DEFF Research Database (Denmark)
Chi, Qijin; Farver, O; Ulstrup, Jens
2005-01-01
on the redox potential. Maximum resonance appears around the equilibrium redox potential of azurin with an on/off current ratio of approximate to 9. Simulation analyses, based on a two-step interfacial ET model for the scanning tunneling microscopy redox process, were performed and provide quantitative......A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi...... constants display tunneling features with distance-decay factors of 0.83 and 0.91 angstrom(-1) in H2O and D2O, respectively. Redox-gated tunneling resonance is observed in situ at the single-molecule level by using electrochemical scanning tunneling microscopy, exhibiting an asymmetric dependence...
Physics of optimal resonant tunneling
Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.
1997-01-01
The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Transit time for resonant tunneling
International Nuclear Information System (INIS)
Garcia Calderon, G.; Rubio, A.
1990-09-01
This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs
Inelastic scattering in resonant tunneling
DEFF Research Database (Denmark)
Wingreen, Ned S.; Jacobsen, Karsten Wedel; Wilkins, John W.
1989-01-01
The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability or the esc......The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability...
Scanning Tunneling Optical Resonance Microscopy
Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave
2003-01-01
Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current
Resonant tunneling of electrons in quantum wires
International Nuclear Information System (INIS)
Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.
2010-01-01
We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.
The effect of asymmetry on resonant tunneling
International Nuclear Information System (INIS)
Garcia-Calderon, G.
1986-07-01
Resonant tunneling experiments on multibarrier coupled heterostructures probe the quasistationary nature of the states of the corresponding one dimensional potential. This work considers the effect of asymmetric one dimensional multibarrier potentials on resonant tunneling. It is shown, by using the properties of the propagator of the system, that this effect may lead to novel resonance phenomena and affects the lifetime of the quasistationary states of the system. The above considerations are illustrated by a simple analytical solvable model. (author)
Semiclassical description of resonant tunneling
International Nuclear Information System (INIS)
Bogomolny, E.B.; Rouben, D.C.
1996-01-01
A semiclassical formula is calculated for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The tunneling current is measured at the second interface of this well and the calculations idealized an experimental situation where a strong magnetic field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling current, due to trajectories which begin at the first interface and end on the second, is dominant for periodic orbits which hit both walls of the quantum well. (author)
Quantum resonances in physical tunneling
International Nuclear Information System (INIS)
Nieto, M.M.; Truax, D.R.
1985-01-01
It has recently been emphasized that the probability of quantum tunneling is a critical function of the shape of the potential. Applying this observation to physical systems, we point out that in principal information on potential surfaces can be obtained by studying tunneling rates. This is especially true in cases where only spectral data is known, since many potentials yield the same spectrum. 13 refs., 10 figs., 1 tab
Resonant tunneling in a pulsed phonon field
DEFF Research Database (Denmark)
Kral, P.; Jauho, Antti-Pekka
1999-01-01
, The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...
Resonant tunnel magnetoresistance in a double magnetic tunnel junction
Useinov, Arthur
2011-08-09
We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.
Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction
Jansen, R.; Lodder, J.C.
2000-01-01
Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared
Resonant tunneling across a ferroelectric domain wall
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
Resonant tunneling through double-barrier structures on graphene
International Nuclear Information System (INIS)
Deng Wei-Yin; Zhu Rui; Deng Wen-Ji; Xiao Yun-Chang
2014-01-01
Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight-binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schrödinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Simulations of Resonant Intraband and Interband Tunneling Spin Filters
Ting, David; Cartoixa-Soler, Xavier; McGill, T. C.; Smith, Darryl L.; Schulman, Joel N.
2001-01-01
This viewgraph presentation reviews resonant intraband and interband tunneling spin filters It explores the possibility of building a zero-magnetic-field spin polarizer using nonmagnetic III-V semiconductor heterostructures. It reviews the extensive simulations of quantum transport in asymmetric InAs/GaSb/AlSb resonant tunneling structures with Rashba spin splitting and proposes a. new device concept: side-gated asymmetric Resonant Interband Tunneling Diode (a-RITD).
Resonant Tunneling Analog-To-Digital Converter
Broekaert, T. P. E.; Seabaugh, A. C.; Hellums, J.; Taddiken, A.; Tang, H.; Teng, J.; vanderWagt, J. P. A.
1995-01-01
As sampling rates continue to increase, current analog-to-digital converter (ADC) device technologies will soon reach a practical resolution limit. This limit will most profoundly effect satellite and military systems used, for example, for electronic countermeasures, electronic and signal intelligence, and phased array radar. New device and circuit concepts will be essential for continued progress. We describe a novel, folded architecture ADC which could enable a technological discontinuity in ADC performance. The converter technology is based on the integration of multiple resonant tunneling diodes (RTD) and hetero-junction transistors on an indium phosphide substrate. The RTD consists of a layered semiconductor hetero-structure AlAs/InGaAs/AlAs(2/4/2 nm) clad on either side by heavily doped InGaAs contact layers. Compact quantizers based around the RTD offer a reduction in the number of components and a reduction in the input capacitance Because the component count and capacitance scale with the number of bits N, rather than by 2 (exp n) as in the flash ADC, speed can be significantly increased, A 4-bit 2-GSps quantizer circuit is under development to evaluate the performance potential. Circuit designs for ADC conversion with a resolution of 6-bits at 25GSps may be enabled by the resonant tunneling approach.
Resonant tunnel magnetoresistance in a double magnetic tunnel junction
Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen
2011-01-01
We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can
Theory of electrically controlled resonant tunneling spin devices
Ting, David Z. -Y.; Cartoixa, Xavier
2004-01-01
We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
International Nuclear Information System (INIS)
Hong, Woo-Pyo; Jung, Young-Dae
2014-01-01
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed
The theory of coherent resonance tunneling of interacting electrons
International Nuclear Information System (INIS)
Elesin, V. F.
2001-01-01
Analytical solutions of the Schrödinger equation for a two-barrier structure (resonance-tunnel diode) with open boundary conditions are found within the model of coherent tunneling of interacting electrons. Simple expressions for resonance current are derived which enable one to analyze the current-voltage characteristics, the conditions of emergence of hysteresis, and singularities of the latter depending on the parameters of resonance-tunnel diode. It is demonstrated that the hysteresis is realized if the current exceeds some critical value proportional to the square of resonance level width.
Electron spin resonance scanning tunneling microscope
International Nuclear Information System (INIS)
Guo Yang; Li Jianmei; Lu Xinghua
2015-01-01
It is highly expected that the future informatics will be based on the spins of individual electrons. The development of elementary information unit will eventually leads to novel single-molecule or single-atom devices based on electron spins; the quantum computer in the future can be constructed with single electron spins as the basic quantum bits. However, it is still a great challenge in detection and manipulation of a single electron spin, as well as its coherence and entanglement. As an ideal experimental tool for such tasks, the development of electron spin resonance scanning tunneling microscope (ESR-STM) has attracted great attention for decades. This paper briefly introduces the basic concept of ESR-STM. The development history of this instrument and recent progresses are reviewed. The underlying mechanism is explored and summarized. The challenges and possible solutions are discussed. Finally, the prospect of future direction and applications are presented. (authors)
The combined resonance tunneling and semi-resonance level in low energy D-D reaction
International Nuclear Information System (INIS)
Li Xingzhong; Jin Dezhe; Chang Lee
1993-01-01
When nuclear potential wells are connected by an atomic potential well, a new kind of tunneling may happen even if there is no virtual energy level in nuclear potential wells. The necessary condition for this combined resonance tunneling is the resonance in the atomic potential well. Thus, the nuclear reaction may be affected by the action in atomic scale in terms of combined resonance tunneling. The nuclear spectrum data support this idea. (author)
Study of the geometrical resonances of superconducting tunnel junctions
DEFF Research Database (Denmark)
Sørensen, O. Hoffmann; Finnegan, T.F.; Pedersen, Niels Falsig
1973-01-01
The resonant cavity structure of superconducting Sn-Sn-oxide-Sn tunnel junctions has been investigated via photon-assisted quasiparticle tunneling. We find that the temperature-dependent losses at 35 GHz are determined by the surface resistance of the Sn films for reduced temperatures between 0...
DEFF Research Database (Denmark)
Li, H.W.; Kardynal, Beata; Ellis, D.J.P.
2008-01-01
Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...
Spin injection in n-type resonant tunneling diodes.
Orsi Gordo, Vanessa; Herval, Leonilson Ks; Galeti, Helder Va; Gobato, Yara Galvão; Brasil, Maria Jsp; Marques, Gilmar E; Henini, Mohamed; Airey, Robert J
2012-10-25
We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two emission lines attributed to neutral (X) and negatively charged excitons (X-). We have observed a voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to -88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the accumulation layers.
Tunneling and resonant conductance in one-dimensional molecular structures
International Nuclear Information System (INIS)
Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.
2005-01-01
We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer
Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode
Saffarzadeh, Alireza; Daqiq, Reza
2009-01-01
We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...
Memory Applications Using Resonant Tunneling Diodes
Shieh, Ming-Huei
Resonant tunneling diodes (RTDs) producing unique folding current-voltage (I-V) characteristics have attracted considerable research attention due to their promising application in signal processing and multi-valued logic. The negative differential resistance of RTDs renders the operating points self-latching and stable. We have proposed a multiple -dimensional multiple-state RTD-based static random-access memory (SRAM) cell in which the number of stable states can significantly be increased to (N + 1)^ m or more for m number of N-peak RTDs connected in series. The proposed cells take advantage of the hysteresis and folding I-V characteristics of RTD. Several cell designs are presented and evaluated. A two-dimensional nine-state memory cell has been implemented and demonstrated by a breadboard circuit using two 2-peak RTDs. The hysteresis phenomenon in a series of RTDs is also further analyzed. The switch model provided in SPICE 3 can be utilized to simulate the hysteretic I-V characteristics of RTDs. A simple macro-circuit is described to model the hysteretic I-V characteristic of RTD for circuit simulation. A new scheme for storing word-wide multiple-bit information very efficiently in a single memory cell using RTDs is proposed. An efficient and inexpensive periphery circuit to read from and write into the cell is also described. Simulation results on the design of a 3-bit memory cell scheme using one-peak RTDs are also presented. Finally, a binary transistor-less memory cell which is only composed of a pair of RTDs and an ordinary rectifier diode is presented and investigated. A simple means for reading and writing information from or into the memory cell is also discussed.
Mantsevich, V. N.; Maslova, N. S.
2009-01-01
We present the results of local tunneling conductivity spatial distribution detailed theoretical investigations in vicinity of impurity atom for a wide range of applied bias voltage. We observed Fano resonance in tunneling conductivity resulting from interference between resonant tunneling channel through impurity energy level and direct tunneling channel between the tunneling contact leads. We have found that interference between tunneling channels strongly modifies form of tunneling conduct...
Reflection effect of localized absorptive potential on non-resonant and resonant tunneling
International Nuclear Information System (INIS)
Rubio, A.; Kumar, N.
1992-06-01
The reflection due to absorptive potential (-iV i ) for resonant and non-resonant tunneling has been considered. We show that the effect of reflection leads to a non-monotonic dependence of absorption on the strength V i with a maximum absorption of typically 0.5. This has implications for the operation of resonant tunneling devices. General conceptual aspects of absorptive potentials are discussed. (author). 9 refs, 2 figs
New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes
Directory of Open Access Journals (Sweden)
Jimy Encomendero
2017-10-01
Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.
Resonant Tunneling in Gated Vertical One- dimensional Structures
Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Webb, K. J.
1997-03-01
Vertical sub-micron transistors incorporating resonant tunneling multiple quantum well heterostructures are interesting in applications for both multi-valued logic devices and the study of quantization effects in vertical quasi- one-, zero- dimensional structures. Earlier we have demonstrated room temperature pinch-off of the resonant peak in sub-micron vertical resonant tunneling transistors structures using a self-aligned sidewall gating technique ( V.R. Kolagunta et. al., Applied Physics Lett., 69), 374(1996). In this paper we present the study of gating effects in vertical multiple quantum well resonant tunneling transistors. Multiple well quasi-1-D sidewall gated transistors with mesa dimensions of L_x=0.5-0.9μm and L_y=10-40μm were fabricated. The quantum heterostructure in these devices consists of two non-symmetric (180 ÅÅi-GaAs wells separated from each other and from the top and bottom n^+ GaAs/contacts region using Al_0.3Ga_0.7As tunneling barriers. Room temperature pinch-off of the multiple resonant peaks similar to that reported in the case of single well devices is observed in these devices^1. Current-voltage characteristics at liquid nitrogen temperatures show splitting of the resonant peaks into sub-bands with increasing negative gate bias indicative of quasi- 1-D confinement. Room-temperature and low-temperature current-voltage measurements shall be presented and discussed.
Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions
International Nuclear Information System (INIS)
Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang
2004-01-01
A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations
Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions
Useinov, A. N.
2011-08-24
We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.
Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions
Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.
2011-01-01
We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.
Resonant tunnelling and negative differential conductance in graphene transistors
Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.
2013-04-01
The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
Influence of edge roughness on graphene nanoribbon resonant tunnelling diodes
International Nuclear Information System (INIS)
Liang Gengchiau; Khalid, Sharjeel Bin; Lam, Kai-Tak
2010-01-01
The edge roughness effects of graphene nanoribbons on their application in resonant tunnelling diodes with different geometrical shapes (S, H and W) were investigated. Sixty samples for each 5%, 10% and 15% edge roughness conditions of these differently shaped graphene nanoribbon resonant tunnelling diodes were randomly generated and studied. Firstly, it was observed that edge roughness in the barrier regions decreases the effective barrier height and thickness, which increases the broadening of the quantized states in the quantum well due to the enhanced penetration of the wave-function tail from the electrodes. Secondly, edge roughness increases the effective width of the quantum well and causes the lowering of the quantized states. Furthermore, the shape effects on carrier transport are modified by edge roughness due to different interfacial scattering. Finally, with the effects mentioned above, edge roughness has a considerable impact on the device performance in terms of varying the peak-current positions and degrading the peak-to-valley current ratio.
Optically controlled resonant tunneling in a double-barrier diode
Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.
1991-03-01
The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.
Self-consistent modelling of resonant tunnelling structures
DEFF Research Database (Denmark)
Fiig, T.; Jauho, A.P.
1992-01-01
We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....
Inelastic tunneling spectroscopy for magnetic atoms and the Kondo resonance
International Nuclear Information System (INIS)
Goldberg, E C; Flores, F
2013-01-01
The interaction between a single magnetic atom and the metal environment (including a magnetic field) is analyzed by introducing an ionic Hamiltonian combined with an effective crystal-field term, and by using a Green-function equation of motion method. This approach describes the inelastic electron tunneling spectroscopy and the Kondo resonances as due to atomic spin fluctuations associated with electron co-tunneling processes between the leads and the atom. We analyze in the case of Fe on CuN the possible spin fluctuations between states with S = 2 and 3/2 or 5/2 and conclude that the experimentally found asymmetries in the conductance with respect to the applied bias, and its marked structures, are well explained by the 2↔3/2 spin fluctuations. The case of Co is also considered and shown to present, in contrast with Fe, a resonance at the Fermi energy corresponding to a Kondo temperature of 6 K. (paper)
Tunneling effect in cavity-resonator-coupled arrays
International Nuclear Information System (INIS)
Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong
2013-01-01
The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Energy Technology Data Exchange (ETDEWEB)
Nanda, Jyotirmayee [Department of Physics, National Institute of Technology, Rourkela, 769008 (India)]. E-mail: jnanda_b9@rediffmail.com; Mahapatra, P.K. [Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102 (India)]. E-mail: pkmahapatra@vidyasagar.ac.in; Roy, C.L. [Department of Physics and Meterology, Indian Institute of Technology, Kharagpur, 721302 (India)
2006-09-01
A computational model based on non-relativistic approach is proposed for the determination of transmission coefficient, resonant tunneling energies, group velocity, resonant tunneling lifetime and traversal time in multibarrier systems (GaAs/Al {sub y} Ga{sub 1-} {sub y} As) for the entire energy range {epsilon}
Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths
International Nuclear Information System (INIS)
Pfenning, Andreas; Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas
2014-01-01
An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3 μm. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29 μm. At resonance a high sensitivity of 3.1×10 4 A/W and a response up to several pA per photon at room temperature were found
Circular polarization in a non-magnetic resonant tunneling device
Directory of Open Access Journals (Sweden)
Airey Robert
2011-01-01
Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.
Q factor and resonance amplitude of Josephson tunnel junctions
International Nuclear Information System (INIS)
Broom, R.F.; Wolf, P.
1977-01-01
The surface impedance of the superconducting films comprising the electrodes of Josephson tunnel junctions has been derived from the BCS theory in the extreme London limit. Expressions have been obtained for (i) the dependence of the penetration depth lambda on frequency and temperature, and (ii) the quality factor Q of the junction cavity, attributable to surface absorption in the electrodes. The effect of thin electrodes (t 9 or approx. = lambda) is also included in the calculations. Comparison of the calculated frequency dependence of lambda with resonance measurements on Pb-alloy and all-Nb tunnel junctions yields quite good agreement, indicating that the assumptions made in the theory are reasonable. Measurements of the (current) amplitude of the resonance peaks of the junctions have been compared with the values obtained from inclusion of the calculated Q in the theory by Kulik. In common with observations on microwave cavities by other workers, we find that a small residual conductivity must be added to the real part of the BCS value. With its inclusion, good agreement is found between calculation and experiment, within the range determined by the simplifying assumptions of Kulik's theory. From the results, we believe the calculation of Q to be reasonably accurate for the materials investigated. It is shown that the resonance amplitude of Josephson junctions can be calculated directly from the material constants and a knowledge of the residual conductivity
Modelling of optoelectronic circuits based on resonant tunneling diodes
Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.
2017-08-01
Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.
International Nuclear Information System (INIS)
Rouben, D.C.
1997-01-01
A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.)
Resonant tunnelling through short-range singular potentials
International Nuclear Information System (INIS)
Zolotaryuk, A V; Christiansen, P L; Iermakova, S V
2007-01-01
A three-parameter family of point interactions constructed from sequences of symmetric barrier-well-barrier and well-barrier-well rectangles is studied in the limit, when the rectangles are squeezed to zero width but the barrier height and the well depth become infinite (the zero-range limit). The limiting generalized potentials are referred to as the second derivative of Dirac's delta function ±λδ-prime(x) with a renormalized coupling constant λ > 0 or simply as ±δ-prime-like point interactions. As a result, a whole family of self-adjoint extensions of the one-dimensional Schroedinger operator is shown to exist, which results in full and partial resonant tunnelling through this class of singular potentials. The resonant tunnelling occurs for countable sets of interaction strength values in the λ-space which are the roots of several transcendental equations. The comparison with the previous results for δ'-like point interactions is also discussed
Photo-Detectors Integrated with Resonant Tunneling Diodes
Directory of Open Access Journals (Sweden)
José M. L. Figueiredo
2013-07-01
Full Text Available We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD. Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR region. The resonant tunneling diode photo-detector (RTD-PD can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.
Resonant tunneling measurements of size-induced strain relaxation
Akyuz, Can Deniz
Lattice mismatch strain available in such semiconductor heterostructures as Si/SiGe or GaAs/AlGaAs can be employed to alter the electronic and optoelectronic properties of semiconductor structures and devices. When deep submicron structures are fabricated from strained material, strained layers relax by sidewall expansion giving rise to size- and geometry-dependent strain gradients throughout the structure. This thesis describes a novel experimental technique to probe the size-induced strain relaxation by studying the tunneling current characteristics of strained p-type Si/SiGe resonant tunneling diodes. Our current-voltage measurements on submicron strained p-Si/SiGe double- and triple-barrier resonant tunneling structures as a function of device diameter, D, provide experimental access to both the average strain relaxation (which leads to relative shifts in the tunneling current peak positions) and strain gradients (which give rise to a fine structure in the current peaks due to inhomogeneous strain-induced lateral quantization). We find that strain relaxation is significant, with a large fraction of the strain energy relaxed on average in D ≤ 0.25 m m devices. Further, the in-plane potentials that arise from inhomogeneous strain gradients are large. In the D ˜ 0.2 m m devices, the corresponding lateral potentials are approximately parabolic exceeding ˜ 25 meV near the perimeter. These potentials create discrete hole states in double-barrier structures (single well), and coupled hole states in triple-barrier structures (two wells). Our results are in excellent agreement with finite-element strain calculations in which the strained layers are permitted to relax to a state of minimum energy by sidewall expansion. Size-induced strain relaxation will undoubtedly become a serious technological issue once strained devices are scaled down to the deep submicron regime. Interestingly, our calculations predict and our measurements are consistent with the appearance of
Resonant tunnelling from nanometre-scale silicon field emission cathodes
International Nuclear Information System (INIS)
Johnson, S.; Markwitz, A.
2005-01-01
In this paper we report the field emission properties of self-assembled silicon nanostructures formed on an n-type silicon (100) substrate by electron beam annealing. The nanostructures are square based, with an average height of 8 nm and are distributed randomly over the entire substrate surface. Following conditioning, the silicon nanostructure field emission characteristics become stable and reproducible with electron emission occurring for fields as low as 3 Vμm-1. At higher fields, a superimposed on a background current well described by conventional Fowler-Nordheim theory. These current peaks are understood to result from enhanced tunnelling through resonant states formed at the substrate-nanostructure and nanostructure-vacuum interface. (author). 13 refs., 3 figs
Baskin, Lev; Plamenevskii, Boris; Sarafanov, Oleg
2015-01-01
This volume studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling. Devices based on the phenomenon of electron resonant tunneling are widely used in electronics. Efforts are directed towards refining properties of resonance structures. There are prospects for building new nanosize electronics elements based on quantum dot systems. However, the role of resonance structure can also be given to a quantum wire of variable cross-section. Instead of an "electrode - quantum dot - electrode" system, one can use a quantum wire with two narrows. A waveguide narrow is an effective potential barrier for longitudinal electron motion along a waveguide. The part of the waveguide between ...
Time-dependent resonant tunnelling for parallel-coupled double quantum dots
International Nuclear Information System (INIS)
Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L
2004-01-01
We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device
Quantum Entanglement of a Tunneling Spin with Mechanical Modes of a Torsional Resonator
Directory of Open Access Journals (Sweden)
D. A. Garanin
2011-08-01
Full Text Available We solve the Schrödinger equation for various quantum regimes describing a tunneling macrospin coupled to a torsional oscillator. The energy spectrum and freezing of spin tunneling are studied. Magnetic susceptibility, noise spectrum, and decoherence due to entanglement of spin and mechanical modes are computed. We show that the presence of a tunneling spin can be detected via splitting of the mechanical mode at the resonance. Our results apply to experiments with magnetic molecules coupled to nanoresonators.
'Al' concentration on spin-dependent resonant tunnelling in InAs/Ga
Indian Academy of Sciences (India)
The separation between spin-up and spin-down components, barrier transparency, polarization efficiency and tunnelling lifetime were calculated using the transfer matrix approach. The separation between spin-up and spin-down resonances and tunnelling lifetime were reportedfor the first time in the case of InAs/Ga 1 − y ...
Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.
Dalidchik, F I; Kovalevskii, S A; Balashov, E M
2017-05-21
The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.
Resonant Magnetization Tunneling in Molecular Magnets: Where is the Inhomogeneous Broadening?
Friedman, Jonathan R.; Sarachik, M. P.
1998-03-01
Since the discovery(J. R. Friedman, et al., Phys. Rev. Lett. 76), 3830 (1996) of resonant magnetization tunneling in the molecular magnet Mn_12 there has been intense research into the underlying mechanism of tunneling. Most current theories( V. Dobrovitski and A. Zvezdin, Europhys. Lett. 38), 377 (1997); L. Gunther, Europhys. Lett. 39, 1 (1997); D Garanin and E. Chudnovsky, Phys. Rev. B 56, 11102 (1997). suggest that a local internal (hyperfine or dipole) field transverse to the easy magnetization axis induces tunneling. These theories predict a resonance width orders of magnitude smaller than that actually observed. This discrepancy is attributed to inhomogeneous broadening of the resonance by the random internal fields. We present a detailed study of the tunnel resonance lineshape and show that it is Lorentzian, suggesting it has a deeper physical origin. Since the hyperfine fields are believed to be comparable to the observed width, it is surprising that there is no Gaussian broadening.
Gate-controlled quantum collimation in nanocolumn resonant tunnelling transistors
International Nuclear Information System (INIS)
Wensorra, J; Lepsa, M I; Trellenkamp, S; Moers, J; Lueth, H; Indlekofer, K M
2009-01-01
Nanoscaled resonant tunneling transistors (RTT) based on MBE-grown GaAs/AlAs double-barrier quantum well (DBQW) structures have been fabricated by a top-down approach using electron-beam lithographic definition of the vertical nanocolumns. In the preparation process, a reproducible mask alignment accuracy of below 10 nm has been achieved and the all-around metal gate at the level of the DBQW structure has been positioned at a distance of about 20 nm relative to the semiconductor nanocolumn. Due to the specific doping profile n ++ /i/n ++ along the transistor nanocolumn, a particular confining potential is established for devices with diameters smaller than 70 nm, which causes a collimation effect of the propagating electrons. Under these conditions, room temperature optimum performance of the nano-RTTs is achieved with peak-to-valley current ratios above 2 and a peak current swing factor of about 6 for gate voltages between -6 and +6 V. These values indicate that our nano-RTTs can be successfully used in low power fast nanoelectronic circuits.
Usefulness of magnetic resonance imaging in carpal tunnel syndrome
International Nuclear Information System (INIS)
Morita, Akimasa; Fujisawa, Kouzou; Tsujii, Masaya; Hirata, Hitoshi; Uchida, Atsumasa
2005-01-01
Electrodiagnostic studies are highly sensitive and specific for the diagnosis of carpal tunnel syndrome (CTS). However, conduction velocities do not correlate with symptom severity or treatment outcomes. Magnetic resonance imaging (MRI) revealed tenosynovial thickening within the carpal tunnel as the most constant finding in CTS; it is encountered in more than 95% of the patients. The purpose of the present study is to analyze the relationship between subjective symptoms and MRI findings, and to identify clinical evaluations that reflect subjective symptom severity. The subject group comprised 48 females with CTS. Patients were divided into 4 groups based on their symptom duration (A: lesser than 3 months, B: 4 to 6 months, C: 7 to 12 months, D: more than 13 months). All patients were preoperatively assessed for subjective symptom severity by using a Likert scale, sensory conduction velocity (SCV), and compound muscle action potential (CMAP). In addition, all patients underwent MRI examination for the evaluation of flexor tenosynovial thickening represented by palmar bowing of the flexor retinaculum (PBFR). Fourteen healthy females with comparable demographics served as the controls. Relationships were estimated using Spearman rank score or Mann-Whitney's U test. Regarding subjective symptoms, pain severity decreased significantly in the order A>B>C; it did not decrease significantly in D. Paresthesia did not show any significant difference among the groups. PBFR was significantly higher in all the groups as compared to the control, and similar to pain severity, it decreased significantly in the order A>B>C; it did not decrease significantly in D. Statistical analysis established a close correlation between pain severity and PBFR. However, pain severity did not show any correlation with either electrophysiology or functional status. In contrast to electrophysiology or objective functional status assessment, flexor tenosynovial thickening shows a close correlation
Numerical simulations of resonant tunneling with the presence of inelastic processes
International Nuclear Information System (INIS)
Jauho, A.P.
1990-01-01
We describe simulations of resonant tunneling through a time-modulated double barrier potential. The harmonic modulation frequency ω leads to emission and/or absorption of modulation quanta of energy ℎω in close analogy with emission and/or absorption of dispersionless bosons (optical phonons, photons, plasmons etc.). The transmission coefficient shows satellite peaks in addition to the main resonance. Momentum space snap-shots can be used to extract detailed information of the dynamics of the inelastic tunneling processes, such as opening and closing boson mediated resonant channels, their relative importance, and related time-scales. (orig.)
Li, Quanfeng; Lu, Qingyou
2011-05-01
We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).
Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin
2018-03-01
Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.
International Nuclear Information System (INIS)
Tian, Si-Cong; Tong, Cun-Zhu; Ning, Yong-Qiang; Qin, Li; Liu, Yun; Wan, Ren-Gang
2014-01-01
Optical spectroscopy, a powerful tool for probing and manipulating quantum dots (QDs), has been used to investigate the resonance fluorescence spectrum from linear triple quantum dot molecules controlled by tunneling, using atomic physics methods. Interesting features such as quenching and narrowing of the fluorescence are observed. In such molecules the tunneling between the quantum dots can also induce a dark state. The results are explained by the transition properties of the dressed states generated by the coupling of the laser and the tunneling. Unlike the atomic system, in such quantum dot molecules quantum coherence can be induced using tunneling, requiring no coupling lasers, which will allow tunneling controllable quantum dot molecules to be applied to quantum optics and photonics. (paper)
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Opacak, Nikola; Milanović, Vitomir; Radovanović, Jelena
2017-12-01
Tunneling times in complex potentials are investigated. Analytical expressions for dwell time, self-interference time and group delay are obtained for the case of complex double delta potentials. It is shown that we can always find a set of parameters of the potential so that the tunneling times achieve very large values and even approach infinity for the case of resonance. The phenomenon of infinite tunneling times occurs for only one particular positive value of the imaginary part of the potential, if all other parameters are given.
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
High resolution imaging of tunnels by magnetic resonance neurography
Energy Technology Data Exchange (ETDEWEB)
Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)
2012-01-15
Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)
High resolution imaging of tunnels by magnetic resonance neurography
International Nuclear Information System (INIS)
Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh; Wang, Kenneth C.; Williams, Eric H.; Hashemi, Shahreyar Shar
2012-01-01
Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)
Voltage-controlled spin selection in a magnetic resonant tunneling diode.
Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W
2003-06-20
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.
Energy Technology Data Exchange (ETDEWEB)
Rouben, D C
1997-11-28
A semiclassical method for resonant tunneling in a quantum well in the presence of a magnetic field tilted with regard to an electric field is developed. In particular a semiclassical formula is derived for the total current of electrons after the second barrier of the quantum well. The contribution of the stable and unstable orbits is studied. It appears that the parameters which describe the classical chaos in the quantum well have an important effect on the tunneling current. A numerical experiment is led, the contributions to the current of some particular orbits are evaluated and the results are compared with those given by the quantum theory. (A.C.) 70 refs.
Controllable resonant tunnelling through single-point potentials: A point triode
International Nuclear Information System (INIS)
Zolotaryuk, A.V.; Zolotaryuk, Yaroslav
2015-01-01
A zero-thickness limit of three-layer heterostructures under two bias voltages applied externally, where one of which is supposed to be a gate parameter, is studied. As a result, an effect of controllable resonant tunnelling of electrons through single-point potentials is shown to exist. Therefore the limiting structure may be termed a “point triode” and considered in the theory of point interactions as a new object. The simple limiting analytical expressions adequately describe the resonant behaviour in the transistor with realistic parameter values and thus one can conclude that the zero-range limit of multi-layer structures may be used in fabricating nanodevices. The difference between the resonant tunnelling across single-point potentials and the Fabry–Pérot interference effect is also emphasized. - Highlights: • The zero-thickness limit of three-layer heterostructures is described in terms of point interactions. • The effect of resonant tunnelling through these single-point potentials is established. • The resonant tunnelling is shown to be controlled by a gate voltage
Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.
Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold
2014-09-26
We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.
Energy Technology Data Exchange (ETDEWEB)
Jung, Hyun Jin; Lee, Sheen Woo; Jeong, Yu Mi; Choi, Hye Young; Kim, Hyung Sik [Dept. of Radiology, Gil Hospital, Gacheon University College of Medicine, Incheon (Korea, Republic of); Park, Hong Gi; Kwak, Ji Hoon [Dept. of Orthopedic Surgery, Gil Hospital, Gacheon University College of Medicine, Incheon (Korea, Republic of)
2012-02-15
The purpose of this study was to access the diverse conditions that lead to the clinical manifestations of tarsal tunnel syndrome and evaluate the usefulness of magnetic resonance imaging (MRI) in preoperative evaluation. Thirty-three patients who underwent ankle MRI and surgery under the impression of tarsal tunnel syndrome were retrospectively analyzed. The findings on ankle MRI were categorized into space occupying lesions within the tarsal tunnel, space occupying lesions of the tunnel wall, and non-space occupying lesions. Associated plantar muscle atrophy was also evaluated. Medical records were reviewed for correlation of nerve conduction velocity (NCV) and surgical findings. There were 21 space occupying lesions of the tarsal tunnel, and eight lesions of tarsal tunnel wall. There were three cases with accessory muscle, three with tarsal coalition, five with ganglion cysts, one neurogenic tumor, five flexor retinaculum hypertrophy, three varicose veins, and nine with tenosynovitis of the posterior tibialis, flexor digitorum longus, or flexor hallucis longus tendon. One patient was found to have a deltoid ligament sprain. Of the 32, eight patients experienced fatty atrophic change within any one of the foot muscles. NCV was positive in 79% of the MRI-positive lesions. MRI provides detailed information on ankle anatomy, which includes that of tarsal tunnel and beyond. Pathologic conditions that cause or mimic tarsal tunnel syndrome are well demonstrated. MRI can enhance surgical planning by indicating the extent of decompression required, and help with further patient management. Patients with tarsal tunnel syndrome can greatly benefit from preoperative MRI. However, it should be noted that not all cases with tarsal tunnel syndrome have MRI-demonstrable causes.
International Nuclear Information System (INIS)
Jung, Hyun Jin; Lee, Sheen Woo; Jeong, Yu Mi; Choi, Hye Young; Kim, Hyung Sik; Park, Hong Gi; Kwak, Ji Hoon
2012-01-01
The purpose of this study was to access the diverse conditions that lead to the clinical manifestations of tarsal tunnel syndrome and evaluate the usefulness of magnetic resonance imaging (MRI) in preoperative evaluation. Thirty-three patients who underwent ankle MRI and surgery under the impression of tarsal tunnel syndrome were retrospectively analyzed. The findings on ankle MRI were categorized into space occupying lesions within the tarsal tunnel, space occupying lesions of the tunnel wall, and non-space occupying lesions. Associated plantar muscle atrophy was also evaluated. Medical records were reviewed for correlation of nerve conduction velocity (NCV) and surgical findings. There were 21 space occupying lesions of the tarsal tunnel, and eight lesions of tarsal tunnel wall. There were three cases with accessory muscle, three with tarsal coalition, five with ganglion cysts, one neurogenic tumor, five flexor retinaculum hypertrophy, three varicose veins, and nine with tenosynovitis of the posterior tibialis, flexor digitorum longus, or flexor hallucis longus tendon. One patient was found to have a deltoid ligament sprain. Of the 32, eight patients experienced fatty atrophic change within any one of the foot muscles. NCV was positive in 79% of the MRI-positive lesions. MRI provides detailed information on ankle anatomy, which includes that of tarsal tunnel and beyond. Pathologic conditions that cause or mimic tarsal tunnel syndrome are well demonstrated. MRI can enhance surgical planning by indicating the extent of decompression required, and help with further patient management. Patients with tarsal tunnel syndrome can greatly benefit from preoperative MRI. However, it should be noted that not all cases with tarsal tunnel syndrome have MRI-demonstrable causes.
Evaluation of resonant tunneling transmission coefficient from multilayer structures GaAlAs/GaAs
Directory of Open Access Journals (Sweden)
L. Moghaddasi
2003-12-01
Full Text Available A theoretical study of resonant tunneling in multilayered GaAlAs/GaAs structures are presented. The spectrum of resonant energies and its dependence on the barrier structure are analyzed from calculated profiles of barrier transparency versus energy, and from current voltage characteristics computed at selected temperatures and Fermi levels. The present formalism is based on the effective mass approximation and results are via direct numerical evaluations.
Importance of complex band structure and resonant states for tunneling
Czech Academy of Sciences Publication Activity Database
Dederichs, P. H.; Mavropoulos, Ph.; Wunnicke, O.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Drchal, Václav; Kudrnovský, Josef
2002-01-01
Roč. 240, - (2002), s. 108-113 ISSN 0304-8853 R&D Projects: GA AV ČR IAA1010829; GA ČR GA202/00/0122; GA MŠk OC P5.30 Grant - others:TSR(XX) 01398 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * tunneling * band structure * interface effects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002
Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions
Directory of Open Access Journals (Sweden)
Fen Liu
2016-08-01
Full Text Available Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsic properties.
Makeev, M. O.; Meshkov, S. A.
2017-07-01
The artificial aging of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures was conducted. As a result of the thermal influence resonant tunneling diodes IV curves degrade firstly due to ohmic contacts' degradation. To assess AlAs/GaAs resonant tunneling diodes degradation level and to predict their reliability, a functional dependence of the contact resistance of resonant tunneling diode AuGeNi ohmic contacts on time and temperature was offered.
Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser
Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.
1991-01-01
A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.
Resonant coherent quantum tunneling of the magnetization of spin-systems: Spin-parity effects
Garcia-Pablos, D; Garcia, N; de Raedt, H.A.
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated to occur only for some specific resonant values of
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper
1978-01-01
The microwave response at 9 GHz of Sn-O-Sn tunnel-junction current biased at zero dc voltage has been measured just below the critical temperature Tc of the Sn films. The temperature dependence of the cosφ conductance is determined from the resonant response at the junction plasma frequency fp...
Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois
2017-02-01
Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.
Resonant Tunneling in Photonic Double Quantum Well Heterostructures
Directory of Open Access Journals (Sweden)
Cox Joel
2010-01-01
Full Text Available Abstract Here, we study the resonant photonic states of photonic double quantum well (PDQW heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.
Spin-dependent current in resonant tunneling diode with ferromagnetic GaMnN layers
International Nuclear Information System (INIS)
Tang, N.Y.
2009-01-01
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) with ferromagnetic GaMnN emitter/collector is investigated theoretically. Two distinct spin splitting peaks can be observed at current-voltage (I-V) characteristics at low temperature. The spin polarization decreases with the temperature due to the thermal effect of electron density of states. When charge polarization effect is considered at the heterostructure, the spin polarization is enhanced significantly. A highly spin-polarized current can be obtained depending on the polarization charge density.
Time-dependent transport in interacting and noninteracting resonant-tunneling systems
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal
1994-01-01
noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...
Magnetic resonance imaging evaluation of carpal tunnel syndrome
International Nuclear Information System (INIS)
Hachisuka, Hiroki; Kimori, Kenji; Tsuge, Kenya; Murakami, Tsuneji
2006-01-01
In many reports, the severity of carpal tunnel syndrome (CTS) is evaluated by subjective symptoms and nerve conduction findings of the median nerve. However, nerve conduction studies are complicated and the patients occasionally experience pain. In this report, we quantified a morphological change in the median nerve by using MRI, and reviewed a new noninvasive method of CTS evaluation. The survey was carried out on 55 idiopathic CTS patients (45 females and 10 males). The affected areas were 33 right hands and 22 left hands. The average age of the patients was 59 years. We used Philips Gyroscan Intera 1.5 Tesla MRI. T2 weighted axial image of the carpal canal sliced by width of 1 mm was used to measure a minimum axis/maximum axis (median nerve compression rate; MNCR). Simultaneously, we measured the nerve conduction velocity and terminal latency of the motor and sensory nerves; we evaluated the thumb motor disturbance by Hamada's classification and sensory disturbance by Semmes-Weinstein test. The statistical correlations between these items and MNCR were analyzed. MNCR had a significant correlation with all items, particularly with motor nerve conduction velocity and latency, and Hamada's classification. There have been some trials regarding the application of MRI findings for CTS evaluation. In these reports, they measured the cross section of the median nerve or brightness of the median nerve, flexor tendon, or intrinsic muscle. However, it is difficult to measure an MRI cross section or brightness in common practice. MNCR has a statistical correlation with the nerve conduction study, is easy to measure, and noninvasive. MNCR is useful as an objective evaluation method of CTS severity. (author)
Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier
Phillips A. H.; Mina A. N.
2011-01-01
The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavio...
Analysis of the resonant tunneling diode with the stepped pre-barrier
Czech Academy of Sciences Publication Activity Database
Yatskiv, Roman; Voves, J.
2009-01-01
Roč. 193, č. 1 (2009), s. 1-4 ISSN 1742-6588. [16th International Conference on Electron Dynamics In Semiconductors, Optoelectronics and Nanostructure. Monpellier, 24.8.2009 – 28.8.2009] R&D Projects: GA AV ČR KJB200670901; GA AV ČR(CZ) KAN401220801 Institutional research plan: CEZ:AV0Z20670512 Keywords : Resonant tunneling diodes * Nonequilibrium Green functions * Hysteresis Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering
Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji
2008-01-01
We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...
Nonlinear properties of double and triple barrier resonant tunneling structures in the sub-THz range
International Nuclear Information System (INIS)
Karuzskij, A.L.; Perestoronin, A.V.; Volchkov, N.A.
2012-01-01
The high-frequency nonlinear properties of GaAs/AlAs resonant tunneling diode (RTD) nanostructures and perspectives of implementation of the quantum regime of amplification in such structures, which is especially efficient in the range of sub-THz and THz ranges, are investigated. It is shown that in a triple barrier RTD the symmetry between the processes of amplification and dissipation can be avoided because of the interaction of an electromagnetic wave with both of resonant states in two quantum wells, that results in the significant growth of an RTD efficiency [ru
Narrowing the Zero-Field Tunneling Resonance by Decreasing the Crystal Symmetry of Mn12 Acetate.
Espín, Jordi; Zarzuela, Ricardo; Statuto, Nahuel; Juanhuix, Jordi; Maspoch, Daniel; Imaz, Inhar; Chudnovsky, Eugene; Tejada, Javier
2016-07-27
We report the discovery of a less symmetric crystalline phase of Mn12 acetate, a triclinic phase, resulting from recrystallizing the original tetragonal phase reported by Lis in acetonitrile and toluene. This new phase exhibits the same structure of Mn12 acetate clusters and the same positions of tunneling resonances on the magnetic field as the conventional tetragonal phase. However, the width of the zero-field resonance is at least 1 order of magnitude smaller-can be as low as 50 Oe-indicating very small inhomogeneous broadening due to dipolar and nuclear fields.
A Comparison of Resonant Tunneling Based on Schrödinger's Equation and Quantum Hydrodynamics
Directory of Open Access Journals (Sweden)
Naoufel Ben Abdallah
2002-01-01
Full Text Available Smooth quantum hydrodynamic (QHD model simulations of the current–voltage curve of a resonant tunneling diode at 300K are compared with that predicted by the mixed-state Schrödinger equation approach. Although the resonant peak for the QHD simulation occurs at 0.15V instead of the Schrödinger equation value of 0.2V, there is good qualitative agreement between the current–voltage curves for the two models, including the predicted peak current values.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
Tunnel-induced Dipolar Resonances in a Double-well Potential.
Schulz, Bruno; Saenz, Alejandro
2016-11-18
A system of two dipolar particles that are confined in a double-well potential and interact via a realistic isotropic interaction potential is investigated as a protoype for ultracold atoms with a magnetic dipole moment or ultracold dipolar heteronuclear diatomic molecules in double-well traps or in optical lattices. The resulting energy spectrum is discussed as a function of the dipole-dipole interaction strength. The variation of the strength of the dipole-dipole interaction is found to lead to various resonance phenomena. Among those are the previously discussed inelastic confinement-induced resonances as well as the dipole-induced resonances. It is found that the double-well potential gives rise to a new type of resonances, tunnel-induced dipolar ones. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode
Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.
2017-04-01
Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.
Analysis of the current-voltage characteristics lineshapes of resonant tunneling diodes
International Nuclear Information System (INIS)
Rivera, P.H.; Schulz, P.A.
1996-01-01
It is discussed the influence of a two dimensional electron gas at the emitter-barrier interface on the current-voltage characteristics of a Ga As-Al Ga As double-barrier quantum well resonant tunneling diode. This effect is characterized by the modification of the space charge distribution along the structure. Within the framework of a self-consistent calculation we analyse the current-voltage characteristics of the tunneling diodes. This analysis permits us to infer different tunneling ways, related to the formation of confined states in the emitter region, and their signatures in the current-voltage characteristics. We show that varying the spacer layer, together with barrier heights, changes drastically the current density-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics reported in the literature. The general trend of experimental lineshapes can be reproduced and interpreted with our model. The possibility of tunneling paths is predicted for a range that has not yet been explored experimentally. (author). 12 refs., 4 figs
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-03-23
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.
Transmission-line resonators for the study of individual two-level tunneling systems
Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen
2017-09-01
Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.
Resonant-enhanced spectroscopy of molecular rotations with a scanning tunneling microscope.
Natterer, Fabian Donat; Patthey, François; Brune, Harald
2014-07-22
We use rotational excitation spectroscopy with a scanning tunneling microscope to investigate the rotational properties of molecular hydrogen and its isotopes physisorbed on the surfaces of graphene and hexagonal boron nitride (h-BN), grown on Ni(111), Ru(0001), and Rh(111). The rotational excitation energies are in good agreement with ΔJ = 2 transitions of freely spinning p-H2 and o-D2 molecules. The variations of the spectral line shapes for H2 among the different surfaces can be traced back to a molecular resonance-mediated tunneling mechanism. Our data for H2/h-BN/Rh(111) suggest a local intrinsic gating on this surface due to lateral static dipoles. Spectra on a mixed monolayer of H2, HD, and D2 display all three J = 0 → 2 rotational transitions, irrespective of tip position, thus pointing to a multimolecule excitation, or molecular mobility in the physisorbed close-packed layer.
Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru
2003-05-01
A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process.
International Nuclear Information System (INIS)
Yamasaki, Tomoaki; Ueda, Miki; Maegawa, Satoru
2003-01-01
A molecular nanomagnet Fe8 with a total spin S=10 in the ground state attracts much attention as a substance which exhibits the quantum tunneling of magnetization below 300 mK. We performed 1 H NMR measurements for a single crystal of Fe8 in temperature range between 20 and 800 mK. The spectra below 300 mK strongly depend on the sequence of the applied field and those in the positive and negative fields are not symmetric about zero field, while they are symmetric above 300 mK. We discuss the origin of this hysteresis phenomenon, relating to the initial spin state of molecules, the resonant quantum tunneling and the nuclear spin relaxation process
Current-voltage characteristics of a tunnel junction with resonant centers
International Nuclear Information System (INIS)
Ivanov, T.; Valtchinov, V.
1994-05-01
We calculated the I-V characteristics of a tunnel junction containing impurities in the barrier. We consider the indirect resonant tunneling involving the impurities. The Coulomb repulsion energy E c between two electrons with opposite spins simultaneously residing on the impurity is introduced by an Anderson Hamiltonian. At low temperatures T is much less than E c the I-V characteristics is linear in V both for V c and for V>E c and changes slope at V=E c . This behaviour reflects the energy spectrum of the impurity electrons - the finite value of the charging energy E c . At T ∼ E c the junction reveals an ohmic-like behaviour as a result of the smearing out of the charging effects by the thermal fluctuations. (author). 10 refs, 2 figs
Taylor, Samuel A; Newman, Ashley M; Nguyen, Joseph; Fabricant, Peter D; Baret, Nikolas J; Shorey, Mary; Ramkumar, Prem; O'Brien, Stephen J
2016-02-01
To determine the diagnostic accuracy of magnetic resonance imaging (MRI) for biceps-labrum complex (BLC) lesions, including the extra-articular bicipital tunnel. A retrospective review of 277 shoulders with chronic refractory BLC symptoms that underwent arthroscopic subdeltoid transfer of the long head of the biceps tendon (LHBT) to the conjoint tendon was conducted. Intraoperative lesions were categorized as "inside" (labral tears and dynamic LHBT incarceration), "junctional" (LHBT partial tears, LHBT subluxation, and biceps chondromalacia), or "bicipital tunnel" (extra-articular bicipital tunnel scar/stenosis, loose bodies, LHBT instability, and LHBT partial tears) based on anatomic location. Attending radiologist-generated MRI reports were graded dichotomously as positive or negative for biceps and labral damage and then compared with intraoperative findings. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for MRI with respect to intraoperative findings. With regard to inside lesions, MRI had an overall sensitivity, specificity, PPV, and NPV for labrum lesions of 77.3%, 68.2%, 57.3%, and 84.5% respectively. The sensitivity, specificity, PPV, and NPV of MRI for junctional lesions were 43.3%, 55.6%, 73.1%, and 26.0%, respectively. For the bicipital tunnel, MRI had a sensitivity, specificity, PPV, and NPV of 50.4%, 61.4%, 48.7%, and 63.0%, respectively. MRI was unreliable for ruling out BLC lesions among chronically symptomatic patients, including when the bicipital tunnel was affected. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Qin, Tao; Hofstetter, Walter
2018-03-01
Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.
Energy Technology Data Exchange (ETDEWEB)
Campbell, Philip M., E-mail: philip.campbell@gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Tarasov, Alexey; Joiner, Corey A.; Vogel, Eric M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Ready, W. Jud [Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States)
2016-01-14
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.
Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.
2016-01-01
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.
2015-01-01
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.
Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier
Directory of Open Access Journals (Sweden)
Phillips A. H.
2011-01-01
Full Text Available The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavior might be due to the interference of different central band and sidebands of graphene states. The present investigation is very important for the application of bilayer graphene in photodetector devices, for example, far-infrared photodevices and ultrafast lasers.
Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
Lin, Yu-Chuan
2015-06-19
Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.
Resonance tunneling of charge carriers in photoexcited type-II ZnSe/BeTe heterostructures
International Nuclear Information System (INIS)
Zaitsev, S. V.; Maksimov, A. A.; Tartakovskii, I. I.; Yakovlev, D. R.; Waag, A.
2008-01-01
In is shown that, at high densities of spatially separated electrons and holes in type-II ZnSe/BeTe heterostructures, the conditions for resonance tunneling of photoexcited holes from the ZnSe layer to the BeTe layer are attainable. Nonlinear behavior of the intensity of the photoluminescence band corresponding to spatially direct optical transitions with photoexcitation intensity is observed. Numerical calculations are carried out, and the results are in good agreement with the experimental data in a wide region of variation of the optical pumping intensity
Sidewall gated double well quasi-one-dimensional resonant tunneling transistors
Kolagunta, V. R.; Janes, D. B.; Melloch, M. R.; Youtsey, C.
1997-12-01
We present gating characteristics of submicron vertical resonant tunneling transistors in double quantum well heterostructures. Current-voltage characteristics at room temperature and 77 K for devices with minimum feature widths of 0.9 and 0.7 μm are presented and discussed. The evolution of the I-V characteristics with increasing negative gate biases is related to the change in the lateral confinement, with a transition from a large area 2D to a quasi-1D. Even gating of multiple wells and lateral confinement effects observable at 77 K make these devices ideally suited for applications in multi-valued logic systems and low-dimensional structures.
Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji
2008-06-23
We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.
International Nuclear Information System (INIS)
Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.
2014-01-01
Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru
International Nuclear Information System (INIS)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.
2016-01-01
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures
Hysteresis loops of spin-dependent electronic current in a paramagnetic resonant tunnelling diode
International Nuclear Information System (INIS)
Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J
2012-01-01
Nonlinear properties of the spin-dependent electronic transport through a semiconductor resonant tunnelling diode with a paramagnetic quantum well are considered. The spin-dependent Wigner–Poisson model of the electronic transport and the two-current Mott’s formula for the independent spin channels are applied to determine the current–voltage curves of the nanodevice. Two types of the electronic current hysteresis loops are found in the current–voltage characteristics for both the spin components of the electronic current. The physical interpretation of these two types of the electronic current hysteresis loops is given based on the analysis of the spin-dependent electron densities and the potential energy profiles. The differences between the current–voltage characteristics for both the spin components of the electronic current allow us to explore the changes of the spin polarization of the current for different electric fields and determine the influence of the electronic current hysteresis on the spin polarization of the current flowing through the paramagnetic resonant tunnelling diode. (paper)
International Nuclear Information System (INIS)
Krive, I.V.; Sandstroem, P.
1997-01-01
The persistent current for a one-dimensional ring with two tunneling barriers is considered in the limit of weakly interacting electrons. In addition to small off-resonance current, there are two kinds of resonant behaviour; (i) a current independent of the barrier transparency (true resonance) and (ii) a current analogous to the one for a ring with only single barrier (''semi''-resonance). For a given barrier transparency the realization of this or that type of resonant behaviour depends both on the geometrical factor (the ratio of interbarrier distance to a ring circumference) and on the strength of electron-electron interaction. It is shown that repulsive interaction favours the ''semi''-resonance behaviour. For a small barrier transparency the ''semi''-resonance peaks are easily washed out by temperature whereas the true resonance peaks survive. (author). 22 refs, 2 figs
Effect of resonant tunneling on electroluminescence in nc-Si/SiO2 multilayers-based p-i-n structure
International Nuclear Information System (INIS)
Chen, D.Y.; Wang, Y.Y.; Sun, Y.; He, Y.J.; Zhang, G.
2015-01-01
P-i-n structures with SiO 2 /nc-Si/SiO 2 multilayers as intrinsic layer were prepared in conventional plasma enhanced chemical vapor deposition system. Their carrier transport and electroluminescence properties were investigated. Two resonant tunneling related current peaks with current dropping gradually under forward bias were observed in the current voltage curve. Non-uniformity of the interfaces might be responsible for the gradual dropping of the current. Electroluminescence intensity of the device under bias of 7 V which is near the resonant tunneling peak voltage of 7.2 V was weaker than that under 6.5 V. According to the Gaussian fitting results of the spectra, the intensity of the sub-peak of 650 nm originating from recombination of injected electrons and holes was decreased the most. When resonant tunneling conditions are met, it might be that most of the injected electrons participate in resonant tunneling and fewer in Pool–Frenkel tunneling, which is the main carrier transport mechanism, to contribute to electroluminescence intensity. - Highlights: • Two resonant tunneling peaks with current dropping gradually were observed. • The EL intensity of the structure under resonant tunneling peak voltage is weakened. • P–F tunneling is the main transport mechanism besides resonant tunneling
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
International Nuclear Information System (INIS)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne
2016-01-01
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM
Energy Technology Data Exchange (ETDEWEB)
Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)
2016-07-15
We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation
Directory of Open Access Journals (Sweden)
N Hatefi Kargan
2013-09-01
Full Text Available In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.
Intrinsic current oscillations in an asymmetric triple-barrier resonant tunnelling diode
International Nuclear Information System (INIS)
Wójcik, P; Spisak, B J; Wołoszyn, M; Adamowski, J
2010-01-01
The electronic transport characteristics of an asymmetric triple-barrier resonant tunnelling diode are calculated by the time-dependent Wigner–Poisson method. The intrinsic current oscillations are found in two separate bias voltage ranges. The first one is located below the resonant current peak, and the second lies in the negative differential resistance region. We provide the explanation of the current density oscillations in these two separate bias voltage ranges based on the analysis of the self-consistent potential profiles and changes of electron density. We have shown that two different formation mechanisms are responsible for the current density oscillations in these two bias voltage ranges. In the bias voltage range below the resonant current peak in the current–voltage characteristics, the current density oscillations are caused by the coupling between quasi-bound states in the left and right quantum wells. On the other hand, the current density oscillations in the negative differential resistance region result from the coupling between quasi-bound states in the left quantum well and the quantum well formed in the region of the left contact
Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu
2017-11-01
In the present work the thermal degradation of IV curves of AlAs/GaAs resonant tunneling diodes using artificial aging method was investigated. The dependency of AuGeNi specific ohmic contact resistance on time and temperature was determined.
International Nuclear Information System (INIS)
Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G.
1995-01-01
We report the first observation of resonant tunneling through a CdTe/Cd 1-x Mg x Te double barrier, single quantum well heterostructure. Negative differential resistance is observable at temperatures below 230 K, exhibiting a peak to valley ratio of 3:1 at 4.2 K. (author)
Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction
Directory of Open Access Journals (Sweden)
Carla Aramo
2015-03-01
Full Text Available A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.
Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.
2017-10-01
We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.
Controlled modification of resonant tunneling in metal-insulator-insulator-metal structures
Mitrovic, I. Z.; Weerakkody, A. D.; Sedghi, N.; Ralph, J. F.; Hall, S.; Dhanak, V. R.; Luo, Z.; Beeby, S.
2018-01-01
We present comprehensive experimental and theoretical work on tunnel-barrier rectifiers comprising bilayer (Nb2O5/Al2O3) insulator configurations with similar (Nb/Nb) and dissimilar (Nb/Ag) metal electrodes. The electron affinity, valence band offset, and metal work function were ascertained by X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, and electrical measurements on fabricated reference structures. The experimental band line-up parameters were fed into a theoretical model to predict available bound states in the Nb2O5/Al2O3 quantum well and generate tunneling probability and transmittance curves under applied bias. The onset of strong resonance in the sub-V regime was found to be controlled by a work function difference of Nb/Ag electrodes in agreement with the experimental band alignment and theoretical model. A superior low-bias asymmetry of 35 at 0.1 V and a responsivity of 5 A/W at 0.25 V were observed for the Nb/4 nm Nb2O5/1 nm Al2O3/Ag structure, sufficient to achieve a rectification of over 90% of the input alternate current terahertz signal in a rectenna device.
Resonant tunneling via a Ru–dye complex using a nanoparticle bridge junction
Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya
2018-06-01
Nonlinear current–voltage (I–V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru–dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I–V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I–V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.
Mistakidis, Simeon; Koutentakis, Georgios; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The non-equilibrium dynamics of small boson ensembles in one-dimensional optical lattices is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.
1999-05-01
Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime and we show that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measure as a function of applied field H the statistical distribution P\\(ξH\\) of magnetic energy bias ξH acting on the molecules. Tunneling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P\\(ξH\\) (around the resonant condition ξH = 0). For small initial magnetization values, the hole width shows an intrinsic broadening which may be due to nuclear spins.
Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells
Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki
2018-03-01
Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.
Resonant tunnelling features in a suspended silicon nanowire single-hole transistor
Energy Technology Data Exchange (ETDEWEB)
Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)
2015-11-30
Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.
A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor
Directory of Open Access Journals (Sweden)
Mohammad Javad Sharifi
2009-01-01
Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.
International Nuclear Information System (INIS)
Perez-Alvarez, R.; Rodriguez-Coppola, H.; Lopez-Gondar, J.; Izquierdo, M.L.
1987-11-01
We develop the quasiclassical approximation for the effective Hamiltonians describing nonhomogeneous systems and we deduce the wave function, the applicability conditions and the connection rules around the turning points. Based on the transfer matrix (TM) formalism we obtain expressions for the transmission coefficient of multiple barriers, the energy levels of multiple wells and the quasistationary levels of a well open by one, and by the two sides. The dispersion relation of a periodic potential profile with variable mass problem is also given. We discuss resonant tunneling for a system of multiple barriers. The transmission coefficient of such a barrier is maximum at energies close to the levels of the inner well when the end barriers are high enough and symmetric. (author). 20 refs, 1 fig
Resonant tunnelling features in a suspended silicon nanowire single-hole transistor
International Nuclear Information System (INIS)
Llobet, Jordi; Pérez-Murano, Francesc; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K.; Arbiol, Jordi
2015-01-01
Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations
Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka
2016-06-01
We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.
Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure
Bescond, M.; Logoteta, D.; Michelini, F.; Cavassilas, N.; Yan, T.; Yangui, A.; Lannoo, M.; Hirakawa, K.
2018-02-01
We study by means of full quantum simulations the operating principle and performance of a semiconductor heterostructure refrigerator combining resonant tunneling filtering and thermionic emission. Our model takes into account the coupling between the electric and thermal currents by self-consistently solving the transport equations within the non-equilibrium Green’s function framework and the heat equation. We show that the device can achieve relatively high cooling power values, while in the considered implementation, the maximum lattice temperature drop is severely limited by the thermal conductivity of the constituting materials. In such an out-of-equilibrium structure, we then emphasize the significant deviation of the phonon temperature from its electronic counterpart which can vary over several hundred Kelvin. The interplay between those two temperatures and the impact on the electrochemical potential is also discussed. Finally, viable options toward an optimization of the device are proposed.
Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.; Hile, S. J.; Asshoff, P.; Simmons, M. Y.; Rogge, S. [Centre for Quantum Computation and Communication Technology, University of New South Wales, Sydney 2052 New South Wales (Australia); Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vinet, M. [Université Grenoble-Alpes and CEA, LETI, MINATEC, 38000 Grenoble (France)
2016-04-11
We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.
Resonant tunneling diodes based on ZnO for quantum cascade structures (Conference Presentation)
Hinkov, Borislav; Schwarz, Benedikt; Harrer, Andreas; Ristanic, Daniela; Schrenk, Werner; Hugues, Maxime; Chauveau, Jean-Michel; Strasser, Gottfried
2017-02-01
The terahertz (THz) spectral range (lambda 30µm - 300µm) is also known as the "THz-gap" because of the lack of compact semiconductor devices. Various real-world applications would strongly benefit from such sources like trace-gas spectroscopy or security-screening. A crucial step is the operation of THz-emitting lasers at room temperature. But this seems out of reach with current devices, of which GaAs-based quantum cascade lasers (QCLs) seem to be the most promising ones. They are limited by the parasitic, non-optical LO-phonon transitions (36meV in GaAs), being on the same order as the thermal energy at room temperature (kT = 26meV). This can be solved by using larger LO-phonon materials like ZnO (E_LO = 72meV). But to master the fabrication of ZnO-based QC structures, a high quality epitaxial growth is crucial followed by a well-controlled fabrication process including ZnO/ZnMgO etching. We use devices grown on m-plane ZnO-substrate by molecular beam epitaxy. They are patterned by reactive ion etching in a CH4-based chemistry (CH4:H2:Ar/30:3:3 sccm) into 50μm to 150μm square mesas. Resonant tunneling diode structures are investigated in this geometry and are presented including different barrier- and well-configurations. We extract contact resistances of 8e-5 Omega cm^2 for un-annealed Ti/Au contacts and an electron mobility of above 130cm^2/Vs, both in good agreement with literature. Proving that resonant electron tunneling can be achieved in ZnO is one of the crucial building blocks of a QCL. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 665107.
International Nuclear Information System (INIS)
Frank, A.I.; Bondarenko, I.V.; Balashov, S.N.; Geltenbort, P.; Hoghoj, P.; Kozlov, A.V.; Masalovich, S.V.; Toperverg, B.P.
2004-01-01
With the aim to test experimentally the dispersion law validity for very slow neutrons a spectrum of ultracold neutrons (UCN) under the condition of resonance tunneling through the moving Neutron Interference Filter was investigated. The neutron spectrum in this case has a narrow width resonance, whose parameters depend on the filter characteristics and dispersion law of neutron waves in matter. For a number of samples a noticeable shift of the resonance position when the filter moved parallel to its surface was detected. This shift is in strong contradiction with the commonly accepted dispersion law. Further investigations have shown that the spectrum of tunneling neutrons is not exactly defined by the solution of one-dimensional quantum problem, but substantially affected by neutron scattering from filter imperfections. The cross section of this scattering depends on the neutron wave number and increases dramatically in resonance conditions. Experimental results as well as comprehensive theoretical analysis have led us to the unambiguous conclusion that observed phenomena of the resonance shift in a moving sample are caused by scattering of neutron tunneling states rather than by a deviation from the commonly accepted dispersion law. (author)
Cheng, Jian-Yih; Fisher, Brandon L.; Guisinger, Nathan P.; Lilley, Carmen M.
2017-12-01
Providing a spin-free host material in the development of quantum information technology has made silicon a very interesting and desirable material for qubit design. Much of the work and experimental progress has focused on isolated phosphorous atoms. In this article, we report on the exploration of Ni-Si clusters that are atomically manufactured via self-assembly from the bottom-up and behave as isolated quantum dots. These small quantum dot structures are probed at the atomic-scale with scanning tunneling microscopy and spectroscopy, revealing robust resonance through discrete quantized energy levels within the Ni-Si clusters. The resonance energy is reproducible and the peak spacing of the quantum dot structures increases as the number of atoms in the cluster decrease. Probing these quantum dot structures on degenerately doped silicon results in the observation of negative differential resistance in both I-V and dI/dV spectra. At higher surface coverage of nickel, a well-known √19 surface modification is observed and is essentially a tightly packed array of the clusters. Spatial conductance maps reveal variations in the local density of states that suggest the clusters are influencing the electronic properties of their neighbors. All of these results are extremely encouraging towards the utilization of metal modified silicon surfaces to advance or complement existing quantum information technology.
International Nuclear Information System (INIS)
Shen Jianqi; Zeng Ruixi
2017-01-01
Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)
Resonant enhancement of band-to-band tunneling in in-plane MoS2/WS2 heterojunctions
Kuroda, Tatsuya; Mori, Nobuya
2018-04-01
The band-to-band (BTB) tunneling current J through in-plane MoS2/WS2 heterojunctions is calculated by the nonequilibrium Green function method combined with tight-binding approximation. Types A and B of band configurations are considered. For type-A (type-B) heterojunctions, a potential notch exists (or is absent) at the heterointerface. Both type-A and type-B MoS2/WS2 heterojunctions can support a higher BTB current than MoS2 and WS2 homojunctions. For type-A heterojunctions, the resonant enhancement of J occurs resulting in a significantly higher BTB tunneling current.
concentration on spin-dependent resonant tunnelling in InAs/Ga1 ...
Indian Academy of Sciences (India)
Cent percentage polarization can be obtained in this strained non-magnetic double-barrier ... Keywords. Spin–orbit interaction; barrier transparency; polarization efficiency; tunnelling lifetime. 1. Introduction ..... Figure 6. Tunnelling lifetime vs.
International Nuclear Information System (INIS)
Chowdhury, Subhra; Biswas, Dhrubes; Chattaraj, Swarnabha
2015-01-01
For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)
Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Li, Ming-Yang; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L.; Lan, Yann-Wen
2017-01-01
High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.
Resonant optical tunneling-induced enhancement of the photonic spin Hall effect
Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang
2018-04-01
Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.
A novel micro-accelerometer with adjustable sensitivity based on resonant tunnelling diodes
International Nuclear Information System (INIS)
Ji-Jun, Xiong; Wen-Dong, Zhang; Kai-Qun, Wang; Hai-Yang, Mao
2009-01-01
Resonant tunnelling diodes (RTDs) have negative differential resistance effect, and the current-voltage characteristics change as a function of external stress, which is regarded as meso-piezoresistance effect of RTDs. In this paper, a novel micro-accelerometer based on AlAs/GaAs/In 0.1 Ga 0.9 As/GaAs/AlAs RTDs is designed and fabricated to be a four-beam-mass structure, and an RTD-Wheatstone bridge measurement system is established to test the basic properties of this novel accelerometer. According to the experimental results, the sensitivity of the RTD based micro-accelerometer is adjustable within a range of 3 orders when the bias voltage of the sensor changes. The largest sensitivity of this RTD based micro-accelerometer is 560.2025 mV/g which is about 10 times larger than that of silicon based micro piezoresistive accelerometer, while the smallest one is 1.49135 mV/g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Lin, Che-Yu
2017-10-04
High-frequency operation with ultra-thin, lightweight and extremely flexible semiconducting electronics are highly desirable for the development of mobile devices, wearable electronic systems and defense technologies. In this work, the first experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density and flexible electronics.
Mid-infrared GaSb-based resonant tunneling diode photodetectors for gas sensing applications
Rothmayr, F.; Pfenning, A.; Kistner, C.; Koeth, J.; Knebl, G.; Schade, A.; Krueger, S.; Worschech, L.; Hartmann, F.; Höfling, S.
2018-04-01
We present resonant tunneling diode-photodetectors (RTD-PDs) with GaAs0.15Sb0.85/AlAs0.1Sb0.9 double barrier structures combined with an additional quaternary Ga0.64In0.36As0.33Sb0.67 absorption layer covering the fingerprint absorption lines of various gases in the mid-infrared wavelength spectral region. The absorption layer cut-off wavelength is determined to be 3.5 μm, and the RTD-PDs show peak-to-valley current ratios up to 4.3 with a peak current density of 12 A/cm-2. The incorporation of the quaternary absorption layer enables the RTD-PDs to be sensitive to illumination with light up to the absorption lines of HCl at 3395 nm. At this wavelength, the detector shows a responsivity of 6.3 mA/W. At the absorption lines of CO2 and CO at 2004 nm and 2330 nm, respectively, the RTD-PDs reach responsivities up to 0.97 A/W. Thus, RTD-PDs pave the way towards high sensitive mid-infrared detectors that can be utilized in tunable laser absorption spectroscopy.
Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells
International Nuclear Information System (INIS)
Takeda, Yasuhiko; Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi
2015-01-01
Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs
Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells
Energy Technology Data Exchange (ETDEWEB)
Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Sugimoto, Noriaki [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Ichiki, Akihisa [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, Yuya [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Toyota Motor Corp., 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)
2015-09-28
Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.
International Nuclear Information System (INIS)
Pedersen, N.F.; Soerensen, O.H.; Mygind, J.
1978-01-01
The microwave response at 9 GHz of Sn-O-Sn tunnel-junction current biased at zero dc voltage has been measured just below the critical temperature T/sub c/ of the Sn films. The temperature dependence of the cosphi conductance is determined from the resonant response at the junction plasma frequency f/sub p/ as the temperature is decreased from T/sub c/. We used three different schemes for observation of the plasma oscillations: (a) second-harmonic generation (excitation at approx. 4.5 GHz, f/sub p/ approx. 4.5 GHz); (b) mixing (excitations at approx. 9 and approx. 18 GHz, f/sub p/ approx. 9 GHz); (c) parametric half-harmonic oscillation (excitation at approx. 18 GHz, f/sub p/ approx. 9 GHz). Measurements were possible in two temperature intervals; 0.994 or = T/T/sub c/ > or = 0.930, with the result that as the temperature was decreased the cosphi amplitude first increased from about zero to positive values and then at lower temperatures decreased approaching -1 at the lowest temperatures of the experiment
Two-Element Tapered Slot Antenna Array for Terahertz Resonant Tunneling Diode Oscillators
Directory of Open Access Journals (Sweden)
Jianxiong Li
2014-01-01
Full Text Available Two-element tapered slot antenna (TSA array for terahertz (THz resonant tunneling diode (RTD oscillators is proposed in this paper. The proposed TSA array has the advantages of both the high directivity and high gain at the horizontal direction and hence can facilitate the horizontal communication between the RTD oscillators and other integrated circuit chips. A MIM (metal-insulator-metal stub with a T-shaped slot is used to reduce the mutual coupling between the TSA elements. The validity and feasibility of the proposed TSA array have been simulated and analyzed by the ANSYS/ANSOFT’s High Frequency Structure Simulator (HFSS. Detailed modeling approaches and theoretical analysis of the proposed TSA array have been fully addressed. The simulation results show that the mutual coupling between the TSA elements is reduced below −40 dB. Furthermore, at 500 GHz, the directivity, the gain, and the half power beam width (HPBW at the E-plane of the proposed TSA array are 12.18 dB, 13.09 dB, and 61°, respectively. The proposed analytical method and achieved performance are very promising for the antenna array integrated with the RTD oscillators at the THz frequency and could pave the way to the design of the THz antenna array for the RTD oscillators.
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Boyko, Y.; Geppert, C. C.; Christie, K. D.; Stecklein, G.; Crowell, P. A., E-mail: crowell@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Patel, S. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Palmstrøm, C. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)
2014-11-24
We observe a dc voltage peak at ferromagnetic resonance (FMR) in samples consisting of a single ferromagnetic (FM) layer grown epitaxially on the n-GaAs (001) surface. The FMR peak is detected as an interfacial voltage with a symmetric line shape and is present in samples based on various FM/n-GaAs heterostructures, including Co{sub 2}MnSi/n-GaAs, Co{sub 2}FeSi/n-GaAs, and Fe/n-GaAs. We show that the interface bias voltage dependence of the FMR signal is identical to that of the tunneling anisotropic magnetoresistance (TAMR) over most of the bias range. Furthermore, we show how the precessing magnetization yields a dc FMR signal through the TAMR effect and how the TAMR phenomenon can be used to predict the angular dependence of the FMR signal. This TAMR-induced FMR peak can be observed under conditions where no spin accumulation is present and no spin-polarized current flows in the semiconductor.
A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes
International Nuclear Information System (INIS)
Wang Hongmei; Xu Huaizhe; Zhang Yafei
2006-01-01
Resonant tunneling characteristics of triangular double-barrier diodes have been investigated systematically in this Letter, using Airy function approach to solve time-independent Schroedinger function in triangular double-barrier structures. Originally, the exact analytic expressions of quasi-bound levels and quasi-level lifetime in symmetrical triangular double-barrier structures have been derived within the effective-mass approximation as a function of structure parameters including well width, slope width and barrier height. Based on our derived analytic expressions, numerical results show that quasi-bound levels and quasi-level lifetime vary nearly linearly with the structure parameters except that the second quasi-level lifetime changes parabolically with slope width. Furthermore, according to our improved transmission coefficient of triangular double-barrier structures under external electric field, the current densities of triangular double-barrier diodes with different slope width at 0 K have been calculated numerically. The results show that the N-shaped negative differential resistance behaviors have been observed in current-voltage characteristics and current-voltage characteristics depend on the slope width
Lin, Che-Yu; Zhu, Xiaodan; Tsai, Shin-Hung; Tsai, Shiao-Po; Lei, Sidong; Shi, Yumeng; Li, Lain-Jong; Huang, Shyh-Jer; Wu, Wen-Fa; Yeh, Wen-Kuan; Su, Yan-Kuin; Wang, Kang L; Lan, Yann-Wen
2017-11-28
High-frequency operation with ultrathin, lightweight, and extremely flexible semiconducting electronics is highly desirable for the development of mobile devices, wearable electronic systems, and defense technologies. In this work, the experimental observation of quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe 2 -MoS 2 junctions as the conducting p-n channel is demonstrated. Both lateral n-p-n and p-n-p heterojunction bipolar transistors are fabricated to exhibit the output characteristics and current gain. A maximum common-emitter current gain of around 3 is obtained in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. A potential mechanism is that the negative differential resistance is induced by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages. Our results open the door to two-dimensional materials for high-frequency, high-speed, high-density, and flexible electronics.
A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode
Directory of Open Access Journals (Sweden)
DESSOUKI, A. A. S.
2014-11-01
Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.
International Nuclear Information System (INIS)
Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.
2013-01-01
The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.
International Nuclear Information System (INIS)
Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan
2012-01-01
We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications
International Nuclear Information System (INIS)
Ikeda, Jun
2003-01-01
The etiology of idiopathic carpal tunnel syndrome has not been clarified. A cross sectional area of carpal tunnel, flexor tendons, median nerve, and thickness of transverse carpal ligament were evaluated by MRI. Twenty-six patients who were electrophysiologically diagnosed with idiopathic carpal tunnel syndrome were tested by MRI. All patients were females; the mean age was sixty-four years old. The cross sectional area of carpal tunnel, the median nerve area, the area of the flexor tendons and its synovium in carpal tunnel, and thickness of the transverse carpal ligament were calculated. The following are of a seuere type carpal tunnel syndrome: Mean area of the flexor tendons and its synovium in carpal tunnel, 110.5±25.5 mm 2 (control group; 79.3±13.8 mm 2 ); ratio of flexor tendons and its synovium area to carpal tunnel area, 51.6±8.8% (control; 40.5±2.3%); and thickness of the transverse carpal ligament, 3.3±0.4 mm (control; 2.4±0.4 mm). These mean areas in severe carpal tunnel syndrome were significantly greater than those in mild type (p<0.05 or p<0.01). From the viewpoint of this result, it is possible that tenosynovitis is strongly to the etiology of idiopathic carpal tunnel syndrome. In other words, synovium edema causes chronic high pressure environment in carpal tunnel. Moreover, we classified these MRI findings into the following subgroups: enlargement of cross sectional area of flexor tendon and its synovia (n=8; 25.8%), thickened transverse carpal ligament (n=11; 35.5%), and combined type (n=7; 22.6%). This classification by MRI imaging was related to a clinical course and electro-physiologic severity. The present study suggests that to evaluate the cross sectional, area of an MRI image is useful for diagnosis and cure of idiopathic carpal tunnel syndrome. (author)
Energy Technology Data Exchange (ETDEWEB)
Grishakov, K. S., E-mail: ksgrishakov@yahoo.com; Elesin, V. F. [National Research Nuclear University “MEPhI” (Russian Federation)
2016-08-15
A numerical solution to the problem of transient processes in a resonant tunneling diode featuring a current–voltage characteristic with hysteresis is found for the first time in the context of a coherent model (based on the coupled Schrödinger and Poisson equations) taking into account the Fermi distribution of electrons. The transitions from the high-current to the low-current state and vice versa, which result from the existence of hysteresis and are of great practical importance for ultrafast switches based on resonant tunneling diodes, are studied in detail. It is shown that the transition times for such processes initiated by the application of a small voltage can significantly exceed the characteristic time ℏ/Γ (where G is the width of the resonance level). It is established for the first time that the transition time can be reduced and made as short as the characteristic time ℏ/Γ by applying a sufficiently high voltage. For the parameters of the resonant-tunnelingdiode structure considered in this study, the required voltage is about 0.01 V.
Karavosov, R. K.; Prozorov, A. G.
2012-01-01
We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.
Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.
2017-07-01
Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
International Nuclear Information System (INIS)
Klofai, Yerima; Essimbi, B Z; Jaeger, D
2011-01-01
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Energy Technology Data Exchange (ETDEWEB)
Girón-Sedas, J. A. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia); Centro de Investigación e Innovación en Bioinformática y Fotónica - CIBioFI, AA 25360 Cali (Colombia); Mejía-Salazar, J. R., E-mail: jrmejia3146@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Moncada-Villa, E.; Porras-Montenegro, N. [Departamento de Física, Universidad del Valle, AA 25360, Cali (Colombia)
2016-07-18
We propose a way to enhance the transverse magneto-optical Kerr effect, by the excitation of resonant tunneling modes, in subwavelength trilayer structures featuring a dielectric slab sandwiched between two magneto-optical metallic layers. Depending on the magneto-optical layer widths, the proposed system may exhibit an extraordinary transverse magneto-optical Kerr effect, which makes it very attractive for the design and engineering of thin-film magneto-optical-based devices for future photonic circuits or fiber optical-communication systems.
International Nuclear Information System (INIS)
Adrian, H.
1981-01-01
The influence of crystal defects on the phonon spectra was studied for fcc lead using superconducting tunneling spectroscopy. The theory predicts low frequency modes for the vibrational states of interstitials in (100) dumbbell configuration. Low temperature irradiation of superconducting point contacts with fast ions (point contact thickness small compared to the average ion range) showed radiation-induced structures in the low-energy part of the Eliashberg function for lead. These resonant modes are reduced by annealing at 18.5 K; they are attributed to small interstitial clusters. The radiation-induced structures are completely removed by room temperature annealing. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Nano-structured Fabry–Pérot resonators in neutron optics and tunneling of neutron wave-particles
International Nuclear Information System (INIS)
Maaza, M.; Hamidi, D.
2012-01-01
Correlated to the quantum mechanics wave-particle duality, the optical analogy between electromagnetic waves and cold neutrons manifests itself through several interference phenomena particularly the so called Frustrated Total Reflection i.e., the tunneling process in Fabry–Pérot nano-structured cavities. Prominent resonant situations offered by this configuration allow the attainment of numerous fundamental investigations and surface-interface studies as well as to devise new kinds of neutron optics devices. This review contribution reports such possibilities in addition to the recently observed peculiar Goos–Hänchen longitudinal shift of neutron wave-particles which was predicted by Sir Isaac Newton as early as 1730.
Directory of Open Access Journals (Sweden)
Jun He
2012-03-01
Full Text Available By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transport properties of C60 based electronic device with different intermolecular interactions. It is found that the electronic transport properties vary with the types of the interaction between two C60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.
Influence of InGaN sub-quantum-well on performance of InAlN/GaN/InAlN resonant tunneling diodes
Energy Technology Data Exchange (ETDEWEB)
Chen, Haoran; Yang, Lin' an, E-mail: layang@xidian.edu.cn; Hao, Yue [State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)
2014-08-21
The resonant tunneling mechanism of the GaN based resonant tunneling diode (RTD) with an InGaN sub-quantum-well has been investigated by means of numerical simulation. At resonant-state, Electrons in the InGaN/InAlN/GaN/InAlN RTD tunnel from the emitter region through the aligned discrete energy levels in the InGaN sub-quantum-well and GaN main-quantum-well into the collector region. The implantation of the InGaN sub-quantum-well alters the dominant transport mechanism, increase the transmission coefficient and give rise to the peak current and peak-to-valley current ratio. We also demonstrate that the most pronounced negative-differential-resistance characteristic can be achieved by choosing appropriately the In composition of In{sub x}Ga{sub 1−x}N at around x = 0.06.
Influence of InGaN sub-quantum-well on performance of InAlN/GaN/InAlN resonant tunneling diodes
International Nuclear Information System (INIS)
Chen, Haoran; Yang, Lin'an; Hao, Yue
2014-01-01
The resonant tunneling mechanism of the GaN based resonant tunneling diode (RTD) with an InGaN sub-quantum-well has been investigated by means of numerical simulation. At resonant-state, Electrons in the InGaN/InAlN/GaN/InAlN RTD tunnel from the emitter region through the aligned discrete energy levels in the InGaN sub-quantum-well and GaN main-quantum-well into the collector region. The implantation of the InGaN sub-quantum-well alters the dominant transport mechanism, increase the transmission coefficient and give rise to the peak current and peak-to-valley current ratio. We also demonstrate that the most pronounced negative-differential-resistance characteristic can be achieved by choosing appropriately the In composition of In x Ga 1−x N at around x = 0.06
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
Resonant coherent quantum tunneling of the magnetization of spin-½ systems : Spin-parity effects
García-Pablos, D.; García, N.; Raedt, H. De
1997-01-01
We perform quantum dynamical calculations to study the reversal of the magnetization for systems of a few spin-½ particles with a general biaxial anisotropy in the presence of an external magnetic field at T=0 and with no dissipation. Collective quantum tunneling of the magnetization is demonstrated
International Nuclear Information System (INIS)
Chen, D. Y.; Sun, Y.; He, Y. J.; Xu, L.; Xu, J.
2014-01-01
We have investigated carrier transport in SiO 2 /nc-Si/SiO 2 multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V 2 ) as a function of 1/V and ln(I) as a function of V 1/2 . Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages
Effects of polarization field on vertical transport in GaN/AlGaN resonant tunneling diodes
International Nuclear Information System (INIS)
Park, Seoung-Hwan; Shim, Jong-In
2012-01-01
Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.
Energy Technology Data Exchange (ETDEWEB)
Vexler, M. I., E-mail: vexler@mail.ioffe.ru; Illarionov, Yu. Yu.; Grekhov, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)
2017-04-15
The prerequisites for electron storage in the quantum well of a metal–oxide–p{sup +}-Si resonant-tunneling structure and the effect of the stored charge on the voltage distribution are theoretically investigated. Systems with SiO{sub 2}, HfO{sub 2}, and TiO{sub 2} insulators are studied. It is demonstrated that the occurrence of a charge in the well in the case of resonant transport can be expected in structures on substrates with an acceptor concentration from (5–6) × 10{sup 18} to (2–3) × 10{sup 19} cm{sup –3} in the range of oxide thicknesses dependent on this concentration. In particular, the oxide layer thickness in the structures with SiO{sub 2}/p{sup +}-Si(10{sup 19} cm{sup –3}) should exceed ~3 nm. The electron density in the well can reach ~10{sup 12} cm{sup –2} and higher. However, the effect of this charge on the electrostatics of the structure becomes noticeable only at relatively high voltages far above the activation of resonant transport through the first subband.
Energy Technology Data Exchange (ETDEWEB)
Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G. [Physikalishes Institut der Universitaet Wuerzburg am Hubland, Wuerzburg (Germany)
1995-12-31
We report the first observation of resonant tunneling through a CdTe/Cd{sub 1-x}Mg{sub x}Te double barrier, single quantum well heterostructure. Negative differential resistance is observable at temperatures below 230 K, exhibiting a peak to valley ratio of 3:1 at 4.2 K. (author). 16 refs, 2 figs.
Ogino, Kota; Suzuki, Safumi; Asada, Masahiro
2017-12-01
Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.
Energy Technology Data Exchange (ETDEWEB)
Boucherit, M.; Soltani, A.; Rousseau, M.; Deresmes, D.; Berthe, M.; Durand, C.; De Jaeger, J.-C. [IEMN/UMR-CNRS 8520, Universite Lille1, PRES Universite Lille Nord de France (France); Monroy, E. [Equipe mixte CEA-CNRS-UJF Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble (France)
2011-10-31
AlN/GaN double-barrier resonant tunnelling diodes were grown by molecular beam epitaxy on GaN/sapphire template and processed into mesa diameters from 2 {mu}m to 4 {mu}m. The current-voltage characteristics were carried out in direct current operation and under-high vacuum. A sharp negative differential resistance (NDR) was detected in the forward bias at 120 K. The NDR was observed for the mesa size of 2 {mu}m at 4 V with a peak-to-valley current ratio of 3.5. The measurement conditions were chosen to make NDR reproducible more than 50 times and apparent in both scan voltage directions after electrical treatment.
Directory of Open Access Journals (Sweden)
M. Asada
2017-11-01
Full Text Available The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.
Resonant Tunnelling in Barrier-in-Well and Well-in-Well Structures
International Nuclear Information System (INIS)
Jiang-Hong, Yao; Zhang-Yan; Wei-Wu, Li; Yong-Chun, Shu; Zhan-Guo, Wang; Jing-Jun, Xu; Guo-Zhi, Jia
2008-01-01
A Schrödinger equation is solved numerically for a barrier in a quantum well and a quantum well in another well structure by the transfer matrix technique. Effect of structure parameters on the transmission probabilities is investigated in detail. The results suggest that symmetry plays an important role in the coupling effect between the quantum wells. The relationship between the width of the inner well and the resonant energy levels in well-in-well structures is also studied. It is found that the ground state energy and the second resonant energy decrease with increasing width of the inner well, while the first resonant energy remains constant
Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water
Directory of Open Access Journals (Sweden)
ANDRÉ G. SIMÃO
2016-06-01
Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.
I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi
2018-07-04
We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.
International Nuclear Information System (INIS)
Dakhlaoui, H; Almansour, S
2016-01-01
In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga (1−x) N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current–voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga (1−x) N width, and the aluminum concentration x Al . The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current–voltage ( I – V) characteristic strongly depends on aluminum concentration x Al . It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. (paper)
International Nuclear Information System (INIS)
Jermakov, V.M.
1997-01-01
In the case of low transparency of barriers, tunneling of electrons through a double barrier system with account their Coulomb interaction in the inter barrier space (quantum well) is considered. The quantum state of the well is supposed to be triply degenerated. It was shown that the dependence of quantum well accupation on the applied bias has a step like character at low temperatures, and there is a threshold value in the region of small applied bias. These properties can be explained by splitting of states in the well due to the electron interaction. The considered system also has bistability properties. This is due to the possibility for electrons to occupy upper levels in the well while lower levels remain empty. Charge fluctuations in the well are also discussed
Josephson tunneling and nanosystems
Ovchinnikov, Yurii; Kresin, Vladimir
2010-01-01
Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.
Directory of Open Access Journals (Sweden)
Yaser Hajati
2016-02-01
Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.
Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo
2014-12-01
We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.
Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes
Energy Technology Data Exchange (ETDEWEB)
Yang, Lin' an, E-mail: layang@xidian.edu.cn; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue [State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)
2016-04-28
Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al{sub 0.15}Ga{sub 0.85}N emitter barrier and a 1.7-nm-thick Al{sub 0.25}Ga{sub 0.75}N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al{sub 0.2}Ga{sub 0.8}N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In{sub 0.03}Ga{sub 0.97}N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.
Tunneling of Atoms, Nuclei and Molecules
International Nuclear Information System (INIS)
Bertulani, C.A.
2015-01-01
This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation. (author)
Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S
2014-03-24
Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.
Shan, Lei; Gong, Jing; Wang, Yong-Lei; Shen, Bing; Hou, Xingyuan; Ren, Cong; Li, Chunhong; Yang, Huan; Wen, Hai-Hu; Li, Shiliang; Dai, Pengcheng
2012-06-01
We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.
Resonant tunnelling optoelectronic circuits
Figueiredo, J.M.L.; Patarata Romeira, B.M.; Slight, T.J.; Ironside, C.N.; Kim, Ki Young
2010-01-01
Nowadays, most communication networks such as local area networks (LANs), metropolitan area networks (MANs), and wide area networks (WANs) have replaced or are about to replace coaxial cable or twisted copper wire with fiber optical cables. Light-wave communication systems comprise a transmitter
Afzalian, Aryan; Colinge, Jean-Pierre; Flandre, Denis
2011-05-01
A new concept of nanoscale MOSFET, the Gate Modulated Resonant Tunneling Transistor (RT-FET), is presented and modeled using 3D Non-Equilibrium Green's Function simulations enlightening the main physical mechanisms. Owing to the additional tunnel barriers and the related longitudinal confinement present in the device, the density of state is reduced in its off-state, while remaining comparable in its on-state, to that of a MOS transistor without barriers. The RT-FET thus features both a lower RT-limited off-current and a faster increase of the current with V G, i.e. an improved slope characteristic, and hence an improved Ion/ Ioff ratio. Such improvement of the slope can happen in subthreshold regime, and therefore lead to subthreshold slope below the kT/q limit. In addition, faster increase of current and improved slope occur above threshold and lead to high thermionic on-current and significant Ion/ Ioff ratio improvement, even with threshold voltage below 0.2 V and supply voltage V dd of a few hundreds of mV as critically needed for future technology nodes. Finally RT-FETs are intrinsically immune to source-drain tunneling and are therefore promising candidate for extending the roadmap below 10 nm.
Czech Academy of Sciences Publication Activity Database
Sýkora, R.; Turek, Ilja
2012-01-01
Roč. 24, č. 36 (2012), 365801/1-365801/10 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 Keywords : tunnel junctions * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012
International Nuclear Information System (INIS)
Sakurai, Atsunori; Tanimura, Yoshitaka
2014-01-01
The quantum dissipative dynamics of a tunneling process through double barrier structures is investigated on the basis of non-perturbative and non-Markovian treatment. We employ a Caldeira–Leggett Hamiltonian with an effective potential calculated self-consistently, accounting for the electron distribution. With this Hamiltonian, we use the reduced hierarchy equations of motion in the Wigner space representation to study non-Markovian and non-perturbative thermal effects at finite temperature in a rigorous manner. We study current variation in time and the current–voltage (I–V ) relation of the resonant tunneling diode for several widths of the contact region, which consists of doped GaAs. Hysteresis and both single and double plateau-like behavior are observed in the negative differential resistance (NDR) region. While all of the current oscillations decay in time in the NDR region in the case of a strong system–bath coupling, there exist self-excited high-frequency current oscillations in some parts of the plateau in the NDR region in the case of weak coupling. We find that the effective potential in the oscillating case possesses a basin-like form on the emitter side (emitter basin) and that the current oscillation results from tunneling between the emitter basin and the quantum well in the barriers. We find two distinct types of current oscillations, with large and small oscillation amplitudes, respectively. These two types of oscillation appear differently in the Wigner space, with one exhibiting tornado-like motion and the other exhibiting a two piston engine-like motion. (paper)
Liu, Yang; Gao, Bo; Gong, Min; Shi, Ruiying
2017-06-01
The influence of a GaN layer as a sub-quantum well for an AlGaN/GaN/AlGaN double barrier resonant tunneling diode (RTD) on device performance has been investigated by means of numerical simulation. The introduction of the GaN layer as the sub-quantum well turns the dominant transport mechanism of RTD from the 3D-2D model to the 2D-2D model and increases the energy difference between tunneling energy levels. It can also lower the effective height of the emitter barrier. Consequently, the peak current and peak-to-valley current difference of RTD have been increased. The optimal GaN sub-quantum well parameters are found through analyzing the electrical performance, energy band, and transmission coefficient of RTD with different widths and depths of the GaN sub-quantum well. The most pronounced electrical parameters, a peak current density of 5800 KA/cm2, a peak-to-valley current difference of 1.466 A, and a peak-to-valley current ratio of 6.35, could be achieved by designing RTD with the active region structure of GaN/Al0.2Ga0.8 N/GaN/Al0.2Ga0.8 N (3 nm/1.5 nm/1.5 nm/1.5 nm).
Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M
2012-11-01
Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.
Galeti, H. V. A.; Galvão Gobato, Y.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.
2018-03-01
We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from - 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin-orbit effect.
International Nuclear Information System (INIS)
Feiginov, Michael; Kanaya, Hidetoshi; Suzuki, Safumi; Asada, Masahiro
2014-01-01
In search for possibilities to increase the operating frequencies of resonant-tunneling diodes (RTDs), we are studying RTDs working in an unusual regime. The collector side of our diodes is so heavily doped that the collector depletion region is fully eliminated in our RTDs and the ground quantum-well subband stays immersed under (or stays close to) the collector quasi-Fermi level. The electron injection from the collector into the RTD quantum well is very strong in our diodes and stays comparable to that from the emitter in the whole range of RTD operating biases. Our RTDs exhibit well pronounced negative-differential-conductance region and peak-to-valley current ratio around 1.8. We demonstrate operation of our diodes in RTD oscillators up to 1.46 THz. We also observe a fine structure in the emission spectra of our RTD oscillators, when they are working in the regime close to the onset of oscillations.
International Nuclear Information System (INIS)
Growden, Tyler A.; Fakhimi, Parastou; Berger, Paul R.; Storm, David F.; Meyer, David J.; Zhang, Weidong; Brown, Elliott R.
2016-01-01
AlN/GaN resonant tunneling diodes grown on low dislocation density semi-insulating bulk GaN substrates via plasma-assisted molecular-beam epitaxy are reported. The devices were fabricated using a six mask level, fully isolated process. Stable room temperature negative differential resistance (NDR) was observed across the entire sample. The NDR exhibited no hysteresis, background light sensitivity, or degradation of any kind after more than 1000 continuous up-and-down voltage sweeps. The sample exhibited a ∼90% yield of operational devices which routinely displayed an average peak current density of 2.7 kA/cm 2 and a peak-to-valley current ratio of ≈1.15 across different sizes.
Energy Technology Data Exchange (ETDEWEB)
Growden, Tyler A.; Fakhimi, Parastou; Berger, Paul R., E-mail: pberger@ieee.org [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Storm, David F.; Meyer, David J. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Zhang, Weidong; Brown, Elliott R. [Departments of Physics and Electrical Engineering, Wright State University, Dayton, Ohio 45435 (United States)
2016-08-22
AlN/GaN resonant tunneling diodes grown on low dislocation density semi-insulating bulk GaN substrates via plasma-assisted molecular-beam epitaxy are reported. The devices were fabricated using a six mask level, fully isolated process. Stable room temperature negative differential resistance (NDR) was observed across the entire sample. The NDR exhibited no hysteresis, background light sensitivity, or degradation of any kind after more than 1000 continuous up-and-down voltage sweeps. The sample exhibited a ∼90% yield of operational devices which routinely displayed an average peak current density of 2.7 kA/cm{sup 2} and a peak-to-valley current ratio of ≈1.15 across different sizes.
Energy Technology Data Exchange (ETDEWEB)
Drews, Bjoern Holger; Gulkin, Daniel; Guelke, Joachim; Gebhard, Florian [University of Ulm, Center of Surgery, Department for Orthopedic Trauma, Hand and Reconstructive Surgery, Ulm (Germany); Merz, Cornelia; Huth, Jochen; Mauch, Frieder [Sportklinik Stuttgart GmbH, Stuttgart (Germany)
2017-10-15
Revision ACL reconstruction is becoming more frequent because of a 10% rate of re-ruptures and insufficiencies. Currently, computed tomography (CT) represents the gold standard in detecting and measuring the tunnels of the initial ACL reconstruction. The purpose of this study was to compare measurement results of CT and thin-sliced MRI sequences, which were modified to a high soft tissue-bone contrast. Prior to an ACL revision surgery, 16 consecutive patients had an MRI in addition to the standard CT scan. A dedicated 0.25-T Esaote G-Scan (Esaote Biomedica, Cologne, Germany) with a Turbo 3D T1 sequence was used for MRI. Tunnel diameters were measured at 11 defined points of interest. For the statistical evaluation, the Mann-Whitney U test for connected samples was used. Inter- and intraobserver reliability was additionally calculated. All measured diameters showed significant to highly significant correlations between both diagnostic tools (r = 0.7-0.98). In addition, there was no significant difference (p > 0.5) between the two techniques. Almost all diameters showed nearly perfect intraobserver reliability (ICC 0.8-0.97). Interobserver reliability showed an ICC of 0.91/0.92 for only one diameter in MRI and CT. Prior to ACL revision surgery, bone tunnel measurements can be done using a 3D T1-MRI sequence in low-field MRI. MRI measurements show the same accuracy as CT scans. Preoperative radiation exposure in mainly young patients could be reduced. Also the costs of an additional CT scan could be saved. (orig.)
Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)
International Nuclear Information System (INIS)
Halbritter, J.
1997-01-01
Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging
DEFF Research Database (Denmark)
Kaplunenko, V. K.; Larsen, Britt Hvolbæk; Mygind, Jesper
1994-01-01
on experimental and numerical investigations of a resonant step observed at a voltage corresponding to 600 GHz in the dc current-voltage characteristic of a parallel array of 20 identical small NbAl2O3Nb Josephson junctions interconnected by short sections of superconducting microstrip line. The junctions...... are mutually phase locked due to collective interaction with the line sections excited close to the half wavelength resonance. The phase locking range can be adjusted by means of an external dc magnetic field and the step size varies periodically with the magnetic field. The largest step corresponds...
Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi
2018-05-01
We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.
DEFF Research Database (Denmark)
Petersen, Nils Holger
2014-01-01
A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....
International Nuclear Information System (INIS)
Li, Guanqiang; Chen, Guangde; Peng, Ping; Cao, Zhenzhou; Ye, Honggang
2013-01-01
We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices
Dorda, Antonius; Schürrer, Ferdinand
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.
Energy Technology Data Exchange (ETDEWEB)
Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)
1991-10-25
A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.
DEFF Research Database (Denmark)
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...
Rong, Taotao; Yang, Lin-An; Yang, Lin; Hao, Yue
2018-01-01
In this work, we report an investigation of resonant tunneling diodes (RTDs) with lattice-matched and polarization-matched AlInN/GaN heterostructures using the numerical simulation. Compared with the lattice-matched AlInN/GaN RTDs, the RTDs based on polarization-matched AlInN/GaN hetero-structures exhibit symmetrical conduction band profiles due to eliminating the polarization charge discontinuity, which achieve the equivalence of double barrier transmission coefficients, thereby the relatively high driving current, the high symmetry of current density, and the high peak-to-valley current ratio (PVCR) under the condition of the positive and the negative sweeping voltages. Simulations show that the peak current density approaches 1.2 × 107 A/cm2 at the bias voltage of 0.72 V and the PVCR approaches 1.37 at both sweeping voltages. It also shows that under the condition of the same shallow energy level, when the trap density reaches 1 × 1019 cm-3, the polarization-matched RTDs still have acceptable negative differential resistance (NDR) characteristics, while the NDR characteristics of lattice-matched RTDs become irregular. After introducing the deeper energy level of 1 eV into the polarization-matched and lattice-matched RTDs, 60 scans are performed under the same trap density. Simulation results show that the degradation of the polarization-matched RTDs is 22%, while lattice-matched RTDs have a degradation of 55%. It can be found that the polarization-matched RTDs have a greater defect tolerance than the lattice-matched RTDs, which is beneficial to the available manufacture of actual terahertz RTD devices.
Coulomb singularity effects in tunnelling spectroscopy of individual impurities
Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.
2002-01-01
Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics
Uncooled tunneling infrared sensor
Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)
1995-01-01
An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.
Energy Technology Data Exchange (ETDEWEB)
Stone, Taylor J. [Charlotte Radiology, Charlotte, NC (United States); Rosenberg, Zehava S.; Ciavarra, Gina; Bencardino, Jenny T. [New York Langone Medical Center / Hospital for Joint Diseases, New York, NY (United States); Velez, Zoraida Restrepo [Cedimed-Dinamica, Medellin (Colombia); Prost, Roberto [Marino Hospital ASL Cagliari, Cagliari (Italy)
2016-03-15
To evaluate the position of the peroneus longus (PL) tendon relative to the cuboid tuberosity and cuboid tunnel during ankle dorsiflexion and plantarflexion using ultrasound and MRI. The study population included two groups: 20 feet of 10 asymptomatic volunteers who underwent prospective dynamic ultrasound and 55 ankles found through retrospective review of routine ankle MRI examinations. The location of the PL tendon at the cuboid tuberosity and cuboid tunnel was designated as completely within the tunnel, indeterminate, or subluxed with respect to ankle dorsiflexion and plantarflexion. On dynamic ultrasound, the PL tendon was perched plantar to the cuboid tuberosity in dorsiflexion, and glided to enter the cuboid tunnel distal to the tuberosity in plantarflexion in all 20 feet. On the MRI evaluation, there was a statistically significant difference (p = 0.0006) in the location of the PL tendon between the ankles scanned in dorsiflexion and plantarflexion. Based on our findings on ultrasound and MRI, the PL tendon can glide in and out of the cuboid tunnel along the cuboid tuberosity depending on ankle position. Thus, ''subluxation'' of the tendon as it curves to enter the cuboid tunnel, which to the best of our knowledge has not yet been described, should be recognized as a normal, position-dependent phenomenon and not be reported as pathology. (orig.)
International Nuclear Information System (INIS)
Stone, Taylor J.; Rosenberg, Zehava S.; Ciavarra, Gina; Bencardino, Jenny T.; Velez, Zoraida Restrepo; Prost, Roberto
2016-01-01
To evaluate the position of the peroneus longus (PL) tendon relative to the cuboid tuberosity and cuboid tunnel during ankle dorsiflexion and plantarflexion using ultrasound and MRI. The study population included two groups: 20 feet of 10 asymptomatic volunteers who underwent prospective dynamic ultrasound and 55 ankles found through retrospective review of routine ankle MRI examinations. The location of the PL tendon at the cuboid tuberosity and cuboid tunnel was designated as completely within the tunnel, indeterminate, or subluxed with respect to ankle dorsiflexion and plantarflexion. On dynamic ultrasound, the PL tendon was perched plantar to the cuboid tuberosity in dorsiflexion, and glided to enter the cuboid tunnel distal to the tuberosity in plantarflexion in all 20 feet. On the MRI evaluation, there was a statistically significant difference (p = 0.0006) in the location of the PL tendon between the ankles scanned in dorsiflexion and plantarflexion. Based on our findings on ultrasound and MRI, the PL tendon can glide in and out of the cuboid tunnel along the cuboid tuberosity depending on ankle position. Thus, ''subluxation'' of the tendon as it curves to enter the cuboid tunnel, which to the best of our knowledge has not yet been described, should be recognized as a normal, position-dependent phenomenon and not be reported as pathology. (orig.)
Modeling of inter-ribbon tunneling in graphene
Van de Put, Maarten L.; Vandenberghe, William G.; Sorée, Bart; Magnus, Wim; Fischetti, Massimo
2015-01-01
The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.
Dielectric Sensors Based on Electromagnetic Energy Tunneling
Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar
2015-01-01
We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188
Dielectric Sensors Based on Electromagnetic Energy Tunneling
Directory of Open Access Journals (Sweden)
Omar Siddiqui
2015-03-01
Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.
Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions
International Nuclear Information System (INIS)
Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.
2015-01-01
The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown
Czech Academy of Sciences Publication Activity Database
Lindsay, S.; He, J.; Sankey, O.; Hapala, Prokop; Jelínek, Pavel; Zhang, P.; Chang, S.; Huang, S.
2010-01-01
Roč. 21, č. 26 (2010), 262001/1-262001/12 ISSN 0957-4484 R&D Projects: GA ČR GA202/09/0545 Institutional research plan: CEZ:AV0Z10100521 Keywords : STM * tunneling current * molecular electronics * DFT calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010
Enhanced tunneling through nonstationary barriers
International Nuclear Information System (INIS)
Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.
2007-01-01
Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented
International Nuclear Information System (INIS)
1998-11-01
This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.
... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...
Current noise in tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)
2017-06-15
We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Single-magnon tunneling through a ferromagnetic nanochain
International Nuclear Information System (INIS)
Petrov, E.G.; Ostrovsky, V.
2010-01-01
Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.
Tunneling technologies for the collider ring tunnels
International Nuclear Information System (INIS)
Frobenius, P.
1989-01-01
The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs
Unidirectional magnetoelectric-field multiresonant tunneling
International Nuclear Information System (INIS)
Kamenetskii, E O; Hollander, E; Joffe, R; Shavit, R
2015-01-01
Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM spectrum. The ME near-field excitations are quasimagnetostatic fields ∇-vector × H-vector =0 with non-zero helicity parameter: F=(1/(16π))Im{ E-vector ⋅( ∇-vector × E-vector ) ∗ }. Topological phase properties of ME fields are determined by edge chiral currents of MDM oscillations. We show that while for a given direction of a bias magnetic field (in other words, for a given direction of time), the ME field excitations are considered as ‘forward’ tunneling processes, in the opposite direction of a bias magnetic field (the opposite direction of time), there are ‘backward’ tunneling processes. Unidirectional ME field resonant tunneling is observed due to the distinguishable topology of the ‘forward’ and ‘backward’ ME field excitations. We establish a close connection between the Fano-resonance unidirectional tunneling and the topology of the ME fields in different microwave structures. (paper)
Scanning tunneling microscopy of hexagonal BN grown on graphite
International Nuclear Information System (INIS)
Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.
1991-01-01
The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution
Single-atom contacts with a scanning tunnelling microscope
International Nuclear Information System (INIS)
Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R
2009-01-01
The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.
International Nuclear Information System (INIS)
Cleland, A.N.
1991-04-01
Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement
International Nuclear Information System (INIS)
Mitsuoka, Shigenori; Tamura, Akira
2011-01-01
Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.
Quasi-bound states, resonance tunnelling, and tunnelling times ...
Indian Academy of Sciences (India)
analysis of bound states below the threshold energy E = 0 and continuum above the threshold .... p are time reversal states of each other. Similarly, the ... are occurring at above-barrier energies and we do not treat them as QB states. They can ...
Directory of Open Access Journals (Sweden)
Suomalainen P
2014-08-01
Full Text Available Piia Suomalainen,1 Tommi Kiekara,2 Anna-Stina Moisala,1 Antti Paakkala,2 Pekka Kannus,3 Timo Järvelä4 1Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, Tampere, 2Medical Imaging Centre, Tampere University Hospital, Tampere, 3Injury and Osteoporosis Research Center, UKK Institute, Tampere, 4Arthroscopic and Sports Medicine Center Omasairaala, Helsinki, Finland Purpose: The purpose of the study reported here was to find out if the clinical and magnetic resonance imaging (MRI findings of a reconstructed anterior cruciate ligament (ACL have an association. Our hypothesis, which was based on the different functions of the ACL bundles, was that the visibility of the anteromedial graft would have an impact on anteroposterior stability, and the visibility of the posterolateral graft on rotational stability of the knee. Methods: This study is a level II, prospective clinical and MRI study (NCT02000258. The study involved 75 patients. One experienced orthopedic surgeon performed all double-bundle ACL reconstructions. Two independent examiners made the clinical examinations at 2-year follow-up: clinical examination of the knee; KT-1000, International Knee Documentation Committee and Lysholm knee evaluation scores; and International Knee Documentation Committee functional score. The MRI evaluations were made by two musculoskeletal radiologists separately, and the means of these measurements were used. Results: We found that the location of the graft in the tibia had an impact on the MRI visibility of the graft at 2-year follow-up. There were significantly more partially or totally invisible grafts if the insertion of the graft was more anterior in the tibia. No association was found between the clinical results and the graft locations. Conclusion: Anterior graft location in the tibia can cause graft invisibility in the MRI 2 years after ACL reconstruction, but this
International Nuclear Information System (INIS)
Cleland, A.N.
1991-01-01
Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias
Phonon tunneling through a double barrier system
International Nuclear Information System (INIS)
Villegas, Diosdado; León-Pérez, Fernando de; Pérez-Álvarez, R.; Arriaga, J.
2015-01-01
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices
Phonon tunneling through a double barrier system
Energy Technology Data Exchange (ETDEWEB)
Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)
2015-04-15
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.
Franck-Condon fingerprinting of vibration-tunneling spectra.
Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin
2013-08-15
We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.
Henderson, J. J.; Koo, C.; Feng, P. L.; del Barco, E.; Hill, S.; Tupitsyn, I. S.; Stamp, P. C. E.; Hendrickson, D. N.
2009-01-01
We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet (SMM) in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at elevated temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three: this is dictated by the C3 symmetry of the molecule, which forbids pure tunneling from the lowest metastable state. Resonances...
Transonic Dynamics Tunnel (TDT)
Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...
Hypersonic Tunnel Facility (HTF)
Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...
Single-electron tunneling in double-barrier nanostructures
International Nuclear Information System (INIS)
Goldman, V.J.; Su, B.; Cunningham, J.E.
1992-01-01
In this paper, the authors review experimental study of charge transport in nanometer double-barrier resonant tunneling devices. Heterostructure material is asymmetric: one barrier is substantially less transparent than the other. Resonant tunneling through size-quantized well states and single-electron charging of the well are thus largely separated in the two bias polarities. When the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade leading to sharp steps of the tunneling current. When the emitter barrier is less transparent, the current reflects resonant tunneling of just one electron at a time through size-quantized well states; the current peaks and/or steps (depending on experimental parameters) appear in current-voltage characteristics. Magnetic field and temperature effects are also reviewed. Good agreement is achieved in comparison of many features of experimental data with simple theoretical models
Energy Technology Data Exchange (ETDEWEB)
Kondo, J.
1998-10-01
The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)
International Nuclear Information System (INIS)
Kondo, J.
1998-01-01
The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)
Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling
International Nuclear Information System (INIS)
Matsumoto, Sh.; Yoshimura, M.
2004-01-01
Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect is shown to enhance the tunneling rate at finite times of order 2/η, with η the friction coefficient unless η is too small. In the linear approximation this effect has relevance to the parametric resonance. This effect enhances the possibility of early termination of the cosmological phase transition much prior to the typical Hubble time
International Nuclear Information System (INIS)
Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.
2004-01-01
We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes
Charge Islands Through Tunneling
Robinson, Daryl C.
2002-01-01
It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.
International Nuclear Information System (INIS)
Olkhovsky, V.S.; Recami, E.
1991-08-01
In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig
Microsystem Aeromechanics Wind Tunnel
Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...
Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.
2018-01-01
Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.
Highly functional tunnelling devices integrated in 3D
DEFF Research Database (Denmark)
Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter
2003-01-01
a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...
New Knowledge of tunneling from photonic experiments
International Nuclear Information System (INIS)
Nimtz, G.
1997-01-01
Photonic experiments have shown, that the propagation of evanescent (tunneling) modes can proceed at speeds faster than the velocity of light in vacuum (superluminal). The superluminal velocities include signal and energy propagation. The analogy between the classical Helmholtz equation and the quantum mechanical Schroedinger equation was quantitatively proved in classical photonic experiments. The Hartman effect, i.e. the prediction that the tunneling time is independent of the barrier length was for the first time evidenced in a photonic analogous tunneling experiment by Enders and Nimtz. It is also shown, that the resonant state life time is not determined by the barrier traversal time. For electronic tunneling devices it follows, that the quantum mechanical phase time calculations indeed deliver the relevant intrinsic tunneling time and consequently allow to predict the dynamical specification of a device. The present theoretical descriptions of the propagation of evanescent modes is not fully compatible with the experimental situation. Superluminal signal and energy transport has been measured, and this has to be properly analyzed. May the advanced field solutions help to obtain a satisfactory theoretical description of the recent experimental results of the propagation of evanescent modes? (author)
Ferroelectric tunnel junctions with multi-quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liang, Kun; Qi, Yajun; Wang, Duofa; Wang, Jinzhao; Jiang, Juan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China)
2014-06-02
Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.
Fluctuations of tunneling currents in photonic and polaritonic systems
Mantsevich, V. N.; Glazov, M. M.
2018-04-01
Here we develop the nonequilibrium Green's function formalism to analyze the fluctuation spectra of the boson tunneling currents. The approach allows us to calculate the noise spectra in both equilibrium and nonequilibrium conditions. The proposed general formalism is applied to several important realizations of boson transport, including the tunneling transport between two reservoirs and the case where the boson current flows through the intermediate region between the reservoirs. Developed theory can be applied for the analysis of the current noise in waveguides, coupled optical resonators, quantum microcavities, etc., where the tunneling of photons, exciton-polaritons, or excitons can be realized.
Dynamical tunneling in systems with a mixed phase space
International Nuclear Information System (INIS)
Loeck, Steffen
2010-01-01
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)
Dynamical tunneling in systems with a mixed phase space
Energy Technology Data Exchange (ETDEWEB)
Loeck, Steffen
2010-04-22
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)
International Nuclear Information System (INIS)
Binnig, G.; Rohrer, H.
1983-01-01
Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)
Electron tunneling in chemistry
International Nuclear Information System (INIS)
Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.
1985-01-01
Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis
Ingason, Haukur; Lönnermark, Anders
2015-01-01
This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.
The two Josephson junction flux qubit with large tunneling amplitude
International Nuclear Information System (INIS)
Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.
2008-01-01
In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution
On the tunneling time of ultracold atoms through a system of two mazer cavities.
Badshah, Fazal; Ge, Guo-Qin; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid
2018-01-30
We study the resonant tunneling of ultraslow atoms through a system of high quality microwave cavities. We find that the phase tunneling time across the two coupled cavities exhibits more frequent resonances as compared to the single cavity interaction. The increased resonances are instrumental in the display of an alternate sub and superclassical character of the tunneling time along the momentum axis with increasing energies of the incident slow atoms. Here, the intercavity separation appears as an additional controlling parameter of the system that provides an efficient control of the superclassical behavior of the phase tunneling time. Further, we find that the phase time characteristics through two cavity system has the combined features of the tunneling through a double barrier and a double well arrangements.
Ultrafast scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)
1995-09-01
I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.
Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions
International Nuclear Information System (INIS)
Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy
2011-01-01
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.
Tunneling current between graphene layers
Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.
2013-01-01
The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.
Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis
Energy Technology Data Exchange (ETDEWEB)
Ghazikhanian, Varand [Brigham and Women' s Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Beltran, Javier [Maimonides Medical Center, Brooklyn, NY (United States); Nikac, Violeta [Maimonides Medical Center, Department of Radiology, Brooklyn, NY (United States); Bencardino, Jenny T. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, Marina
2012-11-15
Tunnel cyst formation is a rare complication after anterior cruciate ligament reconstruction, usually occurring 1-5 years post-operatively, which may occasionally be symptomatic. There are multiple proposed theories regarding the etiology of tunnel cysts. Theories include necrosis, foreign-body reaction, lack of complete graft osteo-integration, and intravasation of articular fluid. It is important to know if the tunnel cysts are communicating or not communicating with the joint, as surgical management may be different. Imaging characteristics on magnetic resonance images (MRI) include tibial tunnel widening, multilocular or unilocular cyst formation in the graft or tibial tunnel, with possible extension into the pretibial space, intercondylar notch, and/or popliteal fossa. The MR imaging differential diagnosis of tibial tunnel cysts includes infection, foreign-body granuloma, or tibial screw extrusion. Importantly, to the best of our knowledge, graft failure or instability has not been reported in association with tibial tunnel cysts. (orig.)
Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K
2010-10-15
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.
Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.
Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph
2014-06-13
Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.
Search for Spin Filtering By Electron Tunneling Through Ferromagnetic EuS Barriers in Pbs
Figielski, T.; Morawski, A.; Wosinski, T.; Wrotek, S.; Makosa, A.; Lusakowska, E.; Story, T.; Sipatov, A. Yu.; Szczerbakow, A.; Grasza, K.;
2002-01-01
Perpendicular transport through single- and double-barrier heterostructures consisting of ferromagnetic EuS layers embedded into PbS matrix was investigated. Manifestations of both resonant tunneling and spin filtering through EuS barrier have been observed.
Quantum tunneling with friction
Tokieda, M.; Hagino, K.
2017-05-01
Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.
Wind Tunnel Testing Facilities
Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...
Directory of Open Access Journals (Sweden)
Florin MUNTEANU
2009-09-01
Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.
1993-10-01
DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP
Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...
Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...
The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys
Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.
2010-01-01
The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.
Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes
International Nuclear Information System (INIS)
Tabe, Michiharu; Tan, Hoang Nhat; Mizuno, Takeshi; Muruganathan, Manoharan; Anh, Le The; Mizuta, Hiroshi; Nuryadi, Ratno; Moraru, Daniel
2016-01-01
We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of a donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.
International Nuclear Information System (INIS)
Jarvis, P.D.; Bulte, D.P.
1998-01-01
A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia
Tunneling processes into localized subgap states in superconductors
Energy Technology Data Exchange (ETDEWEB)
Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)
2016-07-01
The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.
The dynamical conductance of graphene tunnelling structures
International Nuclear Information System (INIS)
Zhang Huan; Chan, K S; Lin Zijing
2011-01-01
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
The dynamical conductance of graphene tunnelling structures.
Zhang, Huan; Chan, K S; Lin, Zijing
2011-12-16
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Inter-ribbon tunneling in graphene: An atomistic Bardeen approach
Energy Technology Data Exchange (ETDEWEB)
Van de Put, Maarten L., E-mail: maarten.vandeput@uantwerpen.be; Magnus, Wim [Department of Physics, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); imec, B-3001 Heverlee (Belgium); Vandenberghe, William G.; Fischetti, Massimo V. [Department of Material Science, University of Texas at Dallas, Texas 75080 (United States); Sorée, Bart [Department of Physics, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); imec, B-3001 Heverlee (Belgium); Department of Electrical Engineering, KU Leuven, B-3001 Leuven (Belgium)
2016-06-07
A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states.
Spin-dependent tunneling transport in a lateral magnetic diode
International Nuclear Information System (INIS)
Wang, Yu; Shi, Ying
2012-01-01
Based on the gate-tunable two-dimensional electron gas, we have constructed laterally a double-barrier resonant tunneling structure by employing a peculiar triple-gate configuration, namely a ferromagnetic gate sandwiched closely by a pair of Schottky gates. Because of the in-plane stray field of ferromagnetic gate, the resulting bound spin state in well gives rise to the remarkable resonant spin polarization following the spin-dependent resonant tunneling regime. Importantly, by aligning the bound spin state through surface gate-voltage configuration, this resonant spin polarization can be externally manipulated, showing the desirable features for the spin-logic device applications. -- Highlights: ► A lateral spin-RTD was proposed by applying triple-gate modulated 2DEG. ► Spin-dependent resonant tunneling transport and large resonant spin polarization has been clarified from the systematic simulation. ► Both electric and/or magnetic strategies can be employed to modulate the system spin transport, providing the essential features for the spin-logic application.
Tunneling of heat: Beyond linear response regime
Walczak, Kamil; Saroka, David
2018-02-01
We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.
Delay time and tunneling transient phenomena
International Nuclear Information System (INIS)
Garcia-Calderon, Gaston; Villavicencio, Jorge
2002-01-01
Analytic solutions to the time-dependent Schroedinger equation for cutoff wave initial conditions are used to investigate the time evolution of the transmitted probability density for tunneling. For a broad range of values of the potential barrier opacity α, we find that the probability density exhibits two evolving structures. One refers to the propagation of a forerunner related to a time domain resonance [Phys. Rev. A 64, 0121907 (2001)], while the other consists of a semiclassical propagating wave front. We find a regime where the forerunners are absent, corresponding to positive time delays, and show that this regime is characterized by opacities α c . The critical opacity α c is derived from the analytical expression for the delay time, which reflects a link between transient effects in tunneling and the delay time
Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.
Hong, Jongbae
2011-07-13
We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.
Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model
International Nuclear Information System (INIS)
Hong, Jongbae
2011-01-01
We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.
International Nuclear Information System (INIS)
Ruggiero, Steven T.
2005-01-01
Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li_{3}N.
Fix, M; Atkinson, J H; Canfield, P C; Del Barco, E; Jesche, A
2018-04-06
The magnetic properties of dilute Li_{2}(Li_{1-x}Fe_{x})N with x∼0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li_{2}(Li_{1-x}Fe_{x})N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li3 N
Fix, M.; Atkinson, J. H.; Canfield, P. C.; del Barco, E.; Jesche, A.
2018-04-01
The magnetic properties of dilute Li2 (Li1 -xFex )N with x ˜0.001 are dominated by the spin of single, isolated Fe atoms. Below T =10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li2 (Li1 -xFex )N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels
Font Capó, Jordi
2012-01-01
A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...
International Nuclear Information System (INIS)
Weidner, H.
1990-01-01
The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel
Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.
Derosa, Pedro A; Michalak, Tyler
2014-05-01
Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.
Instabilities in thin tunnel junctions
International Nuclear Information System (INIS)
Konkin, M.K.; Adler, J.G.
1978-01-01
Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness
Energy Technology Data Exchange (ETDEWEB)
Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin,Madison, WI 53706 (United States)
2016-10-06
The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.
1985-01-01
A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.
Laurent Guiraud
2000-01-01
The transfer tunnel being dug here will take the 450 GeV beam from the SPS and inject it into the LHC where the beam energies will be increased to 7 TeV. In order to transfer this beam from the SPS to the LHC, two transfer tunnels are used to circulate the beams in opposite directions. When excavated, the accelerator components, including magnets, beam pipes and cryogenics will be installed and connected to both the SPS and LHC ready for operation to begin in 2008.
Gap anisotropy and tunneling currents. [MPS3
DEFF Research Database (Denmark)
Lazarides, N.; Sørensen, Mads Peter
1996-01-01
The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...
Breaking through the tranfer tunnel
Laurent Guiraud
2001-01-01
This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.
Control of tunneling in heterostructures
International Nuclear Information System (INIS)
Volokhov, V M; Tovstun, C A; Ivlev, B
2007-01-01
A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures
International Nuclear Information System (INIS)
Kar, Susmita; Bhattacharyya, S.P.
2011-01-01
Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.
Ivar Giaever, Tunneling, and Superconductors
dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10
Scanning tunneling microscope nanoetching method
Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.
1990-01-01
A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.
Resonance-assisted decay of nondispersive wave packets
Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.
2006-01-01
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel
2017-06-14
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.
Tunneling path toward spintronics
International Nuclear Information System (INIS)
Miao Guoxing; Moodera, Jagadeesh S; Muenzenberg, Markus
2011-01-01
The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.
Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.
1996-01-01
We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
Tunnel nitrogen spill experiment
International Nuclear Information System (INIS)
Ageyev, A.I.; Alferov, V.N.; Mulholland, G.T.
1983-01-01
The Energy Saver Safety Analysis Report (SAR) found the tunnel oxygen deficiency considerations emphasized helium spills. These reports concluded the helium quickly warms and because of its low denisty, rises to the apex of the tunnel. The oxygen content below the apex and in all but the immediate vicinity of the helium spill is essentially unchanged and guarantees an undisturbed source of oxygen especially important to fallen personnel. In contrast nitrogen spills warm slower than helium due to the ratio of the enthalpy changes per unit volume spilled spread more uniformly across the tunnel cross-section when warmed because of the much smaller density difference with air, and generally provides a greater hazard than helium spills as a result. In particular there was concern that personnel that might fall to the floor for oxygen deficiency or other reasons might find less, and not more, oxygen with dire consequences. The SAR concluded tunnel nitrogen spills were under-investigated and led to this work
The scanning tunneling microscope
International Nuclear Information System (INIS)
Salvan, F.
1986-01-01
A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr
Supramolecular tunneling junctions
Wimbush, K.S.
2012-01-01
In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed
The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction
Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng
2018-05-01
Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.
Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.
1999-01-01
Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be
Excitation of propagating surface plasmons with a scanning tunnelling microscope.
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G
2011-04-29
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Tunnelling through two successive barriers and the Hartman (superluminal) effect
International Nuclear Information System (INIS)
Olkhovsky, V.; Recami, E.; Salesi, G.; Bergamo Univ., Bergamo
2000-03-01
The paper studies the phenomenon of one-dimensional non-resonant tunnelling through two successive potential barriers, separated by an intermediate free region R, by analyzing the relevant solutions to the Schroedinger equation. The total traversal time does not depend not only on the barrier widths (the so called Hartman effect), but also on the R width: so the effective velocity in the region R, between the two barriers, can be regarded as infinite. This agrees with the results known from the corresponding waveguide experiments, which simulated the tunnelling experiment herein considered due to the formal identity between the Schroedinger and the Helmholtz equation
Inelastic electron tunneling spectroscopy of a single nuclear spin.
Delgado, F; Fernández-Rossier, J
2011-08-12
Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.
Measuring fire size in tunnels
International Nuclear Information System (INIS)
Guo, Xiaoping; Zhang, Qihui
2013-01-01
A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires
Coherence in Magnetic Quantum Tunneling
Fernandez, Julio F.
2001-03-01
Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.
International Nuclear Information System (INIS)
Blicharski, J.S.; Lalowicz, Z.T.; Sobol, W.
1978-01-01
This work presents results of the calculations of shape of deuteron nuclear magnetic resonance for ND + 4 ion. Tunneling effect and quadrupole interaction influence considerably the line shape. (S.B.)
Mechanics of inter-modal tunneling in nonlinear waveguides
Jiao, Weijian; Gonella, Stefano
2018-02-01
In this article, we investigate the mechanics of nonlinearly induced inter-modal energy tunneling between flexurally-dominated and axially-dominated modes in phononic waveguides. Special attention is devoted to elucidating the role played by the coupling between axial and flexural degrees of freedom in the determination of the available mode hopping conditions and the associated mechanisms of deformation. Waveguides offer an ideal test bed to investigate the mechanics of nonlinear energy tunneling, due to the fact that they naturally feature, even at low frequencies, families of modes (flexural and axial) that are intrinsically characterized by extreme complementarity. Moreover, thanks to their geometric simplicity, their behavior can be explained by resorting to intuitive structural mechanics models that effectively capture the dichotomy and interplay between flexural and axial mechanisms. After having delineated the fundamental mechanics of flexural-to-axial hopping using the benchmark example of a homogeneous structure, we adapt the analysis to the case of periodic waveguides, in which the complex dispersive behavior due to periodicity results in additional richness of mode hopping mechanisms. We finally extend the analysis to periodic waveguides with internal resonators, in which the availability of locally-resonant bandgaps implies the possibility to activate the resonators even at relatively low frequencies, thus increasing the degree of modal complementarity that is available in the acoustic range. In this context, inter-modal tunneling provides an unprecedented mechanism to transfer conspicuous packets of energy to the resonating microstructure.
Tunnel boring machine applications
International Nuclear Information System (INIS)
Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.
1992-01-01
This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM
Programmable ferroelectric tunnel memristor
Directory of Open Access Journals (Sweden)
Andy eQuindeau
2014-02-01
Full Text Available We report an analogously programmable memristor based on genuine electronic resistive switching combining ferroelectric switching and electron tunneling. The tunnel current through an 8 unit cell thick epitaxial Pb(Zr[0.2]Ti[0.8]O[3] film sandwiched between La[0.7]Sr[0.3]MnO[3] and cobalt electrodes obeys the Kolmogorov-Avrami-Ishibashi model for bidimensional growth with a characteristic switching time in the order of 10^-7 seconds. The analytical description of switching kinetics allows us to develop a characteristic transfer function that has only one parameter viz. the characteristic switching time and fully predicts the resistive states of this type of memristor.
Hawking Radiation As Tunneling
International Nuclear Information System (INIS)
Parikh, Maulik K.; Wilczek, Frank
2000-01-01
We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles in a dynamical geometry. The imaginary part of the action for the classically forbidden process is related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of spontaneous emission of charged particles from a charged conductor
Tunnel blasting - recent developments
Energy Technology Data Exchange (ETDEWEB)
White, T.E.
1999-05-01
While tunnelling machines are more efficient than previously, there are still areas where blasting is a more efficient method of advance. Drilling and design methods are increasingly sophisticated, as is choice of explosive. Explosive deployment must be carefully calculated so as to avoid desensitisation. Nitroglycerine may be used as slurries; bulk mixing on site of ANFO is also practised in mining in the UK. Electric detonators, Nonel tubes, and electronic detonators are also increasingly employed.
Patrice Loïez
2002-01-01
In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.
Primary Tunnel Junction Thermometry
International Nuclear Information System (INIS)
Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias
2008-01-01
We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future
Hydrodynamic optical soliton tunneling
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Submucosal tunneling techniques: current perspectives.
Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu
2014-01-01
Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.
International Nuclear Information System (INIS)
Duan Zhenglu; Fan Bixuan; Yuan Chunhua; Zhang Weiping; Cheng Jing; Zhu Shiyao
2010-01-01
We theoretically study the effect of atomic nonlinearity on the tunneling time in the case of an atomic Bose-Einstein condensate (BEC) traversing the laser-induced potential barrier. The atomic nonlinearity is controlled to appear only in the region of the barrier by employing the Feshbach resonance technique to tune interatomic interaction in the tunneling process. Numerical simulation shows that the atomic nonlinear effect dramatically changes the tunneling behavior of the BEC matter wave packet and results in the violation of the Hartman effect and the occurrence of negative tunneling time.
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Henderson, J J; Koo, C; Feng, P L; del Barco, E; Hill, S; Tupitsyn, I S; Stamp, P C E; Hendrickson, D N
2009-07-03
We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.
All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions
Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu
2011-04-01
A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.
Resonance sensitivity of hydropower and pumping stations
Energy Technology Data Exchange (ETDEWEB)
Popescu, M.; Halanay, A.
1984-09-01
Comparative analysis of resonance diagrams for several hydropower and pumping stations with surge tanks and air chambers shows large differences in the maximum resonance pressures. A strategy is advocated which consists of hydraulic resonance computations coupled with practical surveillance measures during the operation of resonance sensitive hydraulic systems. A fundamental hydraulic scheme is considered consisting of a reservoir, a pressure tunnel, a surge tank, a penstock and a turbine combined into a hydropower station. It is suggested that for each hydraulic surge system it is necessary to carry out special resonance analyses following the normal procedure to obtain the resonance sensitivity. For hydraulic systems which are resonance sensitive, mechanical electronic equipment should be used to measure non-stationary pressures of the water in the conduit as a way of continuous surveillance during functioning. 6 references, 6 figures.
Engineers win award for Swiss tunnel
2003-01-01
A Derby engineering consultancy has won the Tunnelling Industry Award 2003 for Excellence in Tunnel Design, offered by the British Tunnelling Society, for its work on the LHC in Geneva, Switzerland (1/2 page).
Tunneling Time and Weak Measurement in Strong Field Ionization.
Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S
2016-06-10
Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.
Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy
Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf
1995-01-01
By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.
Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers
Energy Technology Data Exchange (ETDEWEB)
Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)
2016-03-07
We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.
Tunnelling of plane waves through a square barrier
Energy Technology Data Exchange (ETDEWEB)
Julve, J [IMAFF, Consejo Superior de Investigaciones CientIficas, Serrano 113 bis, Madrid 28006 (Spain); UrrIes, F J de [Departamento de Fisica, Universidad de Alcala de Henares, Alcala de Henares, Madrid (Spain)], E-mail: julve@imaff.cfmac.csic.es, E-mail: fernando.urries@uah.es
2008-08-01
The time evolution of plane waves in the presence of a one-dimensional square quantum barrier is considered. Comparison is made between the cases of an infinite and a cut-off (shutter) initial plane wave. The difference is relevant when the results are applied to the analysis of the tunnelling regime. This work is focused on the analytical calculation of the time-evolved solution and highlights the contribution of the resonant (Gamow) states.
Two-body tunnel transitions in a Mn 4 single-molecule magnet
Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.
2004-05-01
The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross-relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn 4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps.
Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode
Energy Technology Data Exchange (ETDEWEB)
Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)
2015-04-15
Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.
Isotopic effect on the quantum tunneling of the magnetization of molecular nanomagnets
International Nuclear Information System (INIS)
Sessoli, Roberta; Caneschi, Andrea; Gatteschi, Dante; Sorace, Lorenzo; Cornia, Andrea; Wernsdorfer, Wolfgang
2001-01-01
The molecular cluster [Fe 8 (tacn) 6 O 2 (OH) 12 ]Br 8 ·9H 2 O, Fe 8 , characterized by S=10, with biaxial magnetic anisotropy is an ideal system to investigate quantum effects in the dynamics of the magnetization. Resonant quantum tunneling gives rise to stepped hysteresis cycles and below 0.35 K pure quantum tunneling of the magnetization has been observed. The role of hyperfine fields in promoting the tunneling as a source of dynamic broadening of the states involved in the tunnel transition is investigated by preparing and characterizing two isotopically enriched samples using 57 Fe and 2 H. The relaxation rate in the tunneling regime is proportional to the hyperfine field generated by the nuclei. Also, the intrinsic linewidth of the tunneling resonance scales with the hyperfine field as confirmed by calculations of the super (or transfer) and direct hyperfine interactions. Preliminary results on a novel cluster of formula [Fe 4 (OCH 3 ) 6 (dpm) 6 ], Fe 4 , suited for a more dramatic isotope effect on the tunneling rate are also reported
Isotopic effect on the quantum tunneling of the magnetization of molecular nanomagnets
Energy Technology Data Exchange (ETDEWEB)
Sessoli, Roberta E-mail: sessoli@chim1.unifi.it; Caneschi, Andrea; Gatteschi, Dante; Sorace, Lorenzo; Cornia, Andrea; Wernsdorfer, Wolfgang
2001-05-01
The molecular cluster [Fe{sub 8}(tacn){sub 6}O{sub 2}(OH){sub 12}]Br{sub 8}{center_dot}9H{sub 2}O, Fe{sub 8}, characterized by S=10, with biaxial magnetic anisotropy is an ideal system to investigate quantum effects in the dynamics of the magnetization. Resonant quantum tunneling gives rise to stepped hysteresis cycles and below 0.35 K pure quantum tunneling of the magnetization has been observed. The role of hyperfine fields in promoting the tunneling as a source of dynamic broadening of the states involved in the tunnel transition is investigated by preparing and characterizing two isotopically enriched samples using {sup 57}Fe and {sup 2}H. The relaxation rate in the tunneling regime is proportional to the hyperfine field generated by the nuclei. Also, the intrinsic linewidth of the tunneling resonance scales with the hyperfine field as confirmed by calculations of the super (or transfer) and direct hyperfine interactions. Preliminary results on a novel cluster of formula [Fe{sub 4}(OCH{sub 3}){sub 6}(dpm){sub 6}], Fe{sub 4}, suited for a more dramatic isotope effect on the tunneling rate are also reported.
Shape resonances in molecular fields
International Nuclear Information System (INIS)
Dehmer, J.L.
1984-01-01
A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
Yang, Baishun; Tao, Lingling; Jiang, Leina; Chen, Weizhao; Tang, Ping; Yan, Yu; Han, Xiufeng
2018-05-01
We report a first-principles study of electronic structures, magnetic properties, and the tunneling-magnetoresistance (TMR) effect of a series of ferromagnetic nitride M4N (M =Fe , Co, Ni)-based magnetic tunnel junctions (MTJs). It is found that bulk Fe4 N reveals a half-metal nature in terms of the Δ1 state. A perpendicular magnetic anisotropy is observed in the periodic system Fe4 N /MgO . In particular, the ultrahigh TMR ratio of over 24 000% is predicted in the Fe4 N /MgO /Fe4N MTJ due to the interface resonance tunneling and relatively high transmission for states of other symmetry. Besides, the large TMR can be maintained with the change of atomic details at the interface, such as the order-disorder interface, the change of thickness of the MgO barrier, and different in-plane lattice constants of the MTJ. The physical origin of the TMR effect can be well understood by analyzing the band structure and transmission channel of bulk Fe4 N as well as the transmission in momentum space of Fe4 N /MgO /Fe4N . Our results suggest that the Fe4 N /MgO /Fe4N MTJ is a benefit for spintronic applications.
Calculating Resonance Positions and Widths Using the Siegert Approximation Method
Rapedius, Kevin
2011-01-01
Here, we present complex resonance states (or Siegert states) that describe the tunnelling decay of a trapped quantum particle from an intuitive point of view that naturally leads to the easily applicable Siegert approximation method. This can be used for analytical and numerical calculations of complex resonances of both the linear and nonlinear…
Tunneling explains efficient electron transport via protein junctions.
Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David
2018-05-15
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Spin tunnelling in mesoscopic systems
Indian Academy of Sciences (India)
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic ﬁeld, vanishing completely at special points in the ...
Hawking temperature from tunnelling formalism
Mitra, P.
2007-01-01
It has recently been suggested that the attempt to understand Hawking radiation as tunnelling across black hole horizons produces a Hawking temperature double the standard value. It is explained here how one can obtain the standard value in the same tunnelling approach.
Fusion, resonances and scattering in C reaction
Indian Academy of Sciences (India)
respectively. In each of these regions, we find some important features in the results ofσfus. ... draws attention in the astrophysical studies [2,7]. Here, Ecm and η .... We outline the concept of selective resonance tunneling for fusion in Ü3. In Ü4 ...
Tunneling Ionization of Diatomic Molecules
DEFF Research Database (Denmark)
Svensmark, Jens Søren Sieg
2016-01-01
When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...
Tunneling from the past horizon
Kang, Subeom; Yeom, Dong-han
2018-04-01
We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.
Yin, Li; Wang, Xiaocha; Mi, Wenbo
2018-01-01
Perpendicular magnetic tunnel junctions (MTJs) have attracted increasing attention owing to the low energy consumption and wide application prospects. Herewith, against Julliere's formula, an inverse tunnel magnetoresistance (TMR) appears in tetragonal Fe4N/BiFeO3/Fe4N perpendicular MTJs, which is attributed to the binding between the interface resonant tunneling state and central (bordered) hot spots. Especially, antiferromagnetic BiFeO3 shows an extra spin-polarized resonant state in the barrier, which provides a magnetic-barrier factor to affect the tunneling transport in MTJs. Meanwhile, due to the spin-polarized transport in Fe4N/BiFeO3/Fe4N MTJs, the sign of TMR can be tuned by the applied bias. The tunable TMR and resonant magnetic barrier effect pave the way for clarifying the tunneling transport in other junctions and spintronic devices.
Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope
International Nuclear Information System (INIS)
Naaman, O.; Teizer, W.; Dynes, R. C.
2001-01-01
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory
Tunneling junction as an open system. Normal tunneling
International Nuclear Information System (INIS)
Ono, Y.
1978-01-01
The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)
International Nuclear Information System (INIS)
Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.
2016-01-01
The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.
Energy Technology Data Exchange (ETDEWEB)
Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)
2016-08-01
The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.
Path integral approach to multidimensional quantum tunnelling
International Nuclear Information System (INIS)
Balantekin, A.B.; Takigawa, N.
1985-01-01
Path integral formulation of the coupled channel problem in the case of multidimensional quantum tunneling is presented and two-time influence functionals are introduced. The two-time influence functionals are calculated explicitly for the three simplest cases: Harmonic oscillators linearly or quadratically coupled to the translational motion and a system with finite number of equidistant energy levels linearly coupled to the translational motion. The effects of these couplings on the transmission probability are studied for two limiting cases, adiabatic case and when the internal system has a degenerate energy spectrum. The condition for the transmission probability to show a resonant structure is discussed and exemplified. Finally, the properties of the dissipation factor in the adiabatic limit and its correlation with the friction coefficient in the classically accessible region are studied
Operating modes of superconducting tunnel junction device
Energy Technology Data Exchange (ETDEWEB)
Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering
1998-07-01
In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)
Computational Multiqubit Tunnelling in Programmable Quantum Annealers
2016-08-25
ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational
78 FR 46117 - National Tunnel Inspection Standards
2013-07-30
... busiest vehicular tunnel in the world. The Fort McHenry Tunnel handles a daily traffic volume of more than... vehicular, transit, and rail tunnels in the New York City metropolitan area. Although it is still too early... congestion along alternative routes, and save users both dollars and fuel. If these tunnels were closed due...
Een systeem voor classificatie van korte tunnels.
Schreuder, D.A.
1985-01-01
The most difficult problems in the lighting of tunnels occur in daylight and in particular in the entrance of the tunnel, while drivers approaching the tunnel must be able to look into the tunnel from the outside to detect the road course and eventual obstacles. A classification should The made on
Tunnel fire testing and modeling the Morgex North tunnel experiment
Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia
2017-01-01
This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...
Apparent tunneling in chemical reactions
DEFF Research Database (Denmark)
Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.
2000-01-01
A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however......, not a sufficient condition in order to establish genuine tunneling as a result of quantum dynamics. This proposition is illustrated for a two-dimensional model potential describing dissociative sticking of N-2 on Ru(s). It is suggested that the remarkable heavy atom tunneling, found in this system, is related...
Resonator coupled Josephson junctions; parametric excitations and mutual locking
DEFF Research Database (Denmark)
Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper
1991-01-01
Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...
Tunneling progress on the Yucca Mountain Project
International Nuclear Information System (INIS)
Hansmire, W.H.; Munzer, R.J.
1996-01-01
The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation
International Nuclear Information System (INIS)
Shore, B.W.
1977-01-01
The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory
Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko
Energy Technology Data Exchange (ETDEWEB)
Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)
1994-08-01
At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.
FUNDAMENTAL TUNNELING PROCESSES IN MOSa SOLAR CELLS
Balberg , I.; Hanak , J.; Weakliem , H.; Gal , E.
1981-01-01
In previous studies of tunneling through a MOSa tunnel junction, where Sa was a-Si : H, it was shown that their characteristics resemble those of MOSc devices where Sc was crystalline silicon. In the present work we would like to report a demonstration of fundamental tunneling processes in such tunnel junctions. In particular, the transition from semiconductor controlled regime to tunneling controlled regime can be clearly distinguished. The present results represent one of the rare cases whe...
Destructive quantum interference in spin tunneling problems
von Delft, Jan; Henley, Christopher L.
1992-01-01
In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...
13th Australian tunnelling conference. Proceedings
Energy Technology Data Exchange (ETDEWEB)
NONE
2008-07-01
The theme of the conference was 'Engineering in a changing environment'. Topics covered include Australian tunnelling projects, design and development of ground support, tunnelling, international projects, fire and life safety, mining projects, risk management in tunnelling, and tunnel boring machine tunnelling. Papers of particular interest to the coal industry are: improving roadway development in underground coal mine (G. Lewis and G. Gibson), and polymer-based alternative to steel mesh for coal mine strata reinforcement (C. Lukey and others).
Tunnelling instability via perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)
1984-10-21
The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.
Scanning Tunneling Microscopy - image interpretation
International Nuclear Information System (INIS)
Maca, F.
1998-01-01
The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique
Electron tunneling in proteins program.
Hagras, Muhammad A; Stuchebrukhov, Alexei A
2016-06-05
We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tunneling Plasmonics in Bilayer Graphene.
Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N
2015-08-12
We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.
Shaft and tunnel sealing considerations
International Nuclear Information System (INIS)
Kelsall, P.C.; Shukla, D.K.
1980-01-01
Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing
Organic tunnel field effect transistors
Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi
2017-01-01
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer
Bijzondere belastingen in tunnels : Eindrapport
Molenaar, D.J.; Weerheijm, J.; Vervuurt, A.; Burggraaf, H.; Roekaerts, D.; Meijers, P.
2009-01-01
Verkeerstunnels en overkapte wegen (landtunnels) komen de milieukundige en stedenbouwkundige inpassing ten goede en maken meervoudig ruimtegebruik in de stad mogelijk. Het aantal tunnels en overkappingen groeit dan ook. Dit maakt het vervoer van explosiegevaarlijke stoffen en onder hoge druk
Free Surface Water Tunnel (FSWT)
Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...
International Nuclear Information System (INIS)
Romero, M.J.; van de Lagemaat, J.
2009-01-01
The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.
Fluctuations of the peak current of tunnel diodes in multi-junction solar cells
International Nuclear Information System (INIS)
Jandieri, K; Baranovskii, S D; Stolz, W; Gebhard, F; Guter, W; Hermle, M; Bett, A W
2009-01-01
Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.
Electric-field effects on electronic tunneling transport in magnetic barrier structures
International Nuclear Information System (INIS)
Guo Yong; Wang Hao; Gu Binglin; Kawazoe, Yoshiyuki
2000-01-01
Electronic transport properties in magnetic barrier structures under the influence of an electric field have been investigated. The results indicate that the characteristics of transmission resonance are determined not only by the structure and the incident wave vector but also strongly by the electric field. It is shown that the transmission coefficient at resonance in the low-energy range is suppressed by applying the electric field for electron tunneling through the magnetic barrier structure, arranged with identical magnetic barriers and wells. It is also shown that the transmission resonance is first enhanced up to optimal resonance, and then suppressed with further increased electric field for electron tunneling through the magnetic barrier structure, arranged with unidentical building blocks. Strong suppression of the current density is also found in the magnetic barrier structure, arranged with two different building blocks
Self-organized patterns of macroscopic quantum tunneling in molecular magnets.
Garanin, D A; Chudnovsky, E M
2009-03-06
We study low temperature resonant spin tunneling in molecular magnets induced by a field sweep with account of dipole-dipole interactions. Numerical simulations uncovered formation of self-organized patterns of the magnetization and of the ensuing dipolar field that provide resonant conditions inside a finite volume of the crystal. This effect is robust with respect to disorder and should be relevant to the dynamics of the magnetization steps observed in molecular magnets.
International Nuclear Information System (INIS)
Lee, K.
1987-01-01
The evolution in flat and curved space-time of quantum fields in theories with relative flat potential and its consequences are considered. It is shown that bubble nucleation, a quantum mechanical tunnelling process, may occur in flat space-time, having a bounce solution, even if V(phi) has no barrier. It is shown that bubble nucleation can also occur in curved space-time even though there is no bounce solution in the standard formalism for the bubble nucleation rate in curved space-time. Additionally, bubbles can nucleate during the slow rolling period on the potential in flat and curved space-time, in this case also there is no bounce solution. It is known in the new inflationary scenario that energy density perturbations caused by quantum fluctuations of the scalar field can satisfy the presently observed bounds on density perturbations. Bubble nucleation during the slow rolling period also gives rise to density perturbations. For a model potential density perturbations by bubbles are calculated at the horizon reentering. By applying the bound from the almost isotropic microwave black body radiation on these density perturbations, a constraint on the model potential is obtained. Finally, some further implications on the galaxy formation and applications in more realistic potential are discussed
Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng
2018-02-14
Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.
Control of tunneling in a double-well potential with chirped laser pulses
Vatasescu, Mihaela
2012-11-01
We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0g-(6s,6p3/2) double well of Cs2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0g-(6s,6p3/2) electronic state coupled with a3Σu+ (6s,6s) electronic state. The dump pulse is acting on the 0g-(6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.
Control of tunneling in a double-well potential with chirped laser pulses
International Nuclear Information System (INIS)
Vatasescu, Mihaela
2012-01-01
We investigate the use of chirped laser pulses to control the tunneling dynamics in the 0 g − (6s,6p 3/2 ) double well of Cs 2 coupled with other electronic surfaces. The possibility to manipulate the tunneling dynamics appears in a pump-dump scheme designed to form deeply bound cold molecules by photoassociation of two cold cesium atoms in the 0 g − (6s,6p 3/2 ) electronic state coupled with a 3 Σ u + (6s,6s) electronic state. The dump pulse is acting on the 0g − (6s,6p3/2) barrier and can be used to control the tunneling and to capture population in the inner well in deep vibrational levels out of tunneling resonances.
Morawski, Ireneusz; Voigtländer, Bert
2010-03-01
We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.
R.f.-induced steps in mutually coupled, two-dimensional distributed Josephson tunnel junctions
International Nuclear Information System (INIS)
Klein, U.; Dammschneider, P.
1991-01-01
This paper reports on the amplitudes of the current steps in the I-V characteristics of mutually coupled two-dimensional distributed Josephson tunnel junctions driven by microwaves. For this purpose we use a numerical computation algorithm based on a planar resonator model for the individual Josephson tunnel junctions to calculate the d.c. current density distribution. In addition to the fundamental microwave frequency, harmonic contents of the tunneling current are also considered. The lateral dimensions of the individual junctions are small compared to the microwave wavelength and the Josephson penetration depth, giving an almost constant current density distribution. Therefore, the coupled junctions can give much greater step amplitudes than a single junction with an equal tunneling area, because of their nonuniform current density distribution
Large resistance change on magnetic tunnel junction based molecular spintronics devices
Tyagi, Pawan; Friebe, Edward
2018-05-01
Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.
Electronic noise of superconducting tunnel junction detectors
International Nuclear Information System (INIS)
Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.
1994-01-01
The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)
Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode
International Nuclear Information System (INIS)
Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.
2016-01-01
The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.
Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes
Energy Technology Data Exchange (ETDEWEB)
Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl
2017-01-01
The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.
Optical precursors with tunneling-induced transparency in asymmetric quantum wells
International Nuclear Information System (INIS)
Peng Yandong; Qi Yihong; Yao Haifeng; Niu Yueping; Gong Shangqing
2011-01-01
A scheme for separating optical precursors from a square-modulated laser pulse through an asymmetric double Al x Ga 1-x As/GaAs quantum-well structure via resonant tunneling is proposed. Destructive interference inhibits linear absorption, and a tunneling-induced transparency (TIT) window appears with normal dispersion, which delays the main pulse; then optical precursors are obtained. Due to resonant tunneling, constructive interference for nonlinear susceptibility is created. The enhanced dispersion in a narrow TIT window is about one order of magnitude larger than that of the linear case. In this case, the main pulse is much delayed and the precursor signals are easier to obtain. Moreover, the main pulse builds up due to the gain introduced by the enhanced cross-nonlinearity.
Theory of superconducting tunneling without the tunneling Hamiltonian
International Nuclear Information System (INIS)
Arnold, G.B.
1987-01-01
When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling
Improved multidimensional semiclassical tunneling theory.
Wagner, Albert F
2013-12-12
We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.
Measured Temperature Dependence of the cos-phi Conductance in Josephson Tunnel Junctions
DEFF Research Database (Denmark)
Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig
1977-01-01
The temperature dependence of the cosϕ conductance in Sn-O-Sn Josephson tunnel junctions has been measured just below the critical temperature, Tc. From the resonant microwave response at the junction plasma frequency as the temperature is decreased from Tc it is deduced that the amplitude of the...
Radiation- and phonon-bottleneck--induced tunneling in the Fe8 single-molecule magnet
Bal, M.; Friedman, Jonathan R.; Chen, W.; Tuominen, M. T.; Beedle, C. C.; Rumberger, E. M.; Hendrickson, D. N.
2008-04-01
We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100 ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time T1~40 ns.
DEFF Research Database (Denmark)
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1976-01-01
The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...
Excitation of propagating surface plasmons with a scanning tunnelling microscope
International Nuclear Information System (INIS)
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G
2011-01-01
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Excitation of propagating surface plasmons with a scanning tunnelling microscope
Energy Technology Data Exchange (ETDEWEB)
Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)
2011-04-29
Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.
Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene
Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip
In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.
Resonant Tunneling Quantum Well Integrated Optical Waveguide Modulator/ Switch
1994-07-01
perform this task. However, our search was not successful . Fortunately, we developed our own software as part of a Phase II SBIR program entitled...scattered waves can be represented as 5 Pinal 0794.3246 AF-QUANT Cont. No. F49620-94.C-0008 n=0T = tLt2.Le ikea (rrei2k2P, (I)i~k,Xa a, t1Lt2Le jklxa
Tunneling resonances in systems without a classical trapping
Czech Academy of Sciences Publication Activity Database
Borisov, D.; Exner, Pavel; Golovina, A.
2013-01-01
Roč. 54, č. 1 (2013), 012102 ISSN 0022-2488 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : wave-guides * scattering * space Subject RIV: BE - Theoretical Physics Impact factor: 1.176, year: 2013 http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JMAPAQ000054000001012102000001&idtype=cvips&doi=10.1063/1.4773098&prog=normal
Superconducting tunneling with the tunneling Hamiltonian. II. Subgap harmonic structure
International Nuclear Information System (INIS)
Arnold, G.B.
1987-01-01
The theory of superconducting tunneling without the tunneling Hamiltonian is extended to treat superconductor/insulator/superconductor junctions in which the transmission coefficient of the insulating barrier approaches unity. The solution for the current in such junctions is obtained by solving the problem of a particle hopping in a one-dimensional lattice of sites, with forward and reverse transfer integrals that depend on the site. The results are applied to the problem of subgap harmonic structure in superconducting tunneling. The time-dependent current at finite voltage through a junction exhibiting subgap structure is found to have terms that oscillate at all integer multiples of the Josephson frequency, n(2eV/h). The amplitudes of these new, and as yet unmeasured, ac current contributions as a function of voltage are predicted
Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies
Directory of Open Access Journals (Sweden)
Kairong Hong
2017-12-01
Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast
International Nuclear Information System (INIS)
1977-03-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
International Nuclear Information System (INIS)
Tepikian, S.
1988-01-01
Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs
Superconducting tunnel-junction refrigerator
International Nuclear Information System (INIS)
Melton, R.G.; Paterson, J.L.; Kaplan, S.B.
1980-01-01
The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems
TunnelVision: LHC Tunnel Photogrammetry System for Structural Monitoring
Fallas, William
2014-01-01
In this document an algorithm to detect deformations in the LHC Tunnel of CERN is presented. It is based on two images, one represents the ideal state of the tunnel and the other one the actual state. To find the differences between both, the algorithm is divided in three steps. First, an image enhancement is applied to make easier the detection. Second, two different approaches to reduce noise are applied to one or both images. And third, it is defined a group of characteristics about the type of deformation desired to detect. Finally, the conclusions show the effectiveness of the algorithm in the experimental results.
Scanning tunnelling spectroscopy of low pentacene coverage on the Ag/Si(111)-(√3 x √3) surface
International Nuclear Information System (INIS)
Guaino, Ph; Cafolla, A A; McDonald, O; Carty, D; Sheerin, G; Hughes, G
2003-01-01
The low coverage S1 phase of pentacene deposited on Ag/Si(111)-(√3 x √3) has been investigated at room temperature by scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS). Current-voltage data were acquired simultaneously with STM images for this phase. The normalized conductivity reveals two pronounced peaks at -1.10 and +2.25 V relative to the Fermi level. These peaks are attributed to resonant tunnelling through the highest occupied molecular orbital and lowest unoccupied molecular orbital molecular levels of the pentacene layer. The electronic properties of this interface are discussed in relation to results obtained for pentacene adsorbed on other metallic surfaces
Hybrid inflation exit through tunneling
International Nuclear Information System (INIS)
Garbrecht, Bjoern; Konstandin, Thomas
2007-01-01
For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10 12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10 -11
Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.
2018-05-01
A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.
Quantum mechanical tunneling in chemical physics
Nakamura, Hiroki
2016-01-01
Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...
Tunnel Boring Machine Performance Study. Final Report
1984-06-01
Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Spin tunnelling in mesoscopic systems
Garg, Anupam
2001-02-01
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Molecular series-tunneling junctions.
Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M
2015-05-13
Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.
Watertightness of concrete tunnel structures
Glerum, A.
1982-01-01
The Netherlands are situated in the delta. of the rivers Rhine, Meuse and Scheldt. Therefore the ground mainly consists.of sediments, such as sand, clay and silt. In certain regions peat layers of varying thickness are found. The high permeability of some of these materials and the fact that the groundwater table is generally only 1 m below ground level, make an adequate watertightness one of the main features of tunnel engineering in the Netherlands. Tunnels in Holland are both of the immers...
Drill and blast tunnelling; Konvensjonell drift av tunneler
Energy Technology Data Exchange (ETDEWEB)
Roenn, Paal-Egil
1997-12-31
This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.
Spin-dependent tunnelling in magnetic tunnel junctions
International Nuclear Information System (INIS)
Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R
2003-01-01
The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)
Probing Nanoscale Electronic and Magnetic Interaction with Scanning Tunneling Spectroscopy
DEFF Research Database (Denmark)
Bork, Jakob
tunneling microscope (STM). Especially at low temperatures the Kondo resonance is used to probe magnetic interaction with ferromagnetic islands and between two atoms. The latter showing a crossover between Kondo screened atoms and antiferromagnetically coupled atoms close to the quantum critical point....... This is related to research in correlated electron materials such as studies of phase transitions in heavy fermion compounds and magnetic interaction in spintronic research. The capping of cobalt islands on Cu(111) with silver is investigated with STM and photoemission spectroscopy. It is shown that at low...
Parametric enhancement of the tunneling transmission through a potential barrier
International Nuclear Information System (INIS)
Tanaka, Masatoshi; Iwata, Giiti.
1992-01-01
A possibility of indicated of enhancing the tunneling transmission of particle incident on a potential barrier with the aid of an auxiliary potential parametrically in resonance with incident particles. For a simple auxiliary potential, a train of two-step square wells, examples are presented in which the ratio of the transmission coefficients with and without the auxiliary potential can be very large, e.g. (2n + 1) 2L , where n is the positive integer and L the number of the period of the auxiliary potential. (author)
Near-field optical microscopy with a scanning tunneling microscope
International Nuclear Information System (INIS)
Barbara, A.; Lopez-Rios, T.; Quemerais, P.
2005-01-01
A homemade apertureless near-field optical microscope using a scanning tunneling microscope (STM) is described. The experimental set-up simultaneously provides optical and topographic images of the sample. Technical details and features of the set-up are presented, together with results demonstrating the sub-wavelength resolution achieved as well as its sensitivity to dielectric contrasts. We show that the use of a STM permits to precisely control very small distances between the tip and the sample which is a great advantage to excite localized optical resonances between the tip and the surface
Characterization of magnetic tunnel junction test pads
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer
2015-01-01
We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...
Tunnel Face Stability & New CPT Applications
Broere, W.
2001-01-01
Nearly all tunnels bored in soft soils have encountered problems with the stability of the tunnel face. In several cases these problems led to an extended stand-still of the boring process. A better understanding of the face stability, and of the soil conditions around the tunnel boring machine, can
Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules
Energy Technology Data Exchange (ETDEWEB)
Mueller, Kai; Bechtold, Alexander; Kaldewey, Timo; Zecherle, Markus; Wildmann, Johannes S.; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J. [Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748, Garching (Germany); Ruppert, Claudia; Betz, Markus [Experimentelle Physik 2, TU Dortmund, 44221, Dortmund (Germany); Krenner, Hubert J. [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitaet Augsburg, Universitaetsstr 1, 86159, Augsburg (Germany); Villas-Boas, Jose M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil)
2013-02-15
Ultrafast pump-probe spectroscopy is employed to directly monitor the tunneling of charge carriers from single and vertically coupled quantum dots and probe intra-molecular dynamics. Immediately after resonant optical excitation, several peaks are observed in the pump-probe spectrum arising from Coulomb interactions between the photogenerated charge carriers. The influence of few-Fermion interactions in the photoexcited system and the temporal evolution of the optical response is directly probed in the time domain. In addition, the tunneling times for electrons and holes from the QD nanostructure are independently determined. In polarization resolved measurements, near perfect Pauli-spin blockade is observed in the spin-selective absorption spectrum as well as stimulated emission. While electron and hole tunneling from single quantum dots is shown to be well explained by the WKB formalism, for coupled quantum dots pronounced resonances in the electron tunneling rate are observed arising from elastic and inelastic electron tunneling between the different dots. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes.
Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon
2016-07-28
One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.
Filippone, Michele; Brouwer, Piet
2016-01-01
Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...
Earth Pressure on Tunnel Crown
DEFF Research Database (Denmark)
Andersen, Lars
Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...
Introduction to scanning tunneling microscopy
Chen, C Julian
2008-01-01
The scanning tunneling and the atomic force microscope, both capable of imaging individual atoms, were crowned with the Physics Nobel Prize in 1986, and are the cornerstones of nanotechnology today. This is a thoroughly updated version of this 'bible' in the field.
Installation in the SPS tunnel
1974-01-01
The SPS tunnel is 6910 m in circumference and has a cross section of 4 m inner diameter. It is situated at an elevation of 400 m above sea level at a depth below the surface varying between 23 and 65 m. Its walls are lined with a concrete shell of about 30 cm thickness. See also 7410043X
Principles of electron tunneling spectroscopy
Wolf, E L
2012-01-01
Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.
Time tunnels meet warped passages
Kushner, David
2006-01-01
"Just in time for its 40th anniversary, the classic sci-fi television show "The time tunnel" is out on DVD. The conceit is something every engineer can relate to: a pulled plug. Scientists in an underground lab are working on a secret government experiment in time travel. (1 page)
Dzhusupova, R.
2012-01-01
Creating a zero energy environment is a hot topic. The developments in this field are based on the concept of the "Trias Energetica": reducing energy consumption, using renewable energy sources, and efficiently using fossil fuels. A zero energy concept can also be applied to road tunnels to improve
Travelling inside the SPS tunnel
1974-01-01
The golf cart proved to be a very useful form of transport around the 7 km circumference of the machine. It could carry four passengers and pull light equipment in its trailer. Here Peter Zettwoch is the driver along a mock-up tunnel for installation tests. (see photo 7401011X and Photo Archive 7401018)
A Seamless Ubiquitous Telehealthcare Tunnel
Directory of Open Access Journals (Sweden)
Sao-Jie Chen
2013-08-01
Full Text Available Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields.
Tunnel Vision in Environmental Management.
Miller, Alan
1982-01-01
Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…
Management of Carpal Tunnel Syndrome.
Mooar, Pekka A; Doherty, William J; Murray, Jayson N; Pezold, Ryan; Sevarino, Kaitlyn S
2018-03-15
The American Academy of Orthopaedic Surgeons (AAOS) has developed Appropriate Use Criteria (AUC) for Management of Carpal Tunnel Syndrome. Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. To provide the evidence foundation for this AUC, the AAOS Evidence-Based Medicine Unit provided the writing panel and voting panel with the 2016 AAOS Clinical Practice Guideline titled Management of Carpal Tunnel Syndrome Evidence-Based Clinical Practice Guideline. The Management of Carpal Tunnel Syndrome AUC clinical patient scenarios were derived from indications typical of patients with suspected carpal tunnel syndrome in clinical practice, as well as from current evidence-based clinical practice guidelines and supporting literature to identify the appropriateness of treatments. The 135 patient scenarios and 6 treatments were developed by the writing panel, a group of clinicians who are specialists in this AUC topic. Next, a separate, multidisciplinary, voting panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3).
Resonances for coupled Bose-Einstein condensates
International Nuclear Information System (INIS)
Haroutyunyan, H.L.; Nienhuis, G.
2004-01-01
The properties of a Bose-Einstein condensate in a two-well potential can be manipulated by periodic modulation of the potential parameters. We study the effects arising from modulating the barrier height and the difference in well depth. At certain modulation frequencies the system exhibits resonances, which may show up in an enhancement of the tunneling rate between the wells. Resonances can be used to control the particle distribution over the wells. Some of the effects occurring in the two-well system also arise for a Bose-Einstein condensate in an optical lattice
Interlayer tunnel field-effect transistor (ITFET): physics, fabrication and applications
Kang, Sangwoo; Mou, Xuehao; Fallahazad, Babak; Prasad, Nitin; Wu, Xian; Valsaraj, Amithraj; Movva, Hema C. P.; Kim, Kyounghwan; Tutuc, Emanuel; Register, Leonard F.; Banerjee, Sanjay K.
2017-09-01
The scaling challenges of complementary metal oxide semiconductors (CMOS) are increasing with the pace of scaling showing marked signs of slowing down. This slowing has brought about a widespread search for an alternative beyond-CMOS device concept. While the charge tunneling phenomenon has been known for almost a century, and tunneling based transistors have been studied in the past few decades, its possibilities are being re-examined with the emergence of a new class of two-dimensional (2D) materials. By stacking varying 2D materials together, with two electrode layers sandwiching a tunnel dielectric layer, it could be possible to make vertical tunnel transistors without the limitations that have plagued such devices implemented within other material systems. When the two electrode layers are of the same material, under certain conditions, one can achieve resonant tunneling between the two layers, manifesting as negative differential resistance (NDR) in the interlayer current-voltage characteristics. We call this type of device an interlayer tunnel FET (ITFET). We review the basic operation principles of this device, experimental and theoretical studies, and benchmark simulation results for several digital logic gates based on a compact model that we developed. The results are placed in the context of work going on in other groups.
Tunneling time, what is its meaning?
International Nuclear Information System (INIS)
McDonald, C R; Orlando, G; Vampa, G; Brabec, T
2015-01-01
The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed
Dirac particle tunneling from black rings
International Nuclear Information System (INIS)
Jiang Qingquan
2008-01-01
Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.
Experimental Evidence for Quantum Tunneling Time
Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert
2017-07-01
The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."
International Nuclear Information System (INIS)
Lobanov, Valery E.; Vysloukh, Victor A.; Kartashov, Yaroslav V.
2010-01-01
We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.
Automated Boundary Conditions for Wind Tunnel Simulations
Carlson, Jan-Renee
2018-01-01
Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.
Tunneling Flight Time, Chemistry, and Special Relativity.
Petersen, Jakob; Pollak, Eli
2017-09-07
Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.
Quantum Tunneling of Magnetization in Trigonal Single-Molecule Magnets
Liu, Junjie; Del Barco, Enrique; Hill, Stephen
2012-02-01
We perform a numerical analysis of the quantum tunneling of magnetization (QTM) that occurs in a spin S = 6 single-molecule magnet (SMM) with idealized C3 symmetry. The deconstructive points in the QTM are located by following the Berry-phase interference (BPI) oscillations. We find that the O4^3 (=12[Sz,S+^3 +S-^3 ]) operator unfreezes odd-k QTM resonances and generates three-fold patterns of BPI minima in all resonances, including k = 0! This behavior cannot be reproduced with operators that possess even rotational symmetry about the quantization axis. We find also that the k = 0 BPI minima shift away from zero longitudinal field. The wider implications of these results will be discussed in terms of the QTM behavior observed in other SMMs.
International Nuclear Information System (INIS)
Song Hongyan; Zhou Shiping
2008-01-01
We investigate Andreev reflection (AR) tunneling through a ferromagnet-quantum dot-superconductor (F-QD-S) system in the presence of an external ac field. The intradot spin-flip scattering in the QD is involved. Using the nonequilibrium Green function and BCS quasiparticle spectrum for superconductor, time-averaged AR conductance is formulated. The competition between the intradot spin-flip scattering and photon-assisted tunneling dominates the resonant behaviors of the time-averaged AR conductance. For weak intradot spin-flip scattering strengths, the AR conductance shows a series of equal interval resonant levels. However, the single-peak at main resonant level develops into a well-resolved double-peak resonance at a strong intradot spin-flip scattering strength. Remarkable, multiple-photon-assisted tunneling that generates photonic sideband peaks with a variable interval has been found. In addition, the AR conductance-bias voltage characteristic shows a transition between the single-peak to double-peak resonance as the ratio of the two tunneling strengths varies
The Third Quantization: To Tunnel or Not to Tunnel?
Directory of Open Access Journals (Sweden)
Mariam Bouhmadi-López
2018-02-01
Full Text Available Within the framework of the third quantization, we consider the possibility that an initially recollapsing baby universe can enter a stage of near de Sitter inflation by tunnelling through a Euclidean wormhole that connects the recollapsing and inflationary geometries. We present the solutions for the evolution of the scale factor in the Lorentzian and Euclidean regions as well as the probability that the baby universe indeed crosses the wormhole when it reaches its maximum size.
Resonance – Journal of Science Education | Indian Academy of ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. Role of Wind Tunnels in Aircraft Design. S P Govinda Raju. General Article Volume 8 Issue 1 January 2003 pp 72-76. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/01/0072-0076. Keywords.
Aspects of stochastic resonance in Josephson junction, bimodal
Indian Academy of Sciences (India)
We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...
Magnetic Field Dependence and Q of the Josephson Plasma Resonance
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.
1972-01-01
of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...
Aspects of stochastic resonance in Josephson junction, bimodal ...
Indian Academy of Sciences (India)
Abstract. We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the ...
Klein tunneling phenomenon with pair creation process
Wu, G. Z.; Zhou, C. T.; Fu, L. B.
2018-01-01
In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.
Seismic scanning tunneling macroscope - Theory
Schuster, Gerard T.
2012-09-01
We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.
Single-contact tunneling thermometry
Maksymovych, Petro
2016-02-23
A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.
Spin tunneling in magnetic molecules
Kececioglu, Ersin
In this thesis, we will focus on spin tunneling in a family of systems called magnetic molecules such as Fe8 and Mn12. This is comparatively new, in relation to other tunneling problems. Many issues are not completely solved and/or understood yet. The magnetic molecule Fe 8 has been observed to have a rich pattern of degeneracies in its magnetic spectrum. We focus on these degeneracies from several points of view. We start with the simplest anisotropy Hamiltonian to describe the Fe 8 molecule and extend our discussion to include higher order anisotropy terms. We give analytical expressions as much as we can, for the degeneracies in the semi-classical limit in both cases. We reintroduce jump instantons to the instanton formalism. Finally, we discuss the effect of the environment on the molecule. Our results, for all different models and techniques, agree well with both experimental and numerical results.
Tunneling magnetoresistance in Si nanowires
Montes Muñoz, Enrique
2016-11-09
We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.
Underwater piercing of a tunnel
Energy Technology Data Exchange (ETDEWEB)
Solvik, O.
1984-11-01
Norwegian consultants and contractors have been confronted with the task of blasting a final penetrating passage that will open the way for the water in a reservoir to flow through the hydropower turbines. Norway has almost certainly led in this area because of its special topographical and geological conditions. The glacial activities have created a number of natural and very deep lakes forming cheap reservoirs. Piercings at depths up to about 100 m have been performed. Problems tend to increase with depth, but unsuccessful penetration can occur at any depth. Secondary effects to consider include the danger of slides when the water level is lowered, wave erosion along the lowered new shoreline, erosion at all streams and rivers flowing into the lake and groundwater erosion in the newly exposed dry shoreline. Methods of penetration can be roughly divided into two categories: penetration against the open tunnel shaft (open system); and penetration against the closed tunnel shaft (closed system). 6 figures.
Seismic scanning tunneling macroscope - Theory
Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong
2012-01-01
We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.
International Nuclear Information System (INIS)
Avishai, Y.
1985-01-01
We consider tunneling through a potential barrier V(x) in the presence of a coupling term W(x,y). Let H(y) be the internal Hamiltonian associated with the coordinate y and let E 0 (x) be the ground state energy of the operator H(x;y) = H(y) + W(x,y) in which x is a parameter. Our result for the tunneling probability (in the WKB approximation) is P = exp(2i ∫ k 0 (x)dx) where, at energy E, k 0 (x) = [E-E 0 (x)-V(x)]sup(1/2)/(h/2π) is the local wave number in the presence of coupling. (orig.)
Seismic prediction ahead of tunnel constructions
Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.
2007-12-01
To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.
Patrice Loiez
2002-01-01
Products of the collision between a proton beam and a graphite target will pass through a horn containing an electric field that will produce a focused beam. These particles will decay into muon neutrinos within the tunnel that is being constructed in these images. The neutrinos will then travel 730 km to Gran Sasso in Italy where huge detectors will observe the beam to study a process called neutrino oscillation.
Dissipative Effect and Tunneling Time
Directory of Open Access Journals (Sweden)
Samyadeb Bhattacharya
2011-01-01
Full Text Available The quantum Langevin equation has been studied for dissipative system using the approach of Ford et al. Here, we have considered the inverted harmonic oscillator potential and calculated the effect of dissipation on tunneling time, group delay, and the self-interference term. A critical value of the friction coefficient has been determined for which the self-interference term vanishes. This approach sheds new light on understanding the ion transport at nanoscale.
Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.
Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato
2013-06-01
Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth
Tunneling beyond the Fermilab site
International Nuclear Information System (INIS)
Baker, S.; Elwyn, A.; Lach, J.; Read, A.
1983-01-01
An accelerator that crosses the Fermilab site boundary must have a minimum effect on the surrounding environment and the people residing in the area. Unobstructed public access should be allowed above the ring except in relatively few areas such as the injection, dump, and experimental regions. The accelerator should be a benign and unobtrusive neighbor not only when it is completed but also in the construction period. For these reasons underground tunneling for all or most of the ring seems attractive. In this note we look into some questions raised by tunneling beyond the Fermilab site. Most of our discussion is of general applicability. However, we will use as examples two specific ring configurations. The examples have not been optimized from the point of view of physics output or accelerator technology but are just specific examples which allow us to study questions of tunneling. One is a ring of 5 km radius (5 TeV) tangent to the Tevatron and entirely east of the Fox River and fed by a beam from the Tevatron which crosses under the river. We assume that each of these machines will have 100 beam fills per year and we scale the maximum intensities with the accelerator radii. Thus we assume that there will be 1.0 E14 protons in each beam of the 20 TeV machine and 2.5 E13 for the 5 TeV machine
Esposito, A.; Polosa, A.D.
2016-01-01
Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.
DEFF Research Database (Denmark)
Brooks, Anthony Lewis
2013-01-01
Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....
Differentiate low impedance media in closed steel tank using ultrasonic wave tunneling.
Wang, Chunying; Chen, Zhaojiang; Cao, Wenwu
2018-01-01
Ultrasonic wave tunneling through seriously mismatched media, such as steel and water, is possible only when the frequency matches the resonance of the steel plate. But it is nearly impossible to realize continuous wave tunneling if the low acoustic impedance media is air because the transducer frequency cannot be made so accurate. The issue might be resolved using tone-burst signals. Using finite element simulations, we found that for air media when the cycle number is 20, the -6dB bandwidth of energy transmission increased from 0.001% to 5.9% compared with that of continuous waves. We show that the tunneling waves can give us enough information to distinguish low acoustic impedance media inside a steel tank. Copyright © 2017 Elsevier B.V. All rights reserved.
Alimardani, N.; Conley, J. F.
2013-09-01
We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.
Tetrairon(III) Single Molecule Magnet Studied by Scanning Tunneling Microscopy and Spectroscopy
Oh, Youngtek; Jeong, Hogyun; Lee, Minjun; Kwon, Jeonghoon; Yu, Jaejun; Mamun, Shariful Islam; Gupta, Gajendra; Kim, Jinkwon; Kuk, Young
2011-03-01
Tetrairon(III) single-molecule magnet (SMM) on a clean Au(111) has studied using scanning tunneling microscopy (STM) and spectroscopy (STS) to understand quantum mechanical tunneling of magnetization and hysteresis of pure molecular origin. Before the STM studies, elemental analysis, proton nuclear magnetic resonance (NMR) measurement and Energy Dispersive X- ray Spectroscopy (EDS) were carried out to check the robustness of the sample. The STM image of this molecule shows a hexagonal shape, with a phenyl ring at the center and surrounding six dipivaloylmethane ligands. Two peaks are observed at 0.5 eV, 1.5 eV in the STS results, agreeing well with the first principles calculations. Spin-polarized scanning tunneling microscopy (SPSTM) measurements have been performed with a magnetic tip to get the magnetization image of the SMM. We could observe the antiferromagnetic coupling and a centered- triangular topology with six alkoxo bridges inside the molecule while applying external magnetic fields.
Quantum decrease of capacitance in a nanometer-sized tunnel junction
Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.
2013-03-01
We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)
International Nuclear Information System (INIS)
Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.
2010-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.
New vision of magnetic tunnelling
Energy Technology Data Exchange (ETDEWEB)
Friedman, Jonathan R. [Amherst College, Amhurst, MA (United States)
2002-01-01
Recent experiments support the idea that crystal defects may be responsible for the quantum tunnelling of magnetic moments in molecular magnets at low temperatures. The magnetic moment of a typical bar magnet will never spontaneously reverse direction. However, thermal fluctuations can flip the moment of a magnetic particle just a few nanometres across. The particle can be cooled to nearly absolute zero to suppress this process, but the moment may still find a way to reverse via quantum tunnelling. Quantum tunnelling of magnetization has been the subject of decades of research. Until a few years ago, however, there had only been circumstantial evidence for the phenomenon. This is because most systems of small magnetic particles are hard to characterize - the particles have a variety of shapes, sizes and other properties, making it difficult to compare data with theory. Some real progress was made a few years ago through research into high-spin single-molecule magnets. With dimensions of about a nanometre, these magnets are usually composed of a magnetic core that is surrounded by organic complexes. When they crystallize into a regular lattice, the organic ions keep neighbouring magnets well separated so that they interact only weakly. Ideally all the molecules are identical because they have been built chemically, which means that they can be characterized precisely and that any data can be analysed quantitatively. The most studied of these molecules is manganese-12 acetate (Mn{sub 12}). Within each molecule, the spins of the eight Mn{sup 3+} ions (each with S=2) are antiparallel to the spins of the four Mn{sup 4+} ions (each with S=3/2), giving Mn{sub 12} a total spin of S=10. Or, to put it another way, the magnetic moment of Mn{sub 12} is 20 times larger than that of the electron. Now Eugene Chudnovsky of Lehman College in New York and Dmitry Garanin of the University of Mainz in Germany have suggested a new mechanism for producing tunnelling in Mn{sub 12
Chaos regularization of quantum tunneling rates
International Nuclear Information System (INIS)
Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward
2011-01-01
Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.
Fiber coupled ultrafast scanning tunneling microscope
DEFF Research Database (Denmark)
Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher
1997-01-01
We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...
In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines
CSIR Research Space (South Africa)
Van Schoor, Abraham M
2009-12-01
Full Text Available The applicability of tunnel-to-tunnel electrical resistance tomography (ERT) for imaging disruptive geological structures ahead of mining, in an igneous platinum mining environment is assessed. The geophysical targets of interest are slump...
Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes
Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter
2013-01-01
Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been
Energy Technology Data Exchange (ETDEWEB)
Loth, S.
2007-10-26
This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)
Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio
2015-04-01
An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of
Indian Academy of Sciences (India)
IAS Admin
996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...
Indian Academy of Sciences (India)
IAS Admin
817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...
Indian Academy of Sciences (India)
IAS Admin
369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.
PUREX Storage Tunnels dangerous waste permit application
International Nuclear Information System (INIS)
1991-12-01
This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study
MISTY ECHO tunnel dynamics experiment data report
International Nuclear Information System (INIS)
Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.
1992-04-01
Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported
Theoretical approach to the scanning tunneling microscope
International Nuclear Information System (INIS)
Noguera, C.
1990-01-01
Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Energy Efficiency of Tunnel Boring Machines.
Grishenko, Vitaly
2014-01-01
Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...
Climatic wind tunnel for wind engineering tasks
Czech Academy of Sciences Publication Activity Database
Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil
2015-01-01
Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf
Nuclear fission as a macroscopic quantum tunneling
International Nuclear Information System (INIS)
Takigawa, N.
1995-01-01
We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)
International Nuclear Information System (INIS)
Anon.
1977-01-01
At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented
Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes
2012-09-01
Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.
DEFF Research Database (Denmark)
Wubs, Martijn
2010-01-01
Qubits driven by resonant strong pulses are studied and a parameter regime is explored in which the dynamics can be solved in closed form. Instantaneous coherent destruction of tunneling can be seen for longer pulses, whereas shorter pulses allow a fast preparation of the qubit state. Results...... are compared with recent experiments of pulsed nitrogen-vacancy center spin qubits in diamond....
Femtosecond tunneling response of surface plasmon polaritons
DEFF Research Database (Denmark)
Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis
1998-01-01
We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...