a professional). In conclusion, ESBL-E. coli prevalence decreased in pigs during 2011 and 2013 in the Netherlands. On pig farms, the use of cephalosporins was associated with the presence of ESBL-E. coli carrying pigs. PMID:28323856

  3. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates......, including the prototypic asymptomatic bacteriuria strain, 83972, formed highly elaborate cellular chains during biofilm growth in human urine. Combined, these results illustrate the diversity of biofilm architectures that can be observed even within a single microbial species....

  4. Strategies to Reduce Person-to-Person Transmission During Widespread Escherichia coli O157:H7 Outbreak

    Centers for Disease Control (CDC) Podcasts

    2007-06-07

    US consumers were warned not to eat raw spinach during a 2006 E. coli O157:H7 outbreak, but additional warnings about person-to-person transmission could have reduced bacteria spread. Dr. Martin Meltzer discusses the research methods and findings and the authors' success in presenting them clearly and accurately.  Created: 6/7/2007 by CDC, Office of the Director.   Date Released: 6/7/2007.

  5. Robust growth of Escherichia coli.

    Science.gov (United States)

    Wang, Ping; Robert, Lydia; Pelletier, James; Dang, Wei Lien; Taddei, Francois; Wright, Andrew; Jun, Suckjoon

    2010-06-22

    The quantitative study of the cell growth has led to many fundamental insights in our understanding of a wide range of subjects, from the cell cycle to senescence. Of particular importance is the growth rate, whose constancy represents a physiological steady state of an organism. Recent studies, however, suggest that the rate of elongation during exponential growth of bacterial cells decreases cumulatively with replicative age for both asymmetrically and symmetrically dividing organisms, implying that a "steady-state" population consists of individual cells that are never in a steady state of growth. To resolve this seeming paradoxical observation, we studied the long-term growth and division patterns of Escherichia coli cells by employing a microfluidic device designed to follow steady-state growth and division of a large number of cells at a defined reproductive age. Our analysis of approximately 10(5) individual cells reveals a remarkable stability of growth whereby the mother cell inherits the same pole for hundreds of generations. We further show that death of E. coli is not purely stochastic but is the result of accumulating damages. We conclude that E. coli, unlike all other aging model systems studied to date, has a robust mechanism of growth that is decoupled from cell death.

  6. Meat Science and Muscle Biology Symposium: Development of bacteriophage treatments to reduce Escherichia coli O157:H7 contamination of beef products and produce.

    Science.gov (United States)

    Hong, Y; Pan, Y; Ebner, P D

    2014-04-01

    Escherichia coli O157:H7 remains a foodborne pathogen of concern with infections associated with products ranging from ground beef to produce to processed foods. We previously demonstrated that phage-based technologies could reduce foodborne pathogen colonization in live animals. Here, we examined if a 3-phage cocktail could reduce E. coli O157:H7 in experimentally contaminated ground beef, spinach, and cheese. The 3 phages were chosen from our E. coli O157:H7 phage library based on their distinct origins of isolation, lytic ranges, and rapid growth (40- to 50-min life cycle). Two phages belonged to the Myoviridae family and the other phage belonged to the Siphoviridae family. The phage cocktail was added to ground beef, spinach leaves, and cheese slices contaminated with E. coli O157:H7 (10(7) cfu) at a multiplicity of infection of 1. Phage treatment reduced (P refrigeration (4 °C), and 0.56 log10 cfu/mL in undercooked condition (internal temperature of 46 °C). Likewise, phage treatment reduced (P adsorption assays indicated that phage resistance in strains 309-PR4 and 502-PR5 was mediated, at least in part, by prevention of phage adsorption. Phage resistance in strain 309-PR1 was the result of limited phage proliferation. Phage resistance was stably maintained in vitro throughout a 4-d subculture period in the absence of phage. No significant reductions in bacterial growth or cell adhesion were observed in resistant strains. Taken together, our results provide additional support for the use of phage to control E. coli O157:H7 in food products; however, the emergence of phage-resistant bacteria could limit the efficacy of phage products. Therefore, further studies are needed to develop resistance mitigation strategies to optimize phage-based technologies.

  7. Modeling of Combined Processing Steps for Reducing Escherichia coli O157:H7 Populations in Apple Cider

    Science.gov (United States)

    Uljas, Heidi E.; Schaffner, Donald W.; Duffy, Siobain; Zhao, Lihui; Ingham, Steven C.

    2001-01-01

    Probabilistic models were used as a systematic approach to describe the response of Escherichia coli O157:H7 populations to combinations of commonly used preservation methods in unpasteurized apple cider. Using a complete factorial experimental design, the effect of pH (3.1 to 4.3), storage temperature and time (5 to 35°C for 0 to 6 h or 12 h), preservatives (0, 0.05, or 0.1% potassium sorbate or sodium benzoate), and freeze-thaw (F-T; −20°C, 48 h and 4°C, 4 h) treatment combinations (a total of 1,600 treatments) on the probability of achieving a 5-log10-unit reduction in a three-strain E. coli O157:H7 mixture in cider was determined. Using logistic regression techniques, pH, temperature, time, and concentration were modeled in separate segments of the data set, resulting in prediction equations for: (i) no preservatives, before F-T; (ii) no preservatives, after F-T; (iii) sorbate, before F-T; (iv) sorbate, after F-T; (v) benzoate, before F-T; and (vi) benzoate, after F-T. Statistical analysis revealed a highly significant (P cider pH being the most important, followed by temperature and time, and finally by preservative concentration. All models predicted 92 to 99% of the responses correctly. To ensure safety, use of the models is most appropriate at a 0.9 probability level, where the percentage of false positives, i.e., falsely predicting a 5-log10-unit reduction, is the lowest (0 to 4.4%). The present study demonstrates the applicability of logistic regression approaches to describing the effectiveness of multiple treatment combinations in pathogen control in cider making. The resulting models can serve as valuable tools in designing safe apple cider processes. PMID:11133437

  8. The StcE metalloprotease of enterohaemorrhagic Escherichia coli reduces the inner mucus layer and promotes adherence to human colonic epithelium ex vivo.

    Science.gov (United States)

    Hews, Claire L; Tran, Seav-Ly; Wegmann, Udo; Brett, Bernard; Walsham, Alistair D S; Kavanaugh, Devon; Ward, Nicole J; Juge, Nathalie; Schüller, Stephanie

    2017-01-05

    Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin-producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin-deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.

  9. Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae.

    Science.gov (United States)

    Okuda, Naoyuki; Ninomiya, Kazuaki; Katakura, Yoshio; Shioya, Suteaki

    2008-02-01

    In this paper, we report a simultaneous realization of both efficient ethanol production and saving medium nutrient (corn steep liquor [CSL]) during bioethanol fermentation of overliming-treated hydrolysate of waste house wood (WHW) using ethanologenic Escherichia coli KO11. In cultivation using WHW hydrolysate supplemented with 4% (v/v) CSL and 0.2 g-dry cell weight (DCW)/l E. coli KO11 cells, the overall ethanol yield reached 84% of the theoretical value at 61 h. When we conducted the cultivation with 1% CSL to reduce the supplemental medium cost, the overall ethanol yield remained in the range of 66-72% even at 90 h. We proposed two alternative methods for increasing the overall yield even with 1% CSL. The first method involved increasing the inoculum size of E. coli KO11 up to 0.8 g-DCW/l, where 83% of the overall yield was attained at 60 h of cultivation. The second method involved the coculture of 0.2 g-DCW/l E. coli KO11 together with 0.02 g-DCW/l of Saccharomyces cerevisiae TJ1, and the overall yield reached 81% at 47 h of cultivation.

  10. Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia coli O157:H7 on apples.

    Science.gov (United States)

    Baskaran, Sangeetha Ananda; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Upadhyaya, Indu; Mooyottu, Shankumar; Roshni Amalaradjou, Mary Anne; Schreiber, David; Venkitanarayanan, Kumar

    2013-09-01

    This study investigated the efficacy of 3 GRAS-status, plant-derived antimicrobials (PDAs), trans-cinnamaldehyde (TC), carvacrol (CR), and β-resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. "Red delicious" apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P reduced the pathogen by 4- to 5-log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P usage. © 2013 Institute of Food Technologists®

  11. Reduced evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic biology applications

    Directory of Open Access Journals (Sweden)

    Blattner Frederick R

    2010-05-01

    Full Text Available Abstract Background Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential. Results We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones. Conclusions Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.

  12. Screening Escherichia coli, Enterococcus faecalis, and Clostridium perfringens as Indicator Organisms in Evaluating Pathogen-Reducing Capacity in Biogas Plants

    DEFF Research Database (Denmark)

    Watcharasukarn, Montira; Kaparaju, Prasad Laxmi-Narasimha; Steyer, Jean-Philippe

    2009-01-01

    perfringens strain were exposed to 37A degrees C for 15 days, 55A degrees C for 48 h, and 70A degrees C for 24 h. C. perfringens was the most heat-resistant organism followed by E. faecalis, while E. coli was the most heat-sensitive organism. E. coli was reduced below detection limit at all temperatures...... with log(10) reductions of 4.94 (10 s), 4.37 (40 min), and 2.6 (5 days) at 70A degrees C, 55A degrees C, and 37A degrees C, respectively. Maximum log(10) reductions for E. faecalis were 1.77 at 70A degrees C (1 day), 1.7 at 55A degrees C (2 days) and 3.13 at 37A degrees C (15 days). For C. perfringens......, maximum log(10) reduction at 37A degrees C was 1.35 log(10) units (15 days) compared to less than 1 unit at 55 and 70A degrees C. Modeling results showed that E. faecalis and C. perfringens had higher amount of heat-resistant fraction than E. coli. Thus, E. faecalis and C. perfringens can be used...

  13. Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7 prevalence on hides and carcasses

    Science.gov (United States)

    Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing faci...

  14. Effect of competitive exclusion in reducing the occurrence of Escherichia coli producing extended-spectrum β-lactamases in the ceca of broiler chicks.

    Science.gov (United States)

    Nuotio, L; Schneitz, C; Nilsson, O

    2013-01-01

    Extended-spectrum β-lactamases (ESBL) and class C serine β-lactamases (pAmpC) able to hydrolyze third-generation cephalosporins are a recognized threat to the efficacy of these drugs in treating serious infections. Broiler chicks are a known source of Escherichia coli harboring genes for these enzymes. Competitive exclusion (CE) has been used for decades in Finland to prevent the colonization of broiler ceca by Salmonella, but has not been widely used in Sweden. The markedly different prevalences of ESBL- or pAmpC-producing E. coli at slaughter in broilers produced in the 2 countries suggest a potential role for CE. The present study was undertaken to determine the efficacy of a commercial CE product in reducing the colonization of broiler ceca by ESBL- or pAmpC-producing E. coli. The challenge organisms were isolated from healthy broilers in Sweden. Each E. coli strain (1 ESBL and 2 pAmpC types) was subjected to 4 replicate trials. In each trial, a group of 20 newly hatched Ross breed chicks were treated by gavage with the CE product, whereas another group of 20 was left untreated. The next day, all 40 chicks were inoculated by gavage with the E. coli strain. The chicks were reared in cardboard boxes and received feed and water ad libitum. After a week the chicks were asphyxiated with CO(2), and their ceca removed and examined for the presence of the E. coli strains. The median and quartiles of the challenge E. coli estimates in the groups were determined, and the treated and control groups were compared with the Wilcoxon 2-sample test. In each trial, a substantial and statistically significant or highly significant reduction was observed in the colonization of the ceca of CE-treated chicks by E. coli strains, compared with that of untreated control. Referring to an arbitrary criterion for high shedders presented in the literature, it was concluded that at least for the ESBL E. coli, the results were also of epidemiological relevance.

  15. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G

    2017-02-01

    Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory

  16. Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose

    Science.gov (United States)

    Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.

    2016-01-01

    Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187

  17. Death of enterohemorrhagic Escherichia coli O157:H7 in real mayonnaise and reduced-calorie mayonnaise dressing as influenced by initial population and storage temperature.

    Science.gov (United States)

    Hathcox, A K; Beuchat, L R; Doyle, M P

    1995-12-01

    This study was undertaken to determine the survivability of low-density populations (10(0) and 10(2) CFU/g) of enterohemorrhagic Escherichia coli O157:H7 inoculated into real mayonnaise and reduced-calorie mayonnaise dressing and stored at 20 and 30 degrees C, temperatures within the range used for normal commercial mayonnaise distribution and storage. Inactivation patterns at 5 degrees C and inactivation of high-inoculum populations (10(6) CFU/g) were also determined. The pathogen did not grow in either mayonnaise formulation, regardless of the inoculum level or storage temperature. Increases in storage temperature from 5 to 20 degrees C and from 20 to 30 degrees C resulted in dramatic increases in the rate of inactivation. Populations of E. coli O157:H7 in the reduced-calorie and real formulations inoculated with a population of 0.23 to 0.29 log10 CFU/g and held at 30 degrees C were reduced to undetectable levels within 1 and 2 days, respectively; viable cells were not detected after 1 day at 20 degrees C. In mayonnaise containing an initial population of 2.23 log10 CFU/g, viable cells were not detected after 4 days at 30 degrees C or 7 days at 20 degrees C; tolerance was greater in real mayonnaise than in reduced-calorie mayonnaise dressing stored at 5 degrees C. The tolerance of E. coli O157:H7 inoculated at the highest population density (6.23 log 10 CFU/g) was less in reduced-calorie mayonnaise dressing than in real mayonnaise at all storage temperatures. In reduced-calorie mayonnaise dressing and real mayonnaise initially containing 2.23 log10 CFU/g, levels were undetectable after 28 and 58 days at 5 degrees C, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Engineering Escherichia coli for methanol conversion.

    Science.gov (United States)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  19. Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Agustino Martinez-Antonio

    2011-06-01

    Full Text Available Escherichia coli is the most well-know bacterial model about the function of its molecular components. In this review are presented several structural and functional aspects of their transcriptional regulatory network constituted by transcription factors and target genes. The network discussed here represent to 1531 genes and 3421 regulatory interactions. This network shows a power-law distribution with a few global regulators and most of genes poorly connected. 176 of genes in the network correspond to transcription factors, which form a sub-network of seven hierarchical layers where global regulators tend to be set in superior layers while local regulators are located in the lower ones. There is a small set of proteins know as nucleoid-associated proteins, which are in a high cellular concentrations and reshape the nucleoid structure to influence the running of global transcriptional programs, to this mode of regulation is named analog regulation. Specific signal effectors assist the activity of most of transcription factors in E. coli. These effectors switch and tune the activity of transcription factors. To this type of regulation, depending of environmental signals is named the digital-precise-regulation. The integration of regulatory programs have place in the promoter region of transcription units where it is common to observe co-regulation among global and local TFs as well as of TFs sensing exogenous and endogenous conditions. The mechanistic logic to understand the harmonious operation of regulatory programs in the network should consider the globalism of TFs, their signal perceived, coregulation, genome position, and cellular concentration. Finally, duplicated TFs and their horizontal transfer influence the evolvability of members of the network. The most duplicated and transferred TFs are located in the network periphery.

  20. Structure of Escherichia coli tryptophanase.

    Science.gov (United States)

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  1. Structure of Escherichia Coli Tryptophanase

    Energy Technology Data Exchange (ETDEWEB)

    Ku,S.; Yip, P.; Howell, P.

    2006-01-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the {alpha}-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the {alpha}-proton of the substrate for {beta}-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  2. Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs

    Directory of Open Access Journals (Sweden)

    Csörgő Bálint

    2012-01-01

    Full Text Available Abstract Background Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. Results By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity. The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. Conclusions By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of

  3. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, J.P.; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome...

  4. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    Science.gov (United States)

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  5. Fimbrial adhesins from extraintestinal Escherichia coli

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Schembri, Mark A.

    2010-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment...

  6. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    Although Escherichia coli is among the most common causes of Gram-negative bacteraemia, infectious endocarditis (IE) due to this pathogen is rare. A 67-y-old male without a previous medical history presented with a new mitral regurgitation murmur and persisting E. coli bacteraemia in spite of broad...

  7. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, J.P.; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome...

  8. Prevalence of Escherichia coli O157

    NARCIS (Netherlands)

    Abdissa, Rosa; Haile, Woynshet; Fite, Akafete Teklu; Beyi, Ashenafi Feyisa; Agga, Getahun E.; Edao, Bedaso Mammo; Tadesse, Fanos; Korsa, Mesula Geloye; Beyene, Takele; Beyene, Tariku Jibat; Zutter, De Lieven; Cox, Eric; Goddeeris, Bruno Maria

    2017-01-01

    Background: There is paucity of information regarding the epidemiology of Escherichia coli O157: H7 in developing countries. In this study, we investigated the occurrence of E. coli O157: H7 associated with beef cattle at processing plants and at retail shops in Ethiopia. Methods: Various samples

  9. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  10. Strategies for Protein Overproduction in Escherichia coli.

    Science.gov (United States)

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  11. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  12. ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli ANALISIS CEMARAN BAKTERI Escherichia coli

    OpenAIRE

    ANGGREINI, RAHAYU

    2015-01-01

    2015 RAHAYU ANGGREINI coli Penelitian ini bertujuan untuk melakukan identifikasi cemaran bakteri E. coli O157:H7 pada daging sapi di kota Makassar. Sampel pada penelitian ini sebanyak 72 sampel Kata Kunci : Daging sapi, pasar tradisional, E. coli, E. coli O157:H7, kontaminasi bakteri, identifikasi E. coli O157:H7.

  13. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  14. Induction and identification of disulfide-intact and disulfide-reduced beta-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS and top-down proteomics

    Science.gov (United States)

    The disulfide-intact and disulfide-reduced beta-subunit of Shiga toxin 2 (beta-Stx2) from Escherichia coli O157:H7 (strain EDL933) has been identified by matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic an...

  15. Escherichia coli O157:H7 biofilm formation and internalization on lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes

    Science.gov (United States)

    Escherichia coli O157:H7 contamination of leafy green vegetables is an ongoing concern for consumers. Biofilm-associated and internalized pathogens are relatively resistant to chemical treatments, but little is known about the response of these protected pathogens to irradiation. Leaves of Romaine l...

  16. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts

    Science.gov (United States)

    In preparing sheep for an in vivo Escherichia coli O157:H7 eradication trial, we found that 20/39 members of a single flock were naturally colonized by O157:H7-infecting phages. Characterization showed these were all one phage type (subsequently named CEV2) infecting 15/16 O157:H7, 7/72 ECOR, and c...

  17. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Aarestrup, Frank Møller

    2013-01-01

    Objectives To measure the effect of a voluntary ban on cephalosporin usage in the Danish pig production on the prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in pigs and pork.Methods Data on cephalosporin consumption were obtained from the VetStat database. For ...

  18. Evaluating the efficacy of three USDA-approved antimicrobial sprays for reducing surrogate Shiga toxin-producing cells of "Escherichia coli on bob veal carcasses

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) have recently been recognized as a problem for the veal industry, suggesting the need for effective antimicrobial intervention strategies throughout processing. Therefore, we evaluated the efficacy of lactic acid (4.5%), Citrilow™ (pH 1.2), and Beefxide®...

  19. Native valve Escherichia coli endocarditis following urosepsis.

    Science.gov (United States)

    Rangarajan, D; Ramakrishnan, S; Patro, K C; Devaraj, S; Krishnamurthy, V; Kothari, Y; Satyaki, N

    2013-05-01

    Gram-negative organisms are a rare cause of infective endocarditis. Escherichia coli, the most common cause of urinary tract infection and gram-negative septicemia involves endocardium rarely. In this case report, we describe infection of native mitral valve by E. coli following septicemia of urinary tract origin in a diabetic male; subsequently, he required prosthetic tissue valve replacement indicated by persistent sepsis and congestive cardiac failure.

  20. DNA supercoiling depends on the phosphorylation potential in Escherichia coli

    DEFF Research Database (Denmark)

    Van Workum, M.; van Dooren, S.J.M; Oldenburg, N

    1996-01-01

    ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ADP ratio was reduced by a shift to anaerobic conditions, by addition of protonophore (dinitrophenol) or by potassium cyanide addition, DNA...

  1. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Food Safety and Inspection Service Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products... manufacturing trimmings for six non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45..., non-intact product, that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26,...

  2. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli.

    Science.gov (United States)

    Chen, Yong; Song, Jinmei; Sui, Sen-fang; Wang, Da-Neng

    2003-12-01

    Overexpression of CorA, the major magnesium transporter from bacterial inner membrane, in Escherichia coli resulted in the synthesis of 60mg of protein per liter of culture, most of which however was in the form of inclusion bodies. The levels of inclusion body formation were reduced by lowering the cell culture temperature. To dissect CorA inclusion body formation and the folding process involved, we co-expressed the protein with various chaperones and other folding modulators. Expression of DnaK/DnaJ (Hsp70) prevented inclusion bodies from forming and resulted in the integration of more CorA into the membrane. GroEL/GroES (Hsp60/Hsp10) were less effective at reducing CorA inclusion body formation. Co-expression with either Ffh/4.5S-RNA, the signal recognition particle, or SecA, the ATPase that drives protein insertion into the membrane, had little effect on CorA folding. These results indicate: (1) that CorA inclusion bodies form immediately after synthesis at 37 degrees C, (2) that CorA solubility in the cytosol can be increased by co-expressing a chaperone system, (3) membrane targeting is probably not a rate-limiting factor, and (4) that membrane insertion becomes a limitation only when large amounts of soluble CorA are present in the cytosol. These co-expression systems can be used for producing other membrane proteins in large quantities.

  3. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha}-methylgluc...

  4. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...

  5. Escherichia Coli--Key to Modern Genetics.

    Science.gov (United States)

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  6. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...

  7. Leaner and meaner genomes in Escherichia coli

    DEFF Research Database (Denmark)

    Ussery, David

    2006-01-01

    A 'better' Escherichia coli K-12 genome has recently been engineered in which about 15% of the genome has been removed by planned deletions. Comparison with related bacterial genomes that have undergone a natural reduction in size suggests that there is plenty of scope for yet more deletions....

  8. Compaction of isolated Escherichia coli nucleoids

    NARCIS (Netherlands)

    Wegner, Anna S.; Wintraecken, Kathelijne; Spurio, Roberto; Woldringh, Conrad L.; Vries, de Renko; Odijk, Theo

    2016-01-01

    Escherichia coli nucleoids were compacted by the inert polymer polyethylene glycol (PEG) in the presence of the H-NS protein. The protein by itself appears to have little impact on the size of the nucleoids as determined by fluorescent microscopy. However, it has a significant impact on the nucle

  9. Evaluation of Combined Disinfection Methods for Reducing Escherichia coli O157:H7 Population on Fresh-Cut Vegetables

    Directory of Open Access Journals (Sweden)

    Eva Petri

    2015-07-01

    Full Text Available Most current disinfection strategies for fresh-cut industry are focused on the use of different chemical agents; however, very little has been reported on the effectiveness of the hurdle technology. The effect of combined decontamination methods based on the use of different sanitizers (peroxyacetic acid and chlorine dioxide and the application of pressure (vacuum/positive pressure on the inactivation of the foodborne pathogen E. coli O157:H7 on fresh-cut lettuce (Lactuca sativa and carrots (Daucus carota was studied. Fresh produce, inoculated with E. coli O157:H7, was immersed (4 °C, 2 min in tap water (W, chlorine water (CW, chlorine dioxide (ClO2: 2 mg/L and peroxyacetic acid (PAA: 100 mg/L in combination with: (a vacuum (V: 10 mbar or (b positive pressure application (P: 3 bar. The product quality and antimicrobial effects of the treatment on bacterial counts were determined both in process washing water and on fresh-cut produce. Evidence obtained in this study, suggests that the use of combined methods (P/V + sanitizers results in a reduction on the microorganism population on produce similar to that found at atmospheric pressure. Moreover, the application of physical methods led to a significant detrimental effect on the visual quality of lettuce regardless of the solution used. Concerning the process water, PAA proved to be an effective alternative to chlorine for the avoidance of cross-contamination.

  10. Pasteurized whole milk confers reduced susceptibilities to the antimicrobial agents trimethoprim, gatifloxacin, cefotaxime and tetracycline via the marRAB locus in Escherichia coli.

    Science.gov (United States)

    Peng, Yang; Hernandez, Ricardo L; Crow, Robert R; Jones, Suzanna E; Mathews, Sara A; Arnold, Ayanna M; Castillo, Eliseo F; Moseley, Jennifer M; Varela, Manuel F

    2008-11-01

    We inoculated pasteurized whole milk with Escherichia coli strains GC4468 (intact marRAB locus), JHC1096 (Delta marRAB), or AG112 (Delta marR), and incubated each overnight at 37 degrees C. All strains were then recovered from the milk cultures, and susceptibilities to antimicrobial agents were determined by the E-test strip method (CLSI). Cells of strain GC4468, prior to culturing in milk, were susceptible to trimethoprim, gatifloxacin, cefotaxime and tetracycline. After culturing GC4468 in pasteurized milk, however, the minimal inhibitory concentrations (MICs) increased 1.4-fold for trimethoprim (P0.05), 1.5-fold for gatifloxacin (P0.05), 2.0-fold for cefotaxime (P=0.008), and 1.4-fold for tetracycline (P0.05). After culturing GC4468 on milk count agar the MICs were enhanced 3.4-fold for trimethoprim (P0.05), 10-fold for gatifloxacin (P=0.001), 7.1-fold for cefotaxime (P=0.011), and 40.5-fold for tetracycline (P=0.074), but exhibiting tetracycline resistance with a mean MIC of 74.7+/-18.47 microg/ml (CLSI). The MICs of the antimicrobial agents for JHC1096 cells after culturing in pasteurized whole milk were indistinguishable (P0.05) from baseline MICs measured before culturing in the same type of milk. Thus, Esch. coli cells harbouring the marRAB locus exhibit reduced susceptibilities to multiple antimicrobial agents after culturing in pasteurized whole milk.

  11. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.

    Science.gov (United States)

    Xun, L; Sandvik, E R

    2000-02-01

    4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH(2))-utilizing monooxygenase. When an E. coli flavin reductase (Fre) having no apparent homology with HpaC was used to generate FADH(2) in vitro, HpaB was able to use FADH(2) and O(2) for the oxidation of 4-hydroxyphenylacetate. HpaB also used chemically produced FADH(2) for 4-hydroxyphenylacetate oxidation, further demonstrating that HpaB is an FADH(2)-utilizing monooxygenase. FADH(2) generated by Fre was rapidly oxidized by O(2) to form H(2)O(2) in the absence of HpaB. When HpaB was included in the reaction mixture without 4-hydroxyphenylacetate, HpaB bound FADH(2) and transitorily protected it from rapid autoxidation by O(2). When 4-hydroxyphenylacetate was also present, HpaB effectively competed with O(2) for FADH(2) utilization, leading to 4-hydroxyphenylacetate oxidation. With sufficient amounts of HpaB in the reaction mixture, FADH(2) produced by Fre was mainly used by HpaB for the oxidation of 4-hydroxyphenylacetate. At low HpaB concentrations, most FADH(2) was autoxidized by O(2), causing uncoupling. However, the coupling of the two enzymes' activities was increased by lowering FAD concentrations in the reaction mixture. A database search revealed that HpaB had sequence similarities to several proteins and gene products involved in biosynthesis and biodegradation in both bacteria and archaea. This is the first report of an FADH(2)-utilizing monooxygenase that uses FADH(2) as a substrate rather than as a cofactor.

  12. Escherichia coli in Europe: An Overview

    Directory of Open Access Journals (Sweden)

    Nerino Allocati

    2013-11-01

    Full Text Available Escherichia coli remains one of the most frequent causes of several common bacterial infections in humans and animals. E. coli is the prominent cause of enteritis, urinary tract infection, septicaemia and other clinical infections, such as neonatal meningitis. E. coli is also prominently associated with diarrhoea in pet and farm animals. The therapeutic treatment of E. coli infections is threatened by the emergence of antimicrobial resistance. The prevalence of multidrug-resistant E. coli strains is increasing worldwide principally due to the spread of mobile genetic elements, such as plasmids. The rise of multidrug-resistant strains of E. coli also occurs in Europe. Therefore, the spread of resistance in E. coli is an increasing public health concern in European countries. This paper summarizes the current status of E. coli strains clinically relevant in European countries. Furthermore, therapeutic interventions and strategies to prevent and control infections are presented and discussed. The article also provides an overview of the current knowledge concerning promising alternative therapies against E. coli diseases.

  13. Improving Detection of Shiga Toxin-Producing Escherichia coli by Molecular Methods by Reducing the Interference of Free Shiga Toxin-Encoding Bacteriophages

    Science.gov (United States)

    Quirós, Pablo; Martínez-Castillo, Alexandre

    2014-01-01

    Detection of Shiga toxin-producing Escherichia coli (STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection of stx is not always indicative of STEC because stx can be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positive stx detection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in which stx was replaced by gfp. Bacteria were tested either by culture or by qPCR for gfp while phages were tested using qPCR targeting stx in phage DNA. The procedure reduces phage particles by 3.3 log10 units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis. PMID:25362055

  14. Improving detection of Shiga toxin-producing Escherichia coli by molecular methods by reducing the interference of free Shiga toxin-encoding bacteriophages.

    Science.gov (United States)

    Quirós, Pablo; Martínez-Castillo, Alexandre; Muniesa, Maite

    2015-01-01

    Detection of Shiga toxin-producing Escherichia coli (STEC) by culture methods is advisable to identify the pathogen, but recovery of the strain responsible for the disease is not always possible. The use of DNA-based methods (PCR, quantitative PCR [qPCR], or genomics) targeting virulence genes offers fast and robust alternatives. However, detection of stx is not always indicative of STEC because stx can be located in the genome of temperate phages found in the samples as free particles; this could explain the numerous reports of positive stx detection without successful STEC isolation. An approach based on filtration through low-protein-binding membranes and additional washing steps was applied to reduce free Stx phages without reducing detection of STEC bacteria. River water, food, and stool samples were spiked with suspensions of phage 933W and, as a STEC surrogate, a lysogen harboring a recombinant Stx phage in which stx was replaced by gfp. Bacteria were tested either by culture or by qPCR for gfp while phages were tested using qPCR targeting stx in phage DNA. The procedure reduces phage particles by 3.3 log10 units without affecting the recovery of the STEC population (culturable or assessed by qPCR). The method is applicable regardless of phage and bacteria densities and is useful in different matrices (liquid or solid). This approach eliminates or considerably reduces the interference of Stx phages in the detection of STEC by molecular methods. The reduction of possible interference would increase the efficiency and reliability of genomics for STEC detection when the method is applied routinely in diagnosis and food analysis.

  15. Pathogenomics of uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    J Agarwal

    2012-01-01

    Full Text Available Subset of faecal E. coli that can enter, colonize urinary tract and cause infection are known as uropathogenic E. coli (UPEC. UPEC strains act as opportunistic intracellular pathogens taking advantage of host susceptibility using a diverse array of virulence factors. Presence of specific virulence associated genes on genomic/pathogenicity islands and involvement of horizontal gene transfer appears to account for evolution and diversity of UPEC. Recent success in large-scale genome sequencing and comparative genomics has helped in unravelling UPEC pathogenomics. Here we review recent findings regarding virulence characteristics of UPEC and mechanisms involved in pathogenesis of urinary tract infection.

  16. Infektionen mit darmpathogenen Escherichia coli.

    NARCIS (Netherlands)

    Friedrich, Alexander; Stein, Jürgen; Dignass, Axel

    2001-01-01

    E. coli ist ein wesentlicher Bestandteil der physiologischen Darmflora des Menschen. Die üblicherweise im Darm vorkommenden Kolibakterien sind apathogen und für den Menschen eher nützlich (Sonnenborn u. Greinwald 1990). Allerdings kennen wir bei dieser Bakterienspezies auch ein breites Spektrum von

  17. Survival of Escherichia coli in stormwater biofilters.

    Science.gov (United States)

    Chandrasena, G I; Deletic, A; McCarthy, D T

    2014-04-01

    Biofilters are widely adopted in Australia for stormwater treatment, but the reported removal of common faecal indicators (such as Escherichia coli (E. coli)) varies from net removal to net leaching. Currently, the underlying mechanisms that govern the faecal microbial removal in the biofilters are poorly understood. Therefore, it is important to study retention and subsequent survival of faecal microorganisms in the biofilters under different biofilter designs and operational characteristics. The current study investigates how E. coli survival is influenced by temperature, moisture content, sunlight exposure and presence of other microorganisms in filter media and top surface sediment. Soil samples were taken from two different biofilters to investigate E. coli survival under controlled laboratory conditions. Results revealed that the presence of other microorganisms and temperature are vital stressors which govern the survival of E. coli captured either in the top surface sediment or filter media, while sunlight exposure and moisture content are important for the survival of E. coli captured in the top surface sediment compared to that of the filter media. Moreover, increased survival was found in the filter media compared to the top sediment, and sand filter media was found be more hostile than loamy sand filter media towards E. coli survival. Results also suggest that the contribution from the tested environmental stressors on E. coli survival in biofilters will be greatly affected by the seasonality and may vary from one site to another.

  18. Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: evidence for its close relationship to hydroperoxidase I and a 'cytochrome a1b' preparation.

    Science.gov (United States)

    Poole, R K; Baines, B S; Appleby, C A

    1986-06-01

    A reducible hydroperoxidase, haemoprotein b-590, has been purified 16-fold from a soluble fraction of Escherichia coli K12, grown anaerobically with glycerol and fumarate. The Mr of the native protein, determined by gel filtration, was 331,000 although a minor, smaller species with a Mr of 188,000 was also detected; both had catalase activities. Based on the subunit Mr, determined from SDS gel electrophoresis to be 75,000, the above species are tentatively identified as tetramers and dimers, respectively. The isoelectric point of both species was 4.4. The absorption spectrum of the isolated haemoprotein is typical of ferric, high-spin haem. The A405/A280 ratio never exceeded 0.27, a value half of that obtained for E. coli hydroperoxidase I. On reduction with dithionite, the gamma, beta, and alpha bands were at 441, 559 and 590 nm respectively, the alpha-band being unusually distinct. Treatment of the reduced form with CO gave a sharp prominent gamma-band at 426 nm and caused significant shifts of the alpha and beta bands to shorter (574 and 545 nm) wavelengths. The pyridine haemochrome spectra showed the haem to be protohaem IX; the spectra were featureless between 580 and 630 nm, thus excluding the presence of haem a. However, some features of the difference spectra of the haemoprotein were reminiscent of cytochrome a1, notably the maxima in reduced minus oxidized spectra at 444 and 593 nm and the peaks and troughs in CO difference spectra at 426 and 446 nm respectively. The haemoprotein had high catalase activity: Vmax was 2.3 X 10(6) mol H2O2 (mol haem)-1 min-1 and the Km was 11 mM. At 10 mM-H2O2 the first order rate constant was 0.3 X 10(7) M-1 s-1. The haemoprotein was also a peroxidase with o-dianisidine or 2,3',6-trichloroindophenol as substrates; for the latter substrate, the Km was 0.18 mM. It is concluded that haemoprotein b-590 strongly resembles the hydroperoxidase I purified by Claiborne & Fridovich (Journal of Biological Chemistry 254, 4245-4252, 1979

  19. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  20. The evolution of the Escherichia coli phylogeny.

    Science.gov (United States)

    Chaudhuri, Roy R; Henderson, Ian R

    2012-03-01

    Escherichia coli is familiar to biologists as a classical model system, ubiquitous in molecular biology laboratories around the world. Outside of the laboratory, E. coli strains exist as an almost universal component of the lower-gut flora of humans and animals. Although usually a commensal, E. coli has an alter ego as a pathogen, and is associated with diarrhoeal disease and extra-intestinal infections. The study of E. coli diversity predates the availability of molecular data, with strains initially distinguished by serotyping and metabolic profiling, and genomic diversity illustrated by DNA hybridisation. The quantitative study of E. coli diversity began with the application of multi-locus enzyme electrophoresis (MLEE), and has progressed with the accumulation of nucleotide sequence data, from single genes through multi-locus sequence typing (MLST) to whole genome sequencing. Phylogenetic methods have shed light on the processes of genomic evolution in this extraordinarily diverse species, and revealed the origins of pathogenic E. coli strains, including members of the phylogenetically indistinguishable "genus"Shigella. In May and June 2011, an outbreak of haemorrhagic uraemic syndrome in Germany was linked to a strain of enterohaemorrhagic E. coli (EHEC) O104:H4. Application of high-throughput sequencing technologies allowed the genome and origins of the outbreak strain to be characterised in real time as the outbreak was in progress.

  1. Identification and Prevalence of Escherichia coli and Escherichia coli O157: H7 in Foods

    Directory of Open Access Journals (Sweden)

    Ancuta Mihaela Rotar

    2013-11-01

    Full Text Available The objective of this study is to investigate the incidence of Escherichia coli in animal and non-animal foods, and mainly the incidence of the serotype O157: H7 producing verotoxin. The presence of common Escherichia coli and Escherichia coli O157: H7 in various foods (of animal and non animal origin was performed in Transylvania area. We analyzed a total of one hundred forty-one samples of minced meat, one hundred twenty-six samples of meat , twenty six samples of meat products, five samples of alcoholic beverages, three samples of seafood, one hundred samples of cheese from pasteurized milk, seventeen samples of butter, four samples of vegetables and one sample of milk powder, using the standard cultural method and Vidas Eco method for E. coli O157: H7 strains. E. coli was identified in 50 samples of minced meat, 55 samples of meat prepared, 4 samples of meat products, 2 samples of alcoholic beverages, 25 samples of cheese from pasteurized milk, 6 samples of butter and 1 sample of vegetables. In this study were not been identified any foods contaminated with the E. coli O157: H7 serotype. The results of this reasearch have demostrated that E. coli wich represents a hygienic indicator of recent food contamination, can be destroyed with heat treatment and hygienic handling of foods. Our country over the years has been among the few countries where the incidence of the E. coli O157: H7 serotype has been minimal.

  2. Automatic tracking of Escherichia coli bacteria.

    Science.gov (United States)

    Xie, Jun; Khan, Shahid; Shah, Mubarak

    2008-01-01

    In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy videos. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in sequence of frames. Then a novel matching gain measure is introduced to cope with the challenges such as dramatic changes of cells' appearance and serious overlapping and occlusion. For multiple cell tracking, an optimal matching strategy is proposed to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually-determined trajectories, as well as those obtained from existing tracking methods. The stability of the algorithm with different parameter values is also analyzed and discussed.

  3. Escherichia coli necrotizing fasciitis in Hirschsprung's disease

    Directory of Open Access Journals (Sweden)

    Manal A. Alsaif

    2015-04-01

    Full Text Available Necrotizing fasciitis is a rare post-operative complication of Hirschsprung's disease. Very recently the only previous case of necrotizing fasciitis following a Soave procedure was reported with the etiologic agent being Pseudomonas aeruginosa. Here we are reporting the second case of necrotizing fasciitis following a Soave procedure caused by an extended spectrum beta lactamase harboring strain of Escherichia coli which is a rare pathogen in type II necrotizing fasciitis.

  4. Homology requirements for recombination in Escherichia coli.

    OpenAIRE

    Watt, V M; Ingles, C J; Urdea, M S; Rutter, W J

    1985-01-01

    The DNA sequence homology required for recombination in Escherichia coli has been determined by measuring the recombination frequency between insulin DNA in a miniplasmid pi VX and a homologous sequence in a bacteriophage lambda vector. A minimum of approximately equal to 20 base pairs in a completely homologous segment is required for significant recombination. There is an exponential increase in the frequency of recombination when the length of homologous DNA is increased from 20 base pairs...

  5. Membrane Vesicles Released by a hypervesiculating Escherichia coli Nissle 1917 tolR Mutant Are Highly Heterogeneous and Show Reduced Capacity for Epithelial Cell Interaction and Entry

    Science.gov (United States)

    Pérez-Cruz, Carla; Cañas, María-Alexandra; Giménez, Rosa; Badia, Josefa; Mercade, Elena; Aguilera, Laura

    2016-01-01

    Membrane vesicles (MVs) produced by Gram-negative bacteria are being explored for novel clinical applications due to their ability to deliver active molecules to distant host cells, where they can exert immunomodulatory properties. MVs released by the probiotic Escherichia coli Nissle 1917 (EcN) are good candidates for testing such applications. However, a drawback for such studies is the low level of MV isolation from in vitro culture supernatants, which may be overcome by the use of mutants in cell envelope proteins that yield a hypervesiculation phenotype. Here, we confirm that a tolR mutation in EcN increases MV production, as determined by protein, LPS and fluorescent lipid measurements. Transmission electron microscopy (TEM) of negatively stained MVs did not reveal significant differences with wild type EcN MVs. Conversely, TEM observation after high-pressure freezing followed by freeze substitution of bacterial samples, together with cryo-TEM observation of plunge-frozen hydrated isolated MVs showed considerable structural heterogeneity in the EcN tolR samples. In addition to common one-bilayer vesicles (OMVs) and the recently described double-bilayer vesicles (O-IMVs), other types of MVs were observed. Time-course experiments of MV uptake in Caco-2 cells using rhodamine- and DiO-labelled MVs evidenced that EcN tolR MVs displayed reduced internalization levels compared to the wild-type MVs. The low number of intracellular MVs was due to a lower cell binding capacity of the tolR-derived MVs, rather than a different entry pathway or mechanism. These findings indicate that heterogeneity of MVs from tolR mutants may have a major impact on vesicle functionality, and point to the need for conducting a detailed structural analysis when MVs from hypervesiculating mutants are to be used for biotechnological applications. PMID:28036403

  6. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.

    Science.gov (United States)

    Shah, Naman B; Duncan, Thomas M

    2015-08-21

    F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.

  7. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Isabel CHINEN; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  8. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  9. Risk factors for ESBL-producing Escherichia coli on pig farms

    NARCIS (Netherlands)

    Dohmen, Wietske; Dorado-García, Alejandro; Bonten, Marc J.M.; Wagenaar, Jaap A.; Mevius, Dik; Heederik, Dick J.J.

    2017-01-01

    The presence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) in food animals is a public health concern. This study aimed to determine prevalence of ESBL-E. coli on pig farms and to assess the effect of reducing veterinary antimicrobial use (AMU) and farm management

  10. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    OpenAIRE

    Reza Talebiyan; Mehdi Kheradmand; Faham Khamesipour; Mohammad Rabiee-Faradonbeh

    2014-01-01

    Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88....

  11. Siderophore production by uropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Vagrali Manjula

    2009-01-01

    Full Text Available Urinary tract infection (UTI is one of the most frequently encountered problems in ambulatory medicine. The present study was designed to determine siderophore production as the urovirulence factor of Escherichia coli isolated from the patients of UTI. A total of 160 strains of E. coli isolated from urine of patients with clinically diagnosed UTI were included in the study and 50 fecal isolates of E. coli, siderophore production was seen in 156 (97.5%. In 50 fecal isolates, siderophore production was seen in 2 (4%. Siderophore production has been shown to be more frequent in E. coli from patients with UTI, than in fecal isolates. The results suggest that siderophore production positive strains can be considered as UPEC. Thus, although a great deal has been learned regarding E. coli virulence mechanisms in UTI, much remains to be learned and the practical application of our growing understanding of E. coli virulence factors to the prevention and treatment of UTI has to be continued.

  12. Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli.

    Science.gov (United States)

    van den Beld, M J C; Reubsaet, F A G

    2012-06-01

    Shigella causes bacillary dysentery and is classified into four species based on their antigen characteristics. This classification does not reflect genetic relatedness; in fact, Shigella species are so related to Escherichia coli , they should be classified as one distinctive species in the genus Escherichia. The differentiation of Shigella and E. coli is even more complicated with the description of enteroinvasive E. coli (EIEC). EIEC are strains that possess some of the biochemical characteristics of E. coli and have the ability to cause dysentery using the same method of invasion as Shigella does. Sequencing of multiple housekeeping genes indicates that EIEC is more related to Shigella than to non-invasive E. coli. Shigella and EIEC evolved from the same ancestor and form a single pathovar within E. coli. Shigella and EIEC could be separated from other E. coli by a PCR targeting the ipaH-gene; this is a multicopy gene exclusively found in all Shigella and EIEC. It is possible to differentiate Shigella and all E. coli, including EIEC, by using multiple tests, including ipaH-gene PCR, physiological and biochemical typing and serological typing. Based on literature study, a key is designed for daily use in diagnostic laboratories to identify Shigella and all E. coli.

  13. Interaction between Escherichia coli and lunar fines

    Science.gov (United States)

    Johansson, K. R.

    1983-01-01

    A sample of mature lunar fines (10084.151) was solubilized to a high degree (about 17 percent) by the chelating agent salicylic acid (0.01. M). The neutralized (pH adjusted to 7.0) leachate was found to inhibit the growth of Escherichia coli (ATCC 259922) in a minimial mineral salts glucose medium; however, the inhibition was somewhat less than that caused by neutralized salicylic acid alone. The presence of lunar fines in the minimal medium was highly stimulatory to growth of E. coli following an early inhibitory response. The bacterium survived less well in the lunar leachate than in distilled water, no doubt because of the salicylate. It was concluded that the sample of lunar soil tested has nutritional value to E. coli and that certain products of fermentation helped to solubilize the lunar soil.

  14. Inducible repair of oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  15. Antibacterial behavior of diamond nanoparticles against Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Beranova, Jana; Seydlova, Gabriela [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200 Prague (Czech Republic); Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague (Czech Republic); Kozak, Halyna; Potocky, Stepan; Kromka, Alexander [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200 Prague (Czech Republic); Konopasek, Ivo [Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 12844 Prague (Czech Republic)

    2012-12-15

    In this study, we investigated the potential antibacterial properties of nanocrystalline diamond. In particular, we tested the effect of diamond nanoparticles (DNPs) on growth of the model gram-negative bacterium Escherichia coli on solid, nutrient-rich growth medium. We found that the presence of DNPs on agar plates significantly reduced the colony forming ability of E. coli. The antibacterial effect occurred in a concentration dependent manner and was conditional on the specific ratio of DNPs to the number of bacterial cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Role for the female in bacterial conjugation in Escherichia coli.

    Science.gov (United States)

    Freifelder, D

    1967-08-01

    Hfr and F' Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F' Lac or of lambda prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female.

  17. Synthesis and application of glycoconjugate-functionalized magnetic nanoparticles as potent anti-adhesion agents for reducing enterotoxigenic Escherichia coli infections

    Science.gov (United States)

    Raval, Yash S.; Stone, Roland; Fellows, Benjamin; Qi, Bin; Huang, Guohui; Mefford, O. Thompson; Tzeng, Tzuen-Rong J.

    2015-04-01

    Polyethylene oxide stabilized magnetic nanoparticles (PEO-MNPs) bio-functionalized with glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-MNPs) are synthesized using click chemistry. Interaction of GM3-MNPs with Enterotoxigenic Escherichia coli (ETEC) strain K99 (EC K99) is investigated using different microscopic techniques. Our results suggest that GM3-MNPs can effectively act as non-antibiotic anti-adhesion agents for treating ETEC infections.Polyethylene oxide stabilized magnetic nanoparticles (PEO-MNPs) bio-functionalized with glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-MNPs) are synthesized using click chemistry. Interaction of GM3-MNPs with Enterotoxigenic Escherichia coli (ETEC) strain K99 (EC K99) is investigated using different microscopic techniques. Our results suggest that GM3-MNPs can effectively act as non-antibiotic anti-adhesion agents for treating ETEC infections. Electronic supplementary information (ESI) available: Materials and methods used in the synthesis and characterization of the polymer and particles described in this manuscript. See DOI: 10.1039/c5nr00511f

  18. Enteroaggregative Escherichia coli in Daycare-A 1-Year Dynamic Cohort Study

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Stensvold, Christen R; Struve, Carsten

    2016-01-01

    Enteroaggregative Escherichia coli (EAEC) has been associated with persistent diarrhea, reduced growth acceleration, and failure to thrive in children living in developing countries and with childhood diarrhea in general in industrialized countries. The clinical implications of an EAEC carrier...

  19. Intramammary challenge with Escherichia coli following immunization with a curli-producing Escherichia coli.

    Science.gov (United States)

    Todhunter, D A; Smith, K L; Hogan, J S; Nelson, L

    1991-03-01

    Holstein and Jersey cattle were immunized with a curli-producing strain of Escherichia coli (pCRL65/A012) or a noncurli-producing strain (pUC18/HB101) to determine differences in resistance to establishment of experimental intramammary infection. Cows (n = 6 per group) were immunized at 14 d prior to drying off, 7 d of involution, and at calving with 3 x 10(10) E. coli in Freund's Incomplete Adjuvant. At 30 d of lactation, one mammary quarter of each cow was infused with a wild strain of E. coli (727). Escherichia coli 727 was isolated from a naturally occurring intramammary infection and produced curli. All challenged quarters became infected, and all cows developed acute clinical mastitis. Geometric mean duration of intramammary infections was 6 d for both immunization groups. All infections were spontaneously eliminated within 10 d. No differences occurred between immunization groups in blood selenium and glutathione peroxidase activity, plasma selenium, number of E. coli 727 isolated from secretion after challenge, rectal temperature and SCC response, clinical status of mammary quarters, or DMI. Reduction in milk production after challenge was greater for cows immunized with E. coli pCRL65/A012. Immunization of dairy cattle with a curli-producing strain of E. coli did not protect against experimental intramammary challenge during lactation.

  20. Ethanol production by Escherichia coli KO11; Producao de etanol por Escherichia coli KO11

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Katia Gianni de Carvalho [Sao Paulo Univ., SP (Brazil). Faculdade de Ciencias Farmaceuticas. Lab. de Microbiologia de Alimentos]. E-mail: gianni@usp.br; Takahashi, Caroline Maki; Alterthum, Flavio [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Microbiologia

    2002-08-01

    This paper discusses the potential use of Escherichia coli KO11 in production of ethanol, based on observation that this organism can efficiently metabolize sugar complex moistures obtained from the acid hydrolysis of lignocellulose materials such as sugar-cane bagasse, corncob, corn husk, Pinus sp and oak wood.

  1. Enteropathogenic Escherichia coli: foe or innocent bystander?

    Science.gov (United States)

    Hu, J; Torres, A G

    2015-08-01

    Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhoea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae(+)), which possess bfpA(+) and lack the stx(-) genes are found strongly associated with diarrhoeal cases. However, occurrence of atypical EPEC (aEPEC; eae(+)bfpA(-)stx(-)) in diarrhoeal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data are helping to answer the question of whether EPEC is mainly a foe or an innocent bystander during infection.

  2. Escherichia coli fliAZY operon.

    OpenAIRE

    Mytelka, D S; Chamberlin, M J

    1996-01-01

    We have cloned the Escherichia coli fliAZY operon, which contains the fliA gene (the alternative sigma factor sigma F) and two novel genes, fliZ and fliY. Transcriptional mapping of this operon shows two start sites, one of which is preceded by a canonical E sigma F-dependent consensus and is dependent on sigma F for expression in vivo and in vitro. We have overexpressed and purified sigma F and demonstrated that it can direct core polymerase to E sigma F-dependent promoters. FliZ and FliY ar...

  3. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces.......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  4. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  5. Production of recombinant avidin in Escherichia coli.

    Science.gov (United States)

    Airenne, K J; Sarkkinen, P; Punnonen, E L; Kulomaa, M S

    1994-06-24

    A recombinant avidin (re-Avd), containing amino acids (aa) 1-123 of the native chicken egg-white Avd, was produced in Escherichia coli. When cells were grown at 37 degrees C production was over 1 microgram/ml, due to altering the codon preference of the first ten codons. The re-Avd was recovered as a soluble protein from cells grown at 25 or 30 degrees C, whereas at 37 degrees C it was mostly insoluble in inclusion bodies. Our results indicated that, despite the potentially harmful biotin-binding activity of Avd, it is possible to produce biologically active Avd in E. coli which then can easily be purified by affinity chromatography on a biotin column in a single step.

  6. Escherichia coli O157:H7.

    Science.gov (United States)

    Mead, P S; Griffin, P M

    1998-10-10

    Escherichia coli O157 was first identified as a human pathogen in 1982. One of several Shiga toxin-producing serotypes known to cause human illness, the organism probably evolved through horizontal acquisition of genes for Shiga toxins and other virulence factors. E. coli O157 is found regularly in the faeces of healthy cattle, and is transmitted to humans through contaminated food, water, and direct contact with infected people or animals. Human infection is associated with a wide range of clinical illness, including asymptomatic shedding, non-bloody diarrhoea, haemorrhagic colitis, haemolytic uraemic syndrome, and death. Since laboratory practices vary, physicians need to know whether laboratories in their area routinely test for E. coli O157 in stool specimens. Treatment with antimicrobial agents remains controversial: some studies suggest that treatment may precipitate haemolytic uraemic syndrome, and other studies suggest no effect or even a protective effect. Physicians can help to prevent E. coli O157 infections by counselling patients about the hazards of consuming undercooked ground meat or unpasteurised milk products and juices, and about the importance of handwashing to prevent the spread of diarrhoeal illness, and by informing public-health authorities when they see unusual numbers of cases of bloody diarrhoea or haemolytic uraemic syndrome.

  7. Escherichia coli as a bioreporter in ecotoxicology.

    Science.gov (United States)

    Robbens, Johan; Dardenne, Freddy; Devriese, Lisa; De Coen, Wim; Blust, Ronny

    2010-11-01

    Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.

  8. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  9. Escherichia coli O157 infections and unpasteurised milk

    NARCIS (Netherlands)

    Allerberger, F; Wagner, M; Schweiger, P; Rammer, H P; Resch, A; Dierich, M P; Friedrich, A W; Karch, H

    2001-01-01

    We report on two children with Escherichia coli O157 infection, one of whom developed haemolytic uraemic syndrome (HUS). Both had drunk raw cows or goats milk in the week before their illness. Molecular subtyping identified a sorbitol fermenting Escherichia coli O157:H isolate from a dairy cow. This

  10. Escherichia coli O157 infections and unpasteurised milk

    NARCIS (Netherlands)

    Allerberger, F; Wagner, M; Schweiger, P; Rammer, H P; Resch, A; Dierich, M P; Friedrich, A W; Karch, H

    2001-01-01

    We report on two children with Escherichia coli O157 infection, one of whom developed haemolytic uraemic syndrome (HUS). Both had drunk raw cows or goats milk in the week before their illness. Molecular subtyping identified a sorbitol fermenting Escherichia coli O157:H isolate from a dairy cow. This

  11. Effects of therapeutical and reduced levels of antibiotics on the fraction of antibiotic-resistant strains of Escherichia coli in the chicken gut.

    Science.gov (United States)

    van der Horst, Michael A; Fabri, Teun H; Schuurmans, J Merijn; Koenders, Belinda B; Brul, Stanley; ter Kuile, Benno H

    2013-01-01

    Development of antibiotic resistance in the microbiota of farm animals and spread of antibiotic-resistant bacteria in the agricultural sector not only threaten veterinary use of antibiotics, but jeopardize human health care as well. The effects of exposure to antibiotics on spread and development of antibiotic resistance in Escherichia coli from the chicken gut were studied. Groups of 15 pullets each were exposed under strictly controlled conditions to a 2-day course of amoxicillin, oxytetracycline, or enrofloxacin, added to the drinking water either at full therapeutic dose, 75% of that, or at the carry-over level of 2.5%. During treatment and for 12 days afterwards, the minimal inhibitory concentration (MIC) for the applied antibiotics of E. coli strains isolated from cloacal swabs was measured. The full therapeutic dose yielded the highest percentage of resistant strains during and immediately after exposure. After 12 days without antibiotics, only strains from chickens that were given amoxicillin were significantly more often resistant than the untreated control. Strains isolated from pullets exposed to carry-over concentrations were only for a few days more often resistant than those from the control. These results suggest that, if chickens must be treated with antibiotics, a short intensive therapy is preferable. Even short-term exposure to carry-over levels of antibiotics can be a risk for public health, as also under those circumstances some selection for resistance takes place.

  12. Production of glycoprotein vaccines in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ihssen Julian

    2010-08-01

    Full Text Available Abstract Background Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. State-of-the art production of conjugate vaccines using chemical methods is a laborious, multi-step process. In vivo enzymatic coupling using the general glycosylation pathway of Campylobacter jejuni in recombinant Escherichia coli has been suggested as a simpler method for producing conjugate vaccines. In this study we describe the in vivo biosynthesis of two novel conjugate vaccine candidates against Shigella dysenteriae type 1, an important bacterial pathogen causing severe gastro-intestinal disease states mainly in developing countries. Results Two different periplasmic carrier proteins, AcrA from C. jejuni and a toxoid form of Pseudomonas aeruginosa exotoxin were glycosylated with Shigella O antigens in E. coli. Starting from shake flask cultivation in standard complex medium a lab-scale fed-batch process was developed for glycoconjugate production. It was found that efficiency of glycosylation but not carrier protein expression was highly susceptible to the physiological state at induction. After induction glycoconjugates generally appeared later than unglycosylated carrier protein, suggesting that glycosylation was the rate-limiting step for synthesis of conjugate vaccines in E. coli. Glycoconjugate synthesis, in particular expression of oligosaccharyltransferase PglB, strongly inhibited growth of E. coli cells after induction, making it necessary to separate biomass growth and recombinant protein expression phases. With a simple pulse and linear feed strategy and the use of semi-defined glycerol medium, volumetric glycoconjugate yield was increased 30 to 50-fold. Conclusions The presented data demonstrate that glycosylated proteins can be produced in recombinant E. coli at a larger scale. The described methodologies constitute an important step

  13. Optimization of heat and relative humidity conditions to reduce Escherichia coli O157:H7 contamination and maximize the germination of radish seeds.

    Science.gov (United States)

    Song, M K; Kim, H W; Rhee, M S

    2016-06-01

    We previously reported that a combination of heat and relative humidity (RH) had a marked bactericidal effect on Escherichia coli O157:H7 on radish seeds. Here, response surface methodology with a Box-Behnken design was used to build a model to predict reductions in E. coli O157:H7 populations based on three independent variables: heating temperature (55 °C, 60 °C, or 65 °C), RH (40%, 60%, and 80%), and holding time (8, 15, or 22 h). Optimum treatment conditions were selected using a desirability function. The predictive model for microbial reduction had a high regression coefficient (R(2) = 0.97), and the accuracy of the model was verified using validation data (R(2) = 0.95). Among the three variables examined, heating temperature (P seed germination, respectively. The optimum conditions for microbial reduction (6.6 log reduction) determined by ridge analysis were as follows: 64.5 °C and 63.2% RH for 17.7 h. However, when both microbial reduction and germination rate were taken into consideration, the desirability function yielded optimal conditions of 65 °C and 40% RH for 8 h (6.6 log reduction in the bacterial population; 94.4% of seeds germinated). This study provides comprehensive data that improve our understanding of the effects of heating temperature, RH, and holding time on the E. coli O157:H7 population on radish seeds. Radish seeds can be exposed to these conditions before sprouting, which greatly increases the microbiological safety of the products.

  14. Prevalence of diarrheagenic Escherichia coli in suckling rabbits

    OpenAIRE

    2016-01-01

    Diarrheagenic Escherichia coli (E. coli) in suckling rabbit causes collibacillosis, which is characterized by sever yellow diarrhea, poor growth and high mortalities. This study was undertaken to investigate the prevalence of diarrheagenic E. coli in suckling rabbits in Egypt. Additionally, expression of some virulence-associated genes in the isolated E. coli serotypes were examined using the polymerase chain reaction. Finally, antibiogram of the identified E. coli serotypes was also investig...

  15. Methane production from kitchen waste using Escherichia coli.

    Science.gov (United States)

    Jayalakshmi, S; Joseph, Kurian; Sukumaran, V

    2007-04-01

    Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.

  16. Cranberry extract inhibits in vitro adhesion of F4 and F18(+)Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18(+) verotoxigenic E. coli.

    Science.gov (United States)

    Coddens, Annelies; Loos, Michaela; Vanrompay, Daisy; Remon, Jean Paul; Cox, Eric

    2017-04-01

    F4(+)E. coli and F18(+)E. coli infections are an important threat for pig industry worldwide. Antibiotics are commonly used to treat infected piglets, but the emerging development of resistance against antibiotics raises major concerns. Hence, alternative therapies to prevent pigs from F4(+)E. coli and F18(+)E. coli infections need to be developed. Since cranberry previously showed anti-adhesive activity against uropathogenic E. coli, we aimed to investigate whether cranberry extract could also inhibit binding of F4(+)E. coli and F18(+)E. coli to pig intestinal epithelium. Using the in vitro villus adhesion assay, we found that low concentrations of cranberry extract (20μg or 100μg/ml) have strong inhibitory activity on F4(+)E. coli (75.3%, S.D.=9.31 or 95.8%, S.D.=2.56, respectively) and F18(+)E. coli adherence (100% inhibition). This effect was not due to antimicrobial activity. Moreover, cranberry extract (10mg or 100mg) could also abolish in vivo binding of F4 and F18 fimbriae to the pig intestinal epithelium in ligated loop experiments. Finally, two challenge experiments with F18(+)E. coli were performed to address the efficacy of in-feed or water supplemented cranberry extract. No effect could be observed in piglets that received cranberry extract only in feed (1g/kg or 10g/kg). However, supplementation of feed (10g/kg) and drinking water (1g/L) significantly decreased excretion and diarrhea. The decreased infection resulted in a decreased serum antibody response indicating reduced exposure to F18(+)E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Long term effects of Escherichia coli mastitis.

    Science.gov (United States)

    Blum, Shlomo E; Heller, Elimelech D; Leitner, Gabriel

    2014-07-01

    Escherichia coli is one of the most frequently diagnosed causes of bovine mastitis, and is typically associated with acute, clinical mastitis. The objective of the present study was to evaluate the long term effects of intramammary infections by E. coli on milk yield and quality, especially milk coagulation. Twenty-four Israeli Holstein cows diagnosed with clinical mastitis due to intramammary infection by E. coli were used in this study. Mean lactation number, days in milk (DIM) and daily milk yield (DMY) at the time of infection was 3.3 ± 1.3, 131.7 days ± 78.6 and 45.7 L ± 8.4, respectively. DMY, milk constituents, somatic cells count (SCC), differential leukocytes count and coagulation parameters were subsequently assessed. Two patterns of inflammation were identified: 'short inflammation', characterized by 15% decrease in DMY and >30 days to reach a new maximum DMY (n = 19). The estimated mean loss of marketable milk during the study was 200 L/cow for 'short inflammation' cases, and 1,500 L/cow for 'long inflammation' ones. Significant differences between 'short' and 'long inflammation' effects were found in almost all parameters studied. Long-term detrimental effects on milk quality were found regardless of clinical or bacteriological cure of affected glands.

  18. Cyclomodulins in urosepsis strains of Escherichia coli.

    Science.gov (United States)

    Dubois, Damien; Delmas, Julien; Cady, Anne; Robin, Frédéric; Sivignon, Adeline; Oswald, Eric; Bonnet, Richard

    2010-06-01

    Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, urosepsis origin (P, urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.

  19. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter

    OpenAIRE

    Elías, Alex O; Abarca, María José; Montes, Rebecca A; Chasteen, Thomas G; Pérez-Donoso, José M.; Vásquez, Claudio C.

    2012-01-01

    Several transporters suspected to be involved in tellurite uptake in Escherichia coli were analyzed. Results showed that the PitA phosphate transporter was related to tellurite uptake. Escherichia coli ΔpitA was approximately four-fold more tolerant to tellurite, and cell viability remained almost unchanged during prolonged exposure to the toxicant as compared with wild type or ΔpitB cells. Notably, reduced thiols (toxicant targets) as well as superoxide dismutase, catalase, and fumarase C ac...

  20. Transport of Escherichia coli in saturated porous media

    NARCIS (Netherlands)

    Foppen, J.W.A.

    2007-01-01

    Over de manier waarop de bacterie en tevens meest bekende fecale indicator soort Escherichia coli getransporteerd wordt in grondwater is relatief weinig bekend. In deze studie wordt de verwijdering van E. coli uit grondwater ten gevolge van E. coli - sediment interacties bestudeerd en modelmatig

  1. Transport of Escherichia coli in saturated porous media

    NARCIS (Netherlands)

    Foppen, J.W.A.

    2007-01-01

    Over de manier waarop de bacterie en tevens meest bekende fecale indicator soort Escherichia coli getransporteerd wordt in grondwater is relatief weinig bekend. In deze studie wordt de verwijdering van E. coli uit grondwater ten gevolge van E. coli - sediment interacties bestudeerd en modelmatig ge

  2. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Science.gov (United States)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  3. Transport of Escherichia coli in saturated porous media

    NARCIS (Netherlands)

    Foppen, J.W.A.

    2007-01-01

    Over de manier waarop de bacterie en tevens meest bekende fecale indicator soort Escherichia coli getransporteerd wordt in grondwater is relatief weinig bekend. In deze studie wordt de verwijdering van E. coli uit grondwater ten gevolge van E. coli - sediment interacties bestudeerd en modelmatig ge

  4. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    Reyes, Daniel; Vilchez, Samuel; Paniagua, Margarita; Colque-Navarro, Patricia; Weintraub, Andrej; Möllby, Roland; Kühn, Inger

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  5. Diarrheagenic Escherichia coli Markers and Phenotypes among Fecal E. coli Isolates Collected from Nicaraguan Infants ▿

    OpenAIRE

    2010-01-01

    We analyzed the prevalence of diarrheagenic Escherichia coli (DEC) markers and common phenotypes in 2,164 E. coli isolates from 282 DEC-positive samples. Enteropathogenic E. coli (EPEC) and enteroaggregative E. coli (EAEC) were very diverse and were not correlated with diarrhea. Enterotoxigenic E. coli (ETEC) estA and enterohemorrhagic E. coli (EHEC) belonged to a few phenotypes and were significantly correlated with diarrhea.

  6. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  7. The eclipse period of Escherichia coli

    DEFF Research Database (Denmark)

    von Freiesleben, Ulrik; Krekling, Martin A.; Hansen, Flemming G.

    2000-01-01

    The minimal time between successive initiations on the same origin (the eclipse) in Escherichia coli was determined to be approximately 25-30 min. An inverse relationship was found between the length of the eclipse and the amount of Dam methyltransferase in the cell, indicating that the eclipse...... corresponds to the period of origin hemimethylation. The SeqA protein was absolutely required for the eclipse, and DnaA titration studies suggested that the SeqA protein prevented the binding of multiple DnaA molecules on oriC (initial complex formation). No correlation between the amount of SeqA and eclipse...... length was revealed, but increased SeqA levels affected chromosome partitioning and/or cell division. This was corroborated further by an aberrant nucleoid distribution in SeqA-deficient cells. We suggest that the SeqA protein's role in maintaining the eclipse is tied to a function in chromosome...

  8. Efficacy of Neutral pH Electrolyzed Water in Reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on Fresh Produce Items using an Automated Washer at Simulated Food Service Conditions.

    Science.gov (United States)

    Afari, George K; Hung, Yen-Con; King, Christopher H

    2015-08-01

    The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.

  9. Attachment of Escherichia coli and enterococci to particles in runoff.

    Science.gov (United States)

    Soupir, Michelle L; Mostaghimi, Saied; Dillaha, Theo

    2010-01-01

    Association of Escherichia coli and enterococci with particulates present in runoff from erodible soils has important implications for modeling the fate and transport of bacteria from agricultural sources and in the selection of management practices to reduce bacterial movement to surface waters. Three soils with different textures were collected from the Ap horizon (silty loam, silty clay loam, and loamy fine sand), placed in portable box plots, treated with standard cowpats, and placed under a rainfall simulator. Rainfall was applied to the plots until saturation-excess flow occurred for 30 min, and samples were collected 10, 20, and 30 min after initiation of the runoff event. The attachment of E. coli and enterococci to particles present in runoff was determined by a screen filtration and centrifugation procedure. Percentage of E. coli and enterococci attached to particulates in runoff ranged from 28 to 49%, with few statistically significant differences in attachment among the three soils. Similar partitioning release patterns were observed between E. coli and enterococci from the silty loam (r = 0.57) and silty clay loam soils (r = 0.60). At least 60% of all attached E. coli and enterococci were associated particles within an 8- to 62-microm particle size category. The results indicate that the majority of fecal bacteria attach to and are transported with manure colloids in sediment-laden flow regardless of the soil texture.

  10. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity

    Institute of Scientific and Technical Information of China (English)

    Margarita; Martinez-Medina; Librado; Jesus; Garcia-Gil

    2014-01-01

    Escherichia coli(E. coli), and particularly the adherent invasive E. coli(AIEC) pathotype, has been increasingly implicated in the ethiopathogenesis of Crohn’s disease(CD). E. coli strains with similar pathogenic features to AIEC have been associated with other intestinal disorders such as ulcerative colitis, colorectal cancer, and coeliac disease, but AIEC prevalence in these diseases remains largely unexplored. Since AIEC was described one decade ago, substantial progress has been made in deciphering its mechanisms of pathogenicity. However, the molecular bases that characterize the phenotypic properties of this pathotype are still not well resolved. A review of studies focused on E. coli populations in inflammatory bowel disease(IBD) is presented here and we discuss about the putative role of this species on each IBD subtype. Given the relevance of AIEC in CD pathogenesis, we present the latest research findings concerning AIEC host-microbe interactions and pathogenicity. We also review the existing data regarding the prevalence and abundance of AIEC in CD and its association with other intestinal diseases from humans and animals, in order to discuss the AIEC disease- and hostspecificity. Finally, we highlight the fact that dietarycomponents frequently found in industrialized countries may enhance AIEC colonization in the gut, which merits further investigation and the implementation of preventative measures.

  11. Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression.

    Science.gov (United States)

    Vila, Jordi; Soto, Sara M

    2012-05-01

    Escherichia coli is one of the most frequent bacteria implicated in biofilm formation, which is a dynamic process whose first step consists in bacteria adhesion to surfaces through type 1 fimbriae. Salicylate induces a number of morphological and physiological alterations in bacteria including the activation of the transcriptional regulator MarA. In this report the effects of salicylate on biofilm formation and their relationship with MarA were studied. An inverse relationship was observed between in vitro biofilm formation and salicylate concentration added to the culture medium. Salicylate increases the expression of marA and decreases the expression of fimA and fimB genes in the wild-type strain. In addition, the fimA and fimB expression was decreased in a MarR mutant in which marA was also overexpressed. In conclusion, the expression of type 1 fimbriae in presence of salicylate may be regulated by the level of marA expression through fimB regulator, albeit through neither the ompX nor the tolC genes.

  12. [Hemolytic uremic syndrome caused by enterohaemorrhagic Escherichia coli].

    Science.gov (United States)

    Ibarra, Cristina; Goldstein, Jorge; Silberstein, Claudia; Zotta, Elsa; Belardo, Marcela; Repetto, Horacio A

    2008-10-01

    Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, plaquetopenia and kidney damage. It is the leading cause of acute renal failure in pediatric age and the second for chronic renal failure. Shiga toxin-producing Escherichia coli (STEC) is the first etiologic agent of HUS being its main reservoir cattle and transmitted via contaminated food. At present, there is no specific treatment to reduce the progression of HUS. The study of the mechanisms by which STEC infects and Shiga toxin induces HUS can help to find new strategies to prevent this disease.

  13. Escherichia coli biofilms: Accepting the therapeutic challenges

    Directory of Open Access Journals (Sweden)

    Trupti Bajpai

    2016-01-01

    Full Text Available Background: Urinary tract infections (UTI′s are a major public health concern globally. Recurrent UTI′s that are predominantly caused by uropathogenic Escherichia coli′s forms biofilm that is an intracellular, structured bacterial community, enclosed in a self-produced matrix, adherent to an inert, or living surface. Biofilm physiology is characterized by increased tolerance to stress, antibiotics, and immunological defenses, which is at the origin of their resilience in most medical and industrial settings. Materials and Methods: The present prospective study was carried out from December 2013 to May 2014 in the Department of Microbiology of a Teaching Tertiary Care hospital located in central India. A total of 100 consecutive, nonrepetitive E. coli isolates were subjected to biofilm formation study by Christensen′s tube adherence method. All the isolates were also subjected to antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method in accordance with the Clinical Laboratory Standard Institute 2013 guidelines. Results and Discussion: Out of the 100 E. coli isolates studied, 62 (62% were positive for biofilm formation. High percentage of resistance was detected in isolates among the male inpatient group. Overall drug resistance was found to be very high among both biofilm as well as nonbiofilm forming isolates indicating excessive drug resistance among both community and hospital organisms. Conclusion: A greater understanding of the nature of biofilm organisms in chronic UTI′s would help in the development of novel and more effective treatments for these problematic diseases.

  14. Expanding ester biosynthesis in Escherichia coli.

    Science.gov (United States)

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2014-04-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l(-1)). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters.

  15. The crystal structure Escherichia coli Spy.

    Science.gov (United States)

    Kwon, Eunju; Kim, Dong Young; Gross, Carol A; Gross, John D; Kim, Kyeong Kyu

    2010-11-01

    Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress response. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stabilizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.

  16. Independence of replisomes in Escherichia coli chromosomalreplication

    Energy Technology Data Exchange (ETDEWEB)

    Breier, Adam M.; Weier, Heinz-Ulrich G.; Cozzarelli, Nicholas R.

    2005-03-13

    In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.

  17. Biosynthesis of ethylene glycol in Escherichia coli.

    Science.gov (United States)

    Liu, Huaiwei; Ramos, Kristine Rose M; Valdehuesa, Kris Niño G; Nisola, Grace M; Lee, Won-Keun; Chung, Wook-Jin

    2013-04-01

    Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from D-xylose is reported. This route consists of four steps: D-xylose → D-xylonate → 2-dehydro-3-deoxy-D-pentonate → glycoaldehyde → EG. Respective enzymes, D-xylose dehydrogenase, D-xylonate dehydratase, 2-dehydro-3-deoxy-D-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the D-xylose → D-xylulose reaction was prevented by disrupting the D-xylose isomerase gene. The most efficient construct produced 11.7 g L(-1) of EG from 40.0 g L(-1) of D-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde → glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to D-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.

  18. The extracellular RNA complement of Escherichia coli.

    Science.gov (United States)

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  19. Escherichia coli Pathotypes Occupy Distinct Niches in the Mouse Intestine

    OpenAIRE

    Jessica P Meador; Caldwell, Matthew E.; Cohen, Paul S.; Conway, Tyrrell

    2014-01-01

    Since the first step of the infection process is colonization of the host, it is important to understand how Escherichia coli pathogens successfully colonize the intestine. We previously showed that enterohemorrhagic O157:H7 strain E. coli EDL933 colonizes a niche in the streptomycin-treated mouse intestine that is distinct from that of human commensal strains, which explains how E. coli EDL933 overcomes colonization resistance imparted by some, but not all, commensal E. coli strains. Here we...

  20. General considerations regarding the infections with the Escherichia coli pathogen

    Directory of Open Access Journals (Sweden)

    Marius Necşulescu

    2017-04-01

    Full Text Available Escherichia coli is the species of the genus Escherichia with the greatest epidemiological impact. Escherichia coli infections are found mainly in places with poor hygiene; the infants with ages between 1 and 3 years old are included in the category with the highest risk. It is a "fecal-oral" transmission mechanism as a result of consumption of contaminated food or water, or by "dirty hands". The foods most commonly implicated in the transmission of the infection are unpasteurized milk and milk products, beef, especially the one insufficiently cooked, unpasteurized fruit juice, lettuce and insufficiently washed vegetables. The disease has been reported worldwide, being described numerous episodes of infection with Escherichia coli that caused multiple illnesses and deaths. Escherichia coli has three types of antigens: antigen "O" (somatic, antigen "H" (flagella and antigen "K" (capsular. Clinical manifestations are present in the form of non-specific diarrhea, a dysentery form of enteritis, choleriform enteritis, hemorrhagic colitis and hemolytic uremic syndrome (HUS. The Escherichia coli infection diagnosis is made by identifying the etiologic agent and/or by highlighting the VTI toxin in the feces. The treatment consists in precautionary antibiotherapy, hydrodynamics and electrolyte rebalancing, blood transfusions and dialysis, if in the case of renal failure. The prevention of infections with Escherichia coli is achieved by personal hygiene, food hygiene and work hygiene.

  1. Probability of recovering pathogenic Escherichia coli from foods.

    Science.gov (United States)

    Hill, W E; Ferreira, J L; Payne, W L; Jones, V M

    1985-01-01

    The probability of recovering pathogenic Escherichia coli from food by the Bacteriological Analytical Manual method was determined by the effects of several factors: the number of strains per food, the ability of pathogenic strains to survive enrichment, and the frequency of plasmid loss during enrichment. Biochemical patterns indicated the presence of about six E. coli strains per food sample. About half of the strains isolated from humans did not survive enrichment. Among those which grew, plasmid loss, as determined by gel electrophoresis and DNA colony hybridization, ranged from 20 to 95%. The combined effects of failure to survive enrichment and plasmid loss decreased the relative numbers of these strains and reduced the chance of detecting pathogens. To counteract this tendency and obtain a 90 to 95% probability off recovering a given pathogenic strain, 40 to 50 colonies per food sample should be picked during the routine testing of foods. PMID:3893320

  2. Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation

    DEFF Research Database (Denmark)

    Koch, Birgit; Ma, Xiaofang; Løbner-Olesen, Anders

    2010-01-01

    We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCIVc). Replication from oriCIVc initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration....... cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCIVc allowed us to specifically address...

  3. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division...

  4. The incidence and antibiotics susceptibility of Escherichia coli O157 ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-22

    Feb 22, 2010 ... The incidence of Escherichia coli 0157: H7 was assessed in meat samples from .... of this product resulting from contamination with STEC, a zoonotic .... Adak GK, Longs SM, O'Briens SJ (2002) Trends in indigenous forborne.

  5. mcr-1 identified in Avian Pathogenic Escherichia coli (APEC)

    National Research Council Canada - National Science Library

    Nicolle Lima Barbieri; Daniel W Nielsen; Yvonne Wannemuehler; Tia Cavender; Ashraf Hussein; Shi-gan Yan; Lisa K Nolan; Catherine M Logue

    2017-01-01

    .... Here, we examined a collection (n = 980) of Avian Pathogenic Escherichia coli (APEC) isolated from poultry with colibacillosis from the US and internationally for the presence of mcr-1 and mcr-2, genes known to encode colistin resistance...

  6. Overexpression of vsr in Escherichia coli is mutagenic.

    Science.gov (United States)

    Doiron, K M; Viau, S; Koutroumanis, M; Cupples, C G

    1996-01-01

    Overexpression of vsr in Escherichia coli stimulates transition and frameshift mutations. The pattern of mutations suggests that mutagenesis is due to saturation or inactivation of dam-directed mismatch repair. PMID:8763960

  7. Norfloxacin resistance in a clinical isolate of Escherichia coli.

    OpenAIRE

    Aoyama, H; Sato, K; Kato, T.; Hirai, K; Mitsuhashi, S.

    1987-01-01

    Analysis of DNA gyrase supercoiling and of norfloxacin uptake in Escherichia coli GN14176, a moderately norfloxacin-resistant clinical isolate, indicated that resistance was associated with both an altered drug target and a reduction in drug uptake.

  8. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia.

    Science.gov (United States)

    Zuo, Guanghong; Xu, Zhao; Hao, Bailin

    2013-02-01

    Shigella species and Escherichia coli are closely related organisms. Early phenotyping experiments and several recent molecular studies put Shigella within the species E. coli. However, the whole-genome-based, alignment-free and parameter-free CVTree approach shows convincingly that four established Shigella species, Shigella boydii, Shigella sonnei, Shigella felxneri and Shigella dysenteriae, are distinct from E. coli strains, and form sister species to E. coli within the genus Escherichia. In view of the overall success and high resolution power of the CVTree approach, this result should be taken seriously. We hope that the present report may promote further in-depth study of the Shigella-E. coli relationship.

  9. Efficacy of a novel prebiotic and a commercial probiotic in reducing mortality and production losses due to cold stress and Escherichia coli challenge of broiler chicks 1.

    Science.gov (United States)

    Huff, G R; Huff, W E; Rath, N C; El-Gohary, F A; Zhou, Z Y; Shini, S

    2015-05-01

    Prebiotics consisting of resistant starch may alter intestinal ecology, thus modulating inflammation and increasing intestinal health through increased cecal production of short-chain fatty acids (SCFA). Probiotics may directly alter the intestinal microbiome, resulting in the same effects. We hypothesize that adding prebiotics and probiotics to feed may protect the gut of young chicks under stress. Studies 1, 2, and 3 evaluated treatments in a cold stress (CS) and Escherichia coli (EC) oral challenge to 430 day-old broiler chicks for 3 wk. In study 1, prebiotics were administered as 15% of the diet during the first week only and consisted of the following: Hi-Maize resistant starch (HM), potato starch (PS), or raw potato (RP). In studies 2 and 3, the PS treatment was identical to study 1, and an additional probiotic treatment (PRO) was administered in feed and water. In study 1, PS protected BW during the first week and decreased the mortality of CS/EC-challenged birds during the first week and wk 3, while RP decreased the mortality of warm-brooded birds challenged with EC during the first week. In study 2, PS decreased and PRO increased the main effect mean (MEM) of the first week BW. PS and PRO numerically decreased the feed conversion ratio (FCR) by 23 and 29 points, respectively, in CS/EC-challenged birds with no effects on mortality. In study 3, PS decreased and PRO increased the first week and wk 3 MEM BW. PS numerically increased FCR by 16 points, while PRO decreased FCR by 2 points. Both PS and PRO tended to increase overall mortality, and PRO significantly increased mortality in the CS/EC challenge. These results suggest that the effects of PS may be too variable in this challenge model for further study; however, the PRO treatment improved production values and may have potential as an alternative to antibiotics during the first weeks after hatch.

  10. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    Science.gov (United States)

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  11. Nanotextile membranes for bacteria Escherichia coli capturing

    Directory of Open Access Journals (Sweden)

    Jaroslav Lev

    2010-01-01

    Full Text Available The article describes an experimental study dealing with the possibility of nanotextile materials usa­ge for microbiologically contaminated water filtration. The aim of the study is to verify filtration ability of different nanotextile materials and evaluate the possibilities of practical usage. Good detention ability of these materials in the air filtration is the presumption for nanotextile to be used for bacteria filtration from a liquid. High nanotextile porosity with the nanotextile pores dimensions smaller than a bacteria size predicates the possibility of a successful usage of these materials. For the experiment were used materials made from electrospinning nanofibres under the label PA612, PUR1, PUR2 s PUR3 on the supporting unwoven textiles (viscose and PP. As a model simulation of the microbial contamination, bacteria Escherichia coli was chosen. Contaminated water was filtered during the overpressure activity of 105Pa on the input side of the filter from the mentioned material. After three-day incubation on the nutrient medium, cultures found in the samples before and after filtration were compared. In the filtrated water, bacteria E. coli were indicated, which did not verify the theoretical presumptions about an absolut bacteria detention. However, used materials caught at least 94% of bacteria in case of material PUR1 and up to 99,996% in case of material PUR2. These results predict the possibility of producing effective nanotextile filters for microbiologically contaminated water filtration.Recommendation: For the production of materials with better filtrating qualities, experiments need to be done, enabling better understanding of the bacteria detention mechanisms on the nanotextile material, and parameters of the used materials that influence the filtrating abilities need to be verified.

  12. Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS), 2016

    Science.gov (United States)

    2017-06-30

    Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS...and prevalence among all beneficiaries seeking care within the Military Health System (MHS). This report describes demographics, clinical...linked to assess descriptive and clinical factors related to E. coli. Health Level 7 (HL7)-formatted Composite Health Care System (CHCS) microbiology data

  13. Evaluating the Efficacy of Three U.S. Department of Agriculture-Approved Antimicrobial Sprays for Reducing Shiga Toxin-Producing Escherichia coli Surrogate Populations on Bob Veal Carcasses.

    Science.gov (United States)

    2016-06-01

    Effective antimicrobial intervention strategies to reduce Shiga toxin-producing Escherichia coli (STEC) risks associated with veal are needed. This study evaluated the efficacy of lactic acid (4.5%, pH 2.0), Citrilow (pH 1.2), and Beefxide (2.25%, pH 2.3) for reducing STEC surrogates on prerigor and chilled bob veal carcasses and monitored the effects of these interventions on chilled carcass color. Dehided bob veal carcasses were inoculated with a five-strain cocktail of rifampin-resistant, surrogate E. coli bacteria.E. coli surrogates were enumerated after inoculation, after water wash, after prechill carcass antimicrobial spray application, after chilling for 24 h, and after postchill carcass antimicrobial spray application; carcass color was measured throughout the process. A standard carcass water wash (∼50°C) reduced the STEC surrogate population by 0.9 log CFU/cm(2) (P ≤ 0.05). All three antimicrobial sprays applied to prerigor carcasses delivered an additional ∼0.5-log reduction (P ≤ 0.05) of the surrogates. Chilling of carcasses for 24 h reduced (P ≤ 0.05) the surrogate population by an additional ∼0.4 log cycles. The postchill application of the antimicrobial sprays provided no further reductions. Carcass L*, a*, and b* color values were not different (P > 0.05) among carcass treatments. Generally, the types and concentrations of the antimicrobial sprays evaluated herein did not negatively impact visual or instrumental color of chilled veal carcasses. This study demonstrates that warm water washing, followed by a prechill spray treatment with a low-pH chemical intervention, can effectively reduce STEC risks associated with veal carcasses; this provides processors a validated control point in slaughter operations.

  14. Completion of DNA replication in Escherichia coli.

    Science.gov (United States)

    Wendel, Brian M; Courcelle, Charmain T; Courcelle, Justin

    2014-11-18

    The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.

  15. (ESBL)-producing Escherichia coli isolated from cl

    African Journals Online (AJOL)

    spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from clinical ... Methods: A total of 127 E. coli were collected from clinical samples in Kerman hospitals. The antibiotic ..... in Mexico and 26.1 % in Turkey [23,24]. These.

  16. Efficient expression of the yeast metallothionein gene in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Berka, T.; Shatzman, A.; Zimmerman, J.; Strickler, J.; Rosenberg, M.

    1988-01-01

    The yeast metallothionein gene CUP1 was cloned into a bacterial expression system to achieve efficient, controlled expression of the stable, unprocessed protein product. The Escherichia coli-synthesized yeast metallothionein bound copper, cadmium, zinc, indicating that the protein was functional. Furthermore, E. coli cells expressing CUP1 acquired a new, inducible ability to selectively sequester heavy metal ions from the growth medium.

  17. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    -lactamase-producing Escherichia coli was assessed by testing an array comprising different types of cationic peptidomimetics obtained by a general monomer-based solid-phase synthesis protocol. Most of the peptidomimetics possessed high to moderate activity toward multidrug-resistant E. coli as opposed to the corresponding...

  18. Characterization of enterohemorrhagic Escherichia coli on veal hides and carcasses

    Science.gov (United States)

    Enterohemorrhagic E. coli (EHEC) are Shiga toxin–producing Escherichia coli (STEC) associated with the most severe forms of foodborne illnesses. The United States Department of Agriculture (USDA) Food Safety Inspection Service (FSIS) has identified a higher percentage of non-O157 EHEC compared to E....

  19. Escherichia coli Eyelid Abscess in a Patient with Alcoholic Cirrhosis

    Directory of Open Access Journals (Sweden)

    Matthew Stratton

    2015-01-01

    Full Text Available Escherichia coli (E. coli is a rare cause of ocular infections and has not yet been reported as a cause of an ocular abscess. We describe the case of a 47-year-old woman with a history of alcoholic cirrhosis who presented with painful left lower eyelid swelling that did not improve with oral antibiotics. The abscess was drained and cultures were positive for E. coli. Patients with cirrhosis are at increased risk for developing E. coli bacterial infections, but to our knowledge this is the first case of an E. coli eyelid abscess reported in the literature.

  20. {sup 99m}Technetium labelled Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, S.O.F.; Cardoso, V.N. [Radioisotope Laboratory, Faculty of Pharmacy/UFMG, Belo Horizonte (Brazil); Resende, B.M.; Nunan, E.A. [Biological Control Laboratory, Faculty of Pharmacy/UFMG, Belo Horizonte (Brazil); Simal, C.J.R. [Laboratory Nuclear Medicine, Faculty of Medicine/UFMG, Belo Horizonte (Brazil)

    1999-07-01

    Samples of a culture of unlabeled Escherichia coli were incubated with different concentrations of stannous chloride for various time periods. {sup 99m}Tc (26.0 MBq) was added to each preparation and the results showed a labelling yield of 98% for E. coli. Since the bacterial viability of {sup 99m}Tc-E. coli and E. coli did not show any statistical differences, these results demonstrate that labelling of E. coli with {sup 99m}Tc does not modify the bacterial viability, and the radiolabelled bacteria may be a good model to study bacterial translocation.

  1. Validation of the use of organic acids and acidified sodium chlorite to reduce Escherichia coli O157 and Salmonella typhimurium in beef trim and ground beef in a simulated processing environment.

    Science.gov (United States)

    Harris, K; Miller, M F; Loneragan, G H; Brashears, M M

    2006-08-01

    A study was conducted to determine if acidified sodium chlorite (1,200 ppm) and acetic and lactic acids (2 and 4%) were effective in reducing foodborne pathogens in beef trim prior to grinding in a simulated processing environment. The reduction of Salmonella Typhimurium and Escherichia coli O157:H7 at high (4.0 log CFU/g) and low (1.0 log CFU/g) inoculation doses was evaluated at various processing steps, including the following: (i) in trim just after treatment application, (ii) in ground beef just after grinding, (iii) in ground beef 24 h after refrigerated storage, (iv) in ground beef 5 days after refrigerated storage, and (v) in ground beef 30 days after frozen storage. All antimicrobial treatments reduced the pathogens on the trim inoculated with the lower inoculation dose to nondetectable numbers in the trim and in the ground beef. There were significant reductions of both pathogens in the trim and in the ground beef inoculated with the high inoculation doses. On the trim itself, E. coli O157:H7 and Salmonella Typhimurium were reduced by 1.5 to 2.0 log cycles, with no differences among all treatments. In the ground beef, the organic acids were more effective in reducing both pathogens than the acidified sodium chlorite immediately after grinding, but after 1 day of storage, there were no differences among treatments. Overall, in the ground beef, there was a 2.5-log reduction of E. coli O157:H7 and a 1.5-log reduction of Salmonella Typhimurium that was sustained over time in refrigerated and frozen storage. Very few sensory differences between the control samples and the treated samples were detected by a consumer panel. Thus, antimicrobial treatments did not cause serious adverse sensory changes. Use of these antimicrobial treatments can be a promising intervention available to ground beef processors who currently have few interventions in their process.

  2. Molecular Evolutionary Relationships of Enteroinvasive Escherichia coli and Shigella spp.

    OpenAIRE

    Lan, Ruiting; Alles, M. Chehani; Donohoe, Kathy; Marina B Martinez; Reeves, Peter R.

    2004-01-01

    Enteroinvasive Escherichia coli (EIEC), a distinctive pathogenic form of E. coli causing dysentery, is similar in many properties to bacteria placed in the four species of Shigella. Shigella has been separated as a genus but in fact comprises several clones of E. coli. The evolutionary relationships of 32 EIEC strains of 12 serotypes have been determined by sequencing of four housekeeping genes and two plasmid genes which were used previously to determine the relationships of Shigella strains...

  3. Atypical Enteropathogenic Escherichia coli Secretes Plasmid Encoded Toxin

    Directory of Open Access Journals (Sweden)

    Rita C. Ruiz

    2014-01-01

    Full Text Available Plasmid encoded toxin (Pet is a serine protease originally described in enteroaggregative Escherichia coli (EAEC prototype strain 042 whose entire characterization was essentially obtained from studies performed with the purified toxin. Here we show that Pet is not exclusive to EAEC. Atypical enteropathogenic Escherichia coli (aEPEC strains, isolated from diarrhea cases, express Pet and its detection in supernatants of infected HEp-2 cells coincides with the appearance of cell damage, which, in turn, were similar to those described with purified Pet. Pet secretion and the cytotoxic effects are time and culture medium dependent. In presence of DMEM supplemented with tryptone cell rounding and detachment were observed after just 5 h of incubation with the bacteria. In the absence of tryptone, the cytotoxic effects were detected only after 24 h of infection. We also show that, in addition to the prototype EAEC, other pet+ EAEC strains, also isolated from diarrhea cases, induce cellular damage in the same degree as the aEPEC. The cytotoxic effects of EAEC and aEPEC strains were significantly reduced in the presence of a serine protease inhibitor or anti-Pet IgG serum. Our results show a common aspect between the aEPEC and EAEC and provide the first evidence pointing to a role of Pet in aEPEC pathogenesis.

  4. Findings of Escherichia coli and Enterococcus spp. in homemade cheese

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2007-01-01

    Full Text Available During the period from February until March 2004, 108 samples of soft cheese originating from markets of Pancevo, Subotica and Belgrade were examined. Microbiological analyses of the cheese samples to the presence of Escherichia coli was performed using methods described in the Regulations on methods for performing microbiological analyses and super analyses of consumer articles, while the presence of bacteria Enteroccocus spp. was performed on the dexter agar. From 108 samples of soft cheese from the territories of Pancevo, Belgrade and Subotica were isolated: Enterococcus spp. from 96% and Escherichia coli from 69%, cheese samples. Verocytotoxic E.coli was not isolated from any of the taken cheese samples.

  5. A two-dose regimen of a vaccine against Escherichia coli O157:H7 type III secreted proteins reduced environmental transmission of the agent in a large-scale commercial beef feedlot clinical trial.

    Science.gov (United States)

    Smith, David R; Moxley, Rodney A; Peterson, Robert E; Klopfenstein, Terry J; Erickson, Galen E; Clowser, Sharon L

    2008-10-01

    A clinical vaccine trial of commercially fed cattle tested the effect of a two-dose regimen of a vaccine product against type III secreted proteins of enterohemorrhagic Escherichia coli O157:H7 on the probability of detecting the organism on environmental sampling devices. Within commercial feedlots, pens of vaccinated and unvaccinated cattle were matched by reprocessing schedule and time of sampling. Vaccine was administered to all cattle within treated pens at arrival processing and again at re-implant processing. Pens of cattle were sampled 1 week after the second dose of vaccine and every 3 weeks for four test periods. Pair-matched pens of cattle were sampled concurrently. Test samples were seven ropes per pen hung overnight from the feed-bunk neck-rail (ROPES). Recovery of E. coli O157:H7 from at least one rope classified pens ROPES-positive. E. coli O157:H7 isolates were identified by standard biochemical methods and multiplex polymerase chain reaction. The probability for pens of cattle to test ROPES-positive was modeled using multilevel logistic regression with variance adjustment for clustering by matched pens and repeated measures. We studied 140 pens of cattle representing 20,556 cattle in 19 feedlots February through October 2004. Vaccinated pens of cattle were less likely to test ROPES-positive (OR = 0.59, p = 0.004). Because ROPES testing identifies organisms in the mouth of cattle, and the outcome is both associated with presence of the organism in the pen environment and correlated with the prevalence of fecal shedding, we conclude the two-dose vaccine regimen reduces the probability for environmental transmission of E. coli O157:H7 within commercial cattle feeding systems.

  6. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; Van Minh, Pham; Wagenaar, Jaap A|info:eu-repo/dai/nl/126613354; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    BACKGROUND: Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an

  7. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; Minh, Van Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Background: Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an

  8. Colonization of Enteroaggregative Escherichia coli and Shiga toxin-producing Escherichia coli in chickens and humans in southern Vietnam

    NARCIS (Netherlands)

    Trung, Nguyen Vinh; Nhung, Hoang Ngoc; Carrique-Mas, Juan J.; Mai, Ho Huynh; Tuyen, Ha Thanh; Campbell, James; Nhung, Nguyen Thi; Minh, Van Pham; Wagenaar, Jaap A.; Mai, Nguyen Thi Nhu; Hieu, Thai Quoc; Schultsz, Constance; Hoa, Ngo Thi

    2016-01-01

    Background: Enteroaggregative (EAEC) and Shiga-toxin producing Escherichia coli (STEC) are a major cause of diarrhea worldwide. E. coli carrying both virulence factors characteristic for EAEC and STEC and producing extended-spectrum beta-lactamase caused severe and protracted disease during an ou

  9. Microbiological and organoleptic characteristics of beef trim and ground beef treated with acetic acid, lactic acid, acidified sodium chlorite, or sterile water in a simulated commercial processing environment to reduce Escherichia coli O157:H7 and Salmonella.

    Science.gov (United States)

    Harris, D; Brashears, M M; Garmyn, A J; Brooks, J C; Miller, M F

    2012-03-01

    The objective of this study was to validate the effectiveness of acetic and lactic acids (2% and 5%), acidified sodium chlorite (1000ppm), and sterile water in reducing Escherichia coli O157:H7 and Salmonella Typhimurium in inoculated beef trim in a simulated processing environment. Samples were collected to assess microbial characteristics at three processing points. Results from this study indicate that all treatments, including sterile water, reduced pathogen concentrations (P<0.05) of both E. coli O157:H7 and Salmonella Typhimurium in ground beef up to 0.5 and 0.6 log by 24h, respectively. In some cases, there were no significant differences between the antimicrobial treatments and the sterile water using this application method. Triangle sensory test results of non-inoculated beef indicated there were no differences (P<0.05) in the means of correct responses between controls or antimicrobial treatments at 6 or 24h. While interventions are important for beef trim, use of the interventions must be validated under industry conditions to ensure proper effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Free RNA polymerase in Escherichia coli.

    Science.gov (United States)

    Patrick, Michael; Dennis, Patrick P; Ehrenberg, Mans; Bremer, Hans

    2015-12-01

    The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

  11. Inactivation and Gene Expression of a Virulent Wastewater Escherichia coli Strain and the Nonvirulent Commensal Escherichia coli DSM1103 Strain upon Solar Irradiation

    KAUST Repository

    Aljassim, Nada I.

    2017-03-06

    This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.

  12. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    Science.gov (United States)

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  13. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    Directory of Open Access Journals (Sweden)

    Juan Puño-Sarmiento

    2014-08-01

    Full Text Available The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%, three strains as Shiga toxin-producing (STEC; 4.7%, 10 strains as enteroaggregative (EAEC; 12.5%, but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  14. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    Science.gov (United States)

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  15. The versatile strategies of Escherichia coli pathotypes: a mini review

    Directory of Open Access Journals (Sweden)

    C. P. Sousa

    2006-01-01

    Full Text Available The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains to avirulent isolates. Few microorganisms are as versatile as E. coli. Pathogenic strains remain a leading cause of severe and persistent infant diarrhea in developing countries. They may be limited to colonization of a mucosal surface or can disseminate throughout the body and have been implicated in urinary tract infection, sepsis/meningitis and gastrointestinal infection. The human gastrointestinal tract is susceptible to diarrheagenic E. coli infections. Escherichia coli have effectively managed to subvert the host cytoskeleton for their own purposes causing substantial diarrheal disease, a major public health problem worldwide. This review deals with the different strategies regarding E. coli as a pathogen and the virulence traits of its pathotypes highlighting the species as a commensal, opportunistic and specialized pathogen.

  16. Environmental Escherichia coli: Ecology and public health implications - A review

    Science.gov (United States)

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  17. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    Science.gov (United States)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  18. Detection of Escherichia coli in wastewater based on enzyme immunoassay

    Institute of Scientific and Technical Information of China (English)

    XI Haiyan; CAI Qiang; HE Miao; SHI Hanchang

    2007-01-01

    This research describes a fast detection method on the basis of enzyme-linked immunosorbent assay (ELISA)for Escherichia coli in drainage of wastewater treatment plants.Optimized conditions such as the reaction format(sandwich or direct),the concentrations of diluted horseradish peroxidase (HRP)-E.coli conjugate,and anti-HPR antibody and pretreatment of E.coli were studied.Those results showed that the linear range of detection for E.coli was 10 cfu/mL-6×104 cfu/mL.Compared with conventional methods,it is a convenient and sensitive detection method with low cost.

  19. Fluorogenic assay for rapid detection of Escherichia coli in food.

    OpenAIRE

    1985-01-01

    An assay procedure to screen for Escherichia coli in foods by using 4-methylumbelliferyl-beta-D-glucuronide (MUG) incorporated into lauryl tryptose (LST) broth was evaluated. The beta-glucuronidase produced by E. coli cleaves the MUG substrate to yield a fluorescent end product. E. coli-negative samples can be identified by lack of fluorescence in LST-MUG within 24 h. MUG was not inhibitory to coliforms and E. coli. Over 1,400 food and dairy samples were tested to compare the standard three-t...

  20. Low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies enhances the effects of disulfide bonds reducer on Escherichia coli growth and affects the bacterial surface oxidation-reduction state.

    Science.gov (United States)

    Torgomyan, Heghine; Trchounian, Armen

    2011-10-14

    Low-intensity electromagnetic irradiation (EMI) of 70.6 and 73 GHz frequencies (flux capacity - 0.06 mW cm(-2)) had bactericidal effects on Escherichia coli. This EMI (1h) exposure suppressed the growth of E. coli K-12(λ). The pH value (6.0-8.0) did not significantly affect the growth. The lag-phase duration was prolonged, and the growth specific rate was inhibited, and these effects were more noticeable after 73 GHz irradiation. These effects were enhanced by the addition of DL-dithiothreitol (DTT), a strong reducer of disulfide bonds in surface membrane proteins, which in its turn also has bactericidal effect. Further, the number of accessible SH-groups in membrane vesicles was markedly decreased by EMI that was augmented by N,N'-dicyclohexycarbodiimide and DTT. These results indicate a change in the oxidation-reduction state of bacterial cell membrane proteins that could be the primary membranous mechanism in the bactericidal effects of low-intensity EMI of the 70.6 and 73 GHz frequencies.

  1. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli

    DEFF Research Database (Denmark)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy...... and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded...... by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features...

  2. Combined ozone and ultraviolet inactivation of Escherichia coli.

    Science.gov (United States)

    Magbanua, Benjamin S; Savant, Gaurav; Truax, Dennis D

    2006-01-01

    The kinetics of Escherichia coli inactivation using ozone and ultraviolet (UV) radiation, separately and simultaneously, was evaluated at 25 degrees C in buffered (pH 6.0, 7.0 and 8.0), demand-free media. While ozone was found to be a stronger disinfectant than UV radiation, using both simultaneously was more effective than using them individually. Inactivation kinetics was pseudo first-order for the three treatment processes, while the disinfection rate was a linear function of the disinfectant dose. The synergism observed in microbial inactivation when the disinfectant processes were combined was illustrated by estimates of kinetic model parameters. This synergy was attributed to the generation of hydroxyl radicals via ozone photolysis. Subsequently, dosage calculations, as based on disinfectant level and exposure time, indicated that the simultaneous use of UV and ozone could substantially reduce their individual doses.

  3. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Sun, Jiadong; Marais, Jannie P J; Khoo, Christina

    2015-01-01

    . In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL concentration) reduced biofilm production by the uropathogenic Escherichia coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 (ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-pathogenic E. coli MG1655 strain...

  4. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David Nunn

    2010-09-30

    The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within the same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.

  5. Endogenous active efflux of norfloxacin in susceptible Escherichia coli.

    Science.gov (United States)

    Cohen, S P; Hooper, D C; Wolfson, J S; Souza, K S; McMurry, L M; Levy, S B

    1988-01-01

    Escherichia coli was shown to have an energy-dependent reduced uptake of the fluoroquinolone antimicrobial agent norfloxacin. Studies of everted inner membrane vesicles suggested that this reduced accumulation involved a carrier-mediated norfloxacin active efflux generated by proton motive force with an apparent Km of 0.2 mM and a Vmax of 3 nmol min-1 mg of protein-1. Other hydrophilic, but not hydrophobic, quinolones competed with norfloxacin for transport. Porin (OmpF)-deficient E. coli cells were twofold less susceptible to norfloxacin and showed twice as much energy-dependent reduction in drug uptake. However, active efflux assayed in everted vesicles from the OmpF strain was unchanged compared with that in the parental strain. These findings suggest that in the OmpF mutant decreased outer membrane permeability, combined with active efflux across the inner membrane, in some manner results in decreased steady-state uptake of norfloxacin and lowered drug susceptibility. PMID:3056253

  6. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract...

  7. Recurrent Hemolytic and Uremic Syndrome Induced by Escherichia Coli

    Science.gov (United States)

    Commereuc, Morgane; Weill, Francois-Xavier; Loukiadis, Estelle; Gouali, Malika; Gleizal, Audrey; Kormann, Raphaël; Ridel, Christophe; Frémeaux-Bacchi, Véronique; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Abstract A widespread belief is that typical hemolytic and uremic syndrome (HUS) does not recur. We report the case of a patient infected twice with raw milk taken from his own cow and containing a Shiga toxin–producing Escherichia coli O174:H21 that induced recurrent HUS causing severe renal and cerebral disorders. A genomic comparison of the human and bovine Shiga toxin–producing Escherichia coli O174:H21 isolates revealed that they were identical. Typical HUS may recur. Since milk from this animal was occasionally distributed locally, thereby posing a serious threat for the whole village, this particular cow was destroyed. PMID:26735524

  8. Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sawyer Stanley A

    2011-06-01

    Full Text Available Abstract Background Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence. Results The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination between extant E. coli groups is largely limited to only three intergroup pairings. Conclusions Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of E. coli as a species, or herald the coalescence of E. coli groups into new species.

  9. Arginine Catabolism and the Arginine Succinyltransferase Pathway in Escherichia coli

    OpenAIRE

    Schneider, Barbara L.; Kiupakis, Alexandros K.; Reitzer, Lawrence J.

    1998-01-01

    Arginine catabolism produces ammonia without transferring nitrogen to another compound, yet the only known pathway of arginine catabolism in Escherichia coli (through arginine decarboxylase) does not produce ammonia. Our aims were to find the ammonia-producing pathway of arginine catabolism in E. coli and to examine its function. We showed that the only previously described pathway of arginine catabolism, which does not produce ammonia, accounted for only 3% of the arginine consumed. A search...

  10. Probability of recovering pathogenic Escherichia coli from foods.

    OpenAIRE

    Hill, W E; Ferreira, J. L; Payne, W L; Jones, V.M.

    1985-01-01

    The probability of recovering pathogenic Escherichia coli from food by the Bacteriological Analytical Manual method was determined by the effects of several factors: the number of strains per food, the ability of pathogenic strains to survive enrichment, and the frequency of plasmid loss during enrichment. Biochemical patterns indicated the presence of about six E. coli strains per food sample. About half of the strains isolated from humans did not survive enrichment. Among those which grew, ...

  11. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli

    OpenAIRE

    Zhang, Wenjun; Li, Yanran; Tang, Yi

    2008-01-01

    Bacterial aromatic polyketides are important therapeutic compounds including front line antibiotics and anticancer drugs. It is one of the last remaining major classes of natural products of which the biosynthesis has not been reconstituted in the genetically superior host Escherichia coli. Here, we demonstrate the engineered biosynthesis of bacterial aromatic polyketides in E. coli by using a dissected and reassembled fungal polyketide synthase (PKS). The minimal PKS of the megasynthase PKS4...

  12. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics.

    OpenAIRE

    Jebbar, M; Talibart, R; Gloux, K; Bernard, T.; BLANCO, C.

    1992-01-01

    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, identified as a compatible solute in moderately halophilic bacteria. Exogenously provided ectoine was found to stimulate growth of Escherichia coli in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte or nonelectrolyte. It is accumulated in E. coli cells proportionally to the osmotic strength of the medium, and it is not metabolized. Its osmoprotect...

  13. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity

    Directory of Open Access Journals (Sweden)

    Rodriguez Gabriel M

    2012-06-01

    Full Text Available Abstract Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol vs 0.14 g/L/OD600 (isobutyraldehyde. Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600 and decreased isobutanol production (0.4 g/L/OD600. By assessing production by

  14. Optimizing Escherichia coli's metabolism for fuel cell applications

    Science.gov (United States)

    Nieves, Ismael U.

    In the last few years there have been many publications about applications that center on the generation of electrons from bacterial cells. These applications take advantage of the catabolic diversity of microbes to generate electrical power. The practicality of these applications depends on the microorganism's ability to effectively donate electrons, either directly to the electrode or indirectly through the use of a mediator. After establishing the limitations of electrical output in microbial fuel cells (MFCs) imposed by the bacterial cells, a spectrophotometric assay measuring the indirect reduction of the electronophore neutral red via iron reduction was used to measure electron production from Escherichia coli resting cells. Using this assay I identified NADH dehydrogenase I as a likely site of neutral red reduction. The only previously reported site of interaction between E. coli cells and NR is at the hydrogenases. Although we cannot rule out the possibility that NR is reduced by soluble hydrogenases in the cytoplasm, this previous report indicated that hydrogenase activity does not account for all of the NR reduction activity. Supporting this, data in this thesis suggest that the hydrogenases play a small role in NR reduction. It seems that NR reduction is largely taking place within the cytoplasmic membrane of the bacterial cells, serving as a substrate of enzymes that typically reduce quinones. Furthermore, it seems that under the experimental conditions used here, E. coli's catabolism of glucose is rather inefficient. Instead of using the complete TCA cycle, the bacterial cells are carrying out fermentation, leading to incomplete oxidation of the fuel and low yields of electrons. The results obtained from the TC31 strain suggest that eliminating fermentation pathways to improve NR reduction was the correct approach. Following up on this a new strain was created, KN02, which, in addition to the mutations on strain TC31, lacks acetate kinase activity.

  15. Identification of Genes Important for Growth of Asymptomatic Bacteriuria Escherichia coli in Urine

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; de Evgrafov, Mari Cristina Rodriguez; Phan, Minh Duy;

    2012-01-01

    reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli......Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence...... of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972...

  16. Detection of virulence factors of Uropathoigenic Escherichia coli isolates from infertile women high vaginal swabs

    Directory of Open Access Journals (Sweden)

    Farhad Safarpourdehkourdi

    2014-03-01

    Conclusion: The high vaginal Escherichia coli harbored certain virulence genes of uropathogenic Escherichia coli strains. The urinary tract infections should be treated well to diminish its upstream transfer into vagina. Some more investigation should be perform for identifying the epidemiological aspects of uropathogenic Escherichia coli in high vaginal part of infertile women.

  17. 76 FR 72331 - Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products

    Science.gov (United States)

    2011-11-23

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... methods for controlling non-O157 Shiga toxin-producing Escherichia coli in raw, intact and non-intact beef... Escherichia coli in raw, intact and non-intact beef products and product components on or before December...

  18. [The clinical characteristics analysis of Escherichia coli bloodstream infection].

    Science.gov (United States)

    Zhang, M; Huang, J A; Chen, Y B

    2016-05-17

    To explore the clinical features of Escherichia coli bloodstream infection. The clinical data of underlying diseases, antimicrobial susceptibility, temperature at blood sampling, results of routine blood tests, venous catheterization, therapy and prognosis of Escherichia coli bloodstream infection in the First Affiliated Hospital of Soochow University from January 2007 to December 2014 were analyzed retrospectively. The pathogens were routinely isolated and identified. Susceptibilities against antimicrobial agents were determined by Kirby-Bauer methods. All patients had at least one underlying disease. Most of the basic diseases were hematological malignancies, malignant solid tumors, pneumonia and so on. Body temperature was normal in 40 patients (6.4%), fever in 587 patients (93.5%) and low temperature in 1 patient. There were 252 patients with leukopenia (40.1%), 237 patients with granulocytopenia (37.7%) and 216 patients with agranulocytosis. The resistance rate to imipenem was 3.3%, which was the lowest among the total antimicrobial susceptibilities of 628 Escherichia Coli. The extended-spectrum-β-lactamase (ESBL)-producing strains accounted for 53.8% among the total patients. The resistance rates of ESBLs-producing-Escherichia coli for the Sulfamethoxazole, Ampicillin, Gentamicin, Cefazolin, Cefuroxime, Cefotaxime, Ceftriaxone, Cefepime, Ceftazidime, Cefoperazone, Piperacillin and Ciprofloxacin were 80.2%, 100.0%, 62.4%, 99.1%, 99.1%, 98.8%, 98.2%, 48.5%, 50.6%, 95.0%, 98.2%, 79.6%, respectively, which were higher than that of non-ESBLs-producing-Escherichia coli (67.9%, 79.7%, 47.6%, 50.0%, 47.2%, 41.0%, 40.3%, 27.2%, 24.1%, 40.0%, 56.2%, 58.3%, respectively), the differences were significant statistically (χ(2)=12.33, 75.90, 13.92, 209.00, 224.94, 259.25, 256.59, 27.79, 46.19, 222.85, 165.08, 33.59, all PEscherichia coli bloodstream infection. The antimicrobial resistance rate of ESBLs-producing-Escherichia coli is higher than that of none-ESBLs-producing-Escherichia

  19. Cervical celullitis in broiler chickens for Escherichia coli/ Celulite cervical em frangos de corte causada por Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ivens Gomes Guimarães

    2002-05-01

    Full Text Available In this paper was report the isolation of Escherichia coli in broiler chickens with cellulitis in the cervical region. It was carried through the isolation of E. coli of the lesion of cellulitis from broilers and carried through histopathological examination of skin that had characterized the lesion. Focal ulcerations of epidermis, fibrin in dermis and difuse infiltrated by lymphocytes and heterophils on subcutaneous tissues.Neste trabalho, relata-se o isolamento de Escherichia coli em frangos de corte apresentando lesão de celulite na região cervical. Foi realizado o isolamento de E. coli da lesão de celulite e realizado exames histopatológicos que caracterizaram a lesão. Na epiderme foram verificadas lesões ulcerativas, presença de fibrina na derme e infiltração difusa de linfócitos e heterófilos no tecido subcutâneo.

  20. [Virulence factors and pathophysiology of extraintestinal pathogenic Escherichia coli].

    Science.gov (United States)

    Bidet, P; Bonarcorsi, S; Bingen, E

    2012-11-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections, bacteraemia or meningitis are characterized by a particular genetic background (phylogenetic group B2 and D) and the presence, within genetic pathogenicity islands (PAI) or plasmids, of genes encoding virulence factors involved in adhesion to epithelia, crossing of the body barriers (digestive, kidney, bloodbrain), iron uptake and resistance to the immune system. Among the many virulence factors described, two are particularly linked with a pathophysiological process: type P pili PapGII adhesin is linked with acute pyelonephritis, in the absence of abnormal flow of urine, and the K1 capsule is linked with neonatal meningitis. However, if the adhesin PapGII appears as the key factor of pyelonephritis, such that its absence in strain causing the infection is predictive of malformation or a vesico-ureteral reflux, the meningeal virulence of E. coli can not be reduced to a single virulence factor, but results from a combination of factors unique to each clone, and an imbalance between the immune defenses of the host and bacterial virulence.

  1. Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    Directory of Open Access Journals (Sweden)

    Amee Manges

    2012-04-01

    Full Text Available Escherichia coli-associated urinary tract infections (UTIs are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12 which were able to lyse 80.5% of a subset (42 of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation.

  2. YeeO from Escherichia coli exports flavins.

    Science.gov (United States)

    McAnulty, Michael J; Wood, Thomas K

    2014-01-01

    Multidrug and toxic compound extrusion (MATE) proteins help maintain cellular homeostasis by secreting metabolic wastes. Flavins may occur as cellular waste products, with their production and secretion providing potential benefit for industrial applications related to biofuel cells. Here we find that MATE protein YeeO from Escherichia coli exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Significant amounts of flavins were trapped intracellularly when YeeO was produced indicating transport limits secretion of flavins. Wild-type E. coli secreted 3 flavins (riboflavin, FMN, and FAD), so E. coli likely produces additional flavin transporters.

  3. Escherichia coli O26 IN RAW BUFFALO MILK: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Rella

    2013-02-01

    Full Text Available Escherichia coli O26 is considered to be one of the most important food-borne pathogen. In this study, 120 buffalo milk samples collected in Lazio and in Apulia regions were tested for the presence of E. coli O26. One buffalo milk sample (0,8% tested positive for E. coli O26; the isolate was positive at the verocytotoxicity test and it showed resistance properties to different antimicrobial classes. These preliminary results highlight the need to monitor the foods of animal origin used for production and eaten by a wide range of persons, respect VTEC organism.

  4. antimicrobial susceptibility and plasmids from escherichia coli ...

    African Journals Online (AJOL)

    2001-10-10

    Oct 10, 2001 ... transmission to humans of E. coli containing antibiotic resistance plasmids ... resistant micro-organisms, which may in turn transfer resistance to .... cells were washed with sterile normal saline to remove leached. Я-lactamase ...

  5. ANTIMICIROBIAL SUSCEPTIBILITY PATTERNS OF Escherichia coli ...

    African Journals Online (AJOL)

    DR. AMINU

    aetiological agents of diarrhoea diseases of humans in developing ... Pathogenic organisms have developed a number of elaborate .... reported that E.coli isolated from animals haboured plasmids .... coil 0157:H7 as a model of entry of a new.

  6. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes...... promotion in this system is not dependent on the laboratory strain and that the described model system could provide relevant insights on mechanisms of biofilm development in natural E. coli populations....

  7. Short communication: heat resistance of Escherichia coli strains in raw milk at different subpasteurization conditions.

    Science.gov (United States)

    Peng, S; Hummerjohann, J; Stephan, R; Hammer, P

    2013-06-01

    A commonly applied treatment of raw milk to reduce bacterial loads is the short-time application of heat at subpasteurization levels under continuous flow, generally referred to as thermization, because this method retains some of the beneficial properties of raw milk. In a previous study, Escherichia coli strains exhibiting increased thermotolerance were found, demanding investigations into their ability to survive thermization. Nine E. coli strains, including 4 Shiga toxin-producing E. coli (STEC) strains, were investigated for their reduction during a thermization treatment in raw milk using a pilot-plant pasteurizer to reflect typically applied commercial conditions. Six of the 9 E. coli strains, including the 4 STEC strains, were similarly inactivated at 60, 62.5, and 65°C, whereas increased thermotolerance was observed for 3 E. coli strains. All strains were reduced to thermization treatment.

  8. Antibiotic treatment of verocytotoxin-producing Escherichia coli (VTEC) infection

    DEFF Research Database (Denmark)

    Agger, Morten; Scheutz, Flemming; Villumsen, Steen;

    2015-01-01

    OBJECTIVES: A consensus has existed on not to treat verocytotoxin-producing Escherichia coli (VTEC)-infected individuals with antibiotics because of possible subsequent increased risk of developing haemolytic uraemic syndrome (HUS). The aim of this systematic review is to clarify the risk...

  9. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; Clark, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  10. New types of Escherichia coli recombination-deficient mutants.

    Science.gov (United States)

    Freifelder, D

    1976-11-01

    A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency.

  11. Escherichia coli and virus isolated from ''sticky kits''

    DEFF Research Database (Denmark)

    Jørgensen, M.; Scheutz, F.; Strandbygaard, Bertel

    1996-01-01

    A total of 121 Escherichia coli strains isolated from 3-week-old mink kits were serotyped and examined for virulence factors. 56 strains were isolated from healthy kits while 65 were from ''sticky kits''. Among these, 34 different serotypes were detected. No difference in serotypes or the presenc...

  12. armA and aminoglycoside resistance in Escherichia coli.

    Science.gov (United States)

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C; Moreno, Miguel A; Courvalin, Patrice; Domínguez, Lucas

    2005-06-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  13. armA and Aminoglycoside Resistance in Escherichia coli

    OpenAIRE

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C.; Moreno, Miguel A.; Courvalin, Patrice; Domínguez, Lucas

    2005-01-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  14. Combating enteropathogenic Escherichia coli (EPEC) infections: the way forward

    OpenAIRE

    Michael S Donnenberg; Finlay, B. Brett

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) strains continue to cause severe and sometimes fatal infantile diarrhea, particularly in Africa. Increased efforts at diagnosis, defining the clinical spectrum of disease, understanding pathogenic mechanisms, and delineating immune responses are desperately needed to develop new strategies to combat EPEC.

  15. Characterization of Escherichia coli nucleoids released by osmotic shock.

    NARCIS (Netherlands)

    Wegner, A.S.; Alexeeva, S.; Odijk, T.; Woldringh, C.L.

    2012-01-01

    Nucleoids were isolated by osmotic shock from Escherichia coli spheroplasts at relatively low salt concentrations and in the absence of detergents. Sucrose-protected cells, made osmotically sensitive by growth in the presence of ampicillin or by digestion with low lysozyme concentrations (50-5 μg/ml

  16. Characterization of Escherichia coli nucleoids released by osmotic shock

    NARCIS (Netherlands)

    Wegner, S.; Alexeeva, S.V.; Odijk, T.; Woldringh, C.L.

    2012-01-01

    Nucleoids were isolated by osmotic shock from Escherichia coli spheroplasts at relatively low salt concentrations and in the absence of detergents. Sucrose-protected cells, made osmotically sensitive by growth in the presence of ampicillin or by digestion with low lysozyme concentrations (50–5 µg/ml

  17. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli

    Science.gov (United States)

    1984-01-01

    Classical Enteropathogenic (Serotyped) Escherichia coli Strains of Proven Pathogenicity. Infect. Immun. 38:798-801, 1982. 8. Levine, M.M. Vacunas Contra...Microbiol., 18:808-815, 1983. 8 15. Levine, M.M., Lanata, C. Progresos en Vacunas Contra Diarrea Bacteriana. Adelantos Microbiol. Enferm. Inf., 2:67-117

  18. Sequencing of Escherichia coli that cause persistent and transient Mastitis

    Science.gov (United States)

    The genomes of two strains of Escherichia coli that cause bovine mastitis were sequenced. These strains are known to be associated with persistent and transient mastitis: strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection....

  19. Comparative Genomics of Escherichia coli Strains Causing Urinary Tract Infections

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Hancock, Viktoria; Schembri, Mark A.

    2011-01-01

    The virulence determinants of uropathogenic Escherichia coli have been studied extensively over the years, but relatively little is known about what differentiates isolates causing various types of urinary tract infections. In this study, we compared the genomic profiles of 45 strains from a range...

  20. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  1. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  2. FimH-mediated autoaggregation of Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Christiansen, G.; Klemm, Per

    2001-01-01

    Autoaggregation is a phenomenon thought to contribute to colonization of mammalian hosts by pathogenic bacteria. Type 1 fimbriae are surface organelles of Escherichia coli that mediate D-mannose-sensitive binding to various host surfaces. This binding is conferred by the minor fimbrial component...

  3. Novel Aggregative Adherence Fimbria Variant of Enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Jønsson, Rie; Struve, Carsten; Boisen, Nadia

    2015-01-01

    Enteroaggregative Escherichia coli (EAEC) organisms belong to a diarrheagenic pathotype known to cause diarrhea and can be characterized by distinct aggregative adherence (AA) in a stacked-brick pattern to cultured epithelial cells. In this study, we investigated 118 EAEC strains isolated from...

  4. Peptide nucleic acid (PNA) antisense effects in Escherichia coli

    DEFF Research Database (Denmark)

    Good, L; Nielsen, P E

    1999-01-01

    Antisense peptide nucleic acid (PNA) can be used to control cell growth, gene expression and growth phenotypes in the bacteria Escherichia coli. PNAs targeted to the RNA components of the ribosome can inhibit translation and cell growth, and PNAs targeted to mRNA can limit gene expression with gene...

  5. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level...

  6. Differential expression of the Escherichia coli autoaggregation factor antigen 43

    DEFF Research Database (Denmark)

    Schembri, Mark; Hjerrild, Louise; Gjermansen, Morten

    2003-01-01

    Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Due to its excellent cell-to-cell aggregation characteristics, Ag43 expression confers clumping and fluffing of cells and promotes biofilm formation. Ag43 expression is repressed by the cellular redox...

  7. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Ulett, G.C.

    2006-01-01

    Escherichia coli 83972 is a clinical asymptomatia bacteriuric isolate that is able to colonize the human urinary bladder without inducing an immune response. Here we demonstrate that one of the mechanisms by which this strain has become attenuated is through the mutation of its genes encoding type...

  8. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates Mg x ATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-D-ribosyl (alpha-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, alpha,beta-methylene ATP ...

  9. A rapid differentiation method for enteroinvasive Escherichia coli.

    Science.gov (United States)

    Aribam, Swarmistha Devi; Hirota, Jiro; Kusumoto, Masahiro; Harada, Tomoyuki; Shiraiwa, Kazumasa; Ogawa, Yohsuke; Shimoji, Yoshihiro; Eguchi, Masahiro

    2014-03-01

    Enteroinvasive Escherichia coli (EIEC) comprise 21 major serotypes defined by the presence of O and H antigens, and diagnosis depends on determining its invasive potential. Using HEp-2 cells infected with an EIEC strain, we developed a simple growth-dependent assay that differentiated EIEC strain from non-invasive strains 6 h after infection.

  10. Kwantitatief gevoeligheidsonderzoek met intra- en extramurale isolaten van Escherichia coli

    NARCIS (Netherlands)

    de Neeling AJ; de Jong J; Overbeek BP; de Bruin RW; Dessens-Kroon M; van Klingeren B

    1990-01-01

    Three Dutch laboratories for medical microbiology collected a total number of 1432 strains of Escherichia coli. Of these 995 were obtained from routine samples taken in clinic and policlinic, 290 had been sent spontaneously by general practitioners for microbiological examination and 147 had been i

  11. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Ulett, G.C.

    2006-01-01

    Escherichia coli 83972 is a clinical asymptomatia bacteriuric isolate that is able to colonize the human urinary bladder without inducing an immune response. Here we demonstrate that one of the mechanisms by which this strain has become attenuated is through the mutation of its genes encoding typ...

  12. Fragility of the permeability barrier of Escherichia coli

    NARCIS (Netherlands)

    Haest, C.W.M.; Gier, J. de; Es, G.A. van; Verkleij, A.J.; Deenen, L.L.M. van

    1972-01-01

    An unsaturated fatty acid requiring auxotroph of Escherichia coli was grown with addition of various unsaturated fatty acids. The permeability of the cells for erythritol appeared to be strongly dependent on the fatty acid incorporated in the membrane lipid. Below certain temperatures, depending on

  13. Stringent control of FLP recombinase in Escherichia coli.

    Science.gov (United States)

    Bowden, Steven D; Palani, Nagendra P; Libourel, Igor G L

    2017-02-01

    Site specific recombinases are invaluable tools in molecular biology, and are emerging as powerful recorders of cellular events in synthetic biology. We have developed a stringently controlled FLP recombinase system in Escherichia coli using an arabinose inducible promoter combined with a weak ribosome binding site.

  14. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    Science.gov (United States)

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  15. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    Science.gov (United States)

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  16. Plasmid cloning vehicle for Haemophilus influenzae and Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, D.; Clayton, N.L.; Setlow, J.K.

    1982-09-01

    A new plasmid cloning vehicle (pDM2) was used to introduce a library of Haemophilus influenzae chromosomal fragments into H. influenzae. Transformants of the higly recombination-defective rec-1 mutant were more likely to contain exclusively recombinant plasmids after exposure to ligated DNA mixtures than was the wild type. pDM2 could replicate in Escherichia coli K-12.

  17. Norfloxacin resistance in a clinical isolate of Escherichia coli.

    Science.gov (United States)

    Aoyama, H; Sato, K; Kato, T; Hirai, K; Mitsuhashi, S

    1987-01-01

    Analysis of DNA gyrase supercoiling and of norfloxacin uptake in Escherichia coli GN14176, a moderately norfloxacin-resistant clinical isolate, indicated that resistance was associated with both an altered drug target and a reduction in drug uptake. Images PMID:2829712

  18. Kwantitatief gevoeligheidsonderzoek met intra- en extramurale isolaten van Escherichia coli

    NARCIS (Netherlands)

    de Neeling AJ; de Jong J; Overbeek BP; de Bruin RW; Dessens-Kroon M; van Klingeren B

    1990-01-01

    Three Dutch laboratories for medical microbiology collected a total number of 1432 strains of Escherichia coli. Of these 995 were obtained from routine samples taken in clinic and policlinic, 290 had been sent spontaneously by general practitioners for microbiological examination and 147 had been

  19. Lack of the RNA chaperone hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Jakobsen, Henrik; Struve, Carsten;

    2012-01-01

    as a model for virulence characterization and screening for novel antimicrobial entities. Several E. coli human pathotypes are also pathogenic towards C. elegans, and we show here that lack of the RNA chaperone Hfq significantly reduces pathogenicity of VTEC, EAEC, and UPEC in the nematode model. Thus, Hfq...... is intrinsically essential to pathogenic E. coli for survival and virulence exerted in the C. elegans host.......Escherichia coli is an important agent of Gram-negative bacterial infections worldwide, being one of the leading causes of diarrhoea and urinary tract infections. Strategies to understand pathogenesis and develop therapeutic compounds include the use of the nematode Caenorhabditis elegans...

  20. IDENTIFICATION OF UROVIRULENT MARKERS IN UROPATHOGE NIC ESCHERICHIA COLI.

    Directory of Open Access Journals (Sweden)

    Padmaja

    2012-10-01

    Full Text Available The present study was conducted in the Department o f Microbiology, Konaseema Institute of Medical Sciences, Amalapuram, East Goda vari District from August 2011 to January 2012. Fifty Escherichia coli (E.coli strains isola ted from urine samples of different clinical entities and 25 feacal isolates were studied for th e detection of virulence markers of E.coli. There are 27 uropathogenic E.coli (UPEC isolates fr om 50 E.coli & 5 UPEC from 25 controls. Among isolates tested the most common virulent mark er is haemolysin 21 (42%, followed by Mannose resistant haemagglutination 16 (32%, cell surface hydrophobicity 13 (26%. In this, there are 14 cases with only one virulence marker, 8 with 2 marker combinations and 15 cases with combination of 3 markers.

  1. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1998-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/

  2. Phylogenetic Group Determination of Escherichia coli Isolated from Animals Samples

    Directory of Open Access Journals (Sweden)

    Fernanda Morcatti Coura

    2015-01-01

    Full Text Available This study analyzes the occurrence and distribution of phylogenetic groups of 391 strains of Escherichia coli isolated from poultry, cattle, and water buffalo. The frequency of the phylogroups was A = 19%, B1 = 57%, B2 = 2.3%, C = 4.6%, D = 2.8%, E = 11%, and F = 3.3%. Phylogroups A (P<0.001 and F (P=0.018 were associated with E. coli strains isolated from poultry, phylogroups B1 (P<0.001 and E (P=0.002 were associated with E. coli isolated from cattle, and phylogroups B2 (P=0.003 and D (P=0.017 were associated with E. coli isolated from water buffalo. This report demonstrated that some phylogroups are associated with the host analyzed and the results provide knowledge of the phylogenetic composition of E. coli from domestic animals.

  3. Engineering Escherichia coli for high-level production of propionate.

    Science.gov (United States)

    Akawi, Lamees; Srirangan, Kajan; Liu, Xuejia; Moo-Young, Murray; Perry Chou, C

    2015-07-01

    Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular "flux competition" between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such "flux competition" and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the

  4. Evolution of the iss gene in Escherichia coli.

    Science.gov (United States)

    Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K

    2008-04-01

    The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.

  5. Adhesive threads of extraintestinal pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Antão Esther-Maria

    2009-12-01

    Full Text Available Abstract The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC including both human and animal pathogens like Uropathogenic E. coli (UPEC, Newborn meningitic E. coli (NMEC and Avian pathogenic E. coli (APEC, have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.

  6. Deuterium incorporation into Escherichia-coli proteins

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen

    1986-01-01

    Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA...... of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree...

  7. Deuterium incorporation into Escherichia-coli proteins

    DEFF Research Database (Denmark)

    Lederer, H.; May, R. P.; Kjems, Jørgen;

    1986-01-01

    Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA...... of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree...

  8. Inhibiting translation elongation can aid genome duplication in Escherichia coli.

    Science.gov (United States)

    Myka, Kamila K; Hawkins, Michelle; Syeda, Aisha H; Gupta, Milind K; Meharg, Caroline; Dillingham, Mark S; Savery, Nigel J; Lloyd, Robert G; McGlynn, Peter

    2016-12-11

    Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.

  9. Infectious endocarditis caused by Escherichia coli

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Arpi, Magnus; Fritz-Hansen, Thomas

    2011-01-01

    -spectrum intravenous antibiotics. Transthoracic and transoesophageal echocardiography revealed a severe mitral endocarditis. E. coli DNA was identified from the mitral valve and the vegetation, and no other pathogen was found. The case was further complicated by spondylodiscitis and bilateral endophthalmitis. Extra...

  10. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  11. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    Science.gov (United States)

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  12. Behavior of non-O157 Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli strains on alfalfa sprouts.

    Science.gov (United States)

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, M Del Refugio; Villarruel-López, Angélica; Castro-Rosas, Javier

    2013-08-01

    Data about the behavior of non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), and enteropathogenic E. coli (EPEC) on seeds and alfalfa sprouts are not available. The behavior of STEC, EIEC, ETEC, and EPEC was determined during germination and sprouting of alfalfa seeds at 20 ± 2°C and 30 ± 2°C and on alfalfa sprouts at 3 ± 2°C. When alfalfa seeds were inoculated with STEC, EIEC, ETEC, or EPEC strains, all these diarrheagenic E. coli pathotypes (DEPs) grew during germination and sprouting of seeds, reaching counts of approximately 5 and 6 log CFU/g after 1 day at 20 ± 2°C and 30 ± 2°C, respectively. However, when the sprouts were inoculated after 1 day of seed germination and stored at 20 ± 2°C or 30 ± 2°C, no growth was observed for any DEP during sprouting at 20 ± 2°C or 30 ± 2°C for 9 days. Refrigeration reduced significantly (P < 0.0.5) the number of viable DEPs on sprouts after 20 days in storage; nevertheless, these decreases have no practical significance for the safety of the sprouts.

  13. Recombinant production of human interleukin 6 in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Henrik Nausch

    Full Text Available In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6, as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli. Among the various strategies, which were tested under Research and Development (R&D conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP.

  14. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    Science.gov (United States)

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli.

  15. Alterations induced in Escherichia Coli cells by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da [Federal University of Technology of Parana (CPGEI/UTFPR), Curitiba, PR (Brazil)]. E-mails: jaquekap@yahoo.com.br; schelin@cpgei.cefetpr.br; sergei@utfpr.edu.br; Jesus, E.F.O. de; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: ricardo@lin.ufrj.br; edgar@lin.ufrj.br; Carlin, N.; Toledo, E.S. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica]. E-mail: nelson.carlin@dfn.if.usp.br

    2007-07-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ({sup 60}Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  16. Is Escherichia coli urinary tract infection a zoonosis?

    DEFF Research Database (Denmark)

    Jacobsen, L.; Garneau, P.; Bruant, G.

    2012-01-01

    and kidney cultures. Further, isolates with the same gene profile also yielded similar bacterial counts in urine, bladder and kidneys. This study showed a clonal link between E. coli from meat and humans, providing solid evidence that UTI is zoonosis. The close relationship between community-dwelling human......Recently, it has been suggested that the Escherichia coli causing urinary tract infection (UTI) may come from meat and animals. The purpose was to investigate if a clonal link existed between E. coli from animals, meat and UTI patients. Twenty-two geographically and temporally matched B2 E. coli...... from UTI patients, community-dwelling humans, broiler chicken meat, pork, and broiler chicken, previously identified to exhibit eight virulence genotypes by microarraydetection of approximately 300 genes, were investigated for clonal relatedness by PFGE. Nine isolates were selected and tested...

  17. Occurrence of pathogenic and faecal Escherichia coli in layer hens

    Directory of Open Access Journals (Sweden)

    Silvia Tagliabue

    2010-01-01

    Full Text Available A total of 117 Escherichia coli from colibacillosis affected (APEC and clinically healthy birds (AFEC were serotyped and tested for the presence of virulence genes: iss, tsh, cva. A total of 54.5% E. Coli were typeable and 15 different serogroups were identified. The most common serogroups among APEC strains were O78, O2 and O128, whereas O139 was predominant in faecal strains from healthy birds. Iss, tsh e cva were more frequently detected among the septicaemic E. coli strains. The association of virulence genes was observed. Particularly, the pathotype iss-tsh-cva was present in 46.5% of APEC strains. Referring to serogroups, E. coli O78 and O2 originating from colibacillosis affected birds were always isstsh- cva positive but did not share virulence genes when they came from healthy birds.

  18. EcoCyc: Enyclopedia of Escherichia coli Genes and Metabolism.

    Science.gov (United States)

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1997-01-01

    The Encyclopedia of Genes and Metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of Escherichia coli. It describes 2970 genes of E.coli, 547 enzymes encoded by these genes, 702 metabolic reactions that occur in E.coli and the organization of these reactions into 107 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc spans the space from sequence to function to allow scientists to investigate an unusually broad range of questions. EcoCyc can be thought of as both an electronic review article because of its copious references to the primary literature, and as an in silicio model of E.coli metabolism that can be probed and analyzed through computational means.

  19. Escherichia coli control in a surface flow treatment wetland.

    Science.gov (United States)

    MacIntyre, M E; Warner, B G; Slawson, R M

    2006-06-01

    A field experiment showed that numbers of Escherichia coli declined significantly when floating Lemna spp. plants were removed to create open water areas in a typical newly constructed surface flow treatment wetland in southern Ontario. It is suggested that E. coli declined immediately after Lemna removal because the Lemna was shading the water column from penetration by natural UV radiation, it was providing favourable attachment sites for the E. coli, and it was not allowing effective free exchange of oxygen from surface winds to the water column to maintain high enough dissolved oxygen supplies for predator zooplankton populations. Operators of wetland systems must have the specialized skills required to recognize the cause and the appropriate maintenance requirements to maintain efficient operation of such unconventional systems should E. coli numbers increase during the course of operation.

  20. Engineered synthetic pathway for isopropanol production in Escherichia coli.

    Science.gov (United States)

    Hanai, T; Atsumi, S; Liao, J C

    2007-12-01

    A synthetic pathway was engineered in Escherichia coli to produce isopropanol by expressing various combinations of genes from Clostridium acetobutylicum ATCC 824, E. coli K-12 MG1655, Clostridium beijerinckii NRRL B593, and Thermoanaerobacter brockii HTD4. The strain with the combination of C. acetobutylicum thl (acetyl-coenzyme A [CoA] acetyltransferase), E. coli atoAD (acetoacetyl-CoA transferase), C. acetobutylicum adc (acetoacetate decarboxylase), and C. beijerinckii adh (secondary alcohol dehydrogenase) achieved the highest titer. This strain produced 81.6 mM isopropanol in shake flasks with a yield of 43.5% (mol/mol) in the production phase. To our knowledge, this work is the first to produce isopropanol in E. coli, and the titer exceeded that from the native producers.

  1. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.

    Science.gov (United States)

    Lee, Hyejin; Kim, Bong Gyu; Kim, Mihyang; Ahn, Joong-Hoon

    2015-09-01

    The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.

  2. Yeast DNA sequences initiating gene expression in Escherichia coli.

    Science.gov (United States)

    Lewin, Astrid; Tran, Thi Tuyen; Jacob, Daniela; Mayer, Martin; Freytag, Barbara; Appel, Bernd

    2004-01-01

    DNA transfer between pro- and eukaryotes occurs either during natural horizontal gene transfer or as a result of the employment of gene technology. We analysed the capacity of DNA sequences from a eukaryotic donor organism (Saccharomyces cerevisiae) to serve as promoter region in a prokaryotic recipient (Escherichia coli) by creating fusions between promoterless luxAB genes from Vibrio harveyi and random DNA sequences from S. cerevisiae and measuring the luminescence of transformed E. coli. Fifty-four out of 100 randomly analysed S. cerevisiae DNA sequences caused considerable gene expression in E. coli. Determination of transcription start sites within six selected yeast sequences in E. coli confirmed the existence of bacterial -10 and -35 consensus sequences at appropriate distances upstream from transcription initiation sites. Our results demonstrate that the probability of transcription of transferred eukaryotic DNA in bacteria is extremely high and does not require the insertion of the transferred DNA behind a promoter of the recipient genome.

  3. Food-borne origins of Escherichia coli causing extraintestinal infections.

    Science.gov (United States)

    Manges, Amee R; Johnson, James R

    2012-09-01

    Most human extraintestinal Escherichia coli infections, including those involving antimicrobial resistant strains, are caused by the members of a limited number of distinctive E. coli lineages, termed extraintestinal pathogenic E. coli (ExPEC), that have a special ability to cause disease at extraintestinal sites when they exit their usual reservoir in the host's intestinal tract. Multiple lines of evidence suggest that many of the ExPEC strains encountered in humans with urinary tract infection, sepsis, and other extraintestinal infections, especially the most extensively antimicrobial-resistant strains, may have a food animal source, and may be transmitted to humans via the food supply. This review summarizes the evidence that food-borne organisms are a significant cause of extraintestinal E. coli infections in humans.

  4. Effect of Genetic Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7

    Science.gov (United States)

    2014-01-01

    EFFECT OF GENETIC DATABASE COMPREHENSIVENESS ON FRACTIONAL PROTEOMICS OF ESCHERICHIA COLI O157:H7 ECBC-TR-1154...Database Comprehensiveness on Fractional Proteomics of Escherichia coli O157:H7 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...are characterizing the extracellular, fimbriae, and whole cell proteins produced by the pathogenic Gram-negative bacterium Escherichia coli (E. coli

  5. Viabilidad de Escherichia coli en presencia De diferentes contaminantes

    OpenAIRE

    Antonio Rivera T,; Edith Chávez B.; Gisela Rendón A.; Silvia Giono C

    2006-01-01

    La contaminación en ríos condiciona la presencia de microorganismos adaptados al ecosistema entre ellos a pató-genos de importancia en salud pública. Objetivo: Determinar la viabilidad de Escherichia coli en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Materiales y métodos: Se tomaron muestras de agua del río Alseseca, que luego se sembró en medios de cultivo selectivos para enterobacterias, seleccionándose las colonias del género Escherichia, las cuales fueron se...

  6. Efficacy of alkaline washing for the decontamination of orange fruit surfaces inoculated with Escherichia coli.

    Science.gov (United States)

    Pao, S; Davis, C L; Kelsey, D F

    2000-07-01

    The effectiveness of washing treatments to decontaminate orange fruit surfaces inoculated with Escherichia coli was evaluated. Washing on roller brushes with fruit cleaners or sanitizers followed by potable water rinse reduced E. coli by 1.9 to 3.5 log cycles. Prewetting fruit for 30 s before washing provided no significant benefit in most cases. Additional sanitizing treatments either with chlorine or acid sanitizers did not enhance the results of alkaline washing. In general, high pH washing solutions (pH 11.8) applied with an adequate spray volume effectively reduced the surface contamination of fruit that lowered the microbial load of fresh juice as well.

  7. Circular dimers of lambda DNA in infected, nonlysogenic Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Freifelder, D.; Baran, N.; Folkmanis, A.; Freifelder, D.L.R.

    1977-09-01

    Covalently closed circular dimerss of phage lambda DNA have been found in Escherichia coli infected with lambda. These dimers can be formed by either the lambda Red or Int systems, by a nonrecombinational replicative mechanism requiring the activity of the lambda O and P genes or by joining of the cohesive ends. Dimers mediated by the E. coli Rec system have not been observed. Those formed by the Int system often result from recombination between different DNA molecules; however, the Red-mediated dimer may be a result of replicative extension of a single DNA molecule. Trimers have also been observed but studied only briefly.

  8. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    OpenAIRE

    M. Regina F. Toledo; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Sonia R.T.S. RAMOS; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various ente...

  9. Sedimentation and gravitational instability of Escherichia coli Suspension

    Science.gov (United States)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  10. [Drug resistance of Escherichia coli strains isolated from poultry].

    Science.gov (United States)

    Giurov, B; Korudzhiĭski, N; Bineva, I

    1981-01-01

    Studied was the sensitivity of a total of 143 strains of Escherichia coli, isolated from young birds and broilers died from coli septicaemia, to antibiotics and chemotherapeutics. The following descending order was established: gentamycin, carbenicillin, ampicillin, furazolidon, borgal, kanamycin, strep tomycin, chloramphenicol, neomycin sulphathiazole, and tetracycline. Markers of resistance were established with all strains with regard to the therapeutic agents in current and prospective use in industrial poultry farming. It is stated that a preliminary antibiogram is indispensable in order to obtain dependable results in the treatment of animals affected with colibacteriosis. An alternative is to apply directly those drugs to which the strains have shown highest sensitivity.

  11. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) by Aeromonas hydrophila and Recombinant Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    丘远征; 刘力平; 陈国强

    2003-01-01

    Aeromonas hydrophila (A.hydrophila) 4AK4 produced poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) (PHBHHx) with an almost constant 3-hydroxyhexanoate (3HHx) content of 10%-15% from lauric acid and/or soybean oil.Both A.hydrophila 4AK4 and recombinant Escherichia coli (E.coli) JMU193 (pBH32) produced PHBHHx with controllable 3HHx content when fed lauric acid and another co-substrate.With glucose or gluconate as the co-substrate, the 3HHx content in the copolyester produced by A.hydrophila 4AK4 was reduced slightly from 12% to 9%.However, the 3HHx content in the copolyester produced by E.coli JMU193 (pBH32) was significantly reduced from 9% to 2% with fructose as the co-substrate.These results show that regulation of 3HHx content in PHBHHx can be achieved using genetically engineered E.coli.

  12. ESCHERICHIA COLI: AN IMPORTANT PATHOGEN IN PATIENTS WITH HEMATOLOGIC MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    Daniel Olson

    2014-08-01

    Full Text Available Abstract Background Escherichia coli (E. coli is a pathogen of great concern in immunosuppressed patients.  While antimicrobial prophylactic therapy has become the standard, the emergence of resistant pathogens has some questioning its use.  This study describes our experience with E.coli as a pathogen in neutropenic patients with a hematologic malignancy, and addresses future directions of treatment for this patient population. Methods A retrospective chart review of 245 E.coli bacteremia patients at Moffitt Cancer Center from 05/18/02 – 05/15/12 was conducted. Patients were identified via microbiology laboratory computerized records. Results The included patients experienced clinically significant E.coli bacteremia resulting in a median hospital stay of 14.7 days.  Several patients developed severe sepsis requiring the use of pressor and ventilator therapy. Conclusions E.coli is a major pathogen in these patient populations resulting in extended hospital stays and specialized treatment to overcome their E.coli bacteremia. The data supports the use of fluoroquinolone prophylactic therapy, however, earlier detection and treatment of neutropenic infection is needed.

  13. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis.

    Science.gov (United States)

    Hasvold, J; Bradford, L; Nelson, C; Harrison, C; Attar, M; Stillwell, T

    2013-01-01

    Neonatal sepsis is a significant cause of morbidity and mortality among term and preterm infants. Ampicillin and gentamicin are standard empiric therapy for early onset sepsis. Four cases of neonatal sepsis secondary to Escherichia coli (E. coli) found to be gentamicin resistant occurred within a five week period in one neonatal intensive care unit (NICU). To determine whether these cases could be tied to a single vector of transmission, and to more broadly evaluate the incidence of gentamicin resistant strains of E. coli in the neonatal population at our institution compared to other centers, we reviewed the charts of the four neonates (Infants A through D) and their mothers. The E. coli isolates were sent for Pulse Field Gel Electrophoresis (PFGE) to evaluate for genetic similarity between strains. We also reviewed all positive E. coli cultures from one NICU over a two year period. Infants A and B had genetically indistinguishable strains which matched that of urine and placental cultures of Infant B's mother. Infant C had a genetically distinct organism. Infant D, the identical twin of Infant C, did not have typing performed. Review of all cultures positive for E. coli at our institution showed a 12.9 percent incidence of gentamicin-resistance. A review of other studies showed that rates of resistance vary considerably by institution. We conclude that gentamicin-resistant E. coli is a relatively uncommon cause of neonatal sepsis, but should remain a consideration in patients who deteriorate despite initiation of empiric antibiotics.

  14. The upper surface of an Escherichia coli swarm is stationary.

    Science.gov (United States)

    Zhang, Rongjing; Turner, Linda; Berg, Howard C

    2010-01-05

    When grown in a rich medium on agar, many bacteria elongate, produce more flagella, and swim in a thin film of fluid over the agar surface in swirling packs. Cells that spread in this way are said to swarm. The agar is a solid gel, with pores smaller than the bacteria, so the swarm/agar interface is fixed. Here we show, in experiments with Escherichia coli, that the swarm/air interface also is fixed. We deposited MgO smoke particles on the top surface of an E. coli swarm near its advancing edge, where cells move in a single layer, and then followed the motion of the particles by dark-field microscopy and the motion of the underlying cells by phase-contrast microscopy. Remarkably, the smoke particles remained fixed (diffusing only a few micrometers) while the swarming cells streamed past underneath. The diffusion coefficients of the smoke particles were smaller over the virgin agar ahead of the swarm than over the swarm itself. Changes between these two modes of behavior were evident within 10-20 microm of the swarm edge, indicating an increase in depth of the fluid in advance of the swarm. The only plausible way that the swarm/air interface can be fixed is that it is covered by a surfactant monolayer pinned at its edges. When a swarm is exposed to air, such a monolayer can markedly reduce water loss. When cells invade tissue, the ability to move rapidly between closely opposed fixed surfaces is a useful trait.

  15. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase.

    Science.gov (United States)

    Paul, Subhankar; Punam, Shashikala; Chaudhuri, Tapan K

    2007-11-01

    In vitro refolding of maltodextrin glucosidase, a 69 kDa monomeric Escherichia coli protein, was studied in the presence of glycerol, dimethylsulfoxide, trimethylamine-N-oxide, ethylene glycol, trehalose, proline and chaperonins GroEL and GroES. Different osmolytes, namely proline, glycerol, trimethylamine-N-oxide and dimethylsulfoxide, also known as chemical chaperones, assist in protein folding through effective inhibition of the aggregation process. In the present study, it was observed that a few chemical chaperones effectively reduced the aggregation process of maltodextrin glucosidase and hence the in vitro refolding was substantially enhanced, with ethylene glycol being the exception. Although, the highest recovery of active maltodextrin glucosidase was achieved through the ATP-mediated GroEL/GroES-assisted refolding of denatured protein, the yield of correctly folded protein from glycerol- or proline-assisted spontaneous refolding process was closer to the chaperonin-assisted refolding. It was also observed that the combined application of chemical chaperones and molecular chaperone was more productive than their individual contribution towards the in vitro refolding of maltodextrin glucosidase. The chemical chaperones, except ethylene glycol, were found to provide different degrees of protection to maltodextrin glucosidase from thermal denaturation, whereas proline caused the highest protection. The observations from the present studies conclusively demonstrate that chemical or molecular chaperones, or the combination of both chaperones, could be used in the efficient refolding of recombinant E. coli maltodextrin glucosidase, which enhances the possibility of identifying or designing suitable small molecules that can act as chemical chaperones in the efficient refolding of various aggregate-prone proteins of commercial and medical importance.

  16. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI.

    Science.gov (United States)

    Azeemi, Samina T Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases.

  17. Transcriptional effects of CRP* expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2009-08-01

    Full Text Available Abstract Background Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp* enables co-utilization of glucose and other sugars in E. coli. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type CRP to that of mutant strain PC05 (expressing CRP* in the presence and absence of glucose. Results The glucose effect is significantly suppressed in strain PC05 relative to strain W3110. The expression levels of glucose-sensitive genes are generally not altered by glucose to the same extent in strain PCO5 as compared to W3110. Only 23 of the 80 genes showing significant differential expression in the presence of glucose for strain PC05 are present among the 418 genes believed to be directly regulated by CRP. Genes involved in central carbon metabolism (including several TCA cycle genes and amino acid biosynthesis, as well as genes encoding nutrient transport systems are among those whose transcript levels are most significantly affected by CRP* expression. We present a detailed transcription analysis and relate these results to phenotypic differences between strains expressing wild-type CRP and CRP*. Notably, CRP* expression in the presence of glucose results in an elevated intracellular NADPH concentration and reduced NADH concentration relative to wild-type CRP. Meanwhile, a more drastic decrease in the NADPH/NADP+ ratio is observed for the case of CRP* expression in strains engineered to reduce xylose to xylitol via a heterologously expressed, NADPH-dependent xylose reductase. Altered expression levels of

  18. Stimulation of Escherichia coli F-18Col- Type-1 fimbriae synthesis by leuX

    DEFF Research Database (Denmark)

    Newman, Joseph V.; Burghoff, Robert L.; Pallesen, Lars

    1994-01-01

    Escherichia coli F-18, a normal human fecal isolate, is an excellent colonizer of the streptomycin-treated mouse large intestine. E. coli F-18Col-, a derivative of E. coli F-18 which no longer makes the E. coli F-18 colicin, colonizes the large intestine as well as E. coli F-18 when fed to mice a...

  19. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90......% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group...

  20. Inactivation of Escherichia coli O157:H7 by essential oil from Cinnamomum zeylanicum

    Directory of Open Access Journals (Sweden)

    Ouafae Senhaji

    2007-04-01

    Full Text Available Escherichia coli O157:H7 is a pathogen strain, which causes hemorrhagic colitis, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura in humans. The control of bacterial cells in foods is an important factor to reduce foodborne diseases due to E. coli O157:H7. Assays to inactivate E. coli O157:H7 were carried out by using the cinnamon oil obtained by steam distillation for 6 hours. When E. coli O157:H7 cells were incubated at 37°C for 2 hours in the presence of 0.025% of the essential oil from cinnamon, a dramatic decrease was observed in the viable counts (from 10(7 to 3.10(4 CFU/mL-1. In the presence of 0.05% of the oil, most of cells were killed after 30 min, suggesting that the antimicrobial activity of essential oil is bactericidal against E. coli. The minimal inhibitory concentration of the essential oil from cinnamon was around 625 ppm against E. coli O157:H7 and E. coli ATCC 25921, around 1250 ppm against E. coli ATCC25922 and around 2500 ppm against E. coli ATCC11105.

  1. Biogenesis of inner membrane proteins in Escherichia coli.

    Science.gov (United States)

    Luirink, Joen; Yu, Zhong; Wagner, Samuel; de Gier, Jan-Willem

    2012-06-01

    The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  2. Tranformasi Fragmen Dna Kromosom Xanthomonas Campestris ke dalam Escherichia Coli

    Directory of Open Access Journals (Sweden)

    Wibowo Mangunwardoyo

    2002-04-01

    Full Text Available Research on DNA transformation of Xanthomonas campestris into Escherichia coli DH5αα using plasmid vector Escherichia coli (pUC19. was carried out. DNA chromosome was isolated using CTAB method, alkali lysis method was used to isolate DNA plasmid. Both of DNA plasmid and chromosome were digested using restriction enzyme EcoRI. Competent cell was prepared with CaCl2 and heat shock method for transformation procedure. The result revealed transformation obtain 5 white colonies, with transformation frequency was 1,22 x 10-8 colony/competent cell. Electrophoresis analysis showed the DNA fragment (insert in range 0.5 – 7,5 kb. Further research should be carried out to prepare the genomic library to obtain better result of transformant.

  3. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    Science.gov (United States)

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  4. Specific mistranslation in hisT mutants of Escherichia coli.

    Science.gov (United States)

    Parker, J

    1982-01-01

    Certain strains of Escherichia coli mistranslate at very high frequencies when starved for asparagine or histidine. This mistranslation is the result of misreading events on the ribosome. The introduction of a hisT mutation into such a strain decreases the frequency of mistranslation during histidine starvation but not during asparagine starvation. The most likely explanation is that the replacement of the pseudouridine residue in the anticodon loop of glutamine specific transfer ribonucleic acid by uridine in hisT mutants leads to an increase in fidelity of transfer ribonucleic acid function. The hisT gene in Escherichia coli has also been more accurately mapped, giving the gene order purF-hisT-aroC-fadL-dsdA.

  5. Shear alters motility of Escherichia coli

    Science.gov (United States)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  6. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya.

    Science.gov (United States)

    Onyango, Abel O; Kenya, Eucharia U; Mbithi, John J N; Ng'ayo, Musa O

    2009-11-01

    The epidemiology and virulence properties of pathogenic Escherichia coli among food handlers in tourist destination hotels in Kenya are largely uncharacterized. This cross-sectional study among consenting 885 food handlers working in nine luxurious tourist hotels in Nairobi, Kenya determined the epidemiology, virulence properties, antibiotics susceptibility profiles and conjugation abilities of pathogenic Escherichia coli. Pathogenic Escherichia coli was detected among 39 (4.4%) subjects, including 1.8% enteroaggregative Escherichia coli (EAEC) harboring aggR genes, 1.2% enterotoxigenic Escherichia coli (ETEC) expressing both LT and STp toxins, 1.1% enteropathogenic Escherichia coli (EPEC) and 0.2% Shiga-like Escherichia coli (EHEC) both harboring eaeA and stx2 genes respectively. All the pathotypes had increased surface hydrophobicity. Using multivariate analyses, food handlers with loose stools were more likely to be infected with pathogenic Escherichia coli. Majority 53.8% of the pathotypes were resistant to tetracycline with 40.2% being multi-drug resistant. About 85.7% pathotypes trans-conjugated with Escherichia coli K12 F(-) NA(r) LA. The carriage of multi-drug resistant, toxin expressing pathogenic Escherichia coli by this population is of public health concern because exposure to low doses can result in infection. Screening food handlers and implementing public awareness programs is recommended as an intervention to control transmission of enteric pathogens.

  7. Plasmolysis during the division cycle of Escherichia coli.

    OpenAIRE

    Olijhoek, A J; Eden, C G; Trueba, F J; Pas, E; Nanninga, N

    1982-01-01

    Cells of Escherichia coli were plasmolyzed with sucrose. They were classified according to length by way of electron micrographs taken from samples prepared by agar filtration. The percentage of plasmolyzed cells increased about two- and threefold between mean cell sizes of newborn and separating cells. However, dividing cells were less frequently plasmolyzed than nondividing cells of the same length class. Analysis of cell halves (prospective daughters) in dividing cells showed that they beh...

  8. Maturation of the Escherichia coli divisome occurs in two steps.

    NARCIS (Netherlands)

    Aarsman, M.E.G.; Piette, A.; Fraipont, C.; Vinkenvleugel, T.M.F.; Nguyen-Distèche, M.; den Blaauwen, T.

    2005-01-01

    Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ,

  9. Complementation analysis of eleven tryptophanase mutations in Escherichia coli.

    Science.gov (United States)

    White, M K; Yudkin, M D

    1979-10-01

    Nine independent mutants deficient in tryptophanase activity were isolated. Each mutation was transferred to a specialized transducing phage that carries the tryptophanase region of the Escherichia coli chromosome. The nine phages thus produced, and a tenth carrying a previously characterized tryptophanase mutation, were used to lysogenize a bacterial strain harbouring a mutation in the tryptophanase structural gene and also a suppressor of polarity. In no case was complementation observed; we conclude that there is no closely linked positive regulatory gene for tryptophanase.

  10. DNA microarray analysis of fim mutations in Escherichia coli

    DEFF Research Database (Denmark)

    Schembri, Mark; Ussery, David; Workman, Christopher

    2002-01-01

    Bacterial adhesion is often mediated by complex polymeric surface structures referred to as fimbriae. Type I fimbriae of Escherichia coli represent the archetypical and best characterised fimbrial system. These adhesive organelles mediate binding to D-mannose and are directly associated with viru...... the number of fimbriae expressed on the cell surface. The use of high-resolution oligonucleotide arrays for defining points of transcription initiation and termination is also demonstrated....

  11. Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli.

    Science.gov (United States)

    Watanabe, Jun; Tanaka, Hisaki; Akagawa, Takumi; Mogi, Yoshinobu; Yamazaki, Tatsuo

    2007-10-01

    To characterize aspartyl aminopeptidase from Aspergillus oryzae, the recombinant enzyme was expressed in Escherichia coli. The enzyme cleaves N-terminal acidic amino acids. About 30% activity was retained in 20% NaCl. Digestion of defatted soybean by the enzyme resulted in an increase in the glutamic acid content, suggesting that the enzyme is potentially responsible for the release of glutamic acid in soy sauce mash.

  12. Escherichia coli and virus isolated from ''sticky kits''

    DEFF Research Database (Denmark)

    Jørgensen, M.; Scheutz, F.; Strandbygaard, Bertel

    1996-01-01

    A total of 121 Escherichia coli strains isolated from 3-week-old mink kits were serotyped and examined for virulence factors. 56 strains were isolated from healthy kits while 65 were from ''sticky kits''. Among these, 34 different serotypes were detected. No difference in serotypes or the presenc...... of virulence factors could be detected between healthy and diseased kits. By electron microscopy of faecal samples corona-, rota-, and calicivirus were demonstrated among healthy as well as diseased kits....

  13. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  14. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  15. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation

    OpenAIRE

    Majtan, Tomas; Frerman, Frank E.; Kraus, Jan P.

    2010-01-01

    Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe–S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound c...

  16. Maturation of the Escherichia coli divisome occurs in two steps.

    NARCIS (Netherlands)

    Aarsman, M.E.G.; Piette, A.; Fraipont, C.; Vinkenvleugel, T.M.F.; Nguyen-Distèche, M.; den Blaauwen, T.

    2005-01-01

    Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, F

  17. Multiple defects in Escherichia coli mutants lacking HU protein.

    OpenAIRE

    Huisman, O; Faelen, M; Girard, D; Jaffé, A; Toussaint, A; Rouvière-Yaniv, J

    1989-01-01

    The HU protein isolated from Escherichia coli, composed of two partially homologous subunits, alpha and beta, shares some of the properties of eucaryotic histones and is a major constituent of the bacterial nucleoid. We report here the construction of double mutants totally lacking both subunits of HU protein. These mutants exhibited poor growth and a perturbation of cell division, resulting in the formation of anucleate cells. In the absence of HU, phage Mu was unable to grow, to lysogenize,...

  18. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs.

    Directory of Open Access Journals (Sweden)

    Matthew G Blango

    Full Text Available Intracellular quiescent reservoirs of uropathogenic Escherichia coli (UPEC, which can seed the bladder mucosa during the acute phase of a urinary tract infection (UTI, are protected from antibiotic treatments and are extremely difficult to eliminate. These reservoirs are a potential source for recurrent UTIs that affect millions annually. Here, using murine infection models and the bladder cell exfoliant chitosan, we demonstrate that intracellular UPEC populations shift within the stratified layers of the urothelium during the course of a UTI. Following invasion of the terminally differentiated superficial layer of epithelial cells that line the bladder lumen, UPEC can multiply and disseminate, eventually establishing reservoirs within underlying immature host cells. If given access, UPEC can invade the superficial and immature bladder cells equally well. As infected immature host cells differentiate and migrate towards the apical surface of the bladder, UPEC can reinitiate growth and discharge into the bladder lumen. By inducing the exfoliation of the superficial layers of the urothelium, chitosan stimulates rapid regenerative processes and the reactivation and efflux of quiescent intracellular UPEC reservoirs. When combined with antibiotics, chitosan treatment significantly reduces bacterial loads within the bladder and may therefore be of therapeutic value to individuals with chronic, recurrent UTIs.

  19. Photoluminescent gold nanoclusters as sensing probes for uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Po-Han Chan

    Full Text Available Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs. The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ~630 nm (λexcitation = 375 nm. The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ~2×10(6 cells/mL.

  20. Photoluminescent gold nanoclusters as sensing probes for uropathogenic Escherichia coli.

    Science.gov (United States)

    Chan, Po-Han; Ghosh, Bhaswati; Lai, Hong-Zheng; Peng, Hwei-Ling; Mong, Kwok Kong Tony; Chen, Yu-Chie

    2013-01-01

    Glycan-bound nanoprobes have been demonstrated as suitable sensing probes for bacteria containing glycan binding sites. In this study, we demonstrated a facile approach for generating glycan-bound gold nanoclusters (AuNCs). The generated AuNCs were used as sensing probes for corresponding target bacteria. Mannose-capped AuNCs (AuNCs@Mann) were generated and used as the model sensors for target bacteria. A one-step synthesis approach was employed to generate AuNCs@Mann. In this approach, an aqueous solution of tetrachloroauric acid and mannoside that functionized with a thiol group (Mann-SH) was stirred at room temperature for 48 h. The mannoside functions as reducing and capping agent. The size of the generated AuNCs@Mann is 1.95±0.27 nm, whereas the AuNCs with red photoluminescence have a maximum emission wavelength of ~630 nm (λexcitation = 375 nm). The synthesis of the AuNCs@Mann was accelerated by microwave heating, which enabled the synthesis of the AuNCs@Mann to complete within 1 h. The generated AuNCs@Mann are capable of selectively binding to the urinary tract infection isolate Escherichia coli J96 containing the mannose binding protein FimH expressed on the type 1 pili. On the basis of the naked eye observation, the limit of detection of the sensing approach is as low as ~2×10(6) cells/mL.

  1. Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations.

    Science.gov (United States)

    Wu, Y; Lau, B; Smith, S; Troyan, K; Barnett Foster, D E

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) specifically recognizes phosphatidylethanolamine (PE) on the outer leaflet of host epithelial cells. EPEC also induces apoptosis in epithelial cells, which results in increased levels of outer leaflet PE and increased bacterial binding. Consequently, it is of interest to investigate whether EPEC infection perturbs host cell phospholipid metabolism and whether the changes play a role in the apoptotic signaling. Our findings indicate that EPEC infection results in a significant increase in the epithelial cell PE level and a corresponding decrease in the phosphatidylcholine (PC) level. PE synthesis via both the de novo pathway and the serine decarboxylation pathway was enhanced, and de novo synthesis of phosphatidylcholine via CDP-choline was reduced. The changes were transitory, and the maximum change was noted after 4 to 5 h of infection. Addition of exogenous PC or CDP-choline to epithelial cells prior to infection abrogated EPEC-induced apoptosis, suggesting that EPEC infection inhibits the CTP-phosphocholine cytidylyltransferase step in PC synthesis, which is reportedly inhibited during nonmicrobially induced apoptosis. On the other hand, incorporation of exogenous PE by the host cells enhanced EPEC-induced apoptosis and necrosis without increasing bacterial adhesion. This is the first report that pathogen-induced apoptosis is associated with significant changes in PE and PC metabolism, and the results suggest that EPEC adhesion to a host membrane phospholipid plays a role in disruption of host phospholipid metabolism.

  2. Shiga toxins decrease enterohaemorrhagic Escherichia coli survival within Acanthamoeba castellanii.

    Science.gov (United States)

    Chekabab, Samuel M; Daigle, France; Charette, Steve J; Dozois, Charles M; Harel, Josée

    2013-07-01

    Enterohaemorrhagic Escherichia coli (EHEC) are zoonotic pathogens transmitted to humans through contaminated water or bovine products. One of the strategies used by pathogenic bacteria to survive in aquatic environments is using free-living amoebae as hosts. Acanthamoeba castellanii is an amoeba known to host several waterborne pathogens. This study investigates the survival of EHEC with A. castellanii, which could contribute to its spread and transmission to humans. We used a gentamicin protection assay as well as fluorescence and electron microscopy to monitor the intra-amoebae survival of EHEC O157:H7 over 24 h. The results showed that EHEC were able to survive within A. castellanii and that this survival was reduced by Shiga toxins (Stx) produced by EHEC. A toxic effect mediated by Stx was demonstrated by amoebae mortality and LDH release during co-culture of EHEC and amoeba. This work describes the ability of EHEC to survive within A. castellanii, and this host-pathogen interaction is partially controlled by the Stx. Thus, this ubiquitous amoeba could represent an environmental niche for EHEC survival and transmission.

  3. PROFILE OF RESISTANCE OF Escherichia coli ISOLATED FROM CANINE PYOMETRA

    Directory of Open Access Journals (Sweden)

    Fernanda Santana Oliveira

    2016-10-01

    Full Text Available The endothelial pyometra is a disease that affects more frequently reproductively active adult females. Characterized by inflammation and accumulation of exudate in the uterine cavity, generally associated with bacterial infections. The present study aimed to evaluate the resistance profile of Escherichia coli isolates from 42 female dogs diagnosed with pyometra, seen at the Department of Small Animal Surgery, Hospital of Veterinary Medicine, Federal University of Bahia. To perform the bacteriological analysis, a sample of the contents of the uterus was obtained immediately after surgery of ovariosalpingohisterectomy therapy (OSH and sent to the laboratory. Microbiological analysis showed a predominance of the bacterium Escherichia coli in 40.5% (15/37. Strains of Escherichia coli isolates showed higher rates of resistance to antimicrobial erythromycin (93.3 %, azithromycin (80 %, ampicillin, amoxicillin, and cephalothin (40% each. This study reinforces the need to perform the microbiological examination for epidemiological purposes and the correct therapeutic application, thereby avoiding the indiscriminate use of antimicrobials and the potential emergence of multidrug-resistant  strains. Keywords: bacteria; multiresistant;  uterus.

  4. Vaginal Escherichia coli share common virulence factor profiles, serotypes and phylogeny with other extraintestinal E. coli

    National Research Council Canada - National Science Library

    Obata-Yasuoka, Mana; Ba-Thein, William; Tsukamoto, Teizo; Yoshikawa, Hiroyuki; Hayashi, Hideo

    2002-01-01

    ...: William Ba-Thein. Tel: +81 298 53 3354. Fax: +81 298 53 3354. e-mail: bathein{at}md.tsukuba.ac.jp Characteristics of Escherichia coli residing in the vagina and their role in extraintestinal infections are largely unknown...

  5. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Ulett, G.C.; Schembri, M.A.

    2006-01-01

    Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infections (UTI), very little is known about the mechanisms by which these strains colonize the human urinary tract....... The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. Deliberate colonization of UTI-susceptible individuals with E. coli 83972 has been used successfully as an alternative approach for the treatment of patients who are refractory...... to conventional therapy. Colonization with strain 83972 appears to prevent infection with UPEC strains in such patients despite the fact that this strain is unable to express the primary adhesins involved in UTI, viz. P and type 1 fimbriae. Here we investigated the growth characteristics of E. coli 83972 in human...

  6. Prevalence of Escherichia coli in apple cider manufactured in Connecticut.

    Science.gov (United States)

    Dingman, D W

    1999-06-01

    Cider samples obtained from 11 cider mills operating in Connecticut during the 1997 to 1998 production season were tested for the presence of Escherichia coli. Cider production began in mid August and continued through March, with peak production in September and October. Of 314 cider samples tested, 11 (4%) were found to contain E. coli. Of the 11 mills, 6 (55%) tested positive for E. coli in the cider at least once during the production year. E. coli was first observed in cider samples produced in mid to late October and was not detected in samples made after January. A trend was observed for cider to decrease in acidity and increase in Brix (soluble sugars) throughout the production season. No correlation between pH and soluble sugars of cider and the presence of E. coli was detected. Eight mills used both dropped apples and tree-picked apples, whereas three mills used tree-picked apples only. The use of dropped apples in cider production began 5 weeks before the first detection of E. coli in cider. E. coli was isolated from cider samples produced using dropped apples and from samples produced using only tree-picked apples. No direct correlation between the use of dropped apples or tree-picked apples and the presence of E. coli in the cider was observed. An association between the time of apple harvest and the appearance of E. coli in cider was noted. For mills providing adequate records, all contaminated cider was produced from apples harvested between mid October and mid November.

  7. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    in the cell by labeling specific parts of it. Later the dynamics of chromosome segregation was included. Investigating chromosome organization by labeling of specific loci was already a widely used technique when I started on this thesis, but the data acquisition and treatment was slow and generally poorly......, and it is obvious that structured cellular actions are required to unpack it, as required for its replication, and refold the two daughter chromosomes separately without getting them entangled in the process each generation. The intention of the study was initially to find out how the chromosome is organized....... Adding the results of the thesis together with known data results in the following description of the chromosome dynamics of slowly growing E.coli cells: The chromosome of slow growing cells is organized with the origin at the cell center when it is newborn. It has one chromosomal arm on one side...

  8. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms.

    Science.gov (United States)

    Murphy, H M; Payne, S J; Gagnon, G A

    2008-04-01

    This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.

  9. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    Science.gov (United States)

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  10. Fluorogenic assay for rapid detection of Escherichia coli in food.

    Science.gov (United States)

    Moberg, L J

    1985-12-01

    An assay procedure to screen for Escherichia coli in foods by using 4-methylumbelliferyl-beta-D-glucuronide (MUG) incorporated into lauryl tryptose (LST) broth was evaluated. The beta-glucuronidase produced by E. coli cleaves the MUG substrate to yield a fluorescent end product. E. coli-negative samples can be identified by lack of fluorescence in LST-MUG within 24 h. MUG was not inhibitory to coliforms and E. coli. Over 1,400 food and dairy samples were tested to compare the standard three-tube most-probable-number procedure with the MUG-containing or non-MUG-containing LST procedure. LST-MUG testing detected a greater number of E. coli, with a lower false-positive rate (1.4%) and in a shorter time, than did the standard procedure. All false-positive results in the LST-MUG testing were attributable to beta-glucuronidase-producing staphylococci. No false-negative result was encountered. Use of MUG in LST broth obviates the EC broth step, allowing a 2.5-day procedure to a completed E. coli test versus the present 4- to 6-day standard most-probable-number method.

  11. Examination of uropathogenic Escherichia coli strains conferring large plasmids

    Directory of Open Access Journals (Sweden)

    SUHARTONO

    2010-04-01

    Full Text Available Suhartono (2010 Examination of uropathogenic Escherichia coli strains conferring large plasmids. Biodiversitas 11: 59-64. Of major uropathogens, Escherichia coli has been widely known as a main pathogen of UTIs globally and has considerable medical and financial consequences. A strain of UPEC, namely E. coli ST131, confers a large plasmid encoding cephalosporinases (class C β-lactamase or AmpC that may be disseminated through horizontal transfer among bacterial populations. Therefore, it is worth examining such large plasmids by isolating, purifying, and digesting the plasmid with restriction enzymes. The examination of the large plasmids was conducted by isolating plasmid DNA visualized by agarose gel electrophoresis as well as by PFGE. The relationship of plasmids among isolates was carried out by HpaI restriction enzyme digestion. Of 36 isolates of E. coli ST 131, eight isolates possessed large plasmids, namely isolates 3, 9, 10, 12, 17, 18, 26 and 30 with the largest molecular size confirmed by agarose gel electrophoresis and PFGE was ~42kb and ~118kb respectively. Restriction enzyme analysis revealed that isolates 9, 10, 12, 17 and 18 have the common restriction patterns and those isolates might be closely related.

  12. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Power, U.F.; Collins, J.K. (Univ. College, Cork (Ireland))

    1989-06-01

    The elimination of sewage effluent-associated poliovirus, Escherichia coli, and a 22-nm icosahedral coliphage by the common mussel, Mytilus edulis, was studied. Both laboratory-and commercial-scale recirculating, UV depuration systems were used in this study. In the laboratory system, the logarithms of the poliovirus, E. coli, and coliphage levels were reduced by 1.86, 2.9, and 2.16, respectively, within 52 h of depuration. The relative patterns and rates of elimination of the three organisms suggest that they are eliminated from mussels by different mechanisms during depuration under suitable conditions. Poliovirus was not included in experiments undertaken in the commercial-scale depuration system. The differences in the relative rates and patterns of elimination were maintained for E. coli and coliphage in this system, with the logarithm of the E. coli levels being reduced by 3.18 and the logarithm of the coliphage levels being reduced by 0.87. The results from both depuration systems suggest that E. coli is an inappropriate indicator of the efficiency of virus elimination during depuration. The coliphage used appears to be a more representative indicator. Depuration under stressful conditions appeared to have a negligible affect on poliovirus and coliphage elimination rates from mussels. However, the rate and pattern of E. coli elimination were dramatically affected by these conditions. Therefore, monitoring E. coli counts might prove useful in ensuring that mussels are functioning well during depuration.

  13. Production of isopropanol by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Jojima, Toru; Inui, Masayuki; Yukawa, Hideaki

    2008-01-01

    A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary-secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.

  14. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    PAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...... sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed em...... protein and mRNA abundance in E. coli cells. Conclusion: Abundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its...

  15. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference.

  16. Pulsed ultra-violet inactivation spectrum of Escherichia coli.

    Science.gov (United States)

    Wang, T; Macgregor, S J; Anderson, J G; Woolsey, G A

    2005-08-01

    Inactivation of Escherichia coli is examined using ultra-violet (UV) radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV content. The flashlamp provides high-energy UV output using a small number of short-duration pulses (30 micros). The flashlamp is used with a monochromator to investigate the wavelength sensitivity of E. coli to inactivation by the pulsed UV light. Using 8 nm wide pulses of UV radiation, the most efficient inactivation is found to occur at around 270 nm and no inactivation is observed above 300 nm. A pyroelectric detector allows the energy dose to be determined at each wavelength, and a peak value for E. coli population reduction of 0.43 log per mJ/cm(2) is measured at 270 nm. The results are compared with the published data available for continuous UV light sources.

  17. Escherichia coli portador de betalactamasas de espectro extendido: resistencia

    Directory of Open Access Journals (Sweden)

    Mª C. Miranda García

    2013-12-01

    Full Text Available Introducción: Escherichia coli es el microorganismo que con más frecuencia se encuentra implicado en infecciones nosocomiales y comunitarias, patógeno responsable en la etiología de infecciones de vías respiratorias altas, infecciones del tracto urinario, heridas quirúrgicas, sangre o gastroenteritis. En los últimos años ha experimentado importantes cambios encontrándose un aumento de infecciones por cepas de éstos microorganismos productores de betalactamasas de espectro extendido. Objetivos: Se decide hacer este estudio retrospectivo de las muestras procesadas en el Laboratorio de Microbiología del Hospital Básico de la Defensa San Carlos (San Fernando, para conocer la frecuencia y el patrón de sensibilidad en nuestra población por gérmenes productores de betalactamasas de espectro extendido en este caso por Escherichia coli, dada la importancia de las infecciones causadas por esta bacteria y la repercusión que tiene por todo el mundo los mecanismos de resistencia. Material y Método: Se recogieron los datos de resultados obtenidos en las muestras procesadas en el Laboratorio de Microbiología durante 36 meses (Enero 2009 a Diciembre 2011, en las que se hubieran identificado cepas de Escherichia coli y de éstas las productoras de betalactamasas de espectro extendido. Resultados: Se aislaron 34 cepas de Escherichia coli productoras de betalactamasas de espectro extendido lo que supone una tasa del 5,10%. Se encontró una frecuencia mayor en el año 2010 (6,9% que en el 2009 (2,61%, pero similar al 2011 (5,98%. Conclusión: La frecuencia de cepas Escherichia coli con betalactamasas de espectro extendido encontrada es similar a la de otros estudios realizados en España, pero la tasa de resistencia de algunos antimicrobianos como Amoxicilina/clavulánico, Cotrimoxazol y Fluorquinolonas en nuestra población es elevada.

  18. Effect of monosaccharides and ethyleneglycol on the interaction between Escherichia coli bacteria and Octyl-Sepharose.

    Science.gov (United States)

    Ohman, L; Magnusson, K E; Stendahl, O

    1985-04-01

    Combined effects of monosaccharides and reduced surface tension of the medium were studied in relation to the hydrophobic binding of Escherichia coli bacteria, with and without mannose-specific structures. Hydrophobic binding was analyzed by hydrophobic interaction chromatography on Octyl-Sepharose. The results showed that ethyleneglycol, as well as mannose, reduced the hydrophobic interaction of the bacteria with mannose-specific structures. This effect was potentiated by combining ethyleneglycol and mannose. No other monosaccharides tested (galactose and fucose) had any effect on the hydrophobic interaction of bacteria with mannose-specific structures. These results further strengthen the hypothesis that the mannose-specific interaction of Escherichia coli bacteria is, at least in part, mediated by hydrophobic forces.

  19. Pathology and Molecular Characterization of Escherichia Coli Associated With the Avian Salpingitis-Peritonitis Disease Syndrome

    DEFF Research Database (Denmark)

    Olsen, Rikke Heidemann; Bisgaard, Magne; Christensen, Jens Peter;

    2016-01-01

    Outbreaks of salpingitis and peritonitis cause major economic losses due to high mortality, reduced egg-production, and culling. The aim of the present study was to characterize, in detail, lesions associated with increased mortality in layers due to avianpathogenic Escherichia coli (APEC......) and to investigate the population structure of the E. coli involved, which is important for selection of optimal treatment and prophylactic strategies. Among 322 layers received from eight farms with increased mortality due to E. coli, three lesion types were observed; sepsis-like lesions, chronic salpingitis...... and peritonitis, and chronic salpingitis and peritonitis associated with sepsis-like lesions. One hundred isolates of E. coli obtained in pure culture from the different lesion types were selected for genetic characterization. Six out of 10 submissions (two farms with two submissions) were considered clonal...

  20. mprA, an Escherichia coli gene that reduces growth-phase-dependent synthesis of microcins B17 and C7 and blocks osmoinduction of proU when cloned on a high-copy-number plasmid.

    Science.gov (United States)

    del Castillo, I; Gómez, J M; Moreno, F

    1990-01-01

    Microcins B17 and C7 are plasmid-determined, peptide antibiotics produced by Escherichia coli when cells enter the stationary phase of growth. Microcinogenic strains are immune to the action of the microcin they synthesize. A well-characterized deficient-immunity phenotype is exhibited by microcin B17-producing cells in the absence of the immunity gene mcbG (M.C. Garrido, M. Herrero, R. Kolter, and F. Moreno, EMBO J. 7:1853-1862, 1988). A 14.6-kilobase-pair EcoRI chromosomal fragment was isolated by its ability to suppress this phenotype when cloned into a multicopy vector. This fragment was mapped to 57.5 min on the E. coli genetic map. The position of the gene responsible for suppression, designated mprA, was determined by insertional mutagenesis and deletion analysis. mprA was shown to be transcribed clockwise on the E. coli chromosome, and its product was identified as a 19-kilodalton polypeptide. Suppression was shown to be achieved by decreasing microcin B17 production. Increased mprA gene dosage also caused a decrease in microcin C7 production and blocked the osmoinduction of the proU locus in high-osmolarity media. Our results suggest that the mprA gene product could play a regulatory role on expression of several E. coli genes, this control being exerted at the transcriptional level.

  1. Effect of Ozone Treatment on Inactivation of Escherichia coli and Listeria sp. on Spinach

    OpenAIRE

    Shreya Wani; Jagpreet K. Maker; Joseph R. Thompson; Jeremy Barnes; Ian Singleton

    2015-01-01

    The efficacy of “gaseous” ozone in reducing numbers and re-growth of food-borne pathogens, (Escherichia coli and Listeria spp.), on leafy salads was investigated using spinach. A preliminary in vivo study showed 1-log reduction in six strains of E. coli and two species of Listeria spp. on spinach exposed to 1 ppm ozone for 10 min. A range of ozone treatments were explored to deliver optimal bacterial inactivation while maintaining the visual appearance (color) of produce. Exposure to a highe...

  2. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Sidra Younis

    Full Text Available Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs. In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics.

  3. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    Science.gov (United States)

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-03

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  4. Biochemical aspects of the resistance to nourseothricin (streptothricin) of Escherichia coli strains.

    Science.gov (United States)

    Seltmann, G

    1989-01-01

    In most cases Escherichia coli strains phenotypically resistant against nourseothricin (streptothricin) harbour a plasmid which codes for an acetyltransferase. This enzyme transfers an acetyl group from acetyl-coenzyme A to an amino group of the beta-lysine (peptide) chain of the antibiotic, thus inactivating it. Additionally, the penetrability for nourseothricin of the cell wall is drastically reduced in a high percentage of the resistant strains. Both resistance mechanisms seem to be independent of each other.

  5. A purified nucleoprotein fragment of the 30 S ribosomal subunit of Escherichia coli.

    Science.gov (United States)

    Spitnik-Elson, P; Elson, D; Abramowitz, R

    1979-02-27

    A '13 S' nucleoprotein fragment was isolated from a nuclease digest of Escherichia coli 30-S ribosomal subunits and purified to gel electrophoretic homogeneity. It contained two polynucleotides, of about 1.1 . 10(5) and 2.5 . 10(4) daltons, which separated when the fragment was deproteinized. The major protein components were S4, S7 and S9/11, with S15, S16, S18, S19 and S20 present in reduced amount.

  6. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    Science.gov (United States)

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  7. Evaluation of Five Jet Fuels in the Salmonella-Escherichia coli / Microsome Plate Incorporation Assay

    Science.gov (United States)

    2010-09-01

    AFRL-RH-WP-TR-2010-0138 Evaluation of Five Jet Fuels in the Salmonella-Escherichia coli / Microsome Plate Incorporation Assay Edward S...31 Jul 2010 4. TITLE AND SUBTITLE Evaluation of Five Jet Fuels in the Salmonella-Escherichia coli / Microsome Plate Incorporation Assay 5a...the Salmonella typhimurium-Escherichia coli/ microsome plate incorporation assay. The assay was performed using the plate incorporation procedure

  8. Multiple antimicrobial resistance among Avian Escherichia coli strains in Albania

    Directory of Open Access Journals (Sweden)

    Antonio Camarda

    2010-01-01

    Full Text Available In this study, 101 Escherichia (E. coli isolates from broilers, laying hens and turkeys which had died from colibacillosis, collected from 37 intensive and rural farms in Albania, were tested for antimicrobial susceptibility toward 12 different molecules. The highest levels of resistance were observed for Erythromycin (E (100% Amoxicillin (AMX (99.1%, Tetracycline (TE 30 (96.07%, Streptomycin (STR (93.07% and Neomycin (N30 (85.15%. Considerable resistance was also detected for fluoroquinolones. Moreover, 73.33% of E. coli resistant to at least one fluoroquinolone were also resistant to the two other fluoroquinolones checked. No evident differences were found between the E. coli from intensive and from rural farms. Multiple antibiotic resistance was expressed by all the E. coli tested. 23.63% and 17.39% of E. coli isolated from intensive and rural farms, respectively, were resistant towards all the drugs tested. These data would seem to indicate incorrect use of antibiotics on poultry farms in Albania.

  9. Escherichia coli exports cyclic AMP via TolC.

    Science.gov (United States)

    Hantke, Klaus; Winkler, Karin; Schultz, Joachim E

    2011-03-01

    In Escherichia coli more than 180 genes are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. However, more than 90% of cAMP that is made by intracellular adenylyl cyclases is found in the culture medium. How is cAMP exported from E. coli? In a tolC mutant, 0.03 mM IPTG (isopropyl-β-d-thiogalactopyranoside) was sufficient to induce β-galactosidase compared to 0.1 mM IPTG in the parent strain. In a cya mutant unable to produce cAMP about 1 mM extracellular cAMP was required to induce β-galactosidase, whereas in a cya tolC mutant 0.1 mM cAMP was sufficient. When cAMP in E. coli cya was generated intracellularly by a recombinant, weakly active adenylyl cyclase from Corynebacterium glutamicum, the critical level of cAMP necessary for induction of maltose degradation was only achieved in a tolC mutant and not in the parent strain. Deletion of a putative cAMP phosphodiesterase of E. coli, CpdA, resulted in a slightly similar, yet more diffuse phenotype. The data demonstrate that export of cAMP via TolC is a most efficient way of E. coli to lower high concentrations of cAMP in the cell and maintain its sensitivity in changing metabolic environments.

  10. Phylogenetic analysis of Escherichia coli strains isolated from human samples

    Directory of Open Access Journals (Sweden)

    Abdollah Derakhshandeh

    2013-12-01

    Full Text Available Escherichia coli (E. coli is a normal inhabitant of the gastrointestinal tract of vertebrates, including humans. Phylogenetic analysis has shown that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D. Group A and B1 are generally associated with commensals, whereas group B2 is associated with extra-intestinal pathotypes. Most enteropathogenic isolates, however, are assigned to group D. In the present study, a total of 102 E. coli strains, isolated from human samples, were used. Phylogenetic grouping was done based on the Clermont triplex PCR method using primers targeted at three genetic markers, chuA, yjaA and TspE4.C2. Group A contained the majority of the collected isolates (69 isolates, 67.64%, followed by group B2 (18 isolates, 17.64% and D (15 isolates, 14.7% and no strains were found to belong to group B1. The distribution of phylogenetic groups in our study suggests that although the majority of strains were commensals, the prevalence of enteropathogenic and extra-intestinal pathotypes was noteworthy. Therefore, the role of E. coli in human infections including diarrhea, urinary tract infections and meningitis should be considered.

  11. Role of peripheral pooling in porcine Escherichia coli sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Teule, G.J.; von Lingen, A.; Verwey von Vught, M.A.; Kester, A.D.; Mackaay, R.C.; Bezemer, P.D.; Heidenal, G.A.; Thijs, L.G.

    1984-01-01

    In anesthesized pigs the effects of E. coli (2 X 10(8)/kg) on hemodynamics and red cell distribution were studied. After injection of 99m-Tc red cells (15 mCi), regional radioactivity was followed during 3 hours. Gated bloodpool studies were performed to measure end-diastolic volumes (EDV). Escherichia coli E. coli was infused in 14 pigs, while 7 animals served as controls. E. coli resulted in an early increase in pulmonary arterial pressure. Systemic arterial pressure decreased gradually, while cardiac output did not change significantly. The gated studies revealed that especially left ventricular end-diastolic volume (LVEDV) declined, to 50% of the basal value. Regional radioactivity did not change over lungs, liver and abdomen. Splenic activity declined markedly. Over the hindlimb a significant increase (29 +/- 8%) was observed. It is concluded that E. coli infusion in pigs induces a hemodynamic pattern similar to human sepsis. The decrease in LVEDV is probably related to peripheral pooling and a change in right ventricle (RV) performance.

  12. The genetic basis of Escherichia coli pathoadaptation to macrophages.

    Directory of Open Access Journals (Sweden)

    Migla Miskinyte

    Full Text Available Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ, is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.

  13. Unusual "flesh-eating" strains of Escherichia coli.

    Science.gov (United States)

    Shaked, Hila; Samra, Zmira; Paul, Michal; Madar-Shapiro, Liora; Cohen, Jonathan; Pitlik, Silvio; Bishara, Jihad

    2012-12-01

    Monomicrobial necrotizing fasciitis (type II) is typically caused by group A streptococcus alone or in combination with Staphylococcus aureus. Escherichia coli has been isolated from polymicrobial or Fournier's gangrene but has rarely been reported in monomicrobial necrotizing fasciitis. We describe the clinical characteristics and outcomes of seven cases of monomicrobial E. coli necrotizing fasciitis and/or severe soft tissue infection diagnosed at a single institution during an 18-month period. Four isolates from three patients and two isolates from two patients with type I polymicrobial severe soft tissue infection (controls) were assayed by the randomly amplified polymorphic DNA (RAPD) analysis for fingerprinting and PCR amplification of primers in order to detect cytotoxic necrotizing factor 1 and 2 (cnf1 and cnf2) genes. All patients had some type of immune suppression. The limb was the most commonly involved organ. In all cases, E. coli was isolated as a monomicrobial pathogen from blood, fascia, or both. All patients died during hospitalization, three within the first 48 h. The RAPD amplification assay showed a high degree of genetic diversity among the "flesh-eating" strains and controls. The cnf1 toxin gene was identified in two out of three cases, but not in the controls. cnf2 was not detected in any of the patients. E. coli may be responsible for life-threatening necrotizing fasciitis. Further research is needed to reveal relevant risk factors, reservoirs, and modes of transmission of cnf1 E. coli.

  14. Escherichia coli ST131, an Intriguing Clonal Group

    Science.gov (United States)

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  15. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    Science.gov (United States)

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  16. Paper-based ELISA to rapidly detect Escherichia coli.

    Science.gov (United States)

    Shih, Cheng-Min; Chang, Chia-Ling; Hsu, Min-Yen; Lin, Jyun-Yu; Kuan, Chen-Meng; Wang, Hsi-Kai; Huang, Chun-Te; Chung, Mu-Chi; Huang, Kui-Chou; Hsu, Cheng-En; Wang, Chun-Yuan; Shen, Ying-Cheng; Cheng, Chao-Min

    2015-12-01

    Escherichia coli is a generic indicator of fecal contamination, and certain serotypes cause food- and water-borne illness such as O157:H7. In the clinic, detection of bacteriuria, which is often due to E. coli, is critical before certain surgical procedures or in cases of nosocomial infection to prevent further adverse events such as postoperative infection or sepsis. In low- and middle-income countries, where insufficient equipment and facilities preclude modern methods of detection, a simple, low-cost diagnostic device to detect E. coli in water and in the clinic will have significant impact. We have developed a simple paper-based colorimetric platform to detect E. coli contamination in 5h. On this platform, the mean color intensity for samples with 10(5)cells/mL is 0.118±0.002 (n=4), and 0.0145±0.003 (Ppaper-based ELISA is an innovative point-of-care diagnostic tool to rapidly detect E. coli, and possibly other pathogens when customized as appropriate, especially in areas that lack advanced clinical equipment.

  17. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  18. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat.

    Science.gov (United States)

    Liu, Yang; Betti, Mirko; Gänzle, Michael G

    2012-03-01

    This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.

  19. Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes?

    Science.gov (United States)

    Marrs, Carl F; Zhang, Lixin; Foxman, Betsy

    2005-11-15

    A variety of virulence genes are associated with Escherichia coli mediated urinary tract infections. Particular sets of virulence factors shared by bacterial strains directing them through a particular pathogenesis process are called a "pathotype." Comparison of co-occurrence of potential urinary tract infection (UTI) virulence genes among different E. coli isolates from fecal and UTI collections provides evidence for multiple pathotypes of uropathogenic E. coli, but current understanding of critical genetic differences defining the pathotypes is limited. Discovery of additional E. coli genes involved in uropathogenesis and determination of their distribution and co-occurrences will further define UPEC pathotypes and allow for a more detailed analysis of how these pathotypes might differ in how they cause disease.

  20. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates.

    Science.gov (United States)

    Rasko, David A; Rosovitz, M J; Myers, Garry S A; Mongodin, Emmanuel F; Fricke, W Florian; Gajer, Pawel; Crabtree, Jonathan; Sebaihia, Mohammed; Thomson, Nicholas R; Chaudhuri, Roy; Henderson, Ian R; Sperandio, Vanessa; Ravel, Jacques

    2008-10-01

    Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of approximately 2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.

  1. Engineering Escherichia coli for methanol conversion

    NARCIS (Netherlands)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-01-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy

  2. Engineering Escherichia coli for methanol conversion

    NARCIS (Netherlands)

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-01-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy

  3. Viabilidad de Escherichia coli en presencia de diferentes contaminantes

    Directory of Open Access Journals (Sweden)

    Antonio Rivera T

    2006-04-01

    Full Text Available La contaminación en ríos condiciona la presencia de microorganismos adaptados al ecosistema entre ellos a patógenos de importancia en salud pública. Objetivo: Determinar la viabilidad de Escherichia coli en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Materiales y métodos: Se tomaron muestras de agua del río Alseseca, que luego se sembró en medios de cultivo selectivos para enterobacterias, seleccionándose las colonias del género Escherichia, las cuales fueron sembradas en el medio de orientación CHROMagar ECC. Las muestras de E. coli se evaluaron en presencia de nitrato de plata, carbonato de amonio, fenol y formaldehído. Resultados: El grupo experimental presentó viabilidad en presencia de los cuatro compuestos, el grupo control positivo presentó nula viabilidad, la comparación entre los grupos mostró diferencia significativa (p< 0,05. Conclusión: Los aislamientos de E. coli mostraron viabilidad, implicando riesgos para el ecosistemas y la salud, ya que el río Alseseca atraviesa por el municipio de Puebla donde existen núcleos poblacionales importantes.

  4. Overexpression and export of Vibrio anguillarum metalloprotease in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhang Fengli; Chi Zhenming; Chen Jixiang; Wu Longfei; Liang Likun

    2007-01-01

    Vibrio anguillarum metalloprotease, an extracellular zinc metalloprotease involved in the virulence mechanism of Vibrio anguillarum, is synthesized from the empA gene as a 611-residue precursor and naturally secreted via Sec secretion pathway in Vibrio anguillarum. In this study, heterologous expression of the empA gene encoding metallopmtease and export of the recombinant metalloprotease in Escherichia coliwere examined. The empA gene was subcloned into pBAD24 with arabinose promoter and sequenced. The sequence encoded a polypeptide(611 amino acids)consisting of four domains: a signal peptide, an Nterminal propeptide, a mature region and a C-terminal propeptide. The empA gene inserted in plasmid pBAD24 was overexpressed in TOP10 strain of E. Coli after arabinose induction. The 36kDa polypeptide of the recombinant metalloprotease as the mature protease was further confirmed by SDS-PAGE and immunoblotting. It was found that recombinant metalloprotease with the EmpA activity and antigenicity wasexported into the periplasm of Escherichia coli cells via Sec translocation pathway, whereas it was secreted into extracellular environments in V. Anguillarum. The results imply that the expression, export and processing mechanism of the protein in E. Coli are similar to those in V. Anguillarum.

  5. Persistence of Escherichia coli in batch and continuous vermicomposting systems.

    Science.gov (United States)

    Hénault-Ethier, Louise; Martin, Vincent J J; Gélinas, Yves

    2016-10-01

    Vermicomposting is a biooxidation process in which epigeicearthworms act in synergy with microbial populations to degrade organic matter. Vermicomposting does not go through a thermophilic stage as required by North American legislations for pathogen eradication. We examined the survival of a Green Fluorescent Protein (GFP) labeled Escherichia coli MG1655 as a model for the survival of pathogenic bacteria in both small-scale batch and medium-scale continuously-operated systems to discern the influence of the earthworm Eisenia fetida, nutrient content and the indigenous vermicompost microbial community on pathogen abundance. In batch systems, the microbial community had the greatest influence on the rapid decline of E. coli populations, and the effect of earthworms was only visible in microbially-impoverishedvermicomposts. No significant earthworm density-dependent relationship was observed on E. coli survival under continuous operation. E. coli numbers decreased below the US EPA compost sanitation guidelines of 10(3)Colony Forming Units (CFU)/g (dry weight) within 18-21days for both the small-scale batch and medium-scale continuous systems, but it took up to 51days without earthworms and with an impoverished microbial community to reach the legal limit. Nutrient replenishment (i.e. organic carbon) provided by continuous feed input did not appear to extend E. coli survival. In fact, longer survival of E. coli was noticed in treatments where less total and labile sugars were available, suggesting that sugars may support potentially antagonist bacteria in the vermicompost. Total N, pH and humidity did not appear to affect E. coli survival. Several opportunistic human pathogens may be found in vermicompost, and their populations are likely kept in check by antagonists.

  6. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages.

  7. Escherichia coli Reduction by Bivalves in an Impaired River Impacted by Agricultural Land Use.

    Science.gov (United States)

    Ismail, Niveen S; Tommerdahl, Jake P; Boehm, Alexandria B; Luthy, Richard G

    2016-10-18

    Fecal indicator bacteria (FIB) are leading causes of impaired surface waters. Innovative and environmentally appropriate best management practices are needed to reduce FIB concentrations and associated risk. This study examines the ability of the native freshwater mussel Anodonta californiensis and an invasive freshwater clam Corbicula fluminea to reduce concentrations of the FIB Escherichia coli in natural waters. Laboratory batch experiments were used to show bivalve species-specific E. coli removal capabilities and to develop a relationship between bivalve size and clearance rates. A field survey within an impaired coastal river containing both species of bivalves in an agricultural- and grazing-dominated area of the central coast of California showed a significant inverse correlation between E. coli concentration and bivalve density. An in situ field spiking and sampling study showed filtration by freshwater bivalves resulting in 1-1.5 log10 reduction of E. coli over 24 h, and calculated clearance rates ranged from 1.2 to 7.4 L hr(-1) bivalve(-1). Results of this study show the importance of freshwater bivalves for improving water quality through the removal of E. coli. While both native and invasive bivalves can reduce E. coli levels, the use of native bivalves through integration into best management practices is recommended as a way to improve water quality and protect and encourage re-establishment of native bivalve species that are in decline.

  8. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1

    Science.gov (United States)

    Batalha, Laís Silva; Albino, Luiz Augusto A.; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M. Soares; Mendonca, Regina C. Santos

    2016-01-01

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229). PMID:27738021

  9. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    Science.gov (United States)

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  10. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain.

    Science.gov (United States)

    Ang, C Wim; Bouts, Antonia H M; Rossen, John W A; Van der Kuip, Martijn; Van Heerde, Marc; Bökenkamp, Arend

    2016-09-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E. coli and the resulting heteropathogenic strains.

  11. A putative, novel coli surface antigen 8B (CS8B) of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Njoroge, Samuel M; Boinett, Christine J; Madé, Laure F; Ouko, Tom T; Fèvre, Eric M; Thomson, Nicholas R; Kariuki, Samuel

    2015-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains harbor multiple fimbriae and pili to mediate host colonization, including the type IVb pilus, colonization factor antigen III (CFA/III). Not all colonization factors are well characterized or known in toxin positive ETEC isolates, which may have an impact identifying ETEC isolates based on molecular screening of these biomarkers. We describe a novel coli surface antigen (CS) 8 subtype B (CS8B), a family of CFA/III pilus, in a toxin producing ETEC isolate from a Kenyan collection. In highlighting the existence of this putative CS, we provide the sequence and specific primers, which can be used alongside other ETEC primers previously described.

  12. Selenite Protection of Tellurite Toxicity towards Escherichia coli

    Directory of Open Access Journals (Sweden)

    Helen A. Vrionis

    2015-12-01

    Full Text Available In this work the influence of selenite on metal resistance in Escherichia coli was examined. Both synergistic and antagonistic resistance and toxicities were found upon co exposure with selenite. In wild type cells co-exposure to selenite had little effect on arsenic resistance, decreased resistance to cadmium and mercury but led to a dramatic increased resistance to tellurite of 32 fold. Due to the potential importance of thiol chemistry in metal biochemistry, deletion strains in γ-glutamylcysteine synthetase (key step in glutathione biosynthesis, encoded by gshA, thioredoxin (trxA, glutaredoxin (grxA, glutathione oxidoreductase (gor, and the periplasmic glutathione transporter (cydD were also evaluated for resistance to various metals in the presence of selenite. The protective effect of selenite on tellurite toxicity was seen in several of the mutants and was pronounced in the gshA mutant were resistance to tellurite was increased up to 1000 fold relative to growth in the absence of selenite. Thiol oxidation studies revealed a faster rate of loss of reduced thiol content in the cell with selenite than with tellurite, indicating differential thiol reactivity. Selenite addition resulted in reactive oxygen species (ROS production equivalent to levels associated with H2O2 addition. Tellurite addition resulted in considerably lower ROS generation while vanadate and chromate treatment did not increase ROS production above that of background. This work shows increased resistance towards most oxyanions in mutants of thiol redox suggesting that metalloid reaction with thiol components such as glutathione actually enhances toxicity of some metalloids.

  13. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, R.; Schalen, C.; Tranberg, K.G. (Department of Surgery, Lund University, Lund (Sweden))

    1991-06-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis.

  14. Posttranslational Modifications of Ribosomal Proteins in Escherichia coli.

    Science.gov (United States)

    Nesterchuk, M V; Sergiev, P V; Dontsova, O A

    2011-04-01

    А number of ribosomal proteins inEscherichia coliundergo posttranslational modifications. Six ribosomal proteins are methylated (S11, L3, L11, L7/L12, L16, and L33), three proteins are acetylated (S5, S18, and L7), and protein S12 is methylthiolated. Extra amino acid residues are added to protein S6. С-terminal amino acid residues are partially removed from protein L31. The functional significance of these modifications has remained unclear. These modifications are not vital to the cells, and it is likely that they have regulatory functions. This paper reviews all the known posttranslational modifications of ribosomal proteins inEscherichia coli. Certain enzymes responsible for the modifications and mechanisms of enzymatic reactions are also discussed.

  15. Defects in Polynucleotide phosphorylase impairs virulence in Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Jia eHu

    2015-08-01

    Full Text Available Polynucleotide phosphorylase (PNPase is reported to regulate virulence in Salmonella, Yersinia spp. and Campylobacter jejuni, yet its role in Escherichia coli O157:H7 has not been investigated. To gain insights into its roles in E. coli O157:H7 virulence, pnp deletion mutants were generated and the major virulence factors were compared to their parental wild type strains. Deletion of pnp in E. coli O157:H7 dramatically decreased stx2 mRNA expression and Stx2 protein production, and impaired lambdoid prophage activation in E. coli O157:H7. Quantitative PCR further confirmed that the Stx2 phage lytic growth was repressed by pnp deletion. Consistent with reduced Stx2 production and Stx2 phage activation, the transcriptional levels of genes involved in phage lysis and replication were down-regulated. In addition, disruption of pnp in E. coli O157:H7 decreased its adhesion to intestinal epithelial cells as well as cattle colonic explant tissues. On the other hand, PNPase inactivation in E. coli O157:H7 enhanced Tir protein content and the transcription of type three secretion system components, including genes encoding intimin, Tir and EspB as well as LEE positive regulator, Ler. Collectively, data indicate that PNPase has pleiotropic effects on the virulence of E. coli O157:H7.

  16. CRISPR adaptation in Escherichia coli subtypeI-E system.

    Science.gov (United States)

    Kiro, Ruth; Goren, Moran G; Yosef, Ido; Qimron, Udi

    2013-12-01

    The CRISPRs (clustered regularly interspaced short palindromic repeats) and their associated Cas (CRISPR-associated) proteins are a prokaryotic adaptive defence system against foreign nucleic acids. The CRISPR array comprises short repeats flanking short segments, called 'spacers', which are derived from foreign nucleic acids. The process of spacer insertion into the CRISPR array is termed 'adaptation'. Adaptation allows the system to rapidly evolve against emerging threats. In the present article, we review the most recent studies on the adaptation process, and focus primarily on the subtype I-E CRISPR-Cas system of Escherichia coli.

  17. Composition of cardiolipin molecular species in Escherichia coli.

    OpenAIRE

    Yokota, K; Kanamoto, R.; Kito, M

    1980-01-01

    The composition of the molecular species of acidic phospholipids in Escherichia coli B during the late exponential growth phase at 37 degrees C was determined. Two phosphatidyl groups of cardiolipin, the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties of cardiolipin, were isolated by limited hydrolysis with phospholipase C. No significant difference in the composition of the molecular species was found between the 3-(3-sn-phosphatidyl) and 1-(3-sn-phosphatidyl) moieties. On the other...

  18. Pengujian Bakteri Escherichia Coli Pada Air Sumur Di Medan Johor

    OpenAIRE

    Mahardhika, Diah

    2013-01-01

    Water is an essential material in life. Water is a means to improve public health. The spread of water borne diseases can be. Water pollution can be caused due to the entry of human and animal waste, but it can also be caused directly or through a leak or where ground soil cracks. This test aims to determine the number most likely Most Probable Number (MPN) Escherichia coli bacteria that contaminate well water located in Medan Johor still meet water quality requirements or not. The samplin...

  19. Modulation of allele leakiness and adaptive mutability in Escherichia coli

    Indian Academy of Sciences (India)

    R. Jayaraman

    2000-08-01

    It is shown that partial phenotypic suppression of two ochre mutations (argE3 and lacZU118) and an amber mutation (in argE) by sublethal concentrations of streptomycin in an rpsL+ (streptomycin-sensitive) derivative of the Escherichia coli strain AB1157 greatly enhances their adaptive mutability under selection. Streptomycin also increases adaptive mutability brought about by the ppm mutation described earlier. Inactivation of recA affects neither phenotypic suppression by streptomycin nor replication-associated mutagenesis but abolishes adaptive mutagenesis. These results indicate a causal relationship between allele leakiness and adaptive mutability.

  20. Precursor for elongation factor Tu from Escherichia coli.

    OpenAIRE

    1986-01-01

    The tufA gene, one of two genes in Escherichia coli encoding elongation factor Tu (EF-Tu), was cloned into a ColE1-derived plasmid downstream of the lac promoter-operator. In cells carrying this plasmid, the synthesis of EF-Tu was increased four- to fivefold upon the addition of isopropyl-beta-D-thiogalactopyranoside (an inducer of the lac promoter). This condition led to the synthesis of a novel protein, called pTu, which comigrated with EF-Tu on a sodium dodecyl sulfate-polyacrylamide gel b...

  1. Interactions between Phage-Shock Proteins in Escherichia coli

    OpenAIRE

    Adams, Hendrik; Teertstra, Wieke; Demmers, Jeroen; Boesten, Rolf; Tommassen, Jan

    2003-01-01

    Expression of the pspABCDE operon of Escherichia coli is induced upon infection by filamentous phage and by many other stress conditions, including defects in protein export. Expression of the operon requires the alternative sigma factor σ54 and the transcriptional activator PspF. In addition, PspA plays a negative regulatory role, and the integral-membrane proteins PspB and PspC play a positive one. In this study, we investigated whether the suggested protein-protein interactions implicated ...

  2. PspA can form large scaffolds in Escherichia coli.

    Science.gov (United States)

    Standar, Kerstin; Mehner, Denise; Osadnik, Hendrik; Berthelmann, Felix; Hause, Gerd; Lünsdorf, Heinrich; Brüser, Thomas

    2008-10-29

    The phage shock protein A (PspA) of Escherichia coli stabilizes the cytoplasmic membrane under stress conditions. Here we demonstrate that PspA can form hollow spherical or prolate spheroidal particles of about 30-40nm diameter with a scaffold-like arrangement of protein subunits at the surface. The 'PspA-scaffold' is the basic structure that is common to all particles. The PspA-scaffold may be of fundamental importance, as it could allow PspA to stabilize the integrity of membranes through numerous contact points over a large surface area.

  3. PspA can form large scaffolds in Escherichia coli.

    OpenAIRE

    Standar, Kerstin; Mehner, Denise; Osadnik, Hendrik; Berthelmann, Felix; Hause, Gerd; Lünsdorf, Heinrich; Brüser, Thomas

    2008-01-01

    The phage shock protein A (PspA) of Escherichia coli stabilizes the cytoplasmic membrane under stress conditions. Here we demonstrate that PspA can form hollow spherical or prolate spheroidal particles of about 30-40nm diameter with a scaffold-like arrangement of protein subunits at the surface. The 'PspA-scaffold' is the basic structure that is common to all particles. The PspA-scaffold may be of fundamental importance, as it could allow PspA to stabilize the integrity of membranes through n...

  4. Isolation and mapping of phosphotransferase mutants in Escherichia coli.

    Science.gov (United States)

    Epstein, W; Jewett, S; Fox, C F

    1970-11-01

    Mutants of Escherichia coli K-12 defective in enzyme I or Hpr, the two common components of the phosphoenolpyruvate-dependent phosphotransferase system, were isolated by a simple, direct method. The ptsI locus, the structural gene for enzyme I, and the ptsH locus, the site of mutations leading to loss of Hpr activity, are adjacent genes and could be part of a single operon. These two genes lie between the purC and supN markers in the order: strA... guaB-purC-ptsI-ptsH-supN-dsdA... his.

  5. Penicillin-binding site on the Escherichia coli cell envelope.

    OpenAIRE

    Amaral, L; Lee, Y.; Schwarz, U.; Lorian, V

    1986-01-01

    The binding of 35S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the "cell envelope" obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. At low pH, PBPs 1b, 1c, 2, and 3 demonstrated the greatest amount of binding. At high pH, these PBPs bound the least amount of penicillin. PBPs 1a and 5/6 exhibited the greatest amount of binding at pH 10 and the least amount at pH 4. With the exception of PBP 5/6, the effect of pH on the...

  6. Modeling Surface Growth of Escherichia coli on Agar Plates

    OpenAIRE

    Fujikawa, Hiroshi; Morozumi, Satoshi

    2005-01-01

    Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified m...

  7. Modeling the pressure inactivation dynamics of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yamamoto K.

    2005-01-01

    Full Text Available Escherichia coli, as a model microorganism, was treated in phosphate-buffered saline under high hydrostatic pressure between 100 and 300 MPa, and the inactivation dynamics was investigated from the viewpoint of predictive microbiology. Inactivation data were curve fitted by typical predictive models: logistic, Gompertz and Weibull functions. Weibull function described the inactivation curve the best. Two parameters of Weibull function were calculated for each holding pressure and their dependence on holding pressure was obtained by interpolation. With the interpolated parameters, inactivation curves were simulated and compared with the experimental data sets.

  8. Resistencia a biocidas de diferentes cepas de escherichia coli

    OpenAIRE

    López Aguayo, M. Carmen; Grande Burgos, M. José; Lucas López, R.; Gálvez-del-Postigo-Ruiz, Antonio

    2010-01-01

    Los biocidas son herramientas de gran importancia para controlar la transmisión de microorganismos patógenos a través de la cadena alimentaria. En el presente estudio se ha determinado la resistencia a siete biocidas en una colección de nueve cepas de Escherichia coli, incluyendo cepas verotoxigénicas y cepas portadoras de resistencia a beta-lactámicos. Los biocidas más eficaces fueron triclosan, hexadecilpiridinio y cetrimida, seguido del cloruro de benzalconio. No se encon...

  9. Genome-scale genetic engineering in Escherichia coli.

    Science.gov (United States)

    Jeong, Jaehwan; Cho, Namjin; Jung, Daehee; Bang, Duhee

    2013-11-01

    Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli as well as multiplex automated genome engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.

  10. Engineering Escherichia coli Cell Factories for n-Butanol Production.

    Science.gov (United States)

    Dong, Hongjun; Zhao, Chunhua; Zhang, Tianrui; Lin, Zhao; Li, Yin; Zhang, Yanping

    2016-01-01

    The production of n-butanol, as a widely applied solvent and potential fuel, is attracting much attention. The fermentative production of butanol coupled with the production of acetone and ethanol by Clostridium (ABE fermentation) was once one of the oldest biotechnological processes, ranking second in scale behind ethanol fermentation. However, there remain problems with butanol production by Clostridium, especially the difficulty in genetically manipulating clostridial strains. In recent years, many efforts have been made to produce butanol using non-native strains. Until now, the most advanced effort was the engineering of the user-friendly and widely studied Escherichia coli for butanol production. This paper reviews the current progress and problems relating to butanol production by engineered E. coli in terms of prediction using mathematical models, pathway construction, novel enzyme replacement, butanol toxicity, and tolerance engineering strategies.

  11. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli

    DEFF Research Database (Denmark)

    Hebbelstrup Jensen, Betina; Olsen, Katharina E P; Struve, Carsten

    2014-01-01

    Enteroaggregative Escherichia coli (EAEC) represents a heterogeneous group of E. coli strains. The pathogenicity and clinical relevance of these bacteria are still controversial. In this review, we describe the clinical significance of EAEC regarding patterns of infection in humans, transmission......, reservoirs, and symptoms. Manifestations associated with EAEC infection include watery diarrhea, mucoid diarrhea, low-grade fever, nausea, tenesmus, and borborygmi. In early studies, EAEC was considered to be an opportunistic pathogen associated with diarrhea in HIV patients and in malnourished children...... in developing countries. In recent studies, associations with traveler's diarrhea, the occurrence of diarrhea cases in industrialized countries, and outbreaks of diarrhea in Europe and Asia have been reported. In the spring of 2011, a large outbreak of hemolytic-uremic syndrome (HUS) and hemorrhagic colitis...

  12. Production and purification of active snowdrop lectin in Escherichia coli.

    Science.gov (United States)

    Longstaff, M; Powell, K S; Gatehouse, J A; Raemaekers, R; Newell, C A; Hamilton, W D

    1998-02-15

    Recombinant snowdrop lectin was produced in Escherichia coli from a cDNA clone encoding mature Galanthus nivalis agglutinin. After induction with isopropylthio-beta-D-galactoside, inclusion bodies from E. coli were solubilised and the G. nivalis agglutinin purified by metal-affinity chromatography using a carboxy-terminal hexahistidine tag. The protein was refolded on the metal-affinity column prior to elution. After purification, the recombinant G. nivalis agglutinin agglutinated rabbit erythrocytes to a dilution similar to that determined for 'native' lectin purified from snowdrop, and showed similar specific binding to mannose. The toxicity of the recombinant G. nivalis agglutinin towards rice brown planthopper (Nilaparvata lugens) was shown to be similar to that of 'native' G. nivalis agglutinin when incorporated into an artificial diet. The recombinant G. nivalis agglutinin is thus functionally similar to 'native' snowdrop lectin.

  13. Bleomycin sensitivity in Escherichia coli is medium-dependent.

    Directory of Open Access Journals (Sweden)

    Tao Xu

    Full Text Available Bleomycin (BLM is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.

  14. Rotational tumbling of Escherichia coli aggregates under shear

    CERN Document Server

    Portela, R; Almeida, P L; Sobral, R G; Franco, J M; Leal, C R

    2016-01-01

    Growing living cultures of Escherichia coli bacteria were investigated using real-time in situ rheology and rheo-imaging measurements. In the early stages of growth (lag phase), and when subjected to a constant stationary shear, the viscosity slowly increases with the cell's population. As the bacteria reach the exponential phase of growth, the viscosity increases rapidly, with sudden and temporary abrupt decreases and recoveries. At a certain stage, corresponding grossly to the late phase of growth, when the population stabilises, the viscosity also keeps its maximum constant value, with drops and recoveries, for a long period of time. This complex rheological behaviour, which was observed to be shear strain dependent, is a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. Particular attention was given to the late phase of growth of E. coli populations under shear. Rheo-imaging measurements revealed, near the static plate, a rotational motion o...

  15. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli.

    Science.gov (United States)

    Holowko, Maciej B; Wang, Huijuan; Jayaraman, Premkumar; Poh, Chueh Loo

    2016-11-18

    Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.

  16. Substrate specificity engineering of Escherichia coli derived fructosamine 6-kinase.

    Science.gov (United States)

    Kojima, Katsuhiro; Mikami-Sakaguchi, Akane; Kameya, Miho; Miyamoto, Yusuke; Ferri, Stefano; Tsugawa, Wakako; Sode, Koji

    2013-02-01

    A three-dimensional structural model of Escherichia coli fructosamine 6-kinase (FN6K), an enzyme that phosphorylates fructosamines at C6 and catalyzes the production of the fructosamine 6-phosphate stable intermediate, was generated using the crystal structure of 2-keto-3-deoxygluconate kinase isolated from Thermus thermophilus as template. The putative active site region was then investigated by site-directed mutagenesis to reveal several amino acid residues that likely play important roles in the enzyme reaction. Met220 was identified as a residue that plays a role in substrate recognition when compared to Bacillus subtilis derived FN6K, which shows different substrate specificity from the E. coli FN6K. Among the various Met220-substituted mutant enzymes, Met220Leu, which corresponded to the B. subtilis residue, resulted in an increased activity of fructosyl-valine and decreased activity of fructosyl-lysine, thus increasing the specificity for fructosyl-valine by 40-fold.

  17. In Vivo study of naturally deformed Escherichia coli bacteria.

    Science.gov (United States)

    Tavaddod, Sharareh; Naderi-Manesh, Hossein

    2016-06-01

    A combination of light-microscopy and image processing has been applied to study naturally deformed Escherichia coli under in vivo condition and at the order of sub-pixel high-resolution accuracy. To classify deflagellated non-dividing E. coli cells to the rod-shape and bent-shape, a geometrical approach has been applied. From the analysis of the geometrical data which were obtained of image processing, we estimated the required effective energy for shaping a rod-shape to a bent-shape with the same size. We evaluated the energy of deformation in the naturally deformed bacteria with minimum cell manipulation, under in vivo condition, and with minimum influence of any external force, torque and pressure. Finally, we have also elaborated on the possible scenario to explain how naturally deformed bacteria are formed from initial to final-stage.

  18. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose.

  19. Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    CERN Document Server

    Kim, Pan-Jun; Kim, Tae Yong; Lee, Kwang Ho; Jeong, Hawoong; Lee, Sang Yup; Park, Sunwon

    2007-01-01

    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a...

  20. SILVER NANOPARTICLES-DISK DIFFUSION TEST AGAINST Escherichia coli ISOLATES

    Science.gov (United States)

    CUNHA, Francisco Afrânio; MAIA, Kamila Rocha; MALLMAN, Eduardo José Jucá; CUNHA, Maria da Conceição dos Santos Oliveira; MACIEL, Antonio Auberson Martins; de SOUZA, Ieda Pereira; MENEZES, Everardo Albuquerque; FECHINE, Pierre Basílio Almeida

    2016-01-01

    SUMMARY Nanotechnology can be a valuable ally in the treatment of infections. Silver nanoparticles (AgNPs) are structures that have antimicrobial activity. The aim of this study was to produce AgNPs by green methods, characterize these structures, and assess their antimicrobial activity against Escherichia coli associated with the antibiotic ciprofloxacin. AgNPs were characterized by spectroscopic and microscopic techniques. Antimicrobial activity was evaluated by the disk diffusion method against 10 strains of E. coli. The synthesized AgNPs showed a spherical shape and a size of 85.07 ± 12.86 nm (mean ± SD). AgNPs increased the activity of ciprofloxacin by 40% and may represent a new therapeutic option for the treatment of bacterial infections. PMID:27680178

  1. The action of beta-galactosidase (Escherichia coli) on allolactose.

    Science.gov (United States)

    Huber, R E; Wallenfels, K; Kurz, G

    1975-09-01

    The parameters involved in the action of beta-galactosidase (EC 3.2.1.23) (Escherichia coli) on allolactose, the natural inducer of lac operon in E. coli, were studied. At low allolactose concentrations only galactose and glucose were formed, while at high allolactose concentrations transgalactolytic oligosaccharides were also produced. Detectable amounts of lactose were not formed. The V and Km values (49.6 U/mg and 0.00120 M, respectively) indicated that allolactose is as good if not a better substrate of beta-galactosidase as lactose. The pH optimum with allolactose (7.8-7.9) as well as its activation by K+ (as compared to activation by Na+) were similar to the case with lactose as substrate. The alpha-anomer of allolactose was hydrolyzed about two times as rapidly as was the beta-anomer.

  2. Mutational analysis of UMP kinase from Escherichia coli.

    Science.gov (United States)

    Bucurenci, N; Serina, L; Zaharia, C; Landais, S; Danchin, A; Bârzu, O

    1998-02-01

    UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).

  3. Escherichia coli bacteraemia in patients with and without haematological malignancies

    DEFF Research Database (Denmark)

    Olesen, B; Kolmos, H J; Orskov, F

    1998-01-01

    We compared serotypes, virulence factors and susceptibility to antibiotics of Escherichia coli strains isolated from 282 patients with bacteraemia. Thirty-five of these were neutropenic patients with haematological malignancy and 247 were patients with a normal or raised total white blood cell...... in the two groups of strains. The haematological patients more often than the non-haematological patients had an unknown focus of infection, recurrent bacteraemia, shorter intervals between recurrences and recurrences caused by identical strains. Despite a well-defined focus, six of eight non......-haematological patients had recurrences with a strain different from the strain isolated in a previous episode. A possible connection between shorter intervals and recurrence with identical strains is discussed. We suggest that strains from recurrent E. coli bacteraemia are sent to a reference laboratory for serotyping...

  4. PRODUCTION OF RECOMBINANT PROTEIN CRM197 IN ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2015-01-01

    Full Text Available The CRM197 is a non-toxic mutant of diphtheria toxin having a single amino acid substitution of a glycine for a glutamic acid in position 52. Being naturally nontoxic, CRM197 is a promising adjuvant and ideal carrier protein for conjugate vaccines. Typically, production of diphtheria toxin and some of the non-toxic proteins are carried out by Corynebacterium diphtheriae. Production of recombinant protein CRM197 in Escherichia coli is advantageous. It is simple, cheap and permits production of the target protein in a short time using a non-pathogenic microorganism. In this study patented high-yield-producing E. coli strain was used. As a part of the study the following steps were taken: protocol adjustment for induction of crm197 gene, production and purification of recombinant CRM197 by ion-exchange, hydrophobic and gel-filtration chromatography. The purity of the final preparation reached 97%.

  5. Assessment of Escherichia coli isolates for In vitro biofilm production

    Directory of Open Access Journals (Sweden)

    A.I. Dadawala

    Full Text Available A total of 14 Escherichia coli isolates were assessed for their ability to produce biofilm in-vitro by slime production on Congo red agar medium (CRA and microtitre plate assay. Out of 14 isolates tested, 12 were slime producing on CRA as indicated by black colonies. The isolates of E.coli varied in their ability to produce biofilm on the surface of microtitre plate ranging from 0.101 to 0.543 ODm. Out of 14 isolates tested, 10 were positive for biofilm production employing criterion of blank corrected ODs9s > 0.1. Two of slime negative isolated were also negative for biofilm production where as the two slime positive isolates were found to be negative for biofilm production. [Veterinary World 2010; 3(8.000: 364-366

  6. Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.

    Science.gov (United States)

    Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K

    2016-01-01

    Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications.

  7. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B

    Directory of Open Access Journals (Sweden)

    Roxane Maria Fontes Piazza

    2017-04-01

    Full Text Available Several pathogenic bacteria are able to induce the attaching and effacing (A/E lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB, responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.

  8. Immunogenic Domains and Secondary Structure of Escherichia coli Recombinant Secreted Protein Escherichia coli-Secreted Protein B.

    Science.gov (United States)

    Caetano, Bruna Alves; Rocha, Letícia Barboza; Carvalho, Eneas; Piazza, Roxane Maria Fontes; Luz, Daniela

    2017-01-01

    Several pathogenic bacteria are able to induce the attaching and effacing (A/E) lesion. The A/E lesion is caused by effector proteins, such as Escherichia coli-secreted protein B (EspB), responsible together with Escherichia coli-secreted protein D for forming a pore structure on the host cell, which allows the translocation of effector proteins. Different variants of this protein can be found in E. coli strains, and during natural infection or when this protein is injected, this leads to variant-specific production of antibodies, which may not be able to recognize other variants of this bacterial protein. Herein, we describe the production of a hybrid recombinant EspB toxin that comprises all known variants of this protein. This recombinant protein could be useful as an antigen for the production of antibodies with broad-range detection of EspB-bearing bacteria, or as an antigen that could be used in vaccine formulation to generate antibodies against different EspB variants, thereby increasing immunization potential. In addition, the recombinant protein allowed us to analyze its secondary structure, to propose the immunogenic regions of EspB variants, and also to characterize anti-EspB antibodies. Our results suggest that this hybrid protein or a protein composed of the conserved immunogenic regions could be used for a variety of clinical applications.

  9. Longitudinal characterization of Escherichia coli in healthy captive nonhuman primates

    Directory of Open Access Journals (Sweden)

    Jonathan B Clayton

    2014-11-01

    Full Text Available The gastrointestinal (GI tracts of nonhuman primates are well known to harbor Escherichia coli, a known commensal of humans and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract, as well the urogenital tract. Diarrhea in captive nonhuman primates (NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied in correlation with diarrhea in captive primates; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight towards the sharing of enteric bacteria between such animals.

  10. Streptokinase: cloning, expression, and excretion by Escherichia coli.

    Science.gov (United States)

    Malke, H; Ferretti, J J

    1984-06-01

    Genomic DNA from Streptococcus equisimilis strain H46A was cloned in Escherichia coli by using the bacteriophage lambda replacement vector L47 and an in vitro packaging system. A casein/plasminogen overlay technique was used to screen the phage bank for recombinants carrying the streptokinase gene ( skc ). The gene was present with a frequency of 1 in 836 recombinants, and 10 independent clones containing skc were isolated and physically characterized. One recombinant clone was used to subclone skc in E. coli plasmid vectors. Plasmid pMF2 [10.4 kilobases (kb)] consisting of pACYC184 with a 6.4-kb H46A DNA fragment in the EcoRI site and pMF5 (6.9 kb) carrying a 2.5-kb fragment in the Pst I site of pBR322 were among the recombinant plasmids determining streptokinase production in three different E. coli host strains. Expression of skc was independent of its orientation in either vector, indicating that its own promoter was present and functional in E. coli. However, expression in pBR322 was more efficient in one orientation than in the other, suggesting that one or both of the bla gene promoters contributed to skc expression. Several lines of evidence, including proof obtained by the immunodiffusion technique, established the identity of E. coli streptokinase. Testing cell-free culture supernatant fluids, osmotic shock fluids, and sonicates of osmotically shocked cells for streptokinase activity revealed the substance to be present in all three principal locations, indicating that E. coli cells were capable of releasing substantial amounts of streptokinase into the culture medium.

  11. Pathogenic Escherichia coli in rural household container waters.

    Science.gov (United States)

    Jagals, P; Barnard, T G; Mokoena, M M; Ashbolt, N; Roser, D J

    2013-01-01

    Plastic containers in the range of 5-20 L are widely used - especially in rural African settings - to collect, transport and store water for domestic use, including drinking, bathing and hygiene. The pathogen content of the waters in these containers has not been adequately characterized as yet. This paper presents the primary findings of a synoptic survey of drinking water quality samples from these containers and involved collection of bacterial indicator and pathogenicity gene data. In total, 571 samples of a variety of waters were taken in rural communities in South Africa and the Escherichia coli numbers measured. Of the E. coli positive samples, 46% (n = 148) were screened for the presence of E. coli pathogen gene markers. Though synoptic, the survey provided many insights into the issues that drove the study. Container use markedly degraded water quality as judged by indicator counts, even where improved water supply services were in place. Household container use also appeared to promote regrowth or contamination of containers with pathogenic E. coli strains. Polymerase chain reaction (PCR) analysis also showed that the diversity of potential pathogenic E. coli carrying virulence genes was great. All seven genes screened for (Ial, Stx1, Stx2, EaeA, Eagg, ST, LT) were found in the waters, alone or as mixtures (number of different combinations = 31) including those characteristic of the more dangerous invasive and haemorrhagic E. coli strains. Given the central role of containers in the management of water supply to rural communities, it is clear the microbiology of these waters requires much further characterization.

  12. A structural view of the dissociation of Escherichia coli tryptophanase.

    Science.gov (United States)

    Green, Keren; Qasim, Nasrin; Gdaelvsky, Garik; Kogan, Anna; Goldgur, Yehuda; Parola, Abraham H; Lotan, Ofra; Almog, Orna

    2015-12-01

    Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.

  13. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  14. Accumulation and efflux of polychlorinated biphenyls in Escherichia coli.

    Science.gov (United States)

    Geng, Shen; Fang, Jun; Turner, Kendrick B; Daunert, Sylvia; Wei, Yinan

    2012-06-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants that have been associated with numerous adverse health effects in human and animals. Hydroxylated PCBs (HPCBs) are the product of the oxidative metabolism of PCBs. The presence of hydroxyl groups in HPCBs makes these compounds more hydrophilic than the parent PCBs. One of the best approaches to break down and remove these contaminants is bioremediation; an environmentally friendly process that uses microorganisms to degrade hazardous chemicals into non-toxic ones. In this study, we investigated the cellular accumulation and toxicity of selected PCBs and HPCBs in Gram-negative bacteria, using Escherichia coli as a model organism. We found that none of the five PCBs tested were toxic to E. coli, presumably due to their limited bioavailability. Nevertheless, different HPCBs tested showed different levels of toxicity. Furthermore, we demonstrated that the primary multidrug efflux system in E. coli, AcrAB-TolC, facilitated the efflux of HPCBs out of the cell. Since AcrAB-TolC is constitutively expressed in E. coli and is conserved in all sequenced Gram-negative bacterial genomes, our results suggest that the efflux activities of multidrug resistant pumps may affect the accumulation and degradation of PCBs in Gram-negative bacteria.

  15. Modification of Artificial Oliogosaccharides in Recombinant Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Tomohisa Kato

    2008-01-01

    Full Text Available Artificial oligosaccharides were modified using recombinant Escherichia coli cells that overexpress sialidase. Based on the principle of the saccharide primer method by using bacterial cells overexpressing enzymes related to oligosaccharide modification. Problem statement: It is very hard to obtain oligosaccharides, because they have complex and diverse structures with different linkage patterns and monosaccharide components. Approach: It has been known that various oligosaccharides can be synthesized in mammalian cells from saccharide primers. We attempted to modify oligosaccharides by using bacterial cells overexpressing enzymes related to oligosaccharide modification instead of mammalian cells. Results: The glycosphingolipid-like derivative GM3 was absorbed by the cell and desialylated by the expressed sialidase and the desialylated product was then secreted into the medium. The GM3-type oligosaccharides were not detected from the cell fraction of recombinant E. coli cells that overexpress sialidase differently from recombinant E. coli carrying only vector DNA (pET-19b. Conclusion/Recommendations: E. coli as well as mammalian cells may be used as a biocatalyst for oligosaccharide modification and production of artificial functional oligosaccharides.

  16. Curli fimbria: an Escherichia coli adhesin associated with human cystitis

    Directory of Open Access Journals (Sweden)

    Melina Aparecida Cordeiro

    2016-06-01

    Full Text Available Abstract Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections showed the presence of the curli fimbria gene (csgA. Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA. The wild-type UPEC-4 strain and its mutant (ΔcsgA were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma, Vero (kidney cells of African green monkey and HUVEC (human umbilical vein cells in the presence of α-D-mannose. All the wild-type UPEC strains tested (100% were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.

  17. Insights into the biology of Escherichia coli through structural proteomics.

    Science.gov (United States)

    Matte, Allan; Jia, Zongchao; Sunita, S; Sivaraman, J; Cygler, Miroslaw

    2007-09-01

    Escherichia coli has historically been an important organism for understanding a multitude of biological processes, and represents a model system as we attempt to simulate the workings of living cells. Many E. coli strains are also important human and animal pathogens for which new therapeutic strategies are required. For both reasons, a more complete and comprehensive understanding of the protein structure complement of E. coli is needed at the genome level. Here, we provide examples of insights into the mechanism and function of bacterial proteins that we have gained through the Bacterial Structural Genomics Initiative (BSGI), focused on medium-throughput structure determination of proteins from E. coli. We describe the structural characterization of several enzymes from the histidine biosynthetic pathway, the structures of three pseudouridine synthases, enzymes that synthesize one of the most abundant modified bases in RNA, as well as the combined use of protein structure and focused functional analysis to decipher functions for hypothetical proteins. Together, these results illustrate the power of structural genomics to contribute to a deeper biological understanding of bacterial processes.

  18. Redefining the requisite lipopolysaccharide structure in Escherichia coli.

    Science.gov (United States)

    Meredith, Timothy C; Aggarwal, Parag; Mamat, Uwe; Lindner, Buko; Woodard, Ronald W

    2006-02-17

    Gram-negative bacteria possess an asymmetric lipid bilayer surrounding the cell wall, the outer membrane (OM). The OM inner leaflet is primarily composed of various glycerophospholipids, whereas the outer leaflet predominantly contains the unique amphiphilic macromolecule, lipopolysaccharide (LPS or endotoxin). The majority of all gram-negative bacteria elaborate LPS containing at least one 2-keto 3-deoxy-D-manno-octulosonate (Kdo) molecule. The minimal LPS structure required for growth of Escherichia coli has long been recognized as two Kdo residues attached to lipid A, inextricably linking viability to toxicity. Here we report the construction and characterization of the nonconditional E. coli K-12 suppressor strain KPM22 that lacks Kdo and is viable despite predominantly elaborating the endotoxically inactive LPS precursor lipid IV(A). Our results challenge the established E. coli Kdo2-lipid A dogma, indicating that the previously observed and well-documented dependence of cell viability on the synthesis of Kdo stems from a lethal pleiotropy precipitated after the depletion of the carbohydrate, rather than an inherent need for the Kdo molecule itself as an indispensable structural component of the OM LPS layer. Inclusion of the inner membrane LPS transporter MsbA on a multicopy plasmid partially suppresses the lethal deltaKdo phenotype directly in the auxotrophic parent strain, suggesting increased rates of nonglycosylated lipid A transport can, in part, compensate for Kdo depletion. The unprecedented nature of a lipid IV(A) OM redefines the requisite LPS structure for viability in E. coli.

  19. Curli fimbria: an Escherichia coli adhesin associated with human cystitis.

    Science.gov (United States)

    Cordeiro, Melina Aparecida; Werle, Catierine Hirsch; Milanez, Guilherme Paier; Yano, Tomomasa

    2016-01-01

    Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction) demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections) showed the presence of the curli fimbria gene (csgA). Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC) as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA). The wild-type UPEC-4 strain and its mutant (ΔcsgA) were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma), Vero (kidney cells of African green monkey) and HUVEC (human umbilical vein) cells in the presence of α-d-mannose. All the wild-type UPEC strains tested (100%) were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.

  20. Magnetically-Actuated Escherichia coli System for Micro Lithography

    Science.gov (United States)

    Lauback, S.; Brown, E.; Pérez-Guzman, L.; Peace, C.; Pierce, C.; Lower, B. H.; Lower, S. K.; Sooryakumar, R.

    2015-03-01

    Technologies that control matter at the nano- and micro-scale are crucial for developing new engineered materials and devices. While the more traditional approaches for such manipulations often depend on lithographic fabrication, they can be expanded upon by taking advantage of the biological systems within a living cell which also operate on the nano- and micro- scale. In this study, a system is being developed to functionalize a targeted location on the surface of a chip with the protein AmCyan from transformed Escherichia coli cells. Using established methods in molecular biology where a plasmid with the amcyan gene sequence is inserted into the cell, E. coli are engineered to express the AmCyan protein on their outer surface. In order to transport the cells to the targeted location, the transformed E. coli are labeled with superparamagnetic micro-beads which exert directed forces on the cells in an external field. Preliminary results of the protein expression on E. coli, the transport of the cell through weak magnetic fields to targeted locations and the potential to transfer protein from the cell to the chip surface will be presented.

  1. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.

    Science.gov (United States)

    Miyahisa, Ikuo; Funa, Nobutaka; Ohnishi, Yasuo; Martens, Stefan; Moriguchi, Takaya; Horinouchi, Sueharu

    2006-06-01

    (2S)-Flavanones (naringenin and pinocembrin) are key intermediates in the flavonoid biosynthetic pathway in plants. Recombinant Escherichia coli cells containing four genes for a phenylalanine ammonia-lyase, cinnamate/coumarate:CoA ligase, chalcone synthase, and chalcone isomerase, in addition to the acetyl-CoA carboxylase, have been established for efficient production of (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. Further introduction of the flavone synthase I gene from Petroselinum crispum under the control of the T7 promoter and the synthetic ribosome-binding sequence in pACYCDuet-1 caused the E. coli cells to produce flavones: apigenin (13 mg/l) from tyrosine and chrysin (9.4 mg/l) from phenylalanine. Introduction into the E. coli cells of the flavanone 3beta-hydroxylase and flavonol synthase genes from the plant Citrus species led to production of flavonols: kaempferol (15.1 mg/l) from tyrosine and galangin (1.1 mg/l) from phenylalanine. The combinatorial biosynthesis of the flavones and flavonols in E. coli is promising for the construction of a library of various flavonoid compounds and un-natural flavonoids in bacteria.

  2. Genomic analysis of extra-intestinal pathogenic Escherichia coli urosepsis.

    Science.gov (United States)

    McNally, A; Alhashash, F; Collins, M; Alqasim, A; Paszckiewicz, K; Weston, V; Diggle, M

    2013-08-01

    Urosepsis is a bacteraemia infection caused by an organism previously causing an infection in the urinary tract of a patient, a diagnosis which has been classically confirmed by culture of the same species of bacteria from both blood and urine samples. Given the new insights afforded by sequencing technologies into the complicated population structures of infectious agents affecting humans, we sought to investigate urosepsis by comparing the genome sequences of blood and urine isolates of Escherichia coli from five patients with urosepsis. The results confirm the classical urosepsis hypothesis in four of the five cases, but also show the complex nature of extra-intestinal E. coli infection in the fifth case, where three distinct strains caused two distinct infections. Additionally, we show there is little to no variation in the bacterial genome as it progressed from urine to blood, and also present a minimal set of virulence genes required for bacteraemia in E. coli based on gene association. These suggest that most E. coli have the genetic propensity to cause bacteraemia.

  3. Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3.

    Science.gov (United States)

    Al-Allaf, Faisal A; Tolmachov, Oleg E; Zambetti, Lia Paola; Tchetchelnitski, Viktoria; Mehmet, Huseyin

    2013-02-01

    Large-scale production of plasmid DNA to prepare therapeutic gene vectors or DNA-based vaccines requires a suitable bacterial host, which can stably maintain the plasmid DNA during industrial cultivation. Plasmid loss during bacterial cell divisions and structural changes in the plasmid DNA can dramatically reduce the yield of the desired recombinant plasmid DNA. While generating an HIV-based gene vector containing a bicistronic expression cassette 5'-Olig2cDNA-IRES-dsRed2-3', we encountered plasmid DNA instability, which occurred in homologous recombination deficient recA1 Escherichia coli strain Stbl2 specifically during large-scale bacterial cultivation. Unexpectedly, the new recombinant plasmid was structurally changed or completely lost in 0.5 L liquid cultures but not in the preceding 5 mL cultures. Neither the employment of an array of alternative recA1 E. coli plasmid hosts, nor the lowering of the culture incubation temperature prevented the instability. However, after the introduction of this instability-prone plasmid into the recA13E. coli strain Stbl3, the transformed bacteria grew without being overrun by plasmid-free cells, reduction in the plasmid DNA yield or structural changes in plasmid DNA. Thus, E. coli strain Stbl3 conferred structural and maintenance stability to the otherwise instability-prone lentivirus-based recombinant plasmid, suggesting that this strain can be used for the faithful maintenance of similar stability-compromised plasmids in large-scale bacterial cultivations. In contrast to Stbl2, which is derived wholly from the wild type isolate E. coli K12, E. coli Stbl3 is a hybrid strain of mixed E. coli K12 and E. coli B parentage. Therefore, we speculate that genetic determinants for the benevolent properties of E. coli Stbl3 for safe plasmid propagation originate from its E. coli B ancestor.

  4. Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

    Directory of Open Access Journals (Sweden)

    Reza Talebiyan

    2014-01-01

    Full Text Available Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC strains isolated from commercial broiler flocks with coli-septicemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%, Erythromycin (71.70%, Oxytetracycline (43.40%, Sulfadimethoxine-Trimethoprim (39.62%, Enrofloxacin (37.74%, Florfenicol (35.85%, Chlortetracycline (33.96%, Doxycycline (16.98%, Difloxacin (32.08%, Danofloxacin (28.30%, Chloramphenicol (20.75%, Ciprofloxacin (7.55%, and Gentamicin (5.66%. This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances.

  5. [Investigation of pathogenic Escherichia coli strains in patients with diarrhea].

    Science.gov (United States)

    Aydın Tutak, Gülten; Tuğrul, Hamdi Murat

    2015-01-01

    The role of certain serogroups and serotypes of Escherichia coli in the etiology of gastroenteritis is increasingly appreciated. It is important to detect the virulence factors of diarrheagenic E.coli strains that differentiate them from nonpathogenic members of normal intestinal flora for the diagnosis and treatment. The aims of this study were to determine the serotypes of E.coli isolates that cause gastroenteritis and to investigate the presence of virulence genes by polymerase chain reaction (PCR). A total of 202 watery, bloody or mucoid stool samples sent to microbiology laboratory collected from patients with diarrhea who were admitted to outpatient clinics of Trakya University Health Research and Application Hospital between February to October 2009, were included in the study. A total of 254 predominantly grown E.coli strains have been isolated and identified with conventional methods from the cultures of those 202 samples. All strains were tested by slide agglutination (SA) that includes 6 units of O serogroups polyvalent antisera of enteropathogenic E.coli (EPEC), enterotoxigenic E.coli (ETEC) and enteroinvasive E.coli (EIEC). The samples which yielded positive results with SA test and the same number of negative samples selected with mapping method as controls were studied for the presence of virulence genes belonging EPEC, ETEC and EIEC by conventional PCR. In the study, 14.3% (29/202) of the samples were serogrouped with SA, of them 13 (6.4%) were identified as EPEC, 11 (5.4%) as EIEC and five (2.4%) as ETEC. Only five isolates belonging to EPEC serogroup could be defined by monovalent antiserum and they were all in O1 serogroup. Out of 29 pathogenic E.coli serotyped, 3 (10.3%) of them harbored the virulence genes of diarrheagenic strains. One sample which was positive for eaeA gene of EPEC, did not harbor bfpA and stx genes and was defined as atypical EPEC. Out of other two samples, one was positive for estA gene of ETEC and the other one for ial gene

  6. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.

    Science.gov (United States)

    Patel, Jitendra; Sharma, Manan; Millner, Patricia; Calaway, Todd; Singh, Manpreet

    2011-04-01

    Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attached to blade. A cocktail of five nalidixic acid-resistant E. coli O157:H7 isolates was transferred to 25 mL of spinach extract or 10% TSB. A piece of sterilized spinach harvester blade (2×1") was placed in above spinach extract or 10% TSB and incubated at room (22 °C) or dynamic (30 °C day, 20 °C night) temperatures. E. coli O157:H7 populations attached to blade during incubation in spinach extract or 10% TSB were determined. When inoculated at 1 log CFU/mL, E. coli O157:H7 attachment to blades after 24 and 48 h incubation at dynamic temperature (6.09 and 6.37 log CFU/mL) was significantly higher than when incubated at 22 °C (4.84 and 5.68 log CFU/mL), respectively. After 48 h incubation, two blades were sprayed on each side with a cocktail of E. coli O157-specific bacteriophages before scraping the blade, and subsequent plating on Sorbitol MacConkey media-nalidixic acid. Application of bacteriophages reduced E. coli O157:H7 populations by 4.5 log CFU on blades after 2 h of phage treatment. Our study demonstrates that E. coli O157:H7 can attach to and proliferate on spinach harvester blades under static and dynamic temperature conditions, and bacteriophages are able to reduce E. coli O157:H7 populations adhered to blades.

  7. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes

    Science.gov (United States)

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bo...

  8. rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7.

    Science.gov (United States)

    Cheville, A M; Arnold, K W; Buchrieser, C; Cheng, C M; Kaspar, C W

    1996-01-01

    An rpoS mutant (rpoS::pRR10) of Escherichia coli O157:H7 ATCC 43895 was generated. Stationary-phase acid, heat, and salt tolerance was significantly reduced, and starvation-induced acid tolerance did not develop in the mutant. RpoS was also important for survival of E. coli O157:H7 in dry, fermented sausage. PMID:8633882

  9. Isolation and characterization of Escherichia coli pathotypes and factors associated with well and boreholes water contamination in Mombasa County

    OpenAIRE

    Thani, Thani Suleiman; Symekher, Samwel Morris Lifumo; Boga, Hamadi; Oundo, Joseph

    2016-01-01

    Introduction Safe water for human consumption is important, but there is a limited supply. Mombasa County has water shortages making residences rely on other sources of water including boreholes and wells. Microbiological evaluation of drinking water is important to reduce exposure to water borne enteric diseases. This cross sectional study aimed at determining the frequency and characterization of Escherichia coli (E. coli) pathotypes from water samples collected from wells and boreholes in ...

  10. Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI.

    Directory of Open Access Journals (Sweden)

    Charles N Rudick

    Full Text Available Urinary tract infections (UTI account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs, such as asymptomatic bacteriuria (ASB strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC, it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms.

  11. Asymptomatic Bacteriuria Escherichia coli Are Live Biotherapeutics for UTI

    Science.gov (United States)

    Yaggie, Ryan E.; Schaeffer, Anthony J.; Klumpp, David J.

    2014-01-01

    Urinary tract infections (UTI) account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs), such as asymptomatic bacteriuria (ASB) strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC), it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms. PMID:25405579

  12. On the response of Escherichia coli to high rates of deformation

    Science.gov (United States)

    Fitzmaurice, B. C.; Painter, J. D.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.

    2017-01-01

    While a large body of work exists on the low strain-rate loading of biological systems such as bacteria, there is a paucity of information on the response of such organisms at high rates of deformation. Here, the response of a readily accessible strain of bacteria, Escherichia coli (E. coli), has been examined under shock loading conditions. Although previous studies have shown greatly reduced growth in shock conditions up to several GPa, relationships between loading conditions and bacterial response have yet to be fully elucidated. Initial results of a more rigorous investigation into the 1D shock loading response of E. coli are presented here, expectantly leading to a more comprehensive view of its behaviour when exposed to high pressures. Comparison has been drawn to provide insight into the importance of the nature of the loading regime to the survival of these biological systems.

  13. Evaluation of Eight Different Cephalosporins for Detection of Cephalosporin Resistance in Salmonella enterica and Escherichia coli

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik; Veldman, K

    2010-01-01

    This study evaluates the efficacy of eight different cephalosporins for detection of cephalosporin resistance mediated by extended spectrum beta-lactamases (ESBL) and plasmidic AmpC beta-lactamases in Salmonella and Escherichia coli. A total of 138 E. coli and 86 Salmonella isolates with known beta......-resistant but cephalosporin-susceptible, 56 ESBL isolates and 19 isolates with plasmidic AmpC, as well as 10 ampC hyper-producing E. coli. The minimum inhibitory concentration distributions and zone inhibitions varied with the tested compound. Ampicillin-resistant isolates showed reduced susceptibility to the cephalosporins...... compared to ampicillin-susceptible isolates. Cefoperazone, cefquinome, and cefuroxime were not useful in detecting isolates with ESBL or plasmidic AmpC. The best substances for detection were cefotaxime, cefpodoxime, and ceftriaxone, whereas ceftazidime and ceftiofur were not as efficient. Ceftriaxone may...

  14. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli.

    Science.gov (United States)

    Meng, Jun; Gao, Shu-Ming; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2015-08-01

    The aim of this study was to investigate the murein hydrolase activities of the surface layer proteins (SLPs) from two strains of Lactobacillus acidophilus using zymography. The influence of these hydrolase activities on Escherichia coli ATCC 43893 was also evaluated by analysing their growth curve, cell morphology and physiological state. After the incubation of E. coli with SLPs, growth was inhibited, the number of viable cells was significantly reduced, examination by transmission electron microscopy showed that the cell wall was damaged and flow cytometry results indicated that the majority of the cells were sublethally injured. All of these results suggested that the SLPs of both L. acidophilus strains possessed murein hydrolase activities that were sublethal to E. coli cells.

  15. High survival and stability rates of Escherichia coli dried in hydroxyectoine.

    Science.gov (United States)

    Manzanera, Maximino; Vilchez, Susana; Tunnacliffe, Alan

    2004-04-15

    The tetrahydropyramidine hydroxyectoine acts as an osmolyte in a range of bacterial species, but its use as a desiccation protectant is less well explored. Recently, it was demonstrated that hydroxyectoine provides effective stabilisation of the Gram-negative species Pseudomonas putida, which is only relatively poorly preserved by the better-characterised protectant, trehalose. It is now shown that hydroxyectoine also protects the paradigmatic bacterium, Escherichia coli: osmotically-preconditioned E. coli dried in hydroxyectoine exhibited a high degree of desiccation tolerance, similar to that achieved using trehalose in this species. Hydroxyectoine is apparently accumulated from hypersaline medium in preference to trehalose biosynthesis, but E. coli loaded with hydroxyectoine in this way showed reduced stability in the dry state. This suggests that, although both hydroxyectoine and trehalose perform equally well as extracellular protectants, trehalose is preferred for intracellular protection.

  16. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium.

    Science.gov (United States)

    Genís, Sandra; Sánchez-Chardi, Alejandro; Bach, Àlex; Fàbregas, Francesc; Arís, Anna

    2017-01-01

    Uterine function in cattle is compromised by bacterial contamination and inflammation after calving. The objective of this study was to select a combination of lactic acid bacteria (LAB) to decrease endometrium inflammation and Escherichia coli infection. Primary endometrial epithelial cells were cultured in vitro to select the most favorable LAB combination modulating basal tissue inflammation and E. coli infection. Supernatants were obtained to determine expression of pro-inflammatory cytokines, and E. coli infection was evaluated after harvesting the tissue and plate counting. The selected LAB combination was tested in uterus explants to assess its capacity to modulate basal and acute inflammation (associated with E. coli infection). The combination of Lactobacillus rhamnosus, Pediococcus acidilactici, and Lactobacillus reuteri at a ratio of 25:25:2, respectively, reduced E. coli infection in vitro with (89.77%) or without basal tissue inflammation (95.10%) compared with single LAB strains. Lactic acid bacteria treatment reduced CXCL8 and IL1B expression 4.7- and 2.2-fold, respectively, under acute inflammation. Ex vivo, the tested LAB combination reduced acute inflammation under E. coli infection, decreasing IL-8, IL-1β, and IL-6 up to 2.2-, 2.5-, and 2.2-fold, respectively. In the total inflammation model, the LAB combination decreased IL-8 1.6-fold and IL-6 1.2-fold. Ultrastructural evaluation of the tissue suggested no direct interaction between the LAB and E. coli, although pathological effects of E. coli in endometrial cells were greatly diminished or even reversed by the LAB combination. This study shows the promising potential of LAB probiotics for therapeutic use against endometrial inflammation and infection. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Directory of Open Access Journals (Sweden)

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  18. Localization of the Tat translocon components in Escherichia coli.

    Science.gov (United States)

    Berthelmann, Felix; Brüser, Thomas

    2004-07-02

    The Tat system has the ability to translocate folded proteins across the bacterial cytoplasmic membrane. In Escherichia coli, three functionally different translocon components have been identified, namely TatA, TatB, and TatC. These proteins were fused to the green fluorescent protein (GFP) and their localization was determined by confocal laser scanning fluorescence microscopy. TatA-GFP was distributed in the membrane, often with higher abundance at the poles. TatB-GFP was found in distinct spots at the poles of the cells. The fluorescence of TatC-GFP was very low and required a constitutive expression system to become higher than background, but then appearing polar. All three constructs complemented the chain-formation phenotype of corresponding mutant strains, indicating the functionality of the fusion proteins. TatB-GFP and TatC-GFP also complemented TMAO respiration deficiency and TatA-GFP the SDS-sensitivity of the mutant strains. The localization of the translocon-GFP fusions coincides with the fluorescence pattern of GFP fusions to Tat substrate signal sequences. We suggest that the active translocon complexes are mainly present at polar positions in Escherichia coli.

  19. Kinetics of Schiff base on Escherichia coli by microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    许名飞; 李新海; 万洪文; 刘义

    2003-01-01

    The influence of four kinds of Schiff bases on a strain of Escherichia coli was studied by microcalorimetry. Differences in their capabilities of suppressing the metabolism of this bacterium were observed. The results show that the extent and duration of the inhibitory effect on the metabolism as judged from the multiplication rate constant, k, varies with different Schiff bases.The multiplication rate constant k, of Escherichia coli (in log phase) in the presence of Mo-salicylioaldehyde-thiadizole, Mo-piperonaldehyde-thiosemicarbazone and Mo-3-methoxy-salicylicaldehyde-thiadizole decreases with the increase of concentrations of compounds c, and the relationships between k and c, maximum heat production rate Pm and c, peak time of growth curves tp and c are of linearity. For Mo-6-nitro-pieronalde-thiosemicarbazone, the multiplication rate constant is constant irrespective of variation in concentration. The sequence of antibiotic activity of Schiff base is: Mo-salicylioaldehyde-thiadizole>Mo-3-methoxy-salicylicaldehyde-thiadizole>Mo-piperonaldehyde-thiosemicarbazone> 6-nitro-pieronalde-thiosemicarbazone.

  20. Brote causado por Escherichia coli en Chalco, México

    Directory of Open Access Journals (Sweden)

    Cortés-Ortiz Iliana Alejandra

    2002-01-01

    Full Text Available Objetivo. Identificar el agente causal del brote de diarrea asociado con el desbordamiento del canal de aguas negras en Chalco. Material y métodos. Estudio retrospectivo y transversal, efectuado en el Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE, de la Secretaría de Salud, con 1 550 hisopos rectales para el aislamiento e identificación bioquímica de V. cholerae y enterobacterias, obtenidos de la población del Valle de Chalco, que presentó diarrea y vómito durante el desastre natural acontecido el 31 de mayo de 2000. El análisis de los resultados se efectuó por la diferencia entre las proporciones de dos poblaciones (prueba de Ji cuadrada. Las cepas de E. coli se hibridaron por "colony blot" para los grupos ETEC, EIEC, EPEC y EHEC. Resultados. El 0.45% correspondió a Salmonella: S. agona, S. infantis, S. enteritidis, S. muenchen, S. typhimurium; 0.06% a Shigella flexneri 3a, y 76.6% a E. coli: 62.2% a ETEC (44.6 % con LT, 11.2% con ST, y 44.1% con ambas sondas, 0.84% a EIEC (sonda ial, 0.84% a EPEC (sonda bundle-forming pilus BFP, 0.08% a E. coli enterohemorrágica no-O157:H7 (sonda pCVD419, y 36.02% no hibridó. No se encontró asociación entre E. coli patógena con la edad y género. Conclusiones. Escherichia coli podría ser responsable del brote de diarrea. Es importante conocer el agente etiológico del brote para encaminar las estrategias en el estudio y control sanitario del mismo.

  1. A Novel Putrescine Exporter SapBCDF of Escherichia coli.

    Science.gov (United States)

    Sugiyama, Yuta; Nakamura, Atsuo; Matsumoto, Mitsuharu; Kanbe, Ayaka; Sakanaka, Mikiyasu; Higashi, Kyohei; Igarashi, Kazuei; Katayama, Takane; Suzuki, Hideyuki; Kurihara, Shin

    2016-12-16

    Recent research has suggested that polyamines (putrescine, spermidine, and spermine) in the intestinal tract impact the health of animals either negatively or positively. The concentration of polyamines in the intestinal tract results from the balance of uptake and export of the intestinal bacteria. However, the mechanism of polyamine export from bacterial cells to the intestinal lumen is still unclear. In Escherichia coli, PotE was previously identified as a transporter responsible for putrescine excretion in an acidic growth environment. We observed putrescine concentration in the culture supernatant was increased from 0 to 50 μm during growth of E. coli under neutral conditions. Screening for the unidentified putrescine exporter was performed using a gene knock-out collection of E. coli, and deletion of sapBCDF significantly decreased putrescine levels in the culture supernatant. Complementation of the deletion mutant with the sapBCDF genes restored putrescine levels in the culture supernatant. Additionally, the ΔsapBCDF strain did not facilitate uptake of putrescine from the culture supernatant. Quantification of stable isotope-labeled putrescine derived from stable isotope-labeled arginine supplemented in the medium revealed that SapBCDF exported putrescine from E. coli cells to the culture supernatant. It was previously reported that SapABCDF of Salmonella enterica sv. typhimurium and Haemophilus influenzae conferred resistance toantimicrobial peptides; however, the E. coli ΔsapBCDF strain did not affect resistance to antimicrobial peptide LL-37. These results strongly suggest that the natural function of the SapBCDF proteins is the export of putrescine.

  2. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    Science.gov (United States)

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. PCR approach for rapid detection of Escherichia coli in tempe using a specific primer

    Directory of Open Access Journals (Sweden)

    Siti Harnina Bintari

    2014-12-01

    Full Text Available Tempe known as a traditional fermented food originated from Indonesia. It has a unique flavour and texture. It also contains high protein and usually serves to substitute meat, fish, or egg as a complement to rice. The manufacture process of Tempe is quite complex and mostly, the traditional process has not employed the hygienic standard. In the process of Tempe making, there are two critical stages of the whole process; i.e. soaking of soybeans and solid state fermentation by Rhizopus sp. During the process, foodborne pathogen bacteria such as Escherichia coli could contaminate the product of Tempe. The bacterial contamination could be revealed through culture dependent methods which is costly, laborious, and time consuming. Therefore, the culture-independent method such as polymerase chain reaction using a specific primer could be applied to detect target microorganism to save time and labour. In this study, thirty-one Tempe samples collected from different manufacturers in Semarang, Central Java, Indonesia were analysed by PCR. In order to obtain the bacterial genomic DNA, a modified Chelex 100-Microwave method was employed. The results of DNA extraction showed that the method was an applicable method. It gave high quantity and quality of DNA; therefore, it could be applied in the PCR reaction. The DNA samples were employed in PCR for detection of Escherichia coli using Ecoli706F/R. It was found that 27 out of 31 samples were detected having Escherichia coli contamination showed by the presence of the amplified product size 706 bp. The application of this method could significantly reduce costs and time of analysis in the laboratory. Further response after E. coli were detected could be employed, including investigation of the critical factors in Tempe manufacturing process which allowed E. coli contamination.

  4. Evaluation of the efficacy of an autogenous Escherichia coli vaccine in broiler breeders

    DEFF Research Database (Denmark)

    Li, Lili; Thøfner, Ida; Christensen, Jens Peter

    2017-01-01

    In poultry production Escherichia coli autogenous vaccines are often used. However, the efficacy of autogenous E. coli vaccinations has not been evaluated experimentally in chickens after start of lay. The aim of the present study was to evaluate the protective effect of an autogenous E. coli...... infection, significant protection of an autogenous E. coli vaccine against neither a homologous nor a heterologous E. coli challenge could not be documented....

  5. Fate of Escherichia coli O157: H7 in agricultural soils amended with different organic fertilizers.

    Science.gov (United States)

    Yao, Zhiyuan; Yang, Li; Wang, Haizhen; Wu, Jianjun; Xu, Jianming

    2015-10-15

    Five organic fertilizers (vermicompost, pig manure, chicken manure, peat and oil residue) were applied to agricultural soils to study their effects on the survival of Escherichia coli O157:H7 (E. coli O157:H7). Results showed that E. coli O157:H7 survival changed greatly after organic fertilizers application, with shorter td values (survival time needed to reach the detection limit of 100 CFU g(-1)) (12.57±6.57 days) in soils amended with chicken manure and the longest (25.65±7.12 days) in soils amended with pig manure. Soil pH, EC and free Fe/Al (hydro) oxides were significant explanatory factors for E. coli O157:H7 survival in the original soils. Soil constituents (minerals and organic matter) and changes in their surface charges with pH increased the effect of soil pH on E. coli O157:H7 survival. However, electrical conductivity played a more important role in regulating E. coli O157:H7 survival in fertilizer-amended soils. This study highlighted the importance of choosing appropriate organic fertilizers in the preharvest environment to reduce food-borne bacterial contamination.

  6. Variation of inflammatory dynamics and mediators in primiparous cows after intramammary challenge with Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pezeshki Adel

    2011-01-01

    Full Text Available Abstract The objective of the current study was to investigate (i the outcome of experimentally induced Escherichia coli mastitis in primiparous cows during early lactation in relation with production of eicosanoids and inflammatory indicators, and (ii the validity of thermography to evaluate temperature changes on udder skin surface after experimentally induced E. coli mastitis. Nine primiparous Holstein Friesian cows were inoculated 24 ± 6 days (d after parturition in both left quarters with E. coli P4 serotype O32:H37. Blood and milk samples were collected before and after challenge with E. coli. The infrared images were taken from the caudal view of the udder following challenge with E. coli. No relationship was detected between severity of mastitis and changes of thromboxane B2 (TXB2, leukotriene B4 (LTB4 and lipoxin A4 (LXA4. However, prostaglandin E2 (PGE2 was related to systemic disease severity during E. coli mastitis. Moreover, reduced somatic cell count (SCC, fewer circulating basophils, increased concentration of tumor necrosis factor-α (TNF-α and higher milk sodium and lower milk potassium concentrations were related to systemic disease severity. The thermal camera was capable of detecting 2-3°C temperature changes on udder skin surface of cows inoculated with E. coli. Peak of udder skin temperature occurred after peak of rectal temperature and appearance of local signs of induced E. coli mastitis. Although infrared thermography was a successful method for detecting the changes in udder skin surface temperature following intramammary challenge with E. coli, it did not show to be a promising tool for early detection of mastitis.

  7. Inactivation of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 on cantaloupes by octenidine hydrochloride

    Science.gov (United States)

    This study investigated the efficacy of a new generation disinfectant, namely octenidine dihydrochloride (OH) as wash and coating treatments for reducing Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7 on cantaloupe surface. Cantaloupe rind plugs inoculated separately with L. m...

  8. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources.

    Science.gov (United States)

    Galvin, Sandra; Boyle, Fiona; Hickey, Paul; Vellinga, Akke; Morris, Dearbháile; Cormican, Martin

    2010-07-01

    We describe a modification of the most probable number (MPN) method for rapid enumeration of antimicrobial-resistant Escherichia coli bacteria in aqueous environmental samples. E. coli (total and antimicrobial-resistant) bacteria were enumerated in effluent samples from a hospital (n = 17) and municipal sewers upstream (n = 5) and downstream (n = 5) from the hospital, effluent samples from throughout the treatment process (n = 4), and treated effluent samples (n = 13). Effluent downstream from the hospital contained a higher proportion of antimicrobial-resistant E. coli than that upstream from the hospital. Wastewater treatment reduced the numbers of E. coli bacteria (total and antimicrobial resistant); however, antimicrobial-resistant E. coli was not eliminated, and E. coli resistant to cefotaxime (including extended-spectrum beta-lactamase [ESBL] producers), ciprofloxacin, and cefoxitin was present in treated effluent samples.

  9. Shiga Toxin-Producing Escherichia coli O157, England and Wales, 1983-2012.

    Science.gov (United States)

    Adams, Natalie L; Byrne, Lisa; Smith, Geraldine A; Elson, Richard; Harris, John P; Salmon, Roland; Smith, Robert; O'Brien, Sarah J; Adak, Goutam K; Jenkins, Claire

    2016-04-01

    We evaluated clinical Shiga toxin-producing Escherichia coli O157 infections in England and Wales during 1983-2012 to describe changes in microbiological and surveillance methods. A strain replacement event was captured; phage type (PT) 2 decreased to account for just 3% of cases by 2012, whereas PT8 and PT21/28 strains concurrently emerged, constituting almost two thirds of cases by 2012. Despite interventions to control and reduce transmission, incidence remained constant. However, sources of infection changed over time; outbreaks caused by contaminated meat and milk declined, suggesting that interventions aimed at reducing meat cross-contamination were effective. Petting farm and school and nursery outbreaks increased, suggesting the emergence of other modes of transmission and potentially contributing to the sustained incidence over time. Studies assessing interventions and consideration of policies and guidance should be undertaken to reduce Shiga toxin-producing E. coli O157 infections in England and Wales in line with the latest epidemiologic findings.

  10. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J., E-mail: sullivcj@evms.edu

    2014-02-01

    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg{sup 2+} and Ca{sup 2+} was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane

  11. Escherichia coli Meningitis after Rotavirus Gastroenteritis in an Infant

    Science.gov (United States)

    Vermezoglu, Oznur; Ocal Topcu, Didem; Karbuz, Adem; Hacihamdioglu, Bulent

    2016-01-01

    Although rotavirus gastroenteritis is quite common in the pediatric population, secondary bacterial sepsis following rotavirus infection is a rare clinical entity. Gram-negative bacilli are the fifth most common cause of meningitis in infants but this infection rarely occurs after gastroenteritis. Here, we report a 2.5-month-old infant who developed Escherichia coli (E. coli) meningitis after acute rotavirus gastroenteritis. The 2.5-month-old male infant with fever, vomiting, and watery diarrhea that started 1 day earlier was admitted to the hospital. Rotavirus antigen in stool sample was positive. He was hospitalized, and fever was measured at 39.5°C on the second day. Lumbar puncture was done for suspicion of meningitis, and cerebrospinal fluid (CSF) findings suggested meningitis. Intravenous vancomycin and cefotaxime were started empirically. Since E. coli reproduction was seen in blood culture and CSF culture, treatment was continued with cefotaxime. The patient was discharged with minimal midlevel hydrocephalus findings in cranial ultrasonography and magnetic resonance imaging following 21 days of antibiotics treatment. Septicemia development following rotavirus gastroenteritis is an extremely rare clinical condition. It is vital to start prompt antibiotic treatment as soon as the diagnosis of secondary bacterial infection is made because of high mortality and morbidity rates.

  12. Metabolic engineering of Escherichia coli for the production of xylonate.

    Directory of Open Access Journals (Sweden)

    Yujin Cao

    Full Text Available Xylonate is a valuable chemical for versatile applications. Although the chemical synthesis route and microbial conversion pathway were established decades ago, no commercial production of xylonate has been obtained so far. In this study, the industrially important microorganism Escherichia coli was engineered to produce xylonate from xylose. Through the coexpression of a xylose dehydrogenase (xdh and a xylonolactonase (xylC from Caulobacter crescentus, the recombinant strain could convert 1 g/L xylose to 0.84 g/L xylonate and 0.10 g/L xylonolactone after being induced for 12 h. Furthermore, the competitive pathway for xylose catabolism in E. coli was blocked by disrupting two genes (xylA and xylB encoding xylose isomerase and xylulose kinase. Under fed-batch conditions, the finally engineered strain produced up to 27.3 g/L xylonate and 1.7 g/L xylonolactone from 30 g/L xylose, about 88% of the theoretical yield. These results suggest that the engineered E. coli strain has a promising perspective for large-scale production of xylonate.

  13. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    Science.gov (United States)

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product.

  14. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  15. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    Science.gov (United States)

    Kay, Emily J; Yates, Laura E; Terra, Vanessa S; Cuccui, Jon; Wren, Brendan W

    2016-04-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology.

  16. Characterization of pyruvate uptake in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Jens Kreth

    Full Text Available The monocarboxylate pyruvate is an important metabolite and can serve as sole carbon source for Escherichia coli. Although specific pyruvate transporters have been identified in two bacterial species, pyruvate transport is not well understood in E. coli. In the present study, pyruvate transport was investigated under different growth conditions. The transport of pyruvate shows specific activities depending on the growth substrate used as sole carbon source, suggesting the existence of at least two systems for pyruvate uptake: i one inducible system and probably highly specific for pyruvate and ii one system active under non-induced conditions. Using the toxic pyruvate analog 3-fluoropyruvate, a mutant was isolated unable to grow on and transport pyruvate. Further investigation revealed that a revertant selected for growth on pyruvate regained the inducible pyruvate transport activity. Characterization of pyruvate excretion showed that the pyruvate transport negative mutant accumulated pyruvate in the growth medium suggesting an additional transport system for pyruvate excretion. The here presented data give valuable insight into the pyruvate metabolism and transport of E. coli suggesting the presence of at least two uptake systems and one excretion system to balance the intracellular level of pyruvate.

  17. Thermal impulse response and the temperature preference of Escherichia coli

    Science.gov (United States)

    Ryu, William

    2010-03-01

    From a broad perspective, exposure to environmental temperature changes is a universal condition of living organisms. Escherichia coli is a powerful model system to study how a biochemical network measures and processes thermal information to produce adaptive changes in behavior. E. coli performs thermotaxis, directing its movements to a preferred temperature in spatial thermal gradients. How does the system perform thermotaxis? Where biologically is this analog value of thermal preference stored? Previous studies using populations of cells have shown that E.coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal behavior by studying the thermal impulse response of single, tethered cells. The motor output of cells was measured in response to small, impulsive increases in temperature, delivered by an infrared laser, over a range of ambient temperature (23 to 43 degrees C). The thermal impulse response at temperatures 31 degrees C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37 degrees C.

  18. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.

    Directory of Open Access Journals (Sweden)

    Pingzhao Hu

    2009-04-01

    Full Text Available One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans. Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.

  19. Escherichia coli bacteria detection by using graphene-based biosensor.

    Science.gov (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Afroozeh, Abdolkarim; Zeinalinezhad, Alireza; Nikoukar, Ali

    2015-10-01

    Graphene is an allotrope of carbon with two-dimensional (2D) monolayer honeycombs. A larger detection area and higher sensitivity can be provided by graphene-based nanosenor because of its 2D structure. In addition, owing to its special characteristics, including electrical, optical and physical properties, graphene is known as a more suitable candidate compared to other materials used in the sensor application. A novel model employing a field-effect transistor structure using graphene is proposed and the current-voltage (I-V) characteristics of graphene are employed to model the sensing mechanism. This biosensor can detect Escherichia coli (E. coli) bacteria, providing high levels of sensitivity. It is observed that the graphene device experiences a drastic increase in conductance when exposed to E. coli bacteria at 0-10(5) cfu/ml concentration. The simple, fast response and high sensitivity of this nanoelectronic biosensor make it a suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform which can detect any pathogenic bacteria. Artificial neural network and support vector regression algorithms have also been used to provide other models for the I-V characteristic. A satisfactory agreement has been presented by comparison between the proposed models with the experimental data.

  20. Rotational tumbling of Escherichia coli aggregates under shear

    Science.gov (United States)

    Portela, R.; Patrício, P.; Almeida, P. L.; Sobral, R. G.; Franco, J. M.; Leal, C. R.

    2016-12-01

    Growing living cultures of Escherichia coli bacteria are investigated using real-time in situ rheology and rheoimaging measurements. In the early stages of growth (lag phase) and when subjected to a constant stationary shear, the viscosity slowly increases with the cell's population. As the bacteria reach the exponential phase of growth, the viscosity increases rapidly, with sudden and temporary abrupt decreases and recoveries. At a certain stage, corresponding grossly to the late phase of growth, when the population stabilizes, the viscosity also keeps its maximum constant value, with drops and recoveries, for a long period of time. This complex rheological behavior, which is observed to be shear strain dependent, is a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. Particular attention is given to the late phase of growth of E. coli populations under shear. Rheoimaging measurements reveal, near the static plate, a rotational motion of E. coli aggregates, collectively tumbling and flowing in the shear direction. This behavior is interpreted in the light of a simple theoretical approach based on simple rigid body mechanics.

  1. Escherichia coli Meningitis after Rotavirus Gastroenteritis in an Infant

    Directory of Open Access Journals (Sweden)

    Gamze Ozgurhan

    2016-01-01

    Full Text Available Although rotavirus gastroenteritis is quite common in the pediatric population, secondary bacterial sepsis following rotavirus infection is a rare clinical entity. Gram-negative bacilli are the fifth most common cause of meningitis in infants but this infection rarely occurs after gastroenteritis. Here, we report a 2.5-month-old infant who developed Escherichia coli (E. coli meningitis after acute rotavirus gastroenteritis. The 2.5-month-old male infant with fever, vomiting, and watery diarrhea that started 1 day earlier was admitted to the hospital. Rotavirus antigen in stool sample was positive. He was hospitalized, and fever was measured at 39.5°C on the second day. Lumbar puncture was done for suspicion of meningitis, and cerebrospinal fluid (CSF findings suggested meningitis. Intravenous vancomycin and cefotaxime were started empirically. Since E. coli reproduction was seen in blood culture and CSF culture, treatment was continued with cefotaxime. The patient was discharged with minimal midlevel hydrocephalus findings in cranial ultrasonography and magnetic resonance imaging following 21 days of antibiotics treatment. Septicemia development following rotavirus gastroenteritis is an extremely rare clinical condition. It is vital to start prompt antibiotic treatment as soon as the diagnosis of secondary bacterial infection is made because of high mortality and morbidity rates.

  2. Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics.

    Science.gov (United States)

    Cass, Julie A; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2016-06-21

    The structure of the Escherichia coli chromosome is inherently dynamic over the duration of the cell cycle. Genetic loci undergo both stochastic motion around their initial positions and directed motion to opposite poles of the rod-shaped cell during segregation. We developed a quantitative method to characterize cell-cycle dynamics of the E. coli chromosome to probe the chromosomal steady-state mobility and segregation process. By tracking fluorescently labeled chromosomal loci in thousands of cells throughout the entire cell cycle, our method allows for the statistical analysis of locus position and motion, the step-size distribution for movement during segregation, and the locus drift velocity. The robust statistics of our detailed analysis of the wild-type E. coli nucleoid allow us to observe loci moving toward midcell before segregation occurs, consistent with a replication factory model. Then, as segregation initiates, we perform a detailed characterization of the average segregation velocity of loci. Contrary to origin-centric models of segregation, which predict distinct dynamics for oriC-proximal versus oriC-distal loci, we find that the dynamics of loci were universal and independent of genetic position.

  3. Quinolone-resistant Escherichia coli in Poultry Farming.

    Science.gov (United States)

    Hricová, Kristýna; Röderová, Magdaléna; Pudová, Vendula; Hanulík, Vojtěch; Halová, Dana; Julínková, Pavla; Dolejská, Monika; Papoušek, Ivo; Bardoň, Jan

    2017-06-01

    Increasing bacterial resistance to quinolone antibiotics is apparent in both humans and animals. For humans, a potential source of resistant bacteria may be animals or their products entering the human food chain, for example poultry. Between July 2013 and September 2014, samples were collected and analyzed in the Moravian regions of the Czech Republic to isolate the bacterium Escherichia coli. As a result, 212 E. coli isolates were obtained comprising 126 environmental isolates from poultry houses and 86 isolates from cloacal swabs from market-weight turkeys. Subsequently, the E. coli isolates were tested for susceptibility to selected antibiotics. Resistance of the poultry isolates to quinolones ranged from 53% to 73%. Additionally, the presence of plasmid-mediated resistance genes was studied. The genes were confirmed in 58% of the tested strains. The data on resistance of isolates from poultry were compared with results of resistance tests in human isolates obtained in the same regions. The high levels of resistance determined by both phenotyping and genotyping methods and reported in the present study confirm the fact that the use of fluoroquinolones in poultry should be closely monitored. Copyright© by the National Institute of Public Health, Prague 2017.

  4. Colibri: a functional data base for the Escherichia coli genome.

    Science.gov (United States)

    Médigue, C; Viari, A; Hénaut, A; Danchin, A

    1993-09-01

    Several data libraries have been created to organize all the data obtained worldwide about the Escherichia coli genome. Because the known data now amount to more than 40% of the whole genome sequence, it has become necessary to organize the data in such a way that appropriate procedures can associate knowledge produced by experiments about each gene to its position on the chromosome and its relation to other relevant genes, for example. In addition, global properties of genes, affected by the introduction of new entries, should be present as appropriate description fields. A data base, implemented on Macintosh by using the data base management system 4th Dimension, is described. It is constructed around a core constituted by known contigs of E. coli sequences and links data collected in general libraries (unmodified) to data associated with evolving knowledge (with modifiable fields). Biologically significant results obtained through the coupling of appropriate procedures (learning or statistical data analysis) are presented. The data base is available through a 4th Dimension runtime and through FTP on Internet. It has been regularly updated and will be systematically linked to other E. coli data bases (M. Kroger, R. Wahl, G. Schachtel, and P. Rice, Nucleic Acids Res. 20(Suppl.):2119-2144, 1992; K. E. Rudd, W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and S. G. Satterfield, Nucleic Acids Res. 19:637-647, 1991) in the near future.

  5. Characterization of the YdeO regulon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yuki Yamanaka

    Full Text Available Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.

  6. Characterization of the YdeO regulon in Escherichia coli.

    Science.gov (United States)

    Yamanaka, Yuki; Oshima, Taku; Ishihama, Akira; Yamamoto, Kaneyoshi

    2014-01-01

    Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD) system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.

  7. Tellurite-exposed Escherichia coli exhibits increased intracellular {alpha}-ketoglutarate

    Energy Technology Data Exchange (ETDEWEB)

    Reinoso, Claudia A. [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago (Chile); Auger, Christopher; Appanna, Vasu D. [Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario (Canada); Vasquez, Claudio C., E-mail: claudio.vasquez@usach.cl [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Santiago (Chile)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Tellurite-exposed E. coli exhibits decreased {alpha}-KG dehydrogenase activity. Black-Right-Pointing-Pointer Cells lacking {alpha}-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. Black-Right-Pointing-Pointer KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of {alpha}-ketoglutarate a known antioxidant in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex's reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.

  8. Extraintestinal pathogenic Escherichia coli are associated with intestinal inflammation in patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Mirsepasi-Lauridsen, Hengameh C; Halkjaer, Sofie Ingdam; Mortensen, Esben Munk;

    2016-01-01

    E. coli of the phylogenetic group B2 harbouring Extra intestinal Pathogenic Escherichia coli (ExPEC) genes are frequently seen as colonizers of the intestine in patients with active ulcerative colitis (UC). In this study, we describe the influence of E. coli Nissle (EcN) B2 as add-on treatment to...... scores in comparison to patients colonized with E. coli A and D (p treatment of UC patients with E. coli Nissle (B2) does not promote clinical remission and active UC patients colonized with E. coli B2 have an increased intestinal inflammation.......E. coli of the phylogenetic group B2 harbouring Extra intestinal Pathogenic Escherichia coli (ExPEC) genes are frequently seen as colonizers of the intestine in patients with active ulcerative colitis (UC). In this study, we describe the influence of E. coli Nissle (EcN) B2 as add-on treatment...

  9. Estudio en caninos de zonas urbanas de Tandil como posibles portadores de Escherichia coli verocitotoxigénicos Study of dogs in Tandil's urban-zones as possible carriers of verocytotoxin-producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    D Fernández

    2006-12-01

    Full Text Available Sesenta perros de zonas urbanas fueron estudiados con el objetivo de determinar si con los hábitos de higiene y alimentación que reciben estos animales, pueden constituir un riesgo para la salud pública como portadores de Escherichia coli verocitotoxigénicos. Se tomaron muestras de hisopados rectales de cada perro que luego fueron sembradas en medios apropiados para su posterior procesamiento. Se utilizó la técnica de reacción en cadena de la polimerasa a partir de la zona de crecimiento confluente para rastrear los genes que codifican para las verocitotoxinas tipo 1 y 2, no detectándolos en ninguna de las muestras estudiadas. Estos resultados podrían deberse a que los cuidados que se tienen con perros de zonas urbanas permitirían reducir el posible contacto y colonización con Escherichia coli verocitotoxigénicos. Esta hipótesis debería ser confirmada mediante la realización de un estudio de similares características con perros de zonas rurales que reciben hábitos de cuidado diferentes a los caninos de zonas urbanas. Esto permitiría establecer una relación entre hábitos de cuidado de los caninos y su rol como portadores de Escherichia coli verocitotoxigénicos.The aim of this study was to investigate if dogs of urban areas would constitute a risk for humans as carriers of verocytotoxin-producing Escherichia coli in spite to the care's habits to which these animals are subjected. Fecal swabs were collected from the rectum of sixty dogs and examined for the presence of verocytotoxin-producing Escherichia coli. The method of screening was based on the polymerase chain reaction technique to detect genes encoding type 1 and 2 verocytotoxins. All samples showed to be negative for verocytotoxin-producing Escherichia coli. This result may be due to the current care's habits of urban dogs that could reduce the possibility of contact and colonization with verocytotoxin-producing Escherichia coli. This hypothesis must be confirmed

  10. Kinetic modelling of central carbon metabolism in Escherichia coli.

    Science.gov (United States)

    Peskov, Kirill; Mogilevskaya, Ekaterina; Demin, Oleg

    2012-09-01

    In the present study, we developed a detailed kinetic model of Escherichia coli central carbon metabolism. The main model assumptions were based on the results of metabolic and regulatory reconstruction of the system and thorough model verification with experimental data. The development and verification of the model included several stages, which allowed us to take into account both in vitro and in vivo experimental data and avoid the ambiguity that frequently occurs in detailed models of biochemical pathways. The choice of the level of detail for the mathematical description of enzymatic reaction rates and the evaluation of parameter values were based on available published data. Validation of the complete model of the metabolic pathway describing specific physiological states was based on fluxomics and metabolomics data. In particular, we developed a model that describes aerobic growth of E. coli in continuous culture with a limiting concentration of glucose. Such modification of the model was used to integrate experimental metabolomics data obtained in steady-state conditions for wild-type E. coli and genetically modified strains, e.g. knockout of the pyruvate kinase gene (pykA). Following analysis of the model behaviour, and comparison of the coincidence between predicted and experimental data, it was possible to investigate the functional and regulatory properties of E. coli central carbon metabolism. For example, a novel metabolic regulatory mechanism for 6-phosphogluconate dehydrogenase inhibition by phosphoenolpyruvate was hypothesized, and the flux ratios between the reactions catalysed by enzyme isoforms were predicted. The mathematical model described here has been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/peskov/index.html © 2012 The Authors Journal compilation © 2012 FEBS.

  11. An end-joining repair mechanism in Escherichia coli

    Science.gov (United States)

    Chayot, Romain; Montagne, Benjamin; Mazel, Didier; Ricchetti, Miria

    2010-01-01

    Bridging broken DNA ends via nonhomologous end-joining (NHEJ) contributes to the evolution and stability of eukaryote genomes. Although some bacteria possess a simplified NHEJ mechanism, the human commensal Escherichia coli is thought to rely exclusively on homology-directed mechanisms to repair DNA double-strand breaks (DSBs). We show here that laboratory and pathogenic E. coli strains possess a distinct end-joining activity that repairs DSBs and generates genome rearrangements. This mechanism, named alternative end-joining (A-EJ), does not rely on the key NHEJ proteins Ku and Ligase-D which are absent in E. coli. Differently from classical NHEJ, A-EJ is characterized by extensive end-resection largely due to RecBCD, by overwhelming usage of microhomology and extremely rare DNA synthesis. We also show that A-EJ is dependent on the essential Ligase-A and independent on Ligase-B. Importantly, mutagenic repair requires a functional Ligase-A. Although generally mutagenic, accurate A-EJ also occurs and is frequent in some pathogenic bacteria. Furthermore, we show the acquisition of an antibiotic-resistance gene via A-EJ, refuting the notion that bacteria gain exogenous sequences only by recombination-dependent mechanisms. This finding demonstrates that E. coli can integrate unrelated, nonhomologous exogenous sequences by end-joining and it provides an alternative strategy for horizontal gene transfer in the bacterial genome. Thus, A-EJ contributes to bacterial genome evolution and adaptation to environmental challenges. Interestingly, the key features of A-EJ also appear in A-NHEJ, an alternative end-joining mechanism implicated in chromosomal translocations associated with human malignancies, and we propose that this mutagenic repair might have originated in bacteria. PMID:20133858

  12. Engineering an Escherichia coli platform to synthesize designer biodiesels.

    Science.gov (United States)

    Wierzbicki, Michael; Niraula, Narayan; Yarrabothula, Akshitha; Layton, Donovan S; Trinh, Cong T

    2016-04-20

    Biodiesels, fatty acid esters (FAEs), can be synthesized by condensation of fatty acid acyl CoAs and alcohols via a wax ester synthase in living cells. Biodiesels have advantageous characteristics over petrodiesels such as biodegradability, a higher flash point, and less emission. Controlling fatty acid and alcohol moieties are critical to produce designer biodiesels with desirable physiochemical properties (e.g., high cetane number, low kinematic viscosity, high oxidative stability, and low cloud point). Here, we developed a flexible framework to engineer Escherichia coli cell factories to synthesize designer biodiesels directly from fermentable sugars. In this framework, we designed each FAE pathway as a biodiesel exchangeable production module consisting of acyl CoA, alcohol, and wax ester synthase submodules. By inserting the FAE modules in an engineered E. coli modular chassis cell, we generated E. coli cell factories to produce targeted biodiesels (e.g., fatty acid ethyl (FAEE) and isobutyl (FAIbE) esters) with tunable and controllable short-chain alcohol moieties. The engineered E. coli chassis carrying the FAIbE production module produced 54mg/L FAIbEs with high specificity, accounting for>90% of the total synthesized FAEs and ∼4.7 fold increase in FAIbE production compared to the wildtype. Fed-batch cultures further improved FAIbE production up to 165mg/L. By mixing ethanol and isobutanol submodules, we demonstrated controllable production of mixed FAEEs and FAIbEs. We envision the developed framework offers a flexible, alternative route to engineer designer biodiesels with tunable and controllable properties using biomass-derived fermentable sugars. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Kim, Jin-Hoi

    2013-02-01

    Graphene and graphene related materials are an important area of research in recent years due to their unique properties. The extensive industrial application of graphene and related compounds has led researchers to devise novel and simple methods for the synthesis of high quality graphene. In this paper, we developed an environment friendly, cost effective, simple method and green approaches for the reduction of graphene oxide (GO) using Escherichia coli biomass. In biological method, we can avoid use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The biomass of E. coli reduces exfoliated GO to graphene at 37°C in an aqueous medium. The E. coli reduced graphene oxide (ERGO) was characterized with UV-visible absorption spectroscopy, particle analyzer, high resolution X-ray diffractometer, scanning electron microscopy and Raman spectroscopy. Besides the reduction potential, the biomass could also play an important role as stabilizing agent, in which synthesized graphene exhibited good stability in water. This method can open up the new avenue for preparing graphene in cost effective and large scale production. Our findings suggest that GO can be reduced by simple eco-friendly method by using E. coli biomass to produce water dispersible graphene.

  14. The location of the restriction locus for λ·K in Escherichia coli B

    NARCIS (Netherlands)

    Hoekstra, W.P.M.; Haan, P.G. de

    1965-01-01

    Analysis of recombinants from E. coli K 12 Hfr × E. coli B F− crosses showed that one locus on the chromosome of Escherichia coli, controlling restriction and probably also the modification of phage λ, is located between the leading point of the Hfr H chromosome and the locus for threonine synthesis

  15. Construction and shuttling of novel bifunctional vectors for Streptomyces spp. and Escherichia coli.

    OpenAIRE

    Neesen, K; Volckaert, G.

    1989-01-01

    Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.

  16. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Science.gov (United States)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  17. DIARRHEA, UROSEPSIS AND HEMOLYTIC UREMIC SYNDROME CAUSED BY THE SAME HETEROPATHOGENIC ESCHERICHIA COLI STRAIN

    NARCIS (Netherlands)

    Ang, C. Wim; Bouts, Antonia H. M.; Rossen, John W. A.; Van der Kuip, Martijn; Van Heerde, Marc; Bokenkamp, Arend

    2016-01-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E.

  18. Proteomic differences between Escherichia coli strains that cause transient versus persistent intramammary infections [abstract

    Science.gov (United States)

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. Typically this infection is transient in nature and lasts 2-3 days. However, in a minority of cases, E. coli can cause a persistent intramammary infection. The mechanisms that enable certain strains of E. coli to cause a p...

  19. Detection of Escherichia Coli O157:H7 in Fecal Samples in Meat Goats

    Science.gov (United States)

    Mobley, Ray; Madden, Uford; Brooks-Walter, Alexis

    2004-01-01

    Studies have reported the isolation of Escherichia coli (E. coli)O157:H7 from pork, lamb and poultry products, and from other animals including deer, horses, dogs, birds and humans. There is limited or no information on the presence of the organism in goats. The objectives of this study were to determine if E. coli O157:H7 was naturally occurring…

  20. A rare presentation of ischemic pseudomembranous colitis due to Escherichia coli O157:H7.

    Science.gov (United States)

    Kendrick, Jessica B; Risbano, Michael; Groshong, Steve D; Frankel, Stephen K

    2007-07-15

    Escherichia coli Ol57:H7 infection ranges from mild diarrheal illness to severe hemorrhagic colitis but may rarely be complicated by pseudomembranous colitis and/or necrosis. Herein, we report a sporadic case of ischemic E. coli Ol57:H7 pseudomembranous colitis in an adult that occurred during a national outbreak of E. coli Ol57:H7 in the United States.