WorldWideScience

Sample records for red galaxy populations

  1. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  2. The red and blue galaxy populations in the GOODS field: evidence for an excess of red dwarfs

    Science.gov (United States)

    Salimbeni, S.; Giallongo, E.; Menci, N.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.; Trevese, D.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2008-01-01

    Aims: We study the evolution of the galaxy population up to z˜ 3 as a function of its colour properties. In particular, luminosity functions and luminosity densities were derived as a function of redshift for the blue/late and red/early populations. Methods: We use data from the GOODS-MUSIC catalogue, which have typical magnitude limits z850≤ 26 and K_s≤ 23.5 for most of the sample. About 8% of the galaxies have spectroscopic redshifts; the remaining have well calibrated photometric redshifts derived from the extremely wide multi-wavelength coverage in 14 bands (from the U band to the Spitzer 8~ μm band). We have derived a catalogue of galaxies complete in the rest-frame B-band, which has been divided into two subsamples according to their rest-frame U-V colour (or derived specific star formation rate) properties. Results: We confirm a bimodality in the U-V colour and specific star formation rate of the galaxy sample up to z˜ 3. This bimodality is used to compute the luminosity functions of the blue/late and red/early subsamples. The luminosity functions of the blue/late and total samples are well represented by steep Schechter functions evolving in luminosity with increasing redshifts. The volume density of the luminosity functions of the red/early populations decreases with increasing redshift. The shape of the red/early luminosity functions shows an excess of faint red dwarfs with respect to the extrapolation of a flat Schechter function and can be represented by the sum of two Schechter functions. Our model for galaxy formation in the hierarchical clustering scenario, which also includes external feedback due to a diffuse UV background, shows a general broad agreement with the luminosity functions of both populations, the larger discrepancies being present at the faint end for the red population. Hints on the nature of the red dwarf population are given on the basis of their stellar mass and spatial distributions.

  3. Understanding the faint red galaxy population using large-scale clustering measurements from SDSS DR7

    OpenAIRE

    Ross, Ashley; Tojeiro, Rita; Percival, Will

    2011-01-01

    We use data from the SDSS to investigate the evolution of the large-scale galaxy bias as a function of luminosity for red galaxies. We carefully consider correlation functions of galaxies selected from both photometric and spectroscopic data, and cross-correlations between them, to obtain multiple measurements of the large-scale bias. We find, for our most robust analyses, a strong increase in bias with luminosity for the most luminous galaxies, an intermediate regime where bias does not evol...

  4. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    Science.gov (United States)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  5. The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy

    Science.gov (United States)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  6. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    International Nuclear Information System (INIS)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B.; Urquhart, J. S.; Davies, B.; Moore, T. J. T.; Mottram, J. C.

    2013-01-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores

  7. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Urquhart, J. S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn (Germany); Davies, B.; Moore, T. J. T. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Mottram, J. C. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  8. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L. [School of Physics, Astronomy, and Computational Sciences, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J., E-mail: satyapal@physics.gmu.edu [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  9. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    International Nuclear Information System (INIS)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L.; Ellison, S. L.; Fischer, J.

    2014-01-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  10. Red galaxies at high redshift

    NARCIS (Netherlands)

    Wuyts, Stijn Elisabeth Raphaël

    2007-01-01

    From its origin at the center of a star to the edge, through the surrounding gas and dust in the distant galaxy, through the intergalactic medium, traveling billions of light years only to be reflected by a mirror and captured by a detector; the little amount of light observed from galaxies in the

  11. Population of the Galaxy

    International Nuclear Information System (INIS)

    Troitskii, V.

    1981-01-01

    A new theory of the population of the Galaxy, based on the hypothesis of explosive: simultaneous and one-time-origination of life in the universe at a certain moment of its evolutionary development, is discussed in the report. According to the proposed theory, civilizations began to arise around the present moment of the history of the universe. Their possible number is limited even when their lifetime is unlimited. The age and number of simultaneously existing civilizations when their lifetime is unlimited is determined by the duration and dispersion of the time of evolution of life on different planets from the cell level to civilization. The proposed theory explains better than Drake's theory the negative results of the search for evidence of the existence of superpowerful extraterrestrial civilizations and the noncolonization of the earth

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  13. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  14. Stellar Populations in Elliptical Galaxies

    Science.gov (United States)

    Angeletti, Lucio; Giannone, Pietro

    The R1/n law for the radial surface brightness of elliptical galaxies and the "Best Accretion Model" together with the "Concentration Model" have been combined in order to determine the mass and dynamical structure of largely-populated star systems. Families of models depending on four parameters have been used to fit the observed surface radial profiles of some spectro-photometric indices of a sample of eleven galaxies. We present the best agreements of the spectral index Mg2 with observations for three selected galaxies representative of the full sample. For them we have also computed the spatial distributions of the metal abundances, which are essential to achieve a population synthesis.

  15. Galaxy And Mass Assembly (GAMA): deconstructing bimodality - I. Red ones and blue ones

    Science.gov (United States)

    Taylor, Edward N.; Hopkins, Andrew M.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Colless, Matthew; Driver, Simon; Norberg, Peder; Robotham, Aaron S. G.; Alpaslan, Mehmet; Brough, Sarah; Cluver, Michelle E.; Gunawardhana, Madusha; Kelvin, Lee S.; Liske, Jochen; Conselice, Christopher J.; Croom, Scott; Foster, Caroline; Jarrett, Thomas H.; Lara-Lopez, Maritza; Loveday, Jon

    2015-01-01

    We measure the mass functions for generically red and blue galaxies, using a z 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing measurements stems from how `red' and `blue' galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterize the two populations without having to specify a priori which galaxies are `red' and `blue'. Our results then provide the means to derive objective operational definitions for the terms `red' and `blue', which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that (1) after accounting for dust, the stellar colours of `blue' galaxies do not depend strongly on mass; (2) the tight, flat `dead sequence' does not extend much below log M* ˜ 10.5; instead, (3) the stellar colours of `red' galaxies vary rather strongly with mass, such that lower mass `red' galaxies have bluer stellar populations; (4) below log M* ˜ 9.3, the `red' population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, (5) it is hard to meaningfully constrain the shape, including the existence of an upturn, of the `red' galaxy mass function below log M* ˜ 9.3. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.

  16. The present-day galaxy population in spiral galaxies

    NARCIS (Netherlands)

    Peletier, Reynier; Antonelli, LA; Limongi, M; Menci, N; Tornambe, A; Brocato, E; Raimondo, G

    2009-01-01

    Although there are many more stellar population studies of elliptical and lenticular galaxies, studies of spiral galaxies are catching up, due to higher signal to noise data on one hand, and better analysis methods on the other. Here I start by discussing some modern methods of analyzing integrated

  17. Calibrating photometric redshifts of luminous red galaxies

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan

    2005-01-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.

  18. Investigating a method of producing "red and dead" galaxies

    Science.gov (United States)

    Skory, Stephen

    2010-08-01

    In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles

  19. THE ORIGIN OF THE 24 μm EXCESS IN RED GALAXIES

    International Nuclear Information System (INIS)

    Brand, Kate; Moustakas, John; Armus, Lee; Desai, Vandana; Assef, Roberto J.; Kochanek, Christopher S.; Soifer, B. T.; Brown, Michael J. I.; Cool, Richard R.; Dey, Arjun; Jannuzi, Buell T.; Le Floc'h, Emeric; Melbourne, Jason; Papovich, Casey J.

    2009-01-01

    Observations with the Spitzer Space Telescope have revealed a population of red sequence galaxies with a significant excess in their 24 μm emission compared to what is expected from an old stellar population. We identify ∼900 red galaxies with 0.15 ≤ z ≤ 0.3 from the AGN and Galaxy Evolution Survey (AGES) selected from the NOAO Deep Wide-Field Survey Booetes field. Using Spitzer MIPS, we classify 89 (∼10%) with 24 μm infrared excess (f 24 ≥ 0.3 mJy). We determine the prevalence of active galactic nucleus (AGN) and star-formation activity in all the AGES galaxies using optical line diagnostics and mid-IR color-color criteria. Using the IRAC color-color diagram from the Spitzer Shallow Survey, we find that 64% of the 24 μm excess red galaxies are likely to have strong polycyclic aromatic hydrocarbon (PAH) emission features in the 8 μm IRAC band. This fraction is significantly larger than the 5% of red galaxies with f 24 < 0.3 mJy that are estimated to have strong PAH emission, suggesting that the infrared emission is largely due to star-formation processes. Only 15% of the 24 μm excess red galaxies have optical line diagnostics characteristic of star formation (64% are classified as AGN and 21% are unclassifiable). The difference between the optical and infrared results suggests that both AGN and star-formation activity are occurring simultaneously in many of the 24 μm excess red galaxies. These results should serve as a warning to studies that exclusively use optical line diagnostics to determine the dominant emission mechanism in the infrared and other bands. We find that ∼40% of the 24 μm excess red galaxies are edge-on spiral galaxies with high optical extinctions. The remaining sources are likely to be red galaxies whose 24 μm emission comes from a combination of obscured AGN and star-formation activity.

  20. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Stephanie K.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Schiavon, Ricardo [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Graves, Genevieve [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Damjanov, Ivana [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Newman, Jeffrey [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Simard, Luc [National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  1. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    International Nuclear Information System (INIS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-01-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  2. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    Science.gov (United States)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  3. ON THE DEARTH OF COMPACT, MASSIVE, RED SEQUENCE GALAXIES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Taylor, Edward N.; Franx, Marijn; Brinchmann, Jarle; Glazebrook, Karl; Van der Wel, Arjen; Van Dokkum, Pieter G

    2010-01-01

    We set out to test the claim that the recently identified population of compact, massive, and quiescent galaxies at z ∼ 2.3 must undergo significant size evolution to match the properties of galaxies found in the local universe. Using data from the Sloan Digital Sky Survey (SDSS; Data Release 7), we have conducted a search for local red sequence galaxies with sizes and masses comparable to those found at z ∼ 2.3. The SDSS spectroscopic target selection algorithm excludes high surface brightness objects; we show that this makes incompleteness a concern for such massive, compact galaxies, particularly for low redshifts (z ∼ * >10 10.7 M sun (∼5 x 10 10 M sun ) red sequence galaxies at 0.066 spec 5000. This result cannot be explained by incompleteness: in the 0.066 75% complete for galaxies with the sizes and masses seen at high redshift, although for the very smallest galaxies it may be as low as ∼20%. In order to confirm that the absence of such compact massive galaxies in SDSS is not produced by spectroscopic selection effects, we have also looked for such galaxies in the basic SDSS photometric catalog, using photometric redshifts. While we do find signs of a slight bias against massive, compact galaxies, this analysis suggests that the SDSS spectroscopic sample is missing at most a few objects in the regime we consider. Accepting the high-redshift results, it is clear that massive galaxies must undergo significant structural evolution over z ∼< 2 in order to match the population seen in the local universe. Our results suggest that a highly stochastic mechanism (e.g., major mergers) cannot be the primary driver of this strong size evolution.

  4. The different star formation histories of blue and red spiral and elliptical galaxies

    Science.gov (United States)

    Tojeiro, Rita; Masters, Karen L.; Richards, Joshua; Percival, Will J.; Bamford, Steven P.; Maraston, Claudia; Nichol, Robert C.; Skibba, Ramin; Thomas, Daniel

    2013-06-01

    We study the spectral properties of intermediate mass galaxies (M* ˜ 1010.7 M⊙) as a function of colour and morphology. We use Galaxy Zoo to define three morphological classes of galaxies, namely early types (ellipticals), late-type (disc-dominated) face-on spirals and early-type (bulge-dominated) face-on spirals. We classify these galaxies as blue or red according to their Sloan Digital Sky Survey (SDSS) g - r colour and use the spectral fitting code Versatile Spectral Analyses to calculate time-resolved star formation histories, metallicity and total starlight dust extinction from their SDSS fibre spectra. We find that red late-type spirals show less star formation in the last 500 Myr than blue late-type spirals by up to a factor of 3, but share similar star formation histories at earlier times. This decline in recent star formation explains their redder colour: their chemical and dust content are the same. We postulate that red late-type spirals are recent descendants of blue late-type spirals, with their star formation curtailed in the last 500 Myr. The red late-type spirals are however still forming stars ≃17 times faster than red ellipticals over the same period. Red early-type spirals lie between red late-type spirals and red ellipticals in terms of recent-to-intermediate star formation and dust content. Therefore, it is plausible that these galaxies represent an evolutionary link between these two populations. They are more likely to evolve directly into red ellipticals than red late-type spirals, which show star formation histories and dust content closer to blue late-type spirals. Blue ellipticals show similar star formation histories as blue spirals (regardless of type), except that they have formed less stars in the last 100 Myr. However, blue ellipticals have different dust content, which peaks at lower extinction values than all spiral galaxies. Therefore, many blue ellipticals are unlikely to be descendants of blue spirals, suggesting there may

  5. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    Science.gov (United States)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  6. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    Science.gov (United States)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  7. Cosmological information in the intrinsic alignments of luminous red galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Chisari, Nora Elisa [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Dvorkin, Cora, E-mail: nchisari@astro.princeton.edu, E-mail: cdvorkin@ias.edu [Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  8. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  9. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, Lee R.; Rees, Glen [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J. [Carnegie Observatories, Pasadena, CA 91101 (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Allen, Rebecca, E-mail: lee.spitler@mq.edu.au [Australian Astronomical Observatory, P.O. Box 296 Epping, NSW 1710 (Australia)

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  10. Ultraviolet photometry of stellar populations in galaxies

    International Nuclear Information System (INIS)

    Deharveng, J.M.

    1981-01-01

    The UV flux of stellar populations, which is essentially emitted by young stars, conveys information on the process of star formation and its recent history. However, the evaluation of the flux arising from the young stellar component may be difficult. In the case of late type galaxies it is hampered by the extinction and the effect of scattered stellar radiation. In the case of early type galaxies, the star formation, if any, has to be disentangled from the contribution of hot evolved stars and of a possible 'active' phenomenon. A review of observations and results relevant two cases is presented [fr

  11. The physical properties of galaxies with unusually red mid-infrared colours

    Science.gov (United States)

    Kauffmann, Guinevere

    2018-02-01

    The goal of this paper is to investigate the physical nature of galaxies in the redshift range 0.02 Survey Explorer, W1 - W2 band) colours is sharply peaked, with a long tail to much redder W1 - W2 colours. We introduce a procedure to pull out the red outlier population based on a combination of three stellar population diagnostics. When compared with optically selected active galactic nucleus (AGN), red outliers are more likely to be found in massive galaxies, and they tend to have lower stellar mass densities, younger stellar ages and higher dust content than optically selected AGN hosts. They are twice as likely to be detected at radio wavelengths. We examine W1 - W2 colour profiles for a subset of the nearest, reddest outliers and find that most are not centrally peaked, indicating that the hot dust emission is spread throughout the galaxy. We find that radio luminosity is the quantity that is most predictive of a redder central W1 - W2 colour. Radio-loud galaxies with centrally concentrated hot dust emission are almost always morphologically disturbed, with compact, unresolved emission at 1.4 GHz. The 80 per cent of such systems are identifiable as AGN using optical emission line diagnostics.

  12. Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies

    Science.gov (United States)

    Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.

    2018-04-01

    We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.

  13. THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

    International Nuclear Information System (INIS)

    Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei; Scarlata, Claudia; Capak, Peter; Carollo, C. M.; Oesch, Pascal; Ellis, Richard S.; Salvato, Mara; Scoville, Nick; Drory, Niv; Leauthaud, Alexie; Koekemoer, Anton M.; Murray, Norman; Ilbert, Olivier; Pozzetti, Lucia

    2010-01-01

    The increasing abundance of passive 'red-sequence' galaxies since z ∼ 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (∼ 10 M sun ) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M * ∼ 11 M sun increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z ∼ 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

  14. THE NATURE OF EXTREMELY RED H - [4.5] > 4 GALAXIES REVEALED WITH SEDS AND CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Caputi, K. I.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M. [SUPA, Institute for Astronomy, The University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Huang, J.-S.; Fazio, G. G.; Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Castellano, M.; Fontana, A. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Almaini, O. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Donley, J. L.; Ferguson, H. C.; Grogin, N. A.; Koekemoer, A. M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Faber, S. M.; Kocevski, D. D.; Koo, D. C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Giavalisco, M., E-mail: karina@astro.rug.nl [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2012-05-01

    We have analyzed a sample of 25 extremely red H - [4.5] > 4 galaxies, selected using 4.5 {mu}m data from the Spitzer SEDS survey and deep H-band data from the Hubble Space Telescope CANDELS survey, over {approx}180 arcmin{sup 2} of the UKIDSS Ultra-Deep Survey field. Our aim is to investigate the nature of this rare population of mid-infrared (mid-IR) sources that display such extreme near-to-mid-IR colors. Using up to 17-band photometry (U through 8.0 {mu}m), we have studied in detail their spectral energy distributions, including possible degeneracies in the photometric redshift/internal extinction (z{sub phot}-A{sub V} ) plane. Our sample appears to include sources of very different nature. Between 45% and 75% of them are dust-obscured, massive galaxies at 3 < z{sub phot} < 5. All of the 24 {mu}m detected sources in our sample are in this category. Two of these have S(24 {mu}m)>300 {mu}Jy, which at 3 < z{sub phot} < 5 suggests that they probably host a dust-obscured active galactic nucleus. Our sample also contains four highly obscured (A{sub V} > 5) sources at z{sub phot} < 1. Finally, we analyze in detail two z{sub phot} {approx} 6 galaxy candidates, and discuss their plausibility and implications. Overall, our red galaxy sample contains the tip of the iceberg of a larger population of z > 3 galaxies to be discovered with the future James Webb Space Telescope.

  15. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    Science.gov (United States)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  16. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  17. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertrand; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J.

    2015-01-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique

  18. THE RED SEQUENCE AT BIRTH IN THE GALAXY CLUSTER Cl J1449+0856 AT z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Strazzullo, V.; Pannella, M. [Department of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Daddi, E.; Valentino, F. [Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Gobat, R. [School of Physics, Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Brammer, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Onodera, M.; Arimoto, N. [Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 650 North A’ohoku Place, Hilo, HI, 96720 (United States); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Cimatti, A. [Dipartimento di Fisica e Astronomia, Universitá di Bologna, Viale Berti Pichat 6/2, I-30127, Bologna (Italy); Carollo, C. M., E-mail: vstrazz@usm.lmu.de [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland)

    2016-12-20

    We use Hubble Space Telescope /WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z = 2, one of the few bona fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red-sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest that the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterizing the inner cluster core with respect to lower-density environments. On the other hand, the color–magnitude diagram of this cluster is definitely different from that of lower-redshift z ≲ 1 clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the protocluster and established lower-redshift cluster regimes.

  19. THE ENVIRONMENTAL DEPENDENCE OF THE FRACTION OF 'UNCONVENTIONAL' GALAXIES: RED LATE TYPES AND BLUE EARLY TYPES

    International Nuclear Information System (INIS)

    Deng Xinfa; He Jizhou; Wu Ping; Ding Yingping

    2009-01-01

    From the Main galaxy sample of the Sloan Digital Sky Survey Data Release 6, we construct two volume-limited samples with the luminosity -20.0 ≤ M r ≤ -18.5 and -22.40 ≤ M r ≤ -20.16, respectively, to explore the environmental dependence of the fraction of 'unconventional' galaxies: red late types and blue early types. We use the density estimator within the distance to the fifth nearest neighbor, and construct two samples at both extremes of density and perform comparative studies between them for each volume-limited sample. Results of two volume-limited samples show the same conclusions: the fraction of red late-type galaxies rises considerably with increasing local density, and that one of the blue early-type galaxies declines substantially with increasing local density. In addition, we note that bluer galaxies preferentially are late types, but the red galaxies are not dominated by early types.

  20. redMaGiC: selecting luminous red galaxies from the DES Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, E. [Univ. of Arizona, Tucson, AZ (United States). et al.

    2016-05-30

    We introduce redMaGiC, an automated algorithm for selecting Luminous Red Galaxies (LRGs). The algorithm was developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the color-cuts necessary to produce a luminosity-thresholded LRG sam- ple of constant comoving density. Additionally, we demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine-learning based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalog sampling the redshift range z ϵ [0.2,0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1Mpc)-3, and a median photo-z bias (zspec zphoto) and scatter (σz=(1 + z)) of 0.005 and 0.017 respectively.The corresponding 5σ outlier fraction is 1.4%. We also test our algorithm with Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1% level.

  1. Extended Red Emission in the Evil Eye Galaxy

    Science.gov (United States)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2001-05-01

    The Evil Eye Galaxy (NGC 4826) is a nearby galaxy with an asymmetrically placed, strongly absorbing dust lane across its prominent bulge, associated to an active star formation (SF) region. We obtained accurate low--resolution (4.2 Å/pixel) spectroscopy (KPNO 4-m) of NGC 4826 in the wavelength range 5300--9100Å with a slit of 4.4' length, positioned across the nucleus of the galaxy and encompassing its bulge size. We were able to study the wavelength dependent effects of absorption and scattering by the dust by comparing the stellar SEDs at corresponding positions on the bulge, symmetrically placed with respect to the nucleus, under the assumption that the intrinsic (i.e. unobscured by the dust lane) ISRF is radially symmetric, except for the ongoing SF region. We report on the detection of strong extended red emission (ERE) from the dust lane of NGC 4826 within a radial distance of about 15{' '} from its nucleus, adjacent to the active SF region. At the nucleus, the ERE band extends from about 5800 Å to 9100 Å, with peak near 8300 Å, and the ERE-to-scattered light integrated intensity ratio is about 0.7. At farther distances, approaching the ongoing SF region, the ERE band and peak shift to longer wavelengths, while the integrated ERE intensity diminishes and, finally, vanishes there. The H α line intensity and the index [NII]λ 6583/H α constrain the Lyman continuum photon rate and the effective temperatures of the OB association stars. The ERE-to-scattered light ratio decreases as well but shows a secondary maximum where the opacity of the dust lane peaks. We interpret the ERE nature as photoluminescence by nanometer--sized clusters, illuminated by UV/visible photons of the local radiation field. When examined within the context of ERE observations in the diffuse ISM of our Galaxy and in a variety of other dusty environments, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere, but that the characteristic size

  2. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  3. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    Science.gov (United States)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  4. Constraints on stellar populations in elliptical galaxies

    International Nuclear Information System (INIS)

    Rose, J.A.

    1985-01-01

    Photographic image-tube spectra in the wavelength interval 3400--4500 A have been obtained for 12 elliptical galaxy nuclei and for a number of Galactic globular and open clusters in integrated light. The spectra have a wavelength resolution of 2.5 A and a high signal-to-noise ratio. A new quantitative three-dimensional spectral-classification system that has been calibrated on a sample of approx.200 individual stars (Rose 1984) is used to analyze the integrated spectra of the ellipical galaxy nuclei and to compare them with those of the globular clusters. This system is based on spectral indices that are formed by comparing neighborhood spectral features and is unaffected by reddening. The following results have been found: (1) Hot stars (i.e., spectral types A and B) contribute only 2% to the integrated spectra of elliptical galaxies at approx.4000 A, except in the nucleus of NGC 205, where the hot component dominates. This finding is based on a spectral index formed from the relative central intensities in the Ca II H+Hepsilon and Ca II K lines, which is shown to be constant for late-type (i.e., F, G, and K) stars, but changes drastically at earlier types. The observed Ca II H+Hepsilon/Ca II K indices in ellipticals can be reproduced by the inclusion of a small metal-poor population (as in the globular cluster M5) that contributes approx.8% of the light at 4000 A. Such a contribution is qualitatively consistent with the amount of

  5. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    Science.gov (United States)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0interesting to determine whether this mode of merging only plays an important role at low redshift or is relevant for galaxies at any redshift if they exceed a critical mass scale.

  6. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  7. GALEX-SELECTED LYMAN BREAK GALAXIES AT z ∼ 2: COMPARISON WITH OTHER POPULATIONS

    International Nuclear Information System (INIS)

    Haberzettl, L.; Williger, G.; Lehnert, M. D.; Nesvadba, N.; Davies, L.

    2012-01-01

    We present results of a search for bright Lyman break galaxies (LBGs) at 1.5 ≤ z ≤ 2.5 in the GOODS-S field using an NUV-dropout technique in combination with color selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to BM/BX and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find that about 20% of our LBG candidates are comparable to infrared-luminous LBGs or submillimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z ∼ 2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z ∼ 2 is therefore more directly comparable to the populations found at z ∼ 3, which does contain a red fraction.

  8. GALEX-SELECTED LYMAN BREAK GALAXIES AT z {approx} 2: COMPARISON WITH OTHER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Haberzettl, L.; Williger, G. [Department of Physics and Astronomy, University of Louisville, Louisville KY 20492 (United States); Lehnert, M. D. [GEPI, Observatoire de Paris, UMR 8111 du CNRS, 5 Place Jules Janssen, 92195 Meudon (France); Nesvadba, N. [Institut d' Astrophysique Spatiale, CNRS, Universite Paris-Sud, Bat. 120-121, 91405 Orsay (France); Davies, L. [Department of Physics, H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2012-01-20

    We present results of a search for bright Lyman break galaxies (LBGs) at 1.5 {<=} z {<=} 2.5 in the GOODS-S field using an NUV-dropout technique in combination with color selection. We derived a sample of 73 LBG candidates. We compare our selection efficiencies to BM/BX and BzK methods (techniques solely based on ground-based data sets), and find the NUV data to provide greater efficiency for selecting star-forming galaxies. We estimate LBG candidate ages, masses, star formation rates, and extinction from fitting PEGASE synthesis evolution models. We find that about 20% of our LBG candidates are comparable to infrared-luminous LBGs or submillimeter galaxies which are thought to be precursors of massive elliptical galaxies today. Overall, we can show that although BM/BX and BzK methods do identify star-forming galaxies at z {approx} 2, the sample they provide biases against those star-forming galaxies which are more massive and contain sizeable red stellar populations. A true Lyman break criterion at z {approx} 2 is therefore more directly comparable to the populations found at z {approx} 3, which does contain a red fraction.

  9. THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Allanson, Steven P.; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.

    2009-01-01

    This paper addresses the challenge of understanding the typical star formation histories of red-sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We first construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend, i.e., the stellar populations are younger, on average, for lower σ galaxies. We find, however, that this trend flattens or reverses at σ ∼ -1 . We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the fundamental plane (FP), or by the SAURON group. For galaxies with σ ∼ 70 km s -1 , models with a late 'frosting' of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The single stellar population (SSP) model is consistent with the FP, and requires a modest amount of dark matter (between 20% and 30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was 'quenched' at intermediate ages is also consistent with the observations, although in this case less dark matter is required for low mass galaxies. We also find that the contribution of stellar populations to the 'tilt' of the fundamental plane is highly dependent on the assumed star formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one-third is due to dark matter or non-homology.

  10. Stellar populations in distant radio galaxies

    International Nuclear Information System (INIS)

    Lilly, S.J.; Longair, M.S.

    1984-01-01

    A homogeneous data set of infrared observations of 83 3CR galaxies with redshifts 0< z<1.6, selected from a statistically complete sample of 90 radio sources, is used to study the colours and magnitudes of these galaxies as a function of their redshifts. New infrared observations are presented for 66 radio galaxies, in addition to new optical results obtained from a re-analysis of existing CCD images. It is shown that the infrared colours do not deviate from the predicted relations with redshift for a standard giant elliptical galaxy spectrum. The optical to infrared colours, however, show substantial deviations at high redshift. No galaxies have been found that are significantly redder than a passively evolving galaxy, and there is a significant scatter of colours bluewards from this model. The excess of ultraviolet light responsible for these colours is not concentrated at the nucleus, and is interpreted as resulting from bursts of star formation, throughout the galaxy. (author)

  11. Kinematic evidence of satellite galaxy populations in the potential wells of first-ranked cluster galaxies

    Science.gov (United States)

    Cowie, L. L.; Hu, E. M.

    1986-01-01

    The velocities of 38 centrally positioned galaxies (r much less than 100 kpc) were measured relative to the velocity of the first-ranked galaxy in 14 rich clusters. Analysis of the velocity distribution function of this sample and of previous data shows that the population cannot be fit by a single Gaussian. An adequate fit is obtained if 60 percent of the objects lie in a Gaussian with sigma = 250 km/s and the remainder in a population with sigma = 1400 km/s. All previous data sets are individually consistent with this conclusion. This suggests that there is a bound population of galaxies in the potential well of the central galaxy in addition to the normal population of the cluster core. This is taken as supporting evidence for the galactic cannibalism model of cD galaxy formation.

  12. The red supergiant population in the Perseus arm

    Science.gov (United States)

    Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-04-01

    We present a new catalogue of cool supergiants in a section of the Perseus arm, most of which had not been previously identified. To generate it, we have used a set of well-defined photometric criteria to select a large number of candidates (637) that were later observed at intermediate resolution in the infrared calcium triplet spectral range, using a long-slit spectrograph. To separate red supergiants from luminous red giants, we used a statistical method, developed in previous works and improved in the present paper. We present a method to assign probabilities of being a red supergiant to a given spectrum and use the properties of a population to generate clean samples, without contamination from lower luminosity stars. We compare our identification with a classification done using classical criteria and discuss their respective efficiencies and contaminations as identification methods. We confirm that our method is as efficient at finding supergiants as the best classical methods, but with a far lower contamination by red giants than any other method. The result is a catalogue with 197 cool supergiants, 191 of which did not appear in previous lists of red supergiants. This is the largest coherent catalogue of cool supergiants in the Galaxy.

  13. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  14. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  15. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    Science.gov (United States)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  16. CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS

    International Nuclear Information System (INIS)

    Davies, Ben; Origlia, Livia; Kudritzki, Rolf-Peter; Figer, Don F.; Rich, R. Michael; Najarro, Francisco; Negueruela, Ignacio; Clark, J. Simon

    2009-01-01

    The location of the Scutum Red Supergiant (RSG) clusters at the end of the Galactic Bar makes them an excellent probe of the Galaxy's secular evolution, while the clusters themselves are ideal testbeds in which to study the predictions of stellar evolutionary theory. To this end, we present a study of the RSG's surface abundances using a combination of high-resolution Keck/NIRSPEC H-band spectroscopy and spectral synthesis analysis. We provide abundance measurements for elements C, O, Si, Mg, Ti, and Fe. We find that the surface abundances of the stars studied are consistent with CNO burning and deep, rotationally enhanced mixing. The average α/Fe ratios of the clusters are solar, consistent with a thin-disk population. However, we find significantly subsolar Fe/H ratios for each cluster, a result which strongly contradicts a simple extrapolation of the Galactic metallicity gradient to lower Galactocentric distances. We suggest that a simple one-dimensional parameterization of the Galaxy's abundance patterns is insufficient at low Galactocentric distances, as large azimuthal variations may be present. Indeed, we show that the abundances of O, Si, and Mg are consistent with independent measurements of objects in similar locations in the Galaxy. In combining our results with other data in the literature, we present evidence for large-scale (∼ kpc) azimuthal variations in abundances at Galactocentric distances of 3-5 kpc. While we cannot rule out that this observed behavior is due to systematic offsets between different measurement techniques, we do find evidence for similar behavior in a study of the barred spiral galaxy NGC 4736 which uses homogeneous methodology. We suggest that these azimuthal abundance variations could result from the intense but patchy star formation driven by the potential of the central bar.

  17. The clustering evolution of distant red galaxies in the GOODS-MUSIC sample

    Science.gov (United States)

    Grazian, A.; Fontana, A.; Moscardini, L.; Salimbeni, S.; Menci, N.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2006-07-01

    Aims.We study the clustering properties of Distant Red Galaxies (DRGs) to test whether they are the progenitors of local massive galaxies. Methods.We use the GOODS-MUSIC sample, a catalog of ~3000 Ks-selected galaxies based on VLT and HST observation of the GOODS-South field with extended multi-wavelength coverage (from 0.3 to 8~μm) and accurate estimates of the photometric redshifts to select 179 DRGs with J-Ks≥ 1.3 in an area of 135 sq. arcmin.Results.We first show that the J-Ks≥ 1.3 criterion selects a rather heterogeneous sample of galaxies, going from the targeted high-redshift luminous evolved systems, to a significant fraction of lower redshift (1mass, like groups or small galaxy clusters. Low-z DRGs, on the other hand, will likely evolve into slightly less massive field galaxies.

  18. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    Science.gov (United States)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually

  19. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8582 (Japan); Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); Fritz, Jacopo [Sterrenkundig Observatorium Vakgroep Fysica en Sterrenkunde Universiteit Gent, Krijgslaan 281, S9 B-9000 Gent (Belgium); Calvi, Rosa; Paccagnella, Angela [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova, vicolo Osservatorio 2, I-35122 Padova (Italy)

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 Galaxy Group Catalog, we use the (U – B) {sub rf} color and morphologies to characterize galaxies, in particular those that show signs of an ongoing or recent transformation of their star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  20. Radial distributions of star populations in elliptical galaxies

    International Nuclear Information System (INIS)

    Angeletti, Lucio; Giannone, Pietro

    2010-01-01

    The dynamical structure of stars in low-ellipticity early-type galaxies has been approached in a conceptually simple manner by making use of the mass structure inferred from the radial surface brightness and the stellar metal abundance as derived from that of the contracting gas mass when the stars formed. Families of models depending on three parameters can be used to fit the surface radial profiles of spectro-photometric indices. In particular, the behavior of the spectral index Mg 2 is selected, and the observations for eleven galaxies are matched with models. With the fitting values of the free parameters, we have studied the spatial (within the galaxy) and projected (on the image of the galaxy) distributions of the metal abundances. We present the results for three chosen galaxies characterized by rather different values of the fitting parameters. Our results can be of interest for the formation of stellar populations and call attention to the need for more detailed observations.

  1. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    Science.gov (United States)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  2. On fitting the full spectrum of luminous red galaxies by using ULySS and STARLIGHT

    International Nuclear Information System (INIS)

    Liu Gao-Chao; Lu You-Jun; Chen Xue-Lei; Du Wei; Zhao Yong-Heng

    2013-01-01

    We select a sample of quiescent luminous red galaxies (LRGs) from the Sloan Digital Sky Survey Data Release 7 with a high signal-to-noise ratio (S/N) to study the consistency of fitting the full spectrum by using different packages, mainly, ULySS and STARLIGHT. The spectrum of each galaxy in the sample is fitted by the full spectrum fitting packages ULySS and STARLIGHT. We find: (1) for spectra with higher S/Ns, the ages of stellar populations obtained from ULySS are slightly older than those from STARLIGHT, and metallicities derived from ULySS are slightly richer than those from STARLIGHT. In general, both packages can give roughly consistent fitting results. (2) For low S/N spectra, it is possible that the fitting by ULySS can become trapped at some local minimum in the parameter space during execution and thus may give unreliable results, but STARLIGHT can still give reliable results. Based on the fitting results of LRGs, we further analyze their star formation history and the relation between their age and velocity dispersion, and find that they agree well with conclusions from previous works

  3. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Justtanont, Kay [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Glasse, Alistair [UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2017-05-20

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  4. THE MID-INFRARED AND NEAR-ULTRAVIOLET EXCESS EMISSIONS OF QUIESCENT GALAXIES ON THE RED SEQUENCE

    International Nuclear Information System (INIS)

    Ko, Jongwan; Lee, Jong Chul; Hwang, Ho Seong; Sohn, Young-Jong

    2013-01-01

    We study the mid-infrared (IR) and near-ultraviolet (UV) excess emissions of spectroscopically selected quiescent galaxies on the optical red sequence. We use the Wide-field Infrared Survey Explorer mid-IR and Galaxy Evolution Explorer near-UV data for a spectroscopic sample of galaxies in the Sloan Digital Sky Survey Data Release 7 to study the possible connection between quiescent red-sequence galaxies with and without mid-IR/near-UV excess. Among 648 12 μm detected quiescent red-sequence galaxies without Hα emission, 26% and 55% show near-UV and mid-IR excess emissions, respectively. When we consider only bright (M r n 4000 than those without mid-IR and near-UV excess emissions. We also find that mid-IR weighted mean stellar ages of quiescent red-sequence galaxies with mid-IR excess are larger than those with near-UV excess, and smaller than those without mid-IR and near-UV excess. The environmental dependence of the fraction of quiescent red-sequence galaxies with mid-IR and near-UV excess seems strong even though the trends of quiescent red-sequence galaxies with near-UV excess differ from those with mid-IR excess. These results indicate that the recent star formation traced by near-UV (∼< 1 Gyr) and mid-IR (∼< 2 Gyr) excess is not negligible among nearby, quiescent, red, early-type galaxies. We suggest a possible evolutionary scenario of quiescent red-sequence galaxies from quiescent red-sequence galaxies with near-UV excess to those with mid-IR excess to those without near-UV and mid-IR excess.

  5. Revisiting The First Galaxies: The epoch of Population III stars

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  6. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  7. Stellar population in star formation regions of galaxies

    Science.gov (United States)

    Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.

    2018-05-01

    We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.

  8. POST-MERGER SIGNATURES OF RED-SEQUENCE GALAXIES IN RICH ABELL CLUSTERS AT z ∼< 0.1

    International Nuclear Information System (INIS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Lee, Jaehyun; Ree, Chang H.

    2012-01-01

    We have investigated the post-merger signatures of red-sequence galaxies in rich Abell clusters at z ∼ r < –20) cluster red-sequence galaxies show post-merger signatures in four clusters consistently. Most (∼71%) of the featured galaxies were found to be bulge dominated, and for the subsample of bulge-dominated red-sequence galaxies, the post-merger fraction rises to ∼38%. We also found that roughly 4% of bulge-dominated red-sequence galaxies interact (ongoing merger). A total of 42% (38% post-merger, 4% ongoing merger) of galaxies show merger-related features. Compared to a field galaxy study with a similar limiting magnitude by van Dokkum in 2005, our cluster study presents a similar post-merger fraction but a markedly lower ongoing merger fraction. The merger fraction derived is surprisingly high for the high density of our clusters, where the fast internal motions of galaxies are thought to play a negative role in galaxy mergers. The fraction of post-merger and ongoing merger galaxies can be explained as follows. Most of the post-merger galaxies may have carried over their merger features from their previous halo environment, whereas interacting galaxies interact in the current cluster in situ. According to our semi-analytic calculation, massive cluster halos may very well have experienced tens of halo mergers over the last 4-5 Gyr; post-merger features last that long, allowing these features to be detected in our clusters today. The apparent lack of dependence of the merger fraction on the clustocentric distance is naturally explained this way. In this scenario, the galaxy morphology and properties can be properly interpreted only when the halo evolution characteristics are understood first.

  9. Stellar kinematics and populations out to 1.5 effective radii in the elliptical galaxy NGC 4636

    International Nuclear Information System (INIS)

    Pu Shibi; Han Zhanwen

    2011-01-01

    We present high quality long slit spectra along the major and minor axes out to 1.5 effective radii of the massive galaxy NGC 4636 taken by the Hobby-Eberly Telescope. Using the Fourier Correlation Quotient method, we measured the stellar line-of-sight velocity distribution along the axes. Furthermore, six Lick/IDS indices (Hβ, Mgb, Fe 5015 , Fe 5270 , Fe 5335 , Fe 5406 ) are derived from the clean spectrum. By comparing the measured absorption line strengths with the predictions of Simple Stellar Population (SSP) models, we derived ages, total metallicity and α abundance profiles of the galaxy. This galaxy presents old and [α/Fe] overabundant stellar populations. Indeed, using the SSP model, we obtained the broadband color profiles. The theoretical colors match well with the measured colors and present red sharp peaks at the galaxy center. The sharp peaks of the colors are mainly shaped by the high metallicity in the galaxy's center. Interestingly, the galaxy has steep negative metallicity gradients, but the trend flattens outwards. This result likely suggests that the center and outer regions of the galaxy formed through different formation processes.

  10. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  11. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  12. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  13. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Michael J.; Harris, Gretchen L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Harris, William E., E-mail: mjhudson@uwaterloo.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  14. RED FRACTION AMONG SATELLITE GALAXIES WITH DISK-LIKE LIGHT PROFILES: EVIDENCE FOR INFLOW IN THE H I DISK

    International Nuclear Information System (INIS)

    Hester, J. A.

    2010-01-01

    The relationships between color, characterized with respect to the g - r red sequence; stellar structure, as determined using the i-band Sersic index; and group membership are explored using the Sloan Digital Sky Survey (SDSS). The new results place novel constraints on theories of galaxy evolution, despite the strong correlation between color and stellar structure. Observed correlations are of three independent types-those based on stellar structure, on the color of disk-like galaxies, and on the color of elliptical galaxies. Of particular note, the fraction of galaxies residing on the red sequence measured among galaxies with disk-like light profiles is enhanced for satellite galaxies compared to central galaxies. This fraction increases with group mass. When these new results are considered, theoretical treatments of galaxy evolution that adopt a gas accretion model centered on the hot galactic halo cannot consistently account for all observations of disk galaxies. The hypothesis is advanced that inflow within the extended H I disk prolongs star formation in satellite galaxies. When combined with partial ram pressure stripping (RPS) of this disk, this new scenario is consistent with the observations. This is demonstrated by applying an analytical model of RPS of the extended H I disk to the SDSS groups. These results motivate incorporating more complex modes of gas accretion into models of galaxy evolution, including cold mode accretion, an improved treatment of gas dynamics within disks, and disk stripping.

  15. The Resolved Stellar Populations in the LEGUS Galaxies1

    Science.gov (United States)

    Sabbi, E.; Calzetti, D.; Ubeda, L.; Adamo, A.; Cignoni, M.; Thilker, D.; Aloisi, A.; Elmegreen, B. G.; Elmegreen, D. M.; Gouliermis, D. A.; Grebel, E. K.; Messa, M.; Smith, L. J.; Tosi, M.; Dolphin, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; Clayton, G. C.; Cook, D. O.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Grasha, K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Lennon, D.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in 5 bands from the near-UV to the I-band, combining new Wide Field Camera 3 observations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near-UV color–magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color–magnitude diagrams to identify stars more massive than 14 M ⊙, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the timescale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  16. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  17. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  18. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  19. Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy formation model

    Science.gov (United States)

    Rong, Yu; Jing, Yingjie; Gao, Liang; Guo, Qi; Wang, Jie; Sun, Shuangpeng; Wang, Lin; Pan, Jun

    2017-10-01

    We take advantage of the statistical power of the large-volume dark-matter-only Millennium simulation (MS), combined with a sophisticated semi-analytic galaxy formation model, to explore whether the recently reported z = 3.7 quiescent galaxy ZF-COSMOS-20115 (ZF) can be accommodated in current galaxy formation models. In our model, a population of quiescent galaxies with stellar masses and star formation rates comparable to those of ZF naturally emerges at redshifts z 3.5 massive QGs are rare (about 2 per cent of the galaxies with the similar stellar masses), the existing AGN feedback model implemented in the semi-analytic galaxy formation model can successfully explain the formation of the high-redshift QGs as it does on their lower redshift counterparts.

  20. Population III Stars and Remnants in High-redshift Galaxies

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.

    2013-08-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  1. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-01-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims.

  2. 3He, red dwarf stars and future trillion years of the Galaxy

    International Nuclear Information System (INIS)

    Solpiter, Eh.Eh.

    1986-01-01

    Certain problems of red dwarf evolution are considered. On the basis of the observed upper limit of 3 He content in interstellar medium the evaluation of the limit of average rate of a dwarf star mass loss is given. For a typical dwarf of the age approximately equal to half of the Galaxy age the upper limit for the average part of the star mass, which has been lost in 10 10 years by means of stellar wind, constitutes g≤0.04. If g is near its upper limit, equal to 0.04, energy inflow to the interstellar medium from dwarfs is small, as compared with supernovae in the Galaxy, but not negligible

  3. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    Science.gov (United States)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities ~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.

  4. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    International Nuclear Information System (INIS)

    Rodríguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-01-01

    for the ΛCDM cosmology. However, we confirm that the maximum circular velocity, v max , of the subhalos of satellites smaller than m * ∼ 10 8 M ☉ is systematically larger than the v max inferred from current observational studies of the MW bright dwarf satellites; different from previous works, this conclusion is based on an analysis of the overall population of MW-sized galaxies. Some pieces of evidence suggest that the issue could refer only to satellite dwarfs but not to central dwarfs, then environmental processes associated with dwarfs inside host halos combined with supernova-driven core expansion should be on the basis of the lowering of v max

  5. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Xu Hao; Norman, Michael L.; Wise, John H.

    2013-01-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies

  6. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Girardi, Leo; Dolphin, A.

    2010-01-01

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10 -4 M sun yr -1 ) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  7. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    Science.gov (United States)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2z<0.5, in the optical richness range 10-70. We tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  8. Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites

    International Nuclear Information System (INIS)

    Huang, Hung-Jin; Mandelbaum, Rachel; Freeman, Peter E.; Chen, Yen-Chi

    2016-01-01

    The shapes of cluster central galaxies are not randomly oriented, but rather exhibit coherent alignments with the shapes of their parent clusters as well as with the surrounding large-scale structures. In this work, we aim to identify the galaxy and cluster quantities that most strongly predict the central galaxy alignment phenomenon among a large parameter space with a sample of 8237 clusters and 94 817 members within 0.1 < z < 0.35, based on the red-sequence Matched-filter Probabilistic Percolation cluster catalogue constructed from the Sloan Digital Sky Survey. We first quantify the alignment between the projected central galaxy shapes and the distribution of member satellites, to understand what central galaxy and cluster properties most strongly correlate with these alignments. Next, we investigate the angular segregation of satellites with respect to their central galaxy major axis directions, to identify the satellite properties that most strongly predict their angular segregation. We find that central galaxies are more aligned with their member galaxy distributions in clusters that are more elongated and have higher richness, and for central galaxies with larger physical size, higher luminosity and centring probability, and redder colour. Satellites with redder colour, higher luminosity, located closer to the central galaxy, and with smaller ellipticity show a stronger angular segregation towards their central galaxy major axes. Lastly, we provide physical explanations for some of the identified correlations, and discuss the connection to theories of central galaxy alignments, the impact of primordial alignments with tidal fields, and the importance of anisotropic accretion.

  9. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-01-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 14-15 M ☉ . We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10 11 M ☉ , assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z) 5.1±1.9 over the range 0.3 cluster ). The evolution is similar, with ΣSFR/M cluster ∼ (1 + z) 5.4±1.9 . We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M cluster ∼M cluster -1.5±0.4 ) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ∼ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ∼ 0.75 have the same

  10. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  11. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  12. Green valley galaxies as a transition population in different environments

    Science.gov (United States)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  13. Resolving the age bimodality of galaxy stellar populations on kpc scales

    NARCIS (Netherlands)

    Zibetti, Stefano; Gallazzi, Anna R.; Ascasibar, Y.; Charlot, S.; Galbany, L.; García Benito, R.; Kehrig, C.; de Lorenzo-Cáceres, A.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2017-01-01

    Galaxies in the local Universe are known to follow bimodal distributions in the global stellar population properties. We analyse the distribution of the local average stellar population ages of 654 053 sub-galactic regions resolved on ˜1 kpc scales in a volume-corrected sample of 394 galaxies, drawn

  14. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes

    Science.gov (United States)

    Masaki, Shogo; Hikage, Chiaki; Takada, Masahiro; Spergel, David N.; Sugiyama, Naoshi

    2013-08-01

    We develop a novel abundance matching method to construct a mock catalogue of luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), using catalogues of haloes and subhaloes in N-body simulations for a Λ-dominated cold dark matter model. Motivated by observations suggesting that LRGs are passively evolving, massive early-type galaxies with a typical age ≳5 Gyr, we assume that simulated haloes at z = 2 (z2-halo) are progenitors for LRG-host subhaloes observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG `stars'. We then identify the subhaloes containing these stars to z = 0.3 (SDSS redshift) in descending order of the masses of z2-haloes until the comoving number density of the matched subhaloes becomes comparable to the measured number density of SDSS LRGs, bar{n}_LRG=10^{-4} h^3 Mpc^{-3}. Once the above prescription is determined, our only free parameter is the number density of haloes identified at z = 2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalogue, the distributions of central and satellite LRGs and their internal motions in each host halo at z = 0.3. While the SDSS LRGs are galaxies selected by the magnitude and colour cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalogue reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected autocorrelation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing) and the non-linear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum. The mock catalogue generated based on our method can be used for removing or calibrating systematic errors in the cosmological interpretation of LRG clustering

  15. Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies

    Science.gov (United States)

    Kushnir, Doron

    2011-08-01

    We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).

  16. DISSECTING THE RED SEQUENCE. II. STAR FORMATION HISTORIES OF EARLY-TYPE GALAXIES THROUGHOUT THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Graves, Genevieve J.; Faber, S. M.; Schiavon, Ricardo P.

    2009-01-01

    This analysis uses spectra of ∼16,000 nearby Sloan Digital Sky Survey quiescent galaxies to track variations in galaxy star formation histories (SFHs) along and perpendicular to the fundamental plane (FP). We sort galaxies by their FP properties (σ, R e , and I e ) and construct high signal-to-noise ratio mean galaxy spectra that span the breadth and thickness of the FP. From these spectra, we determine mean luminosity-weighted ages, [Fe/H], [Mg/H], and [Mg/Fe] based on single stellar population models using the method described in Graves and Schiavon. In agreement with previous work, the SFHs of early-type galaxies are found to form a two-parameter family. The major trend is that mean age, [Fe/H], [Mg/H], and [Mg/Fe] all increase with σ. However, no stellar population property shows any dependence on R e at fixed σ, suggesting that σ and not dynamical mass (M dyn ∝ σ 2 R e ) is the better predictor of past SFH. In addition to the main trend with σ, galaxies also show a range of population properties at fixed σ that are strongly correlated with surface brightness residuals from the FP (Δlog I e ), such that higher surface brightness galaxies have younger mean ages, higher [Fe/H], higher [Mg/H], and lower [Mg/Fe] than lower surface brightness galaxies. These latter trends are a major new constraint on SFHs.

  17. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  18. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    OpenAIRE

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-01-01

    We present the first in a series of papers in T$h$e role of $E$nvironment in shaping $L$ow-mass $E$arly-type $N$earby g$a$laxies (hELENa) project. In this paper we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS$^{\\mathrm{3D}}$ survey - all observed with the SAURON integral field unit (IFU) - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, exten...

  19. TOPOLOGY OF LUMINOUS RED GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Choi, Yun-Young; Kim, Juhan; Rossi, Graziano; Kim, Sungsoo S.; Lee, Jeong-Eun

    2013-01-01

    We present measurements of the genus topology of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Data Release 7 catalog, with unprecedented statistical significance. To estimate the uncertainties in the measured genus, we construct 81 mock SDSS LRG surveys along the past light cone from Horizon Run 3, one of the largest N-body simulations to date, which evolved 7210 3 particles in a 10,815 h –1  Mpc box. After carefully modeling and removing all known systematic effects due to finite pixel size, survey boundary, radial and angular selection functions, shot noise, and galaxy biasing, we find that the observed genus amplitude reaches 272 at a 22 h –1  Mpc smoothing scale, with an uncertainty of 4.2%; the estimated error fully incorporates cosmic variance. This is the most accurate constraint on the genus amplitude to date and significantly improves on our previous results. In particular, the shape of the genus curve agrees very well with the mean topology of the SDSS LRG mock surveys in a Λ cold dark matter universe. However, comparison with simulations also shows small deviations of the observed genus curve from the theoretical expectation for Gaussian initial conditions. While these discrepancies are mainly driven by known systematic effects such as shot noise and redshift-space distortions, they do contain important cosmological information on the physical effects connected with galaxy formation, gravitational evolution, and primordial non-Gaussianity. We address the key role played by systematics on the genus curve and show how to accurately correct for their effects to recover the topology of the underlying matter. A future work will provide an interpretation of these deviations in the context of the local model of non-Gaussianity

  20. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  2. The redMaPPer Galaxy Cluster Catalog From DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E. S. [et al.

    2016-04-29

    We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150\\,\\mathrm{deg}^2$ of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $\\lambda>20$ (roughly equivalent to $M_{\\mathrm{500c}}\\gtrsim10^{14}\\,h_{70}^{-1}\\,M_{\\odot}$) and 0.2 < $z$ <0.9. The DR8 catalog consists of 26311 clusters with 0.08 < $z$ < 0.6, with a sharply increasing richness threshold as a function of redshift for $z\\gtrsim 0.35$. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the $\\sigma_z/(1+z)\\sim 0.01$ level for $z\\lesssim0.7$, rising to $\\sim0.02$ at $z\\sim0.9$ in DES SV. We make use of $Chandra$ and $XMM$ X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-$z$ and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.

  3. Establishment of a Viable Population of Red-Cockaded Woodpeckers at the Savannah River Site

    International Nuclear Information System (INIS)

    Johnston, P.A.

    2002-01-01

    Report on program's objective to restore viable population of Red-cockaded woodpecker at SRS. Several management strategies were used to promote population expansion of Red-cockaded woodpecker and reduction of interspecific competition with Red-Cockaded woodpecker

  4. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    Science.gov (United States)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  5. SHARDS: a spectro-photometric analysis of distant red and dead massive galaxies

    Science.gov (United States)

    Pérez-González, P. G.; Cava, A.; The Shards Team

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey carried out with GTC/OSIRIS and designed to select and study massive passively evolving galaxies at z= 1.0--2.5 in the GOODS-N field. The survey uses a set of 24 medium band filters (FWHM ˜15 nm) covering the 500--950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ˜280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) construct for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Δ z/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  6. STELLAR POPULATIONS AND RADIAL MIGRATIONS IN VIRGO DISK GALAXIES

    International Nuclear Information System (INIS)

    Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael

    2012-01-01

    We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ( U -shapes ) in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (≤36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (∼11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (≥50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field

  7. Genetic assessment of captive red panda (Ailurus fulgens) population.

    Science.gov (United States)

    Kumar, Arun; Rai, Upashna; Roka, Bhupen; Jha, Alankar K; Reddy, P Anuradha

    2016-01-01

    Red panda (Ailurus fulgens) is threatened across its range by detrimental human activities and rapid habitat changes necessitating captive breeding programs in various zoos globally to save this flagship species from extinction. One of the ultimate aims of ex situ conservation is reintroduction of endangered animals into their natural habitats while maintaining 90 % of the founder genetic diversity. Advances in molecular genetics and microsatellite genotyping techniques make it possible to accurately estimate genetic diversity of captive animals of unknown ancestry. Here we assess genetic diversity of the red panda population in Padmaja Naidu Himalayan Zoological Park, Darjeeling, which plays a pivotal role in ex situ conservation of red panda in India. We generated microsatellite genotypes of fifteen red pandas with a set of fourteen loci. This population is genetically diverse with 68 % observed heterozygosity (H O ) and mean inbreeding (F IS ) coefficient of 0.05. However population viability analysis reveals that this population has a very low survival probability (<2 %) and will rapidly loose its genetic diversity to 37 % mainly due to small population size and skewed male-biased sex ratio. Regular supplementation with a pair of adult individuals every five years will increase survival probability and genetic diversity to 99 and 61 % respectively and will also support future harvesting of individuals for reintroduction into the wild and exchange with other zoos.

  8. Evolution of galaxies in clusters. V. A study of populations since zapprox.0.5

    International Nuclear Information System (INIS)

    Butcher, H.; Oemler, A. Jr.

    1984-01-01

    In this paper we analyze photometry of 33 clusters of galaxies, with redshifts between 0.003 (the Virgo Cluster) and 0.54 (Cl 0016+16) to search for evolution of the colors of cluster populations. In each cluster we select these galaxies brighter than M/sub V/ = -20 which are within the circular area containing the inner 30% of the total Jupiter population. From the distribution of these galaxies in the color-magnitude plane, we determine the fraction of galaxies whose rest-frame B-V colors are at least 0.2 mag bluer than the ridge line of the early type galaxies at that magnitude. We define this to be the blue galaxy population, f/sub B/, and find it to have the following characteristics in compact, concentrated clusters: (1) For z or approx. =0.1 f/sub B/ increases with redshift reaching f/sub B/approx.0.25 at z = 0.5. (3) The values of f/sub B/ seen in clusters at a particular redshift are mostly consistent with clusters being random samples of one homogeneous galaxy population, but there is some evidence that processes within individual clusters may also affect the galaxy content

  9. Morphologies and stellar populations of galaxies in the core of Abell 2218

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Pedraz, S.; Covone, G.

    2007-01-01

    We present a study of the stellar populations and morphologies of galaxies in the core of the galaxy cluster Abell 2218. Integral field spectroscopy (IFS) observations were performed using PMAS in the PPAK mode covering a field of view of similar to 74 x 64 arcsec(2) centred on the core of the

  10. Population and breeding success of Red-headed Vulture Sarcogyps ...

    African Journals Online (AJOL)

    Campbell Murn

    the population trends of Red-headed and Egyptian Vultures in Nepal, where this study was undertaken. Large-scale surveys of domestic ungulate carcasses (the principal food source of vultures in South Asia) across India indicate that 10-11% of carcasses are contaminated with diclofenac (Cuthbert et al. 2011b).

  11. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    Science.gov (United States)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  12. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T. M. A.; O' Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison [McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 (Canada); Gilbank, David [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ellingson, Erica [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States); Gladders, Mike [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Muzzin, Adam [Leiden Observatory, University of Leiden, Niels Bohrweg 2, NL-2333 CA, Leiden (Netherlands); Wilson, Gillian [Department of Physics and Astronomy, University of California at Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Yan, Renbin [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  13. Stellar population gradients in galaxy discs from the CALIFA survey

    Czech Academy of Sciences Publication Activity Database

    Sanchez-Blazquez, P.; Méndez-Abreu, J.; Pérez, I.; Sanchez, S.F.; Zibetti, S.; Aguerri, J.A.L.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; Fernandes, R.C.; de Amorim, A.; de Lorenzo-Caceres, A.; Falcon-Barroso, J.; Galazzi, A.; Garcia Benito, R.; Gil de Paz, A.; Gonzalez Delgado, R.; Husemann, B.; Iglesias-Paramo, J.; Jungwiert, Bruno; Marino, R.A.; Márquez, I.; Mast, D.; Mendoza, M.A.; Molla, M.; Papaderos, P.; Ruiz-Lara, T.; van de Ven, G.; Walcher, C.J.; Wisotzki, L.

    2014-01-01

    Roč. 570, October (2014), A6/1-A6/85 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : galaxies * abundances * evolution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  14. Diversity and population structure of red rice germplasm in Bangladesh.

    Directory of Open Access Journals (Sweden)

    M Z Islam

    Full Text Available While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35. While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V, a similar SSR analysis yielded only three major groups (I, II, and III, and a model-based population structure analysis yielded four (A, B, C and D. Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA, as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207 among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular

  15. Diversity and population structure of red rice germplasm in Bangladesh.

    Science.gov (United States)

    Islam, M Z; Khalequzzaman, M; Prince, M F R K; Siddique, M A; Rashid, E S M H; Ahmed, M S U; Pittendrigh, B R; Ali, M P

    2018-01-01

    While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI) genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR) markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC) indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35). While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V), a similar SSR analysis yielded only three major groups (I, II, and III), and a model-based population structure analysis yielded four (A, B, C and D). Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA), as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207) among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular breeding programs.

  16. THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT z < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE

    International Nuclear Information System (INIS)

    Rudnick, Gregory; Von der Linden, Anja; De Lucia, Gabriella; White, Simon; Pello, Roser; Aragon-Salamanca, Alfonso; Marchesini, Danilo; Clowe, Douglas; Halliday, Claire; Jablonka, Pascale; Milvang-Jensen, Bo; Poggianti, Bianca; Saglia, Roberto; Simard, Luc; Zaritsky, Dennis

    2009-01-01

    We present the rest-frame optical luminosity function (LF) of red-sequence galaxies in 16 clusters at 0.4 < z < 0.8 drawn from the ESO Distant Cluster Survey (EDisCS). We compare our clusters to an analogous sample from the Sloan Digital Sky Survey (SDSS) and match the EDisCS clusters to their most likely descendants. We measure all LFs down to M ∼ M * + (2.5-3.5). At z < 0.8, the bright end of the LF is consistent with passive evolution but there is a significant buildup of the faint end of the red sequence toward lower redshift. There is a weak dependence of the LF on cluster velocity dispersion for EDisCS but no such dependence for the SDSS clusters. We find tentative evidence that red-sequence galaxies brighter than a threshold magnitude are already in place, and that this threshold evolves to fainter magnitudes toward lower redshifts. We compare the EDisCS LFs with the LF of coeval red-sequence galaxies in the field and find that the bright end of the LFs agree. However, relative to the number of bright red galaxies, the field has more faint red galaxies than clusters at 0.6 < z < 0.8 but fewer at 0.4 < z < 0.6, implying differential evolution. We compare the total light in the EDisCS cluster red sequences to the total red-sequence light in our SDSS cluster sample. Clusters at 0.4 < z < 0.8 must increase their luminosity on the red sequence (and therefore stellar mass in red galaxies) by a factor of 1-3 by z = 0. The necessary processes that add mass to the red sequence in clusters predict local clusters that are overluminous as compared to those observed in the SDSS. The predicted cluster luminosities can be reconciled with observed local cluster luminosities by combining multiple previously known effects.

  17. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16galaxy peculiar velocities, and galaxy clustering-- that can discriminate between different theories of gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  18. Local Stellar Kinematics from RAVE data - V. Kinematic Investigation of the Galaxy with Red Clump Stars

    Science.gov (United States)

    Karaali, S.; Bilir, S.; Ak, S.; Gökçe, E. Yaz; Önal, Ö.; Ak, T.

    2014-02-01

    We investigated the space velocity components of 6 610 red clump (RC) stars in terms of vertical distance, Galactocentric radial distance and Galactic longitude. Stellar velocity vectors are corrected for differential rotation of the Galaxy which is taken into account using photometric distances of RC stars. The space velocity components estimated for the sample stars above and below the Galactic plane are compatible only for the space velocity component in the direction to the Galactic rotation of the thin disc stars. The space velocity component in the direction to the Galactic rotation (V lsr) shows a smooth variation relative to the mean Galactocentric radial distance (Rm ), while it attains its maximum at the Galactic plane. The space velocity components in the direction to the Galactic centre (U lsr) and in the vertical direction (W lsr) show almost flat distributions relative to Rm , with small changes in their trends at Rm ~ 7.5 kpc. U lsr values estimated for the RC stars in quadrant 180° RC stars above the Galactic plane move towards the North Galactic Pole, whereas those below the Galactic plane move in the opposite direction. In the case of quadrant 180° RC stars above and below the Galactic plane move towards the Galactic plane. We stated that the Galactic long bar is the probable origin of many, but not all, of the detected features.

  19. Dispersal patterns of red foxes relative to population density

    Science.gov (United States)

    Allen, Stephen H.; Sargeant, Alan B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  20. PAHs sensitivity of picophytoplankton populations in the Red Sea.

    Science.gov (United States)

    Kottuparambil, Sreejith; Agusti, Susana

    2018-04-25

    In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. PAHs sensitivity of picophytoplankton populations in the Red Sea

    KAUST Repository

    Kottuparambil, Sreejith

    2018-04-25

    In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea.

  2. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Steven L.; Pawlik, Andreas H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Finlator, Kristian [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh (United Kingdom); Faber, Sandy M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Newman, Jeffrey A., E-mail: stevenf@astro.as.utexas.edu [Department of Physics and Astronomy and Pitt-PACC, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2012-10-20

    We present measurements of the specific ultraviolet luminosity density from a sample of 483 galaxies at 6 {approx}< z {approx}< 8. These galaxies were selected from new deep near-infrared Hubble Space Telescope imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble UltraDeep Field 2009, and Wide Field Camera 3 Early Release Science programs. We investigate the contribution to reionization from galaxies that we observe directly, thus sidestepping the uncertainties inherent in complementary studies that have invoked assumptions regarding the intrinsic shape or the faint-end cutoff of the galaxy ultraviolet (UV) luminosity function. Due to our larger survey volume, wider wavelength coverage, and updated assumptions about the clumping of gas in the intergalactic medium (IGM), we find that the observable population of galaxies can sustain a fully reionized IGM at z = 6, if the average ionizing photon escape fraction (f {sub esc}) is {approx}30%. Our result contrasts with a number of previous studies that have measured UV luminosity densities at these redshifts that vary by a factor of five, with many concluding that galaxies could not complete reionization by z = 6 unless a large population of galaxies fainter than the detection limit were invoked, or extremely high values of f {sub esc} were present. The specific UV luminosity density from our observed galaxy samples at z = 7 and 8 is not sufficient to maintain a fully reionized IGM unless f {sub esc} > 50%. We examine the contribution from galaxies in different luminosity ranges and find that the sub-L* galaxies we detect are stronger contributors to the ionizing photon budget than the L > L* population, unless f {sub esc} is luminosity dependent. Combining our observations with constraints on the emission rate of ionizing photons from Ly{alpha} forest observations at z = 6, we find that we can constrain f {sub esc} < 34% (2{sigma}) if the observed galaxies are the only contributors to

  3. ORIGIN OF 12 μm EMISSION ACROSS GALAXY POPULATIONS FROM WISE AND SDSS SURVEYS

    International Nuclear Information System (INIS)

    Donoso, E.; Yan Lin; Tsai, C.; Eisenhardt, P.; Stern, D.; Assef, R. J.; Leisawitz, D.; Jarrett, T. H.; Stanford, S. A.

    2012-01-01

    We cross-matched Wide-field Infrared Survey Explorer sources brighter than 1 mJy at 12 μm with the Sloan Digital Sky Survey galaxy spectroscopic catalog to produce a sample of ∼10 5 galaxies at (z) = 0.08, the largest of its kind. This sample is dominated (70%) by star-forming (SF) galaxies from the blue sequence, with total IR luminosities in the range ∼10 8 -10 12 L ☉ . We identify which stellar populations are responsible for most of the 12 μm emission. We find that most (∼80%) of the 12 μm emission in SF galaxies is produced by stellar populations younger than 0.6 Gyr. In contrast, the 12 μm emission in weak active galactic nuclei (AGNs; L [Oiii] 7 L . ) is produced by older stars, with ages of ∼1-3 Gyr. We find that L 12μm linearly correlates with stellar mass for SF galaxies. At fixed 12 μm luminosity, weak AGNs deviate toward higher masses since they tend to be hosted by massive, early-type galaxies with older stellar populations. SF galaxies and weak AGNs follow different L 12μm -SFR (star formation rate) relations, with weak AGNs showing excess 12 μm emission at low SFR (0.02-1 M ☉ yr –1 ). This is likely due to dust grains heated by older stars. While the specific star formation rate (SSFR) of SF galaxies is nearly constant, the SSFR of weak AGNs decreases by ∼3 orders of magnitude, reflecting the very different star formation efficiencies between SF galaxies and massive, early-type galaxies. Stronger type II AGNs in our sample (L[ Oiii] > 10 7 L . ), act as an extension of massive SF galaxies, connecting the SF and weak AGN sequences. This suggests a picture where galaxies form stars normally until an AGN (possibly after a starburst episode) starts to gradually quench the SF activity. We also find that 4.6-12 μm color is a useful first-order indicator of SF activity in a galaxy when no other data are available.

  4. ON THE POPULATION OF H-I DWARF GALAXIES

    NARCIS (Netherlands)

    WEINBERG, DH; SZOMORU, A; GUHATHAKURTA, P; VANGORKOM, JH

    1991-01-01

    We report results from a 21 cm survey of fields in the Perseus-Pisces supercluster and a foreground void, which was designed to find gas-rich dwarf galaxies or optically faint H I clouds with masses M(HI) greater-than-or-similar-to 10(8) M.. We detected 16 objects in the supercluster, nine of them

  5. The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies

    Science.gov (United States)

    Tamburri, S.; Saracco, P.; Longhetti, M.; Gargiulo, A.; Lonoce, I.; Ciocca, F.

    2014-10-01

    Aims: There are two aims to our analysis. On the one hand we are interested in addressing whether a sample of morphologically selected early-type galaxies (ETGs) differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density, and, the stellar mass density for different morphological types change over the redshift range 0.6 ≤ z ≤ 2.5. Methods: From the 1302 galaxies brighter than Ks(AB) = 22 selected from the GOODS-MUSIC catalogue, we classified the ETGs, i.e. elliptical (E) and spheroidal galaxies (E/S0), on the basis of their morphology and the passive galaxies on the basis of their specific star formation rate (sSFR ≤ 10-11 yr-1). Since the definition of a passive galaxy depends on the model parameters assumed to fit the spectral energy distribution of the galaxy, in addition to the assumed sSFR threshold, we probed the dependence of this definition and selection on the stellar initial mass function (IMF). Results: We find that spheroidal galaxies cannot be distinguished from the other morphological classes on the basis of their low star formation rate, irrespective of the IMF adopted in the models. In particular, we find that a large fraction of passive galaxies (>30%) are disc-shaped objects and that the passive selection misses a significant fraction (~26%) of morphologically classified ETGs. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and non-spheroidal galaxies (LTGs), we find that the fraction of these two morphological classes is constant over the redshift range 0.6 ≤ z ≤ 2.5, being 20-30% the fraction of ETGs and 70-80% the fraction of LTGs. However, at z mass density of the whole population of massive galaxies increase by almost a factor of ~10 between 0.6 ≤ z ≤ 2.5, with a faster increase of these densities for the ETGs than for the LTGs. Finally, we find that the number density of the highest

  6. Kinematics and stellar populations of 17 dwarf early-type galaxies

    OpenAIRE

    Thomas, D.; Bender, R.; Hopp, U.; Maraston, C.; Greggio, L.

    2002-01-01

    We present kinematics and stellar population properties of 17 dwarf early-type galaxies in the luminosity range -14> M_B> -19. Our sample fills the gap between the intensively studied giant elliptical and Local Group dwarf spheroidal galaxies. The dwarf ellipticals of the present sample have constant velocity dispersion profiles within their effective radii and do not show significant rotation, hence are clearly anisotropic. The dwarf lenticulars, instead, rotate faster and are, at least part...

  7. GLOBULAR CLUSTER POPULATIONS: FIRST RESULTS FROM S{sup 4}G EARLY-TYPE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zaritsky, Dennis [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, Manuel [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Avenida Ejército 441, Santiago (Chile); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Comerón, Sébastien; Laine, Jarkko; Laurikainen, Eija; Salo, Heikki [Astronomy Division, Department of Physics, P.O. Box 3000, FI-90014 University of Oulu (Finland); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Erroz-Ferrer, Santiago; Knapen, Johan H. [Instituto de Astrofísica de Canarias, Vía Lácteas, E-38205 La Laguna (Spain); Gadotti, Dimitri A.; Muñoz-Mateos, Juan Carlos [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Hinz, Joannah L. [MMT Observatory, P.O. Box 210065, Tucson, AZ 85721 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Holwerda, Benne [Leiden Observatory, University of Leiden, Niels Bohrweg 4, NL-2333 Leiden (Netherlands); Sheth, Kartik, E-mail: dennis.zaritsky@gmail.com [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2015-02-01

    Using 3.6 μm images of 97 early-type galaxies, we develop and verify methodology to measure globular cluster populations from the S{sup 4}G survey images. We find that (1) the ratio, T {sub N}, of the number of clusters, N {sub CL}, to parent galaxy stellar mass, M {sub *}, rises weakly with M {sub *} for early-type galaxies with M {sub *} > 10{sup 10} M {sub ☉} when we calculate galaxy masses using a universal stellar initial mass function (IMF) but that the dependence of T {sub N} on M {sub *} is removed entirely once we correct for the recently uncovered systematic variation of IMF with M {sub *}; and (2) for M {sub *} < 10{sup 10} M {sub ☉}, there is no trend between N {sub CL} and M {sub *}, the scatter in T {sub N} is significantly larger (approaching two orders of magnitude), and there is evidence to support a previous, independent suggestion of two families of galaxies. The behavior of N {sub CL} in the lower-mass systems is more difficult to measure because these systems are inherently cluster-poor, but our results may add to previous evidence that large variations in cluster formation and destruction efficiencies are to be found among low-mass galaxies. The average fraction of stellar mass in clusters is ∼0.0014 for M {sub *} > 10{sup 10} M {sub ☉} and can be as large as ∼0.02 for less massive galaxies. These are the first results from the S{sup 4}G sample of galaxies and will be enhanced by the sample of early-type galaxies now being added to S{sup 4}G and complemented by the study of later-type galaxies within S{sup 4}G.

  8. Stellar populations of elliptical galaxies in Virgo Cluster. I. The data and stellar population analysis

    NARCIS (Netherlands)

    Yamada, Y; Arimoto, N; Vazdekis, A; Peletier, RF

    2006-01-01

    We have determined spectroscopic ages of elliptical galaxies in the Virgo Cluster using spectra of very high signal-to-noise ratio (S/N > 100 angstrom(-1)). We observed eight galaxies with the Subaru Telescope and have combined this sample with six galaxies previously observed with the WHT. To

  9. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    Science.gov (United States)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  10. Ecology of a nesting red-shouldered hawk population

    Science.gov (United States)

    Stewart, R.E.

    1949-01-01

    An ecological study of a nesting Red-shouldered Hawk population was made over a 185 square mile area on the Coastal Plain of Maryland in 1947. The courting and nesting season extended from late February until late June.....During the nesting season a combination of fairly extensive flood-plain forest with adjacent clearings appears to meet the major ecological requirements of the Red-shouldered Hawk in this region. A total of 51 pairs was found in the study area, occupying about 42 square miles or 23% of the total area studied. The population density on the land that was suitable for this species was about 1 pair per .8 of a square mile, while the density for the entire study area would be only about 1 pair per 3.6 square miles.....Nests were spaced fairly evenly over most of the flood-plain forests, especially in areas where the width.of the flood plain was relatively constant. There was an inverse correlation between the width of the flood plain and the distances between nests in adjacent territories. The nests were all situated in fairly large trees and were from 28 feet to 77 feet above the ground, averaging 50. They were found in 14 different species of trees, all deciduous.....The Barred Owl and Red-shouldered Hawk were commonly associated together in the same lowland habitats. Other raptores were all largely restricted to upland habitats....The average number of young in 47 occupied nests following the hatching period was 2.7 with extremes of 1 and 4. Only 3 out of 52 nests (6%) were found deserted at this time....The food habits of nestling Red-shouldered Hawks are very diversified. They feed on many types of warm-blooded and cold-blooded vertebrates as well as invertebrates.

  11. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  12. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Science.gov (United States)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; hide

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  13. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  14. Snapshot Survey of the Globular Cluster Populations of Isolated Early Type Galaxies

    Science.gov (United States)

    Gregg, Michael

    2017-08-01

    We propose WFC3/UVIS snapshot observations of a sample of 75 isolated early type galaxiesresiding in cosmic voids or extremely low density regions. The primary aim is to usetheir globular cluster populations to reconstruct their evolutionary history, revealingif, how, and why void ellipticals differ from cluster ellipticals. The galaxies span arange of luminosities, providing a varied sample for comparison with the well-documentedglobular cluster populations in denser environments. This proposed WFC3 study of isolatedearly type galaxies breaks new ground by targeting a sample which has thus far receivedlittle attention, and, significantly, this will be the first such study with HST.Characterizing early type galaxies in voids and their GC systems promises to increase ourunderstanding of galaxy formation and evolution of galaxies in general because isolatedobjects are the best approximation to a control sample that we have for understanding theinfluence of environment on formation and evolution. Whether these isolated objects turnout to be identical to or distinct from counterparts in other regions of the Universe,they will supply insight into the formation and evolution of all galaxies. Parallel ACSimaging will help to characterize the near field environments of the sample.

  15. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Altieri, Bruno [European Space Astronomy Centre (ESAC)/ESA, Villanueva de la Cañada, 28691, Madrid (Spain); Brammer, Gabriel B. [European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago (Chile); Dickinson, Mark; Inami, Hanae [National Optical Astronomy Observatory, Tucson, AZ (United States); Van Dokkum, Pieter [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan, E-mail: straatman@strw.leidenuniv.nl [Carnegie Observatories, Pasadena, CA 91101 (United States); and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  16. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    Science.gov (United States)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  17. Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis

    Science.gov (United States)

    Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.

    2017-05-01

    We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.

  18. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  19. Modeling tracers of young stellar population age in star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Leitherer, Claus, E-mail: Emily.Levesque@colorado.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  20. RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Damjanov, Ivana; Abraham, Roberto G.; Carlberg, Raymond G.; Mentuch, Erin; Glazebrook, Karl; Caris, Evelyn; Green, Andrew W.; McCarthy, Patrick J.; Chen, Hsiao-Wen; Crampton, David; Murowinski, Richard; Joergensen, Inger; Roth, Kathy; Juneau, Stephanie; Le Borgne, Damien; Marzke, Ronald O.; Savaglio, Sandra; Yan Haojing

    2011-01-01

    We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 e ∝(1 + z) -1.62±0.34 . Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z ∼ 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

  1. CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS

    International Nuclear Information System (INIS)

    Tortora, C.; Jetzer, P.; Napolitano, N. R.; Romanowsky, A. J.

    2010-01-01

    We analyze the correlations between central dark matter (DM) content of early-type galaxies and their sizes and ages, using a sample of intermediate-redshift (z ∼ 0.2) gravitational lenses from the SLACS survey, and by comparing them to a larger sample of z ∼ 0 galaxies. We decompose the deprojected galaxy masses into DM and stellar components using combinations of strong lensing, stellar dynamics, and stellar populations modeling. For a given stellar mass, we find that for galaxies with larger sizes, the DM fraction increases and the mean DM density decreases, consistently with the cuspy halos expected in cosmological formation scenarios. The DM fraction also decreases with stellar age, which can be partially explained by the inverse correlation between size and age. The residual trend may point to systematic dependencies on formation epoch of halo contraction or stellar initial mass functions. These results are in agreement with recent findings based on local galaxies by Napolitano et al. and suggest negligible evidence of galaxy evolution over the last ∼2.5 Gyr other than passive stellar aging.

  2. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Zou, Hu; Jiang, Zhaoji; Zhou, Xu, E-mail: linlin@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn, E-mail: zouhu@nao.cas.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  3. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    Science.gov (United States)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  4. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    Science.gov (United States)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  5. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  6. Mesola red deer: physical characteristics, population dynamics and conservation perspectives

    Directory of Open Access Journals (Sweden)

    Stefano Mattioli

    2003-10-01

    Full Text Available Abstract The biometry, demography and genetics of red deer Cervus elaphus of Mesola Wood (NE Italy, are presented and discussed in relation to the conservation of this population. Modest body size, low stature, oversimplified antlers and a low reproductive performance characterise red deer from Mesola Wood. The mitochondrial genome showed a private haplotype, different from other red deer in Italy and central Europe. The uniqueness of this nucleus and its biogeographic importance make a long-term conservation plan particularly urgent. Management measures such as fallow deer reduction, winter feeding and pasture mowing were tested, giving promising results. The physical condition of the animals improved, calf and adult mortality declined, and a few cases of antlers with bez tine or crown were reported in this study after four decades. Riassunto Il Cervo della Mesola: caratteristiche fisiche, dinamica di popolazione e prospettive di conservazione La biometria, la demografia e la genetica del cervo Cervus elaphus del Gran Bosco della Mesola (Italia nord-orientale, vengono presentate e discusse in relazione alla salvaguardia di questa popolazione. Il cervo della Mesola risulta caratterizzato dalle modeste dimensioni corporee, dalla struttura semplificata dei palchi e da un basso rendimento riproduttivo. L'analisi del genoma mitocondriale ha evidenziato un aplotipo privato, diverso da quello degli altri cervi italiani e centroeuropei. L'unicità di questo nucleo e la sua importanza biogeografica rendono particolarmente urgente un piano di conservazione a lungo termine. Sono stati verificati interventi gestionali quali la riduzione numerica dei daini, il foraggiamento invernale e lo sfalcio delle superfici a pascolo, con risultati promettenti. Le condizioni fisiche degli animali sono migliorate, la mortalità tra i piccoli e gli adulti è diminuita, e sono stati registrati alcuni

  7. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  8. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed

    Science.gov (United States)

    Bothun, G.; Impey, C.; McGaugh, S.

    1997-07-01

    In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)

  9. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    Science.gov (United States)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  10. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  11. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    Science.gov (United States)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

  12. The JHKs Magnitudes of the Red Giant Branch Tip and the Distance Moduli of Nearby Dwarf Galaxy NGC 205

    Directory of Open Access Journals (Sweden)

    M. Y. Jung

    2009-12-01

    Full Text Available We have used the near-infrared JHKS photometric data of resolved stars in a nearby dwarf elliptical galaxy NGC 205 to determine the magnitudes of the red giant branch tip (TRGB. By applying Savitzky-Golay filter to the observed luminosity functions (LFs in each band, we derived the second derivatives of the LFs so as to determine the magnitudes of the TRGB. Absolute magnitudes of the TRGB in JHKs bands were measured from the Yonsei-Yale isochrones. By comparing the determined apparent magnitudes and the theoretical absolute magnitudes of the TRGB, we estimated the distance moduli of NGC 205 to be (m-M = 24.10±0:08, 24.08±0.12 and 24.14±0.14 in J, H, and Ks bands, respectively.

  13. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  14. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    Science.gov (United States)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  15. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2

    Science.gov (United States)

    Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-06-01

    Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.

  16. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  17. GalMod: the last frontier of Galaxy population synthesis models

    Science.gov (United States)

    Pasetto, Stefano; Kollmeier, Juna; Grebel, Eva K.; chiosi, cesare

    2018-01-01

    We present a novel Galaxy population synthesis model: GalMod (Pasetto et al. 2016, 2017a,b) is the only star-count model featuring an asymmetric bar/bulge as well as spiral arms as directly obtained by applying linear perturbative theory to self-consistent distribution function of the Galaxy stellar populations. Compared to previous literature models (e.g., Besancon, Trilegal), GalMod allows to generate full-sky mock catalogue, M31 surveys and provides a better match to observed Milky Way (MW) stellar fields.The model can generate synthetic mock catalogs of visible portions of the MW, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely bulge/bar, disk, halo. The disk population is itself the sum of subpopulations: spiral arms, thin disk, thick disk, and gas component, while the halo is modeled as the sum of a stellar component, a hot coronal gas, and a dark matter component. The Galactic potential is computed from these subpopulations' density profiles and used to generate detailed kinematics by considering the first few moments of the Boltzmann collisionless equation for all the stellar subpopulations. The same density profiles are then used to define the observed color-magnitude diagrams within an input field of view from an arbitrary solar location. Several photometric systems have been included and made available on-line, e.g., SDSS, Gaia, 2MASS, HST WFC3, and others. Finally, we model the extinction with advanced ray tracing solutions.The model's web page (and tutorial) can be accessed at www.GalMod.org.

  18. Stellar populations of bulges in galaxies with a low surface-brightness disc

    Science.gov (United States)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  19. Origins of ultra-diffuse galaxies in the Coma cluster - II. Constraints from their stellar populations

    Science.gov (United States)

    Ferré-Mateu, Anna; Alabi, Adebusola; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean; Pandya, Viraj; Martín-Navarro, Ignacio; Bellstedt, Sabine; Wasserman, Asher; Stone, Maria B.; Okabe, Nobuhiro

    2018-06-01

    In this second paper of the series we study, with new Keck/DEIMOS spectra, the stellar populations of seven spectroscopically confirmed ultra-diffuse galaxies (UDGs) in the Coma cluster. We find intermediate to old ages (˜ 7 Gyr), low metallicities ([Z/H]˜ - 0.7 dex) and mostly super-solar abundance patterns ([Mg/Fe] ˜ 0.13 dex). These properties are similar to those of low-luminosity (dwarf) galaxies inhabiting the same area in the cluster and are mostly consistent with being the continuity of the stellar mass scaling relations of more massive galaxies. These UDGs' star formation histories imply a relatively recent infall into the Coma cluster, consistent with the theoretical predictions for a dwarf-like origin. However, considering the scatter in the resulting properties and including other UDGs in Coma, together with the results from the velocity phase-space study of the Paper I in this series, a mixed-bag of origins is needed to explain the nature of all UDGs. Our results thus reinforce a scenario in which many UDGs are field dwarfs that become quenched through their later infall onto cluster environments, whereas some UDGs could be be genuine primordial galaxies that failed to develop due to an early quenching phase. The unknown proportion of dwarf-like to primordial-like UDGs leaves the enigma of the nature of UDGs still open.

  20. The new galaxy evolution paradigm revealed by the Herschel surveys

    Science.gov (United States)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  1. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    International Nuclear Information System (INIS)

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu

    2012-01-01

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-β) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in

  2. Ongoing decline of shark populations in the Eastern Red Sea

    KAUST Repository

    Spaet, Julia L.Y.

    2016-06-30

    Information on the abundance and diversity of Red Sea elasmobranchs is notoriously scarce, even though sharks are among the most profitable fisheries of the region. Effective conservation would ideally entail baselines on pristine conditions, yet no such data is available for the Red Sea. To collect distribution and abundance data on Red Sea elasmobranchs, we conducted a dedicated longline and Baited Remote Underwater Video system (BRUVs) sampling program along the entire Red Sea coast of Saudi Arabia over the course of two years. Both survey techniques were opportunistically employed at central and southern Saudi Arabian (SA) Red Sea reef systems. In addition, BRUVs were employed in the northern SA Red Sea and at selected reef systems in Sudan. Shark catch per unit effort (CPUE) data for BRUVs and longline surveys were compared to published data from non-Red Sea reef systems. This comparison revealed CPUE estimates several orders of magnitude lower for both survey methods in the SA Red Sea compared to other reef systems around the world. Catch per unit effort values of BRUVs on Sudanese reefs on the contrary were within the range of estimates from various locations where sharks are considered common. We argue that decades of heavy fishing pressure on Red Sea marine resources has significantly altered the community structure of SA Red Sea reefs. There is an urgent need to establish effective management strategies for species of highest conservation concern. Our results have the potential to be used as a baseline, if such management strategies were to be established. © 2016 Elsevier Ltd

  3. Anomalous Evolution of the Dwarf Galaxy HIPASS J1321-31

    OpenAIRE

    Pritzl, Barton J.; Knezek, Patricia M.; Gallagher III, John S.; Grossi, Marco; Disney, Mike J.; Minchin, Robert F.; Freeman, Kenneth C.; Tolstoy, Eline; Saha, Abi

    2003-01-01

    We present HST/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies, and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (a) a red giant branch if the galaxy were much nearer than previously recognized, (b) a peculiar asymptotic giant branch, or, (c) an ~1 Gigayear old population of intermediate mass red supergiants, which we find to be the most likely ...

  4. VLT/FLAMES spectroscopy of red giant branch stars in the Carina dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K. A.; Shetrone, M. D.; Irwin, M. J.; de Boer, T. J. L.; Starkenburg, E.; Salvadori, S.

    Context. The ages of individual red giant branch stars can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the first dredge-up). This means that they

  5. THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle, E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands)

    2012-09-10

    Making use of H I 21 cm line measurements from the ALFALFA survey ({alpha}.40) and photometry from the Sloan Digital Sky Survey (SDSS) and Galaxy Evolution Explorer (GALEX), we investigate the global scaling relations and fundamental planes linking stars and gas for a sample of 9417 common galaxies: the {alpha}.40-SDSS-GALEX sample. In addition to their H I properties derived from the ALFALFA data set, stellar masses (M{sub *}) and star formation rates (SFRs) are derived from fitting the UV-optical spectral energy distributions. 96% of the {alpha}.40-SDSS-GALEX galaxies belong to the blue cloud, with the average gas fraction f{sub HI} {identical_to} M{sub HI}/M{sub *} {approx} 1.5. A transition in star formation (SF) properties is found whereby below M{sub *} {approx} 10{sup 9.5} M{sub Sun }, the slope of the star-forming sequence changes, the dispersion in the specific star formation rate (SSFR) distribution increases, and the star formation efficiency (SFE) mildly increases with M{sub *}. The evolutionary track in the SSFR-M{sub *} diagram, as well as that in the color-magnitude diagram, is linked to the H I content; below this transition mass, the SF is regulated strongly by the H I. Comparison of H I and optically selected samples over the same restricted volume shows that the H I-selected population is less evolved and has overall higher SFR and SSFR at a given stellar mass, but lower SFE and extinction, suggesting either that a bottleneck exists in the H I-to-H{sub 2} conversion or that the process of SF in the very H I-dominated galaxies obeys an unusual, low-efficiency SF law. A trend is found that, for a given stellar mass, high gas fraction galaxies reside preferentially in dark matter halos with high spin parameters. Because it represents a full census of H I-bearing galaxies at z {approx} 0, the scaling relations and fundamental planes derived for the ALFALFA population can be used to assess the H I detection rate by future blind H I surveys and

  6. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  7. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  8. Evidence for AGN feedback in low-mass galaxies

    Science.gov (United States)

    Masters, Karen; Penny, Sam; Smethurst, Rebecca; Krawczyk, Coleman; Nichol, Bob; SDSS-IV MaNGA

    2018-01-01

    Despite being the dominant galaxy population by number in groups and clusters, the formation and quenching mechanism of dwarf galaxies remains unknown. We present evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M* less than 5e9 Msun, fainter than Mr = -19) selected from the first two years of the MaNGA survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find 6 galaxies in our sample that appear to have an active AGN that is preventing on-going star-formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionised gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesise these six galaxies are low-mass equivalents to the “red geysers” observed in more massive galaxies. Of the other 62 galaxies in the sample, we find 8 do appear to have some low-level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionised gas emission throughout their structures, consistent with them being quenched. I will show that despite being the "simplest" galaxies in our current models of galaxy formation, these quenched dwarf galaxies are a diverse population.

  9. The vast population of Wolf-Rayet and red supergiant stars in M101. I. Motivation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024-5192 (United States); Crowther, Paul A. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Moffat, Anthony F. J. [Département de Physique, Université de Montréal, CP 6128 Succ. C-V, Montréal, QC H3C 3J7 (Canada); Drissen, Laurent [Département de Physique, Université Laval, Pavillon Vachon, Quebec City, QC G1K 7P4 (Canada)

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  10. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    Science.gov (United States)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome

  11. Population synthesis and x-ray properties of passively evolving galaxies

    International Nuclear Information System (INIS)

    Renzini, A.

    1989-01-01

    In this review some evolutionary processes in galaxies will be considered which may be less exciting than other phenomena such as starburst activities, galactic interactions, merging, or cannibalism. The discussion will rather be restricted to passively evolving stellar populations, i.e. to what may happen when all giant molecular clouds have blown away, when every shower of star formation has ceased, and stars just shine, age, and eventually die. Only this passive evolution is in fact subject to laws that - at least in principle - can be rigorously formulated, while star formation processes, because of the prominent role played by chaotic hydrodynamics, rather resemble meteorological events. In Section 2 some fundamental properties of simple stellar populations are introduced. These can be regarded as the basic laws controlling the evolution of stellar populations, once that they have condensed from the diffused medium. In Section 3 the primary requirements that acceptable evolutionary population synthesis should fulfil are then briefly recalled, and, finally, in Section 4 some of the basic laws are put at play in an attempt to discuss the evolution over cosmological times of the X-ray properties of elliptical galaxies. (author)

  12. THE MERGER-TRIGGERED ACTIVE GALACTIC NUCLEUS CONTRIBUTION TO THE ULTRALUMINOUS INFRARED GALAXY POPULATION

    International Nuclear Information System (INIS)

    Draper, A. R.; Ballantyne, D. R.

    2012-01-01

    It has long been thought that there is a connection between ultraluminous infrared galaxies (ULIRGs), quasars, and major mergers. Indeed, simulations show that major mergers are capable of triggering massive starbursts and quasars. However, observations by the Herschel Space Observatory suggest that, at least at high redshift, there may not always be a simple causal connection between ULIRGs and mergers. Here, we combine an evolving merger-triggered active galactic nucleus (AGN) luminosity function with a merger-triggered starburst model to calculate the maximum contribution of major mergers to the ULIRG population. We find that major mergers can account for the entire local population of ULIRGs hosting AGNs and ∼25% of the total local ULIRG luminosity density. By z ∼ 1, major mergers can no longer account for the luminosity density of ULIRGs hosting AGNs and contribute ∼<12% of the total ULIRG luminosity density. This drop is likely due to high-redshift galaxies being more gas rich and therefore able to achieve high star formation rates through secular evolution. Additionally, we find that major mergers can account for the local population of warm ULIRGs. This suggests that selecting high-redshift warm ULIRGs will allow for the identification of high-redshift merger-triggered ULIRGs. As major mergers are likely to trigger very highly obscured AGNs, a significant fraction of the high-redshift warm ULIRG population may host Compton thick AGNs.

  13. Population studies in groups and clusters of galaxies. III. A catalog of galaxies in five nearby groups

    International Nuclear Information System (INIS)

    Ferguson, H.C.; Sandage, A.

    1990-01-01

    Five nearby groups of galaxies have been surveyed using large-scale plates from the 2.5 m duPont Telescope at Las Campanas Observatory. Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo, Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxies are included, from visual inspection of 14 plates, covering 31 deg square. Galaxies have been classified in the extended Hubble system, and group memberships have been assigned based on velocity (where available) and morphology. About half the galaxies listed are likely members of one of the nearby groups. The catalogs are complete to B(T) = 18, although the completeness limits vary slightly from group to group. Based on King model fits to the surface density profiles, the core radii of the groups range from 0.3 to 1 Mpc, and central densities range from 120 to 1900 galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysis indicates that all of the groups are likely to be gravitationally bound. 64 refs

  14. The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613

    Science.gov (United States)

    Madore, Barry F.; Freedman, Wendy L.; Hatt, Dylan; Hoyt, Taylor J.; Monson, Andrew J.; Beaton, Rachael L.; Rich, Jeffrey A.; Jang, In Sung; Lee, Myung Gyoon; Scowcroft, Victoria; Seibert, Mark

    2018-05-01

    Based on observations from the FourStar near-infrared camera on the 6.5 m Baade-Magellan telescope at Las Campanas, Chile, we present calibrations of the JHK luminosities of stars defining the tip of the red giant branch (TRGB) in the halo of the Local Group dwarf galaxy IC 1613. We employ metallicity-independent (rectified) T-band magnitudes—constructed using J-, H-, and K-band magnitudes and both (J ‑ H) and (J ‑ K) colors to flatten the upward-sloping red giant branch tips as otherwise seen in their apparent color–magnitude diagrams. We describe and quantify the advantages of working at these particular near-infrared wavelengths, which are applicable to both the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST). We also note that these same wavelengths can be accessed from the ground for an eventual tie-in to Gaia for absolute astrometry and parallaxes to calibrate the intrinsic luminosity of the TRGB. Adopting the color terms derived from the IC 1613 data, as well as the zero points from a companion study of the Large Magellanic Cloud, whose distance is anchored to the geometric distances of detached eclipsing binaries, we find a true distance modulus of 24.32 ± 0.02 (statistical) ±0.05 mag (systematic) for IC 1613, which compares favorably with the recently published multi-wavelength, multi-method consensus modulus of 24.30 ± 0.05 mag by Hatt et al.

  15. LINER galaxy properties and the local environment

    Science.gov (United States)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  16. Old stellar populations how to study the fossil record of galaxy formation

    CERN Document Server

    Cassisi, Santi

    2013-01-01

    The book discusses the theoretical path to decoding the information gathered from observations of old stellar systems. It focuses on old stellar systems because these are the fossil record of galaxy formation and provide invaluable information ont he evolution of cosmic structures and the universe as a whole. The aim is to present results obtained in the past few years for theoretical developments in low mass star research and in advances in our knowledge of the evolution of old stellar systems. A particularly representative case is the recent discovery of multiple stellar populations in galac

  17. VizieR Online Data Catalog: Observed red supergiants in the inner Galaxy (Messineo+, 2016)

    Science.gov (United States)

    Messineo, M.; Zhu, Q.; Menten, K. M.; Ivanov, V. D.; Figer, D. F.; Kudritzki, R.-P.; Rosie, Chen C.-H.

    2018-02-01

    Spectroscopic observations were carried out with the Son of ISAAC (SofI; Moorwood et al. 1998Msngr..91....9M) Spectrograph on the ESO/New Technology Telescope (NTT) 3.58 m telescope of the La Silla Observatory, on the three nights from UT 2015 June 16 to 19-program ID 095.D-0252(A). Spectra with the low-resolution red grism, and the 0.6" wide slit, delivering resolution R~980 over the wavelength range λ=1.53-2.52 μm were obtained for 94 targets. For each target a minimum number of four exposures, nodded along the slit, were taken in an ABBA sequence. Typical integration times per frame ranged from 2 to 100 s (DITsxNDITs). (1 data file).

  18. Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Gruen, D.; McClintock, T.; Varga, T. N.; Sheldon, E.; Rozo, E.; Amara, A.; Becker, M. R.; Benson, B. A.; Bermeo, A.; Bridle, S. L.; Clampitt, J.; Dietrich, J. P.; Hartley, W. G.; Hollowood, D.; Jain, B.; Jarvis, M.; Jeltema, T.; Kacprzak, T.; MacCrann, N.; Rykoff, E. S.; Saro, A.; Suchyta, E.; Troxel, M. A.; Zuntz, J.; Bonnett, C.; Plazas, A. A.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Weller, J.; Zhang, Y.

    2017-05-16

    We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter $5 \\leq \\lambda \\leq 180$ and redshift $0.2 \\leq z \\leq 0.8$, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentering; deviations from the NFW halo profile; halo triaxiality; and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, $\\mathcal{M}(\\lambda,z) \\varpropto M_0 \\lambda^{F} (1+z)^{G}$. We find $M_0 \\equiv \\langle M_{200\\mathrm{m}}\\,|\\,\\lambda=30,z=0.5\\rangle=\\left[ 2.35 \\pm 0.22\\ \\rm{(stat)} \\pm 0.12\\ \\rm{(sys)} \\right] \\cdot 10^{14}\\ M_\\odot$, with $F = 1.12\\,\\pm\\,0.20\\ \\rm{(stat)}\\, \\pm\\, 0.06\\ \\rm{(sys)}$ and $G = 0.18\\,\\pm\\, 0.75\\ \\rm{(stat)}\\, \\pm\\, 0.24\\ \\rm{(sys)}$. The amplitude of the mass-richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. (2016) and with the Saro et al. (2015) calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass-richness relation of redMaPPer clusters has been calibrated with weak lensing from $z\\leq 0.3$ to $z\\leq0.8$. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.

  19. INDIVIDUAL AND GROUP GALAXIES IN CNOC1 CLUSTERS

    International Nuclear Information System (INIS)

    Li, I. H.; Yee, H. K. C.; Ellingson, E.

    2009-01-01

    Using wide-field BVR c I imaging for a sample of 16 intermediate redshift (0.17 red ) to infer the evolutionary status of galaxies in clusters, using both individual galaxies and galaxies in groups. We apply the local galaxy density, Σ 5 , derived using the fifth nearest neighbor distance, as a measure of local environment, and the cluster-centric radius, r CL , as a proxy for global cluster environment. Our cluster sample exhibits a Butcher-Oemler effect in both luminosity-selected and stellar-mass-selected samples. We find that f red depends strongly on Σ 5 and r CL , and the Butcher-Oemler effect is observed in all Σ 5 and r CL bins. However, when the cluster galaxies are separated into r CL bins, or into group and nongroup subsamples, the dependence on local galaxy density becomes much weaker. This suggests that the properties of the dark matter halo in which the galaxy resides have a dominant effect on its galaxy population and evolutionary history. We find that our data are consistent with the scenario that cluster galaxies situated in successively richer groups (i.e., more massive dark matter halos) reach a high f red value at earlier redshifts. Associated with this, we observe a clear signature of 'preprocessing', in which cluster galaxies belonging to moderately massive infalling galaxy groups show a much stronger evolution in f red than those classified as nongroup galaxies, especially at the outskirts of the cluster. This result suggests that galaxies in groups infalling into clusters are significant contributors to the Butcher-Oemler effect.

  20. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    Science.gov (United States)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  1. The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project

    International Nuclear Information System (INIS)

    Fassbender, R; Böhringer, H; Nastasi, A; Šuhada, R; Mühlegger, M; Mohr, J J; Pierini, D; De Hoon, A; Kohnert, J; Lamer, G; Schwope, A D; Pratt, G W; Quintana, H; Rosati, P; Santos, J S

    2011-01-01

    local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm 12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1′ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. (paper)

  2. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    Science.gov (United States)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  3. Red meat intake may increase the risk of colon cancer in Japanese, a population with relatively low red meat consumption.

    Science.gov (United States)

    Takachi, Ribeka; Tsubono, Yoshitaka; Baba, Keisuke; Inoue, Manami; Sasazuki, Shizuka; Iwasaki, Motoki; Tsugane, Shoichiro

    2011-01-01

    Asian populations have changed from traditional to Westernized diets, with increased red meat intake. They are suggested to be particularly susceptible to the adverse effects of red meat on the development of colorectal cancers, however, few prospective studies of this putative link have been conducted. We examined associations between the consumption of red and processed meat and the risk of subsite-specific colorectal cancer by gender in a large Japanese cohort. During 1995-1998, a validated food frequency questionnaire was administered to 80,658 men and women aged 45-74 years. During 758,116 person-years of follow-up until the end of 2006, 1,145 cases of colorectal cancer were identified. Higher consumption of red meat was significantly associated with a higher risk of colon cancer among women [multivariate hazard ratios (95%CIs) for the highest versus lowest quintiles (HR): 1.48 (1.01, 2.17; trend p=0.03)], as was higher consumption of total meat among men [HR=1.44 (1.06, 1.98; trend p=0.07)]. By site, these positive associations were found for the risk of proximal colon cancer among women and for distal colon cancer among men. No association was found between the consumption of processed meat and risk of either colon or rectal cancer. In conclusion, red meat intake may modestly increase the risk of colon cancer in middle-aged Japanese, although the highest quintile of red meat consumption could be considered moderate by Western standards.

  4. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NARCIS (Netherlands)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive

  5. PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.; Ofek, Eran O.; Arcavi, Iair; Gal-Yam, Avishay; Green, Yoav; Yaron, Ofer; Nugent, Peter; Jacobsen, Janet; Poznanski, Dovi; Fox, Derek B.; Howell, Jacob L.; Bradley Cenko, S.; Kleiser, Io; Bloom, Joshua S.; Miller, Adam; Li Weidong; Filippenko, Alexei V.; Starr, Dan

    2011-01-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M r = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width Hα (∼930 km s -1 ) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities (∼10,000 km s -1 ) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

  6. STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Adamo, Angela [Department of Astronomy, Oskar Klein Centre, Stockholm University, SE-10691 Stockholm (Sweden); Fumagalli, Michele [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Wofford, Aida [Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Calzetti, Daniela; Grasha, Kathryn [Department of Astronomy, University of Massachusetts–Amherst, Amherst, MA (United States); Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Ubeda, Leonardo [Space Telescope Science Institute, Baltimore, MD (United States); Gouliermis, Dimitrios A. [Centre for Astronomy, Institute for Theoretical Astrophysics, University of Heidelberg, Heidelberg (Germany); Kim, Hwihyun [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Nair, Preethi [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Ryon, Jenna E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Smith, Linda J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, David [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, Erik, E-mail: mkrumhol@ucsc.edu, E-mail: adamo@astro.su.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden)

    2015-10-20

    We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.

  7. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    Science.gov (United States)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  8. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, Mark B.; Zepf, Stephen E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Maccarone, Thomas J. [Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409 (United States); Kundu, Arunav [Eureka Scientific, Inc., 2452 Delmer Street, Suite 100 Oakland, CA 94602 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Lehmer, Bret D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Maraston, Claudia, E-mail: mpeacock@msu.edu [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  9. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    International Nuclear Information System (INIS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  10. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NARCIS (Netherlands)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-01-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON

  11. International migration patterns of Red-throated Loons (Gavia stellata) from four breeding populations in Alaska

    Science.gov (United States)

    McCloskey, Sarah E.; Uher-Koch, Brian D.; Schmutz, Joel A.; Fondell, Thomas F.

    2018-01-01

    Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.

  12. THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5

    International Nuclear Information System (INIS)

    Brammer, G. B.; Whitaker, K. E.; Van Dokkum, P. G.; Marchesini, D.; Lee, K.-S.; Muzzin, A.; Labbe, I.; Franx, M.; Quadri, R. F.; Kriek, M.; Illingworth, G.; Rudnick, G.

    2009-01-01

    We select 25,000 galaxies from the NEWFIRM Medium Band Survey (NMBS) to study the rest-frame U - V color distribution of galaxies at 0 < z ∼< 2.5. The five unique NIR filters of the NMBS enable the precise measurement of photometric redshifts and rest-frame colors for 9900 galaxies at 1 < z < 2.5. The rest-frame U - V color distribution at all z ∼< 2.5 is bimodal, with a red peak, a blue peak, and a population of galaxies in between (the green valley). Model fits to the optical-NIR spectral energy distributions and the distribution of MIPS-detected galaxies indicate that the colors of galaxies in the green valley are determined largely by the amount of reddening by dust. This result does not support the simplest interpretation of green valley objects as a transition from blue star forming to red quiescent galaxies. We show that correcting the rest-frame colors for dust reddening allows a remarkably clean separation between the red and blue sequences up to z ∼ 2.5. Our study confirms that dusty-starburst galaxies can contribute a significant fraction to red-sequence samples selected on the basis of a single rest-frame color (i.e., U - V), so extra care must be taken if samples of truly 'red and dead' galaxies are desired. Interestingly, of galaxies detected at 24 μm, 14% remain on the red sequence after applying the reddening correction.

  13. Indicators of Population Viabllity in Red Spruce, Picea rubens. I. Reproductive Traits and Fecundity

    Science.gov (United States)

    A. Mosseler; J.E. Major; J.D. Simpson; B. Daigle; K. Lange; Y.S. Park; K.H Johnsen; O.P. Rajora

    2000-01-01

    Red spruce (Picea rubens Sarg.) has experienced a substantial decline across most of its range in eastern North America over the past centmy and probably also in the disjunct Ontario populations where it now occurs only in small isolated stands. Measurements of cone and seed traits from natural populations were used as indicators of the...

  14. Forest fragmentation and Red-cockaded Woodpecker population: an analysis at intermediate scale

    Science.gov (United States)

    D. Craig Rudolph; Richard N. Conner

    1994-01-01

    The Red-cockaded Woodpecker population on the Sam Houston National Forest in Texas was surveyed during 1988. The 128 active clusters present make this population one of the largest in existence. Pine stand ages varied considerably across the forest. Correlation analysis indicated that stand area in excess of 60 yr of age is positively correlated with measures of...

  15. Multiple populations within globular clusters in Early-type galaxies Exploring their effect on stellar initial mass function estimates

    Science.gov (United States)

    Chantereau, W.; Usher, C.; Bastian, N.

    2018-05-01

    It is now well-established that most (if not all) ancient globular clusters host multiple populations, that are characterised by distinct chemical features such as helium abundance variations along with N-C and Na-O anti-correlations, at fixed [Fe/H]. These very distinct chemical features are similar to what is found in the centres of the massive early-type galaxies and may influence measurements of the global properties of the galaxies. Additionally, recent results have suggested that M/L variations found in the centres of massive early-type galaxies might be due to a bottom-heavy stellar initial mass function. We present an analysis of the effects of globular cluster-like multiple populations on the integrated properties of early-type galaxies. In particular, we focus on spectral features in the integrated optical spectrum and the global mass-to-light ratio that have been used to infer variations in the stellar initial mass function. To achieve this we develop appropriate stellar population synthesis models and take into account, for the first time, an initial-final mass relation which takes into consideration a varying He abundance. We conclude that while the multiple populations may be present in massive early-type galaxies, they are likely not responsible for the observed variations in the mass-to-light ratio and IMF sensitive line strengths. Finally, we estimate the fraction of stars with multiple populations chemistry that come from disrupted globular clusters within massive ellipticals and find that they may explain some of the observed chemical patterns in the centres of these galaxies.

  16. PAHs sensitivity of picophytoplankton populations in the Red Sea

    KAUST Repository

    Kottuparambil, Sreejith; Agusti, Susana

    2018-01-01

    are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants

  17. STELLAR POPULATION GRADIENTS IN ULTRALUMINOUS INFRARED GALAXIES: IMPLICATIONS FOR GAS INFLOW TIMESCALES

    International Nuclear Information System (INIS)

    Soto, Kurt T.; Martin, Crystal L.

    2010-01-01

    Using longslit, optical spectra of ultraluminous infrared galaxies, we measure the evolution in the star formation intensity during galactic mergers. In individual galaxies, we resolve kiloparsec scales allowing comparison of the nucleus, inner disk, and outer disk. We find that the strength of the Hβ absorption line increases with the projected distance from the center of the merger, typically reaching about 9 A around 10 kpc. At these radii, the star formation intensity must have rapidly decreased about 300-400 Myr ago; only stellar populations deficient in stars more massive than Type A produce such strong Balmer absorption. In contrast, we find the star formation history in the central kiloparsec consistent with continuous star formation. Our measurements indicate that gas depletion occurs from the outer disk inward during major mergers. This result is consistent with merger-induced gas inflow and empirically constrains the gas inflow timescale. Numerical simulations accurately calculate the total amount of infalling gas but often assume the timescale for infall. These new measurements are therefore central to modeling merger-induced star formation and active galactic nucleus activity.

  18. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    International Nuclear Information System (INIS)

    Conroy, Charlie; Gunn, James E.; White, Martin

    2010-01-01

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M sun , dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  19. Populations dynamics of red brome (Bromus madritensis subsp. Rubens): Times for concern, opportunities for management

    Science.gov (United States)

    Salo, L.F.

    2004-01-01

    Red brome is a Mediterranean winter annual grass that has invaded south-western USA deserts. Unlike native annuals, it does not maintain a soil seed bank, but exhibits early and uniform germination. Above-average winter precipitation in these regions allows red brome to reach high density and biomass. These are time for concern, as large numbers of easily dispersed seeds increase the likelihood that it may spread into new areas. However, early and uniform germination can also lead to population crashes when drought precludes seed production. Winter droughts dramatically reduce densities of red brome, but provide opportunities for management of this exotic grass.

  20. Genetic variability within the Polish population of red fox (Vulpes vulpes – preliminary results

    Directory of Open Access Journals (Sweden)

    Magdalena Zatoń-Dobrowolska

    2016-09-01

    Full Text Available Red fox (Vulpes vulpes represents family Canidae and is a very common predator in Poland. Foxes are present throughout all the country in a different geographical regions and habitats. The analyzed dataset consisted of 130 red foxes (Vulpes vulpes. There were 24 microsatellite sequences studied. The observed (HO and expected (HS heterozygosities were comparable within respective loci. The low genetic diversity of the population was found.

  1. CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Arcavi, Iair; Gal-Yam, Avishay; Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Kulkarni, Shrinivas R.; Law, Nicholas; Cooke, Jeff; Nugent, Peter E.; Poznanski, Dovi; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Sullivan, Mark; Hook, Isobel; Joensson, Jakob; Blake, Sarah; Howell, D. Andrew; Dekany, Richard; Rahmer, Gustavo

    2010-01-01

    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M r ∼ -14 mag) and including a substantial fraction (>20%) of dwarf (M r ≥ -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while 'normal' SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as 'normal' SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25 +0.3 -0.15 and 0.23 +0.11 -0.08 , respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

  2. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    Science.gov (United States)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  3. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    International Nuclear Information System (INIS)

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.; Jian, Hung-Yu; Chiueh, Tzihong; Koo, David C.; Guhathakurta, Puragra; Patton, David R.; Yan, Renbin; Coil, Alison L.; Croton, Darren J.; Gerke, Brian F.; Lotz, Jennifer; Newman, Jeffrey A.

    2010-01-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 c ) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z ∼ 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 ± 0.3 dry mergers since this time, accounting for (38 ± 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings suggest that dry mergers are crucial in the mass assembly of massive red galaxies in dense environments, such as brightest cluster galaxies in galaxy groups and clusters.

  4. Bot fly parasitism of the red-backed vole: host survival, infection risk, and population growth.

    Science.gov (United States)

    Lemaître, Jérôme; Fortin, Daniel; Montiglio, Pierre-Olivier; Darveau, Marcel

    2009-03-01

    Parasites can play an important role in the dynamics of host populations, but empirical evidence remains sparse. We investigated the role of bot fly (Cuterebra spp.) parasitism in red-backed voles (Myodes gapperi) by first assessing the impacts of the parasite on the probability of vole survival under stressful conditions as well as on the reproductive activity of females. We then identified the main factors driving both the individual risk of infection and the abundance of bot flies inside red-backed voles. Finally, we evaluated the impacts of bot fly prevalence on the growth rate of vole populations between mid-July and mid-August. Thirty-six populations of red-backed voles were sampled in the boreal forest of Québec, Canada. The presence and the abundance of parasites in voles, two host life history traits (sex and body condition), three indices of habitat complexity (tree basal area, sapling basal area, coarse woody debris volume), and vole abundance were considered in models evaluating the effects of bot flies on host populations. We found that the probability of survival of red-backed voles in live traps decreased with bot fly infection. Both the individual risk of infection and the abundance of bot flies in red-backed voles were driven mainly by vole abundance rather than by the two host life history traits or the three variables of habitat complexity. Parasitism had population consequences: bot fly prevalence was linked to a decrease in short-term growth rate of vole populations over the summer. We found that bot flies have the potential to reduce survival of red-backed voles, an effect that may apply to large portions of populations.

  5. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    Science.gov (United States)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  6. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    Science.gov (United States)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  7. Probing evolutionary population synthesis models in the near infrared with early-type galaxies

    Science.gov (United States)

    Dahmer-Hahn, Luis Gabriel; Riffel, Rogério; Rodríguez-Ardila, Alberto; Martins, Lucimara P.; Kehrig, Carolina; Heckman, Timothy M.; Pastoriza, Miriani G.; Dametto, Natacha Z.

    2018-06-01

    We performed a near-infrared (NIR; ˜1.0 -2.4 μm) stellar population study in a sample of early-type galaxies. The synthesis was performed using five different evolutionary population synthesis libraries of models. Our main results can be summarized as follows: low-spectral-resolution libraries are not able to produce reliable results when applied to the NIR alone, with each library finding a different dominant population. The two newest higher resolution models, on the other hand, perform considerably better, finding consistent results to each other and to literature values. We also found that optical results are consistent with each other even for lower resolution models. We also compared optical and NIR results and found out that lower resolution models tend to disagree in the optical and in the NIR, with higher fraction of young populations in the NIR and dust extinction ˜1 mag higher than optical values. For higher resolution models, optical and NIR results tend to agree much better, suggesting that a higher spectral resolution is fundamental to improve the quality of the results.

  8. SPECTROSCOPIC CONFIRMATION OF A MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTER AT z = 1.34 IN THE SpARCS-SOUTH CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H. K. C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; Gardner, Jonathan P.; Gladders, Michael D.; Lonsdale, Carol

    2009-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' ≅ 24 AB) observations made from both hemispheres using the CFHT 3.6 m and CTIO 4 m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 μm observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 deg 2 . In this paper, we provide an overview of the 13.6 deg 2 Southern CTIO/MOSAIC II observations. The 28.3 deg 2 Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050 ± 230 km s -1 . With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously selected z > 1 cluster surveys.

  9. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    Science.gov (United States)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  10. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    International Nuclear Information System (INIS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Gronwall, C.; Fedotov, K.; Desjardins, T. D.; Gallagher, S. C.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Walker, L. M.; Johnson, K. E.; Tzanavaris, P.

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  11. AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2

    International Nuclear Information System (INIS)

    Mendez, Alexander J.; Coil, Alison L.; Moustakas, John; Lotz, Jennifer; Salim, Samir; Simard, Luc

    2011-01-01

    We present quantitative morphologies of ∼300 galaxies in the optically defined green valley at 0.4 20 . We find that the green galaxy population is intermediate between the red and blue galaxy populations in terms of concentration, asymmetry, and morphological type and merger fraction estimated using Gini/M 20 . We find that most green galaxies are not classified as mergers; in fact, the merger fraction in the green valley is lower than in the blue cloud. We show that at a given stellar mass, green galaxies have higher concentration values than blue galaxies and lower concentration values than red galaxies. Additionally, we find that 12% of green galaxies have B/T = 0 and 21% have B/T ≤ 0.05. Our results show that green galaxies are generally massive (M * ∼ 10 10.5 M sun ) disk galaxies with high concentrations. We conclude that major mergers are likely not the sole mechanism responsible for quenching star formation in this population and that either other external processes or internal secular processes play an important role both in driving gas toward the center of these galaxies and in quenching star formation.

  12. Environments of z~0.2 Star Forming Galaxies: Building on the Citizen Science Discovery of the Green Peas

    Science.gov (United States)

    Cardamone, Carolin; Cappelluti, Nico; Powell, Meredith; Urry, Meg; Galaxy Zoo Science Team

    2018-01-01

    ‘Green Pea’ galaxies, discovered in the Galaxy Zoo citizen science project, are rare low-mass (M Green Peas and the Luminous Red Galaxies throughout the SDSS footprint, and we find that the population of Green Peas at 0.11population typically reside in under-dense environments.

  13. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5–0.9 GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Jørgensen, Inger; Chiboucas, Kristin

    2013-01-01

    We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6–0305 (z = 0.54), RXJ0152.7–1357 (z = 0.83), and RXJ1226.9+3332 (z = 0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm that the FP is steeper at z ≈ 0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z form , depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of σ = 125 km s –1 (Mass = 10 10.55 M ☉ ) we find z form = 1.24 ± 0.05, while at σ = 225 km s –1 (Mass = 10 11.36 M ☉ ) the formation redshift is z form = 1.95 +0.3 –0.2 , for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines Hδ and Hγ implies z form > 2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model. Based on the absorption line indices and recent stellar population models from Thomas et al., we find that MS0451.6–0305

  14. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L in sun and shade populations

    NARCIS (Netherlands)

    Van Hinsberg, A.; Van Tienderen, P.H.

    1997-01-01

    Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had

  15. STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6-7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Shimasaku, Kazuhiro; Okamura, Sadanori; Masami Ouchi; Dunlop, James; Farrah, Duncan; McLure, Ross

    2010-01-01

    We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg 2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ∼ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M UV , with a spectral slope β ∼ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ∼(3-10) x 10 7 M sun , very young ages of ∼1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ∼ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ion esc ∼ 0.6 at z = 5.7 and ∼0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies.

  16. Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits

    Energy Technology Data Exchange (ETDEWEB)

    Janowiecki, Steven [International Center for Radio Astronomy Research, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 (Australia); Salzer, John J.; Zee, Liese van [Department of Astronomy, Indiana University, 727 East Third Street, Bloomington, IN 47405 (United States); Rosenberg, Jessica L. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Skillman, Evan, E-mail: steven.janowiecki@uwa.edu.au [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States)

    2017-02-10

    We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar masses and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.

  17. Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait

    Science.gov (United States)

    Craig S. Echt; L.L. DeVerno; M. Anzidei; G.G. Vendramin

    1998-01-01

    Variation in paternally inherited chloroplast microsatellite (cpSSR) DNA was used to study population genetic structure in red pine (Pinus resinosa Ait.), a species characterized by morphological uniformity, no allozyme variation, and limited RAPD variation. Using nine cpSSR loci, a total of 23 chloroplast haplotypes and 25 cpSSR alleles were were...

  18. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  19. RAVEN AND THE CENTER OF MAFFEI 1: MULTI-OBJECT ADAPTIVE OPTICS OBSERVATIONS OF THE CENTER OF A NEARBY ELLIPTICAL GALAXY AND THE DETECTION OF AN INTERMEDIATE AGE POPULATION

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J.; Andersen, D. R. [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Lardière, O.; Bradley, C.; Blain, C. [Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 3P2 (Canada); Oya, S. [Subaru Telescope, National Optical Observatory of Japan Hilo, HI 96720 (United States); Akiyama, M.; Ono, Y. H., E-mail: tim.davidge@nrc.ca, E-mail: david.andersen@nrc.ca, E-mail: lardiere@uvic.ca, E-mail: cbr@uvic.ca, E-mail: celia.blain@gmail.com, E-mail: oya@subaru.naoj.org, E-mail: akiyama@astr.tohoku.ac.jp, E-mail: yo-2007@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University 6–3 Aramaki, Aoba-ku, Sedai, 980-8578 Japan (Japan)

    2015-10-01

    Near-infrared (NIR) spectra that have an angular resolution of ∼0.15 arcsec are used to examine the stellar content of the central regions of the nearby elliptical galaxy Maffei 1. The spectra were recorded at the Subaru Telescope, with wavefront distortions corrected by the RAVEN Multi-object Adaptive Optics science demonstrator. The Ballick–Ramsey C{sub 2} absorption bandhead near 1.76 μm is detected, and models in which ∼10%–20% of the light near 1.8 μm originates from stars of spectral type C5 reproduce the depth of this feature. Archival NIR and mid-infrared images are also used to probe the structural and photometric properties of the galaxy. Comparisons with models suggest that an intermediate age population dominates the spectral energy distribution between 1 and 5 μm near the galaxy center. This is consistent not only with the presence of C stars, but also with the large Hβ index that has been measured previously for Maffei 1. The J − K color is more or less constant within 15 arcsec of the galaxy center, suggesting that the brightest red stars are well-mixed in this area.

  20. Effects of uncertainty and variability on population declines and IUCN Red List classifications.

    Science.gov (United States)

    Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M

    2018-01-22

    The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates

  1. Deep spectroscopy of nearby galaxy clusters - IV. The quench of the star formation in galaxies in the infall region of Abell 85

    Science.gov (United States)

    Aguerri, J. A. L.; Agulli, I.; Méndez-Abreu, J.

    2018-06-01

    Our aim is to understand the role of the environment in the quenching of star formation of galaxies located in the infall cluster region of Abell 85 (A85). This is achieved by studying the post-starburst galaxy population as tracer of recent quenching. By measuring the equivalent width (EW) of the [O II] and Hδ spectral lines, we classify the galaxies into three groups: passive (PAS), emission line (EL), and post-starburst (PSB) galaxies. The PSB galaxy population represents ˜ 4.5 per cent of the full sample. Dwarf galaxies (Mr > -18.0) account for ˜ 70 - 80 per cent of PSBs, which indicates that most of the galaxies undergoing recent quenching are low-mass objects. Independently of the environment, PSB galaxies are disc-like objects with g - r colour between the blue ELs and the red PAS ones. The PSB and EL galaxies in low-density environments show similar luminosities and local galaxy densities. The dynamics and local galaxy density of the PSB population in high-density environments are shared with PAS galaxies. However, PSB galaxies inside A85 are at shorter clustercentric radius than PAS and EL ones. The value of the EW(Hδ) is larger for those PSBs closer to the cluster centre. We propose two different physical mechanisms producing PSB galaxies depending on the environment. In low-density environments, gas-rich minor mergers or accretions could produce the PSB galaxies. For high-density environments like A85, PSBs would be produced by the removal of the gas reservoirs of EL galaxies by ram-pressure stripping when they pass near the cluster centre.

  2. Galaxy evolution in the cluster Abell 85: new insights from the dwarf population

    Science.gov (United States)

    Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence

    2018-04-01

    We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr behaviour based on their mass. At the low-mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The time-scales probed here favour fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low-mass galaxies maintain their levels of star-forming activity, while the more massive galaxies have experienced a recent burst.

  3. E+A galaxies in the SDSS. Stellar population and morphology

    Science.gov (United States)

    Leiva, R.; Galaz, G.

    2014-10-01

    Galaxies with E+A spectrum have deep Balmer absorption and no H_{α} and [OII] emission. This suggest recent star formation and the lack of ongoing star formation. With an E+A sample from the SDSS DR 7 (Aihara et al. 2011) we study the morphology with Galaxy Zoo 1 data and the star formation history fitting models from Bruzual & Charlot (2003). We found an underpopulation of spiral and disk like galaxies and an overpopulation of interacting galaxies, the last seems consistent with the scenario where, at low z, the interaction mechanism is responsible for at least part of the E+A galaxies. The star formation history (SFH) fits most of the spectra indicating an increased star formation around 2 Gyr in the past. Additional parameters like dust internal extinction need to be included to improve the fitting.

  4. From the realm of the nebulae to populations of galaxies dialogues on a century of research

    CERN Document Server

    Rampazzo, Roberto; Zaggia, Simone

    2016-01-01

    In order to outline possible future directions in galaxy research, this book wants to be a short stopover, a moment of self-reflection of the past century of achievements in this area. Since the pioneering years of galaxy research in the early 20th century, the research on galaxies has seen a relentless advance directly connected to the parallel exponential growth of new technologies. Through a series of interviews with distinguished astronomers the editors provide a snapshot of the achievements obtained in understanding galaxies. While many initial questions about their nature have been addressed, many are still open and require new efforts to achieve a solution. The discussions may reveal paradigms worthwhile revisiting. With the help of some of those scientists who have contributed to it, the editors sketch the history of this scientific journey and ask them for inspirations for future directions of galaxy research.

  5. A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Lin, Yen-Ting; Ostriker, Jeremiah P.; Miller, Christopher J.

    2010-01-01

    A novel statistic is proposed to examine the hypothesis that all cluster galaxies are drawn from the same luminosity distribution (LD). In such a 'statistical model' of galaxy LD, the brightest cluster galaxies (BCGs) are simply the statistical extreme of the galaxy population. Using a large sample of nearby clusters, we show that BCGs in high luminosity clusters (e.g., L tot ∼> 4 x 10 11 h -2 70 L sun ) are unlikely (probability ≤3 x 10 -4 ) to be drawn from the LD defined by all red cluster galaxies more luminous than M r = -20. On the other hand, BCGs in less luminous clusters are consistent with being the statistical extreme. Applying our method to the second brightest galaxies, we show that they are consistent with being the statistical extreme, which implies that the BCGs are also distinct from non-BCG luminous, red, cluster galaxies. We point out some issues with the interpretation of the classical tests proposed by Tremaine and Richstone (TR) that are designed to examine the statistical nature of BCGs, investigate the robustness of both our statistical test and those of TR against difficulties in photometry of galaxies of large angular size, and discuss the implication of our findings on surveys that use the luminous red galaxies to measure the baryon acoustic oscillation features in the galaxy power spectrum.

  6. Galaxies Die in Groups: An IRAC Autopsy

    Science.gov (United States)

    Wilman, D. J.; Pierini, D.; Tyler, K.; McGee, S. L.; Oemler, A., Jr.; Morris, S. L.; Balogh, M. L.; Bower, R. G.; Mulchaey, J. S.

    2008-10-01

    The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group-scale haloes which host most of these galaxies. Our z˜0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass selected M_{*} ≲ 2×10^{10}M_{⊙} sample is constructed using IRAC observations. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at λ_{obs}=8 micron. We term them InfraRed-Excess galaxies whether star formation and/or AGN activity are present. They include all known morphological late-types. The fraction of InfraRed Excess galaxies, f(IRE) drops with M_{*}, such that f(IRE)=0.5 at a ``crossover mass'' of M_{cr}˜ 1.3×10^{11}M_{⊙}. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, but most clearly at M_{*} ≲ 10^{11}M_{⊙}. Suppression of star formation must mainly occur in groups, and the observed trend of f(IRE) with M_{*} can be explained if suppression of M_{*} ≲ 10^{11}M_{⊙} galaxies occurs primarily in the group environment.

  7. The SAURON project : XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

    NARCIS (Netherlands)

    Falcon-Barroso, J.; van de Ven, G.; Peletier, R. F.; Bureau, M.; Jeong, H.; Bacon, R.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Krajnovic, D.; Kuntschner, H.; McDermid, R. M.; Sarzi, M.; Shapiro, K. L.; van den Bosch, R.C.E.; van der Wolk, G.; Weijmans, A.; Yi, S.

    2011-01-01

    We present ground-based MDM Observatory V-band and Spitzer/InfraRed Array Camera 3.6-mu m-band photometric observations of the 72 representative galaxies of the SAURON survey. Galaxies in our sample probe the elliptical E, lenticular S0 and spiral Sa populations in the nearby Universe, both in field

  8. The SAURON project - XIX. Optical and near-infrared scaling relations of nearby elliptical, lenticular and Sa galaxies

    NARCIS (Netherlands)

    Falcón-Barroso, J.; van de Ven, G.; Peletier, R. F.; Bureau, M.; Jeong, H.; Bacon, R.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Krajnović, D.; Kuntschner, H.; McDermid, R. M.; Sarzi, M.; Shapiro, K. L.; van den Bosch, R. C. E.; van der Wolk, G.; Weijmans, A.; Yi, S.

    2011-01-01

    We present ground-based MDM Observatory V-band and Spitzer/InfraRed Array Camera 3.6-?m-band photometric observations of the 72 representative galaxies of the SAURON survey. Galaxies in our sample probe the elliptical E, lenticular S0 and spiral Sa populations in the nearby Universe, both in field

  9. A population of highly energetic transient events in the centres of active galaxies

    Science.gov (United States)

    Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2017-12-01

    Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.

  10. High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

    Science.gov (United States)

    Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime

    2017-11-01

    The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

  11. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    Science.gov (United States)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  12. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  13. Using the CaII triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Irwin, MJ; Cole, AA; Pasquini, L; Gilmozzi, R; Gallagher, JS

    2001-01-01

    Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to determine unambiguously the evolutionary histories of galaxies. Using FORS I in multi-object spectroscopy mode on ANTU (UT1) at the ESO VLT on Paranal, we have obtained near-infrared spectra from

  14. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers

    Directory of Open Access Journals (Sweden)

    Boris Briñez R.

    2011-05-01

    Full Text Available Objective. To determine and evaluate the genetic diversity of six populations of red hybrid tilapia, with the purpose to assess the potential benefit of a future breeding program conducted at the Research Center for Aquaculture (Ceniacua, Colombia. Material and methods. A total of 300 individuals, representing a wide genetic variability, were genotyped using a fluorescent microsatellite marker set of 5 gene-based SSRs in 6 different farms belonging to 4 States of Colombia. Results. The result showed that the mean number of alleles per locus per population was 8.367. The population 5 had the highest mean number of alleles with 9.6 alleles, followed by population 4 with 9.4 alleles, population 2 with 9.2, population 3 with 8.0, population 1 with 7.2 and population 6 with 6.8 alleles. The analysis of the distribution of genetic variation was (17.32% among population, while among individuals within populations was (28.55% and within individuals was high (54.12%. The standard diversity indices showed that population 4 was the more variable (mean He=0.837 followed by population 1 (mean He=0.728, population 3 (mean He=0.721, population 5 (mean He=0.705, population 2 (mean He=0.690, population 6 (mean He=0.586. Highly significant deviations from Hardy–Weinberg, exhibited all of the populations, mostly due to deficits of heterozygotes. Genotype frequencies at loci UNH 106 of population 5 and loci UNH 172 of population 6 were Hardy-Weinberg equilibrium (HWE. Conclusions. The results of this study, contribute to the genetic breeding program of Tilapia, conduced by the Research Center for Aquaculture. The Fst distance showed that the samples are differentiated genetically and it is possible to use at the beginning of the genetic program. However, it is recommended to introduce others individuals to the crossbreeding program.

  15. Dark Galaxies and Lost Baryons (IAU S244)

    Science.gov (United States)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  16. Young and Old X-ray Binary and IXO Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Ptak, A.; Strickland, D.; Weaver, K.

    2003-03-01

    We have analyzed Chandra ACIS observations of 32 nearby spiral and elliptical galaxies and present the results of 1441 X-ray point sources, which are presumed to be mostly X-ray binaries (XRBs) and Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs). The X-ray luminosity functions (XLFs) of the point sources show that the slope of the elliptical galaxy XLFs are significantly steeper than the spiral galaxy XLFs, indicating grossly different types of point sources, or different stages in their evolution. Since the spiral galaxy XLF is so shallow, the most luminous points sources (usually the IXOs) dominate the total X-ray point source luminosity LXP. We show that the galaxy total B-band and K-band light (proxies for the stellar mass) are well correlated with LXP for both spirals and ellipticals, but the FIR and UV emission is only correlated for the spirals. We deconvolve LXP into two components, one that is proportional to the galaxy stellar mass (pop II), and another that is proportional to the galaxy SFR (pop I). We also note that IXOs (and nearly all of the other point sources) in both spirals and ellipticals have X-ray colors that are most consistent with power-law slopes of Gamma ˜ 1.5--3.0, which is inconsistent with high-mass XRBS (HMXBs). Thus, HMXBs are not important contributors to LXP. We have also found that IXOs in spiral galaxies may have a slightly harder X-ray spectrum than those in elliptical galaxies. The implications of these findings will be discussed.

  17. THE CONTRIBUTION OF X-RAY BINARIES TO THE EVOLUTION OF LATE-TYPE GALAXIES: EVOLUTIONARY POPULATION SYNTHESIS SIMULATIONS

    International Nuclear Information System (INIS)

    Zuo Zhaoyu; Li Xiangdong

    2011-01-01

    X-ray studies of normal late-type galaxies have shown that non-nuclear X-ray emission is typically dominated by X-ray binaries and provides a useful measure of star formation activity. We have modeled the X-ray evolution of late-type galaxies over the ∼14 Gyr of cosmic history, with an evolutionary population synthesis code developed by Hurley et al. Our calculations reveal a decrease in the X-ray luminosity-to-mass ratio L X /M with time, in agreement with observations. We show that this decrease is a natural consequence of stellar and binary evolution and the mass accumulating process in galaxies. The X-ray-to-optical luminosity ratio L X /L B is found to be fairly constant (around ∼10 30 erg s -1 L -1 B,sun ) and insensitive to the star formation history in the galaxies. The nearly constant value of L X /L B is in conflict with the observed increase in L X /L B from z = 0 to 1.4. The discrepancy may be caused by intense obscured star formation activity that leads to a nonlinear relationship between X-ray and B-band emission.

  18. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Rees, M.J.

    1977-01-01

    Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references

  19. The Stellar Populations Inside Expanding HI Shells in the Spiral Galaxy M33

    Science.gov (United States)

    Walterbos, Rene

    1997-07-01

    Because of its vigorous star formation activity, favorable inclination, and relative proximity, M33 is an ideal laboratory for the study of expanding HI shells in spiral galaxies. Theoretical models show that the energy deposited into the ISM by high mass stars in OB associations is capable of creating HI superbubbles. However, sparse observational evidence exists to test these models in detail. One essential ingredient of such a test is an improved census of stellar populations inside expanding HI shells. Using multi-color archival HST images of M33, we will {1} verify that association ages are consistent with dynamical ages of related shells and with ages from model predictions for bubbles of matching size and kinematics; {2} Constrain the IMF for each association by combining integrated ground-based HAlpha fluxes with the population age, present day mass function, and luminosity function derived from WFPC2 data; {3} Use this information to infer which fraction of the integrated stellar mechanical luminosity is transferred to a shell over its lifetime. Ground-based observations of associations inside expanding shells lack the UV-sensitivity and spatial resolution to adequately address these issues. Our sample of expanding neutral shells in M33 was selected using a new automated method for analysis of HI datacubes. From this robust catalog we have identified more than 30 HI supershells in M33 already imaged with WFPC2 in suitable broadband filters {F160BW, F170W, F336W, F439W, F555W, and F814W}.

  20. Environmental effects on stellar populations of star clusters and dwarf galaxies

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; Fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2017-03-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  1. Infrared photometry of galaxies in the Butcher-Oemler cluster 0024+1654

    International Nuclear Information System (INIS)

    Lilly, S.J.; Gunn, J.E.

    1985-01-01

    Infrared photometry is presented for 21 galaxies that are spectroscopically confirmed members of the Butcher-Oemler cluster C10024+1654 at z=0.39. These data are combined with optical CCD photometry and transformed to produce rest-frame UBVK colours. The distribution of colours in the (U-V)/(V-K) plane is analysed. The 11 'red' galaxies have colours that are broadly similar to those of nearby elliptical galaxies. All but one of the 10 'blue' galaxies have the colours of nearby spiral galaxies, including one Im-type galaxy, and other interpretations, e.g. a young age, may be discounted. The (V-K) colour of the remaining 'blue' galaxy, however, suggests the presence of a substantial intermediate age (approx. 1 Gyr) stellar population. (author)

  2. THE SLOAN GREAT WALL. MORPHOLOGY AND GALAXY CONTENT

    International Nuclear Information System (INIS)

    Einasto, M.; Liivamaegi, L. J.; Tempel, E.; Saar, E.; Tago, E.; Einasto, P.; Enkvist, I.; Einasto, J.; MartInez, V. J.; Heinaemaeki, P.; Nurmi, P.

    2011-01-01

    We present the results of a study of the morphology and galaxy content of the Sloan Great Wall (SGW), the richest galaxy system in the nearby universe. We use the luminosity density field to determine superclusters in the SGW, and the fourth Minkowski functional V 3 and the morphological signature (the K 1 -K 2 shapefinder curve) to show the different morphologies of the SGW, from a single filament to a multibranching, clumpy planar system. We show that the richest supercluster in the SGW, SCl 126, and especially its core, resembles a very rich filament, while another rich supercluster in the SGW, SCl 111, resembles a 'multispider'-an assembly of high-density regions connected by chains of galaxies. We study the substructure of individual galaxy populations determined by their color in these superclusters using Minkowski functionals and find that in the high-density core of the SGW the clumpiness of red and blue galaxies is similar, but in the outskirts of superclusters the distribution of red galaxies is clumpier than that of blue galaxies. At intermediate densities, the systems of blue galaxies have tunnels through them. We assess the statistical significance of our results using the halo model and smoothed bootstrap. We study the galaxy content and the properties of groups of galaxies in the two richest superclusters of the SGW, paying special attention to bright red galaxies (BRGs) and the first ranked (the most luminous) galaxies in SGW groups. The BRGs are the nearby luminous red galaxies; they are mostly bright and red and typically reside in groups (several groups host five or more BRGs). About one-third of the BRGs are spirals. The scatter of colors of elliptical BRGs is smaller than that of spiral BRGs. About half of the BRGs and of first ranked galaxies in groups have large peculiar velocities. Groups with elliptical BRGs as their first ranked galaxies populate superclusters more uniformly than the groups that have a spiral BRG as their first ranked

  3. Neglected intravascular pathogens, Babesia vulpes and haemotropic Mycoplasma spp. in European red fox (Vulpes vulpes) population.

    Science.gov (United States)

    Koneval, Martina; Miterpáková, Martina; Hurníková, Zuzana; Blaňarová, Lucia; Víchová, Bronislava

    2017-08-30

    Wild animals, especially canids, are important reservoirs of vector-borne pathogens, that are transmitted by the ticks and other bloodsucking arthropods. In total, 300 red foxes (Vulpes vulpes), shot by the hunters in eastern and northern Slovakia, were screened for the presence of vector-borne pathogens by PCR-based methods Blood samples were obtained from nine red foxes and tissue samples originated from 291 animals (the liver tissue samples from 49 foxes and spleen samples from 242 red foxes). Babesia vulpes and haemotropic Mycoplasma species were identified by amplification and sequencing of 18S rRNA and 16S rRNA gene fragments, respectively. Overall, the presence of these pathogens was recorded in 12.3% of screened DNA samples. Altogether 9.7% (29/300) of investigated foxes carried DNA of Babesia spp. In total, 12 out of 29 Babesia spp. PCR - positive amplicons were further sequenced and identified as B. vulpes (41.4%; 12/29), remaining 17 samples are referred as Babesia sp. (58.6%; 17/29). Overall prevalence of B. vulpes reached 4.0% (n=300). Thirteen (4.3%) samples tested positive for distinct Mycoplasma species. To the best of our knowledge, this study brings the first information on B. vulpes infection in red foxes in Slovakia, and the first data on the prevalence and diversity of haemotropic Mycoplasma spp. in European red fox population. Moreover, co-infections with B. vulpes and Mycoplasma spp. were confirmed in 1.7% of tested DNA samples. The relatively high rates of blood pathogen' prevalence and species diversity in wild foxes indicate the role of the fox population in the maintenance of the parasites in sylvatic cycles and strengthen the assumption that foxes play an important role in spreading of infectious microorganisms within and outside the natural foci. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Current and Future Dynamics of the Red-Cockaded Woodpecker Population Inhabiting the Savannah River National Environmental Research Park: Managing For Population Growth

    International Nuclear Information System (INIS)

    Walters, J.R.; Taylor, T.B.; Daniels, S.J.; Crowder, L.B.; Pridd, J.A.

    2001-01-01

    Research aimed to study the dynamics of the SRS population of Red-Cockaded woodpecker and compare to those of other populations to identify factors limiting population growth; recruitment clusters were evaluated to determine what properties of individual cavity trees, surrounding habitat and the surrounding landscape might limit occupancy through natural dispersal. A spatial simulation model was used to project expected dispersal rates and population growth under current conditions and compare those estimates to observed dispersal and population growth. Red cockaded woodpecker populations at SRS are stable considering size. Research reveals that closer placement of recruitment clusters to active territories would produce higher growth rates while decreasing management intensity

  5. Current and Future Dynamics of the Red-Cockaded Woodpecker Population Inhabiting the Savannah River National Environmental Research Park: Managing For Population Growth

    Energy Technology Data Exchange (ETDEWEB)

    Walters, J.R.; Taylor, T.B.; Daniels, S.J.; Crowder, L.B.; Pridd, J.A.

    2001-01-01

    Research aimed to study the dynamics of the SRS population of Red-Cockaded woodpecker and compare to those of other populations to identify factors limiting population growth; recruitment clusters were evaluated to determine what properties of individual cavity trees, surrounding habitat and the surrounding landscape might limit occupancy through natural dispersal. A spatial simulation model was used to project expected dispersal rates and population growth under current conditions and compare those estimates to observed dispersal and population growth. Red cockaded woodpecker populations at SRS are stable considering size. Research reveals that closer placement of recruitment clusters to active territories would produce higher growth rates while decreasing management intensity.

  6. The evolution of galaxies at moderate redshift

    International Nuclear Information System (INIS)

    Lilly, S.J.

    1987-01-01

    Optical and infrared photometric data on 53 galaxies in five clusters at 0.38 < z < 0.58 are described and analysed to produce the rest-frame (U-V) and (V-H) colours. The 36 red galaxies form a homogeneous population in each cluster. The colours of the 17 blue galaxies clearly distinguish between the normal spirals and the peculiar 'A-type' galaxies found in these Butcher-Oemler clusters and suggest for the latter a substantial intermediate age 1-Gyr population as indicated by optical spectra. The average colours of the red elliptical galaxies at z ∼ 0.45 are systematically 0.12 mag bluer in the rest-frame (U-V), as expected from conventional evolutionary models, but are about 0.1 mag redder in (V-H), which is not predicted by the models. It is shown, however, that inclusion of the evolution of the upper Asymptotic Giant Branch, which is usually neglected, into a simple evolutionary model can explain the observed evolution vector in the (U-V)/(V-H) plane. (author)

  7. Genetic diversity and relatedness among seven red deer (Cervus elaphus populations

    Directory of Open Access Journals (Sweden)

    Lenka Maršálková

    2014-02-01

    Full Text Available Deer (Cervidae recently belongs to the most important species. The aim of presenting study was evaluation of genetic diversity and relationship within and among seven red deer populations from different origins - Czech Republic, Hungary, hybrids Hungary x New Zealand, Lithuania, New Zealand, Poland and Slovak Republic. This study was conducted to determine the levels of genetic variability and relationships among deer populations from a total of 637 animals originating from seven countries Czech Republic (50, Hungary (35, Hungary x New Zealand hybrids (67, Lithuania (26, New Zealand (82, Poland (347 and Slovak Republic (30.  We used the hair bulbs as a source of DNA.  In total, 213 alleles were observed from the 10 loci surveyed. The number of alleles per locus ranged from 11 (IOBT965 to 35 (T156, RT13. Genetic diversity and relatedness among red deer populations has been performed on a total of 637 animals. A panel of 10 microsatellite markers used in deer were optimized. On the basis of this panel of microsatellites we were investigated genetic variability and relationships by using statistical and graphical programmes. We evaluated how close populations are to each other and their genetic admixture. Molecular genetic data combined with evaluation in statistical programmes could lead to a complex view of populations

  8. Population fluctuation and vertical distribution of meiofauna in the Red Sea interstitial environment.

    Science.gov (United States)

    El-Serehy, Hamed A; Al-Misned, Fahad A; Al-Rasheid, Khaled A

    2015-07-01

    The composition and distribution of the benthic meiofauna assemblages of the Egyptian coasts along the Red Sea are described in relation to abiotic variables. Sediment samples were collected seasonally from three stations chosen along the Red Sea to observe the meiofaunal community structure, its temporal distribution and vertical fluctuation in relation to environmental conditions of the Red Sea marine ecosystem. The temperature, salinity, pH, dissolved oxygen, and redox potential were measured at the time of collection. The water content of the sediments, total organic matters and chlorophyll a values were determined, and sediment samples were subjected to granulometric analysis. A total of 10 meiofauna taxa were identified, with the meiofauna being primarily represented by nematodes (on annual average from 42% to 84%), harpacticoids, polycheates and ostracodes; and the meiofauna abundances ranging from 41 to 167 ind./10 cm(2). The meiofaunal population density fluctuated seasonally with a peak of 192.52 ind./10 cm(2) during summer at station II. The vertical zonation in the distribution of meiofaunal community was significantly correlated with interstitial water, chlorophyll a and total organic matter values. The present study indicates the existence of the well diversified meiofaunal group which can serve as food for higher trophic levels in the Red Sea interstitial environment.

  9. The progenitors of local ultra-massive galaxies across cosmic time: from dusty star-bursting to quiescent stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Danilo; Marsan, Cemile Z. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden (Netherlands); Stefanon, Mauro [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Brammer, Gabriel G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan); Fynbo, J. P. U.; Milvang-Jensen, Bo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dunlop, James S.; Buitrago, Fernando [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-10-10

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4 Gyr since z = 3 of the progenitors of local ultra-massive galaxies (log (M {sub star}/M {sub ☉}) ≈ 11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z = 0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.56{sub −0.25}{sup +0.35} dex, 0.45{sub −0.20}{sup +0.16} dex, and 0.27{sub −0.12}{sup +0.08} dex from z = 3, z = 2, and z = 1, respectively, to z = 0. At z < 1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z > 1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2 < z < 3 being dominated by massive (M {sub star} ≈ 2 × 10{sup 11} M {sub ☉}), dusty (A {sub V} ∼ 1-2.2 mag), star-forming (SFR ∼ 100-400 M {sub ☉} yr{sup –1}) galaxies with a large range in stellar ages. At z = 2.75, ∼15% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z > 1, whereas the remaining was assembled via merging from z ∼ 1 to the present. Most of the quenching of the star-forming progenitors happened between z = 2.75 and z = 1.25, in good agreement with the typical formation redshift and scatter in age of z = 0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z = 3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.

  10. Efficiency of population-dependent sulfite against Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    Longin, Cédric; Degueurce, Claudine; Julliat, Frédérique; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2016-11-01

    Brettanomyces bruxellensis is considered as a spoilage yeast encountered mainly in red wine. It is able to reduce vinylphenols from phenolic acids to ethylphenols. These volatiles are responsible for the phenolic "Brett character" described as animal, farm, horse sweat and animal leather odors. Other molecules are responsible for organoleptic deviations described as "mousiness taint". SO 2 is the product most often used by winemakers to prevent B. bruxellensis growth. Usually, the recommended molecular dose of SO 2 (active SO 2 , mSO 2 ) is highly variable, from 0.3 to 0.8mg/L. But these doses do not take into account differences of strain resistance to sulfites or population levels. Moreover, SO 2 is known as a chemical stressor inducing a viable but nonculturable (VBNC) state of B. bruxellensis. These cells, which are non-detectable by plate counting, can lead to new contamination when the amount of sulfite decreases over time. Consequently, we first assessed the effect of SO 2 levels in red wine on two strains with phenotypically different sulfite resistances. Then, we studied the relationship between amounts of SO 2 (0, 0.5, 0.9 and 1.1mg/L active SO 2 ) and population levels (10 3 , 10 4 and 10 5 cells/mL) in red wine. Yeasts were enumerated by both plate counting and flow cytometry over time using viability dye. Our results showed different SO 2 resistances according to the strain used. A relationship between yeast population level and SO 2 resistance was demonstrated: the higher the yeast concentration, the lower the efficiency of SO 2 . Under certain conditions, the VBNC state of B. bruxellensis was highlighted in red wine. Yeasts in this VBNC state did not produce 4-EP. Moreover, cells became culturable again over time. All these results provide new information enabling better management of sulfite addition during wine aging. Copyright © 2016. Published by Elsevier Ltd.

  11. PHAT+MaNGA: Using resolved stellar populations to improve the recovery of star formation histories from galaxy spectra

    Science.gov (United States)

    Byler, Nell

    2017-08-01

    Stellar Population Synthesis (SPS) models are routinely used to interpret extragalactic observations at all redshifts. Currently, the dominant source of uncertainty in SPS modeling lies in the degeneracies associated with synthesizing and fitting complex stellar populations to observed galaxy spectra. To remedy this, we propose an empirical calibration of SPS models using resolved stellar population observations from Hubble Space Telescope (HST) to constrain the stellar masses, ages, and star formation histories (SFHs) in regions matched to 2D spectroscopic observations from MaNGA. We will take advantage of the state of the art observations from the Panchromatic Hubble Andromeda Treasury (PHAT), which maps the dust content, history of chemical enrichment, and history of star formation across the disk of M31 in exquisite detail. Recently, we have coupled these observations with an unprecedented, spatially-resolved suite of IFU observations from MaNGA. With these two comprehensive data sets we can use the true underlying stellar properties from PHAT to properly interpret the aperture-matched integrated spectra from MaNGA. Our MaNGA observations target 20 regions within the PHAT footprint that fully sample the available range in metallicity, SFR, dust content, and stellar density. This transformative dataset will establish a comprehensive link between resolved stellar populations and the inferred properties of unresolved stellar populations across astrophysically important environments. The net data product will be a library of galaxy spectra matched to the true underlying stellar properties, a comparison set that has lasting legacy value for the extragalactic community.

  12. Geographic Variation in Phosphine Resistance Among North American Populations of the Red Flour Beetle (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Cato, A J; Elliott, Brent; Nayak, Manoj K; Phillips, Thomas W

    2017-06-01

    The red flour beetle, Tribolium castaneum (Herbst), is a common stored-product pest found worldwide. Phosphine, hydrogen phosphide (PH3), is the most commonly used fumigant for stored grains, for which genetically based resistance has been recorded for several pest species. This study assessed phosphine resistance in 25 T. castaneum populations from across the United States and Canada using a discriminating dose bioassay. Dose-mortality assays were conducted with adults from seven of these populations to categorize weak and strong resistance phenotypes. Phosphine resistance was detected in 12 out of the 25 populations, and the frequency of resistance within populations varied from 2% in Victoria, TX, to 100% in Red Level, AL. Two resistant populations from Kansas that had been sampled three years earlier were found to have similar resistance frequencies in the current study. None of the four Canadian populations had any detectable resistance among the insects tested. Resistance ratio calculations from LC50 value in resistant populations relative to the LC50 for the laboratory susceptible strain allowed resistance phenotypes to be assigned as either weak resistance, at 5- to 26-fold resistance relative to susceptible, or strong resistance at 95- to 127-fold relative to susceptible. This study suggests that proper resistance assessment techniques can help to determine occurrence of phosphine resistance in populations of T. castaneum and can further characterize the strength of resistance present. These data can be used to support resistance management programs that consider either cessation or modification of phosphine fumigation to control T. castaneum. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    Science.gov (United States)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  14. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments.

    Science.gov (United States)

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-06-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.

  15. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R

    2013-05-11

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. 2013 The

  16. Modeling the impacts of hunting on the population dynamics of red howler monkeys (Alouatta seniculus)

    Science.gov (United States)

    Wiederholt, Ruscena; Fernandez-Duque, Eduardo; Diefenbach, Duane R.; Rudran, Rasanayagam

    2010-01-01

    Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un

  17. What the UV SED Tells us About Stellar Populations and Galaxies

    Science.gov (United States)

    Heap, Sara R.

    2011-01-01

    The UV SED parameter b as in f(sub 1) 1(sup b), is commonly used to estimate fundamental properties of high-redshift galaxies including age and metallicity. However, sources and processes other than age and metallicity can influence the value of b. We use the local starforming dwarf galaxy, I Zw 18, in a case study to investigate uncertainties in age and metallicity inferred from b due errors or uncertainties in: mode of star formation (instantaneous starburst vs. continuous SF), dust extinction, nebular continuous emission (2-photon emission, Balmer continuum flux), and presence of older stars.

  18. Distance determinations to shield galaxies from Hubble space telescope imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Cannon, John M.; Cave, Ian [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Salzer, John J. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Haynes, Martha P.; Adams, Elizabeth; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Elson, Ed C. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Ott, Juërgen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Saintonge, Amélie, E-mail: kmcquinn@astro.umn.edu [Max-Planck-Institute for Astrophysics, D-85741 Garching (Germany)

    2014-04-10

    The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc by applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.

  19. Population Genetics of red striped mullet (Mullus surmuletus in Turkish Seas Based on Mitochondrial and Nuclear DNA data

    Directory of Open Access Journals (Sweden)

    Fevzi Bardakci

    2014-07-01

    This study was determined a preview of genetic structure of red striped mullet because of few sampling localities so a further study is would be useful to determine its population structure along its distribution area in detail.

  20. Environmental effects on stellar populations of dwarf galaxies and star clusters

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in an external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.

  1. Stellar populations as a function of radius in giant elliptical galaxies

    NARCIS (Netherlands)

    Peletier, Reynier F.; Valentijn, Edwin A.

    Accurate surface photometry has been obtained in J and K for 12 giant elliptical galaxies. Ellipses have been fitted, to obtain luminosity, ellipticity, and major axis position angle profiles. The results have been combined with visual profiles from CCD observations. It is found that elliptical

  2. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.

    2014-01-20

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  3. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.; Saenz Agudelo, Pablo; Manica, Andrea; Berumen, Michael L.

    2014-01-01

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  4. Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; /Fermilab /Michigan U.; Koester, Benjamin P.; /Chicago U.; Mckay, Timothy A.; /Michigan U.; Rykoff, Eli S.; /UC, Santa Barbara; Rozo, Eduardo; /Ohio State U.; Evrard, August; /Michigan U.; Annis, James; /Fermilab; Becker, Matthew; /Chicago U.; Busha, Michael; /KIPAC, Menlo Park /SLAC; Gerdes, David; /Michigan U.; Johnston, David E.; /Northwestern U. /Brookhaven

    2009-07-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.

  5. PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL

    International Nuclear Information System (INIS)

    Hao Jiangang; Annis, James; Koester, Benjamin P.; Mckay, Timothy A.; Evrard, August; Gerdes, David; Rykoff, Eli S.; Rozo, Eduardo; Becker, Matthew; Busha, Michael; Wechsler, Risa H.; Johnston, David E.; Sheldon, Erin

    2009-01-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error-corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically based cluster cosmology.

  6. Differential population synthesis of early-type galaxies. III. Synthesis results

    International Nuclear Information System (INIS)

    Pickles, A.J.

    1985-01-01

    Synthesis results are presented for 12 elliptical and five lenticular galaxies which cover nearly a 6 mag range of absolute magnitude in the Fornax cluster (V = 1430 km s -1 ). The results of age, metallicity, and mass-to-light ratio (M/L) determinations are presented differentially as functions of galactic luminosity and morphology. Bright elliptical galaxies are well represented by main-sequence turnoff colors of (V-R)/sub c/roughly-equal0.37 and B-Vroughly-equal0.70, in good agreement with O'Connell's results for bright Virgo ellipticals. The relatively young main-sequence turnoff ages, of 6-10 Gyr for ellipticals of all luminosities, indicate that substantial star formation activity occurred in these galaxies for a period of 6dagger10 Gyr after the epoch of globular cluster formation. There is strong evidence for small amounts of current star formation in at least the brightest ellipticals of all luminosities, indicate that substantial star formation in at least the brightest ellipticals, variation in the amount of which may account for significant dispersion in the cluster U-V versus V color-magnitude relation. A metallicity gradient in [Fe/H] of at least 0.16 dex per absolute magnitude is derived, with the brightest ellipticals being 2 to 3 times more metal-rich than solar. The mean metallicities and turnoff ages of the faintest ellipticals are probably dependent on environment. Distance-independent upper limits to galaxy M/L ratios derived from the syntheses conform well with M/L ratios derived from velocity dispersion measurements and give no evidence for unseen mass in the nuclei of early type galaxies of any luminosity

  7. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations

    International Nuclear Information System (INIS)

    Eeva, T.; Sorvari, J.; Koivunen, V.

    2004-01-01

    We studied the species composition, mound population densities, relative abundance and colony sizes of red wood ants along a well known air pollution gradient of a copper smelter in Southwest Finland. The dominant species, Formica aquilonia, was further studied for heavy metal (Al, Cu, Cd, Ni, Zn, As, Pb, Hg) levels and morphological characters (body mass, head width, labial gland disease) of workers. We found five species belonging to Formica s. str., and two of them showed changes in their relative abundance, which could not be explained by natural habitat differences. Nest mound volumes were 34% smaller in the polluted area, suggesting that smaller colonies can be maintained there. The heavy metal levels in F. aquilonia workers were higher in the polluted area for all metals, except Hg. The largest relative differences between the study areas (polluted/unpolluted) were found for As (4.1), Ni (2.4), Cu (2.1) and Pb (1.8). Morphological characters of workers were not related to the heavy metal levels. Our data showed that red wood ants can tolerate relatively high amounts of heavy metals and maintain reproducing colonies even in a heavily polluted area, but on the basis of smaller colony sizes, pollution stress may also cause trade-offs in reproduction. - Capsule: Five species of red wood ants vary in their sensitivity to heavy metal pollution but all of them had smaller colonies in a polluted area

  8. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George, Matthew R.; Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Tinker, Jeremy [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Finoguenov, Alexis, E-mail: mgeorge@astro.berkeley.edu [Department of Physics, University of Helsinki, Gustaf Haellstroemin katu 2a, FI-00014 Helsinki (Finland)

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  9. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    International Nuclear Information System (INIS)

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-01-01

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10 13 -10 14 M ☉ and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M * /M ☉ ) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  10. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    El-Badry, Kareem; Geha, Marla; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2016-01-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M star  = 2 × 10 6  − 5 × 10 10 M ⊙ ) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M star . Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M star  ≈ 10 7–9.6 M ⊙ , the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM

  11. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Wetzel, Andrew; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA USA (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kareem.el-badry@yale.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  12. CONSTRAINING VERY HIGH MASS POPULATION III STARS THROUGH He II EMISSION IN GALAXY BDF-521 AT z = 7.01

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Davé, Romeel; Zabludoff, Ann [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jiang, Linhua [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Oh, S. Peng [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106-9530 (United States); Yang, Yujin, E-mail: caiz@email.arizona.edu [Argelander-Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2015-01-30

    Numerous theoretical models have long proposed that a strong He II λ1640 emission line is the most prominent and unique feature of massive Population III (Pop III) stars in high-redshift galaxies. The He II λ1640 line strength can constrain the mass and initial mass function (IMF) of Pop III stars. We use F132N narrowband filter on the Hubble Space Telescope's (HST) Wide Field Camera 3 to look for strong He II λ1640 emission in the galaxy BDF-521 at z = 7.01, one of the most distant spectroscopically confirmed galaxies to date. Using deep F132N narrowband imaging, together with our broadband imaging with F125W and F160W filters, we do not detect He II emission from this galaxy, but place a 2σ upper limit on the flux of 5.3×10{sup −19} erg s{sup −1} cm{sup −2}. This measurement corresponds to a 2σ upper limit on the Pop III star formation rate (SFR{sub PopIII}) of ∼0.2 M {sub ☉} yr{sup –1}, assuming a Salpeter IMF with 50 ≲ M/M {sub ☉} ≲ 1000. From the high signal-to-noise broadband measurements in F125W and F160W, we fit the UV continuum for BDF-521. The spectral flux density is ∼3.6×10{sup −11}×λ{sup −2.32} erg s{sup −1} cm{sup −2} Å{sup –1}, which corresponds to an overall unobscured SFR of ∼5 M {sub ☉} yr{sup –1}. Our upper limit on SFR{sub PopIII} suggests that massive Pop III stars represent ≲ 4% of the total star formation. Further, the HST high-resolution imaging suggests that BDF-521 is an extremely compact galaxy, with a half-light radius of 0.6 kpc.

  13. Characterization of Population Genetic Structure of red swamp crayfish, Procambarus clarkii, in China.

    Science.gov (United States)

    Yi, Shaokui; Li, Yanhe; Shi, Linlin; Zhang, Long; Li, Qingbin; Chen, Jing

    2018-04-03

    The red swamp crayfish (Procambarus clarkii) is one of the most economically important farmed aquatic species in China. However, it is also a famous invasive species in the world. This invasive species was dispersed most via human activities including intentional or unintentional carry in China. Thus, P. clarkii naturally distributed in China provides us a desirable mode to investigate the genetic structure of an invasive species dispersed mainly by human-mediated factors. To reveal the impact of human-mediated dispersal on genetic structure of P. clarkii in China, a total of 22,043 genome-wide SNPs were obtained from approximately 7.4 billion raw reads using 2b-RAD technique in this study. An evident pattern of population genetic structure and the asymmetrical migrational rates between different regions were observed with 22 populations based on these SNPs. This study provide a better understanding of the population genetic structure and demographic history of P. clarkii populations in China, inferring that anthropogenic factors (aquaculture or by accident) and ecological factors (e.g., complicated topography and climatic environment), as well as its special biological traits could account for the current population structure pattern and dispersal history of P. clarkii.

  14. The role of the Milky Way hot coronal gas on its dwarf galaxies stellar population

    Science.gov (United States)

    Pasetto, Stefano; Cropper, Mark; fujita, Yutaka; Chiosi, Cesare; Grebel, Eva K.

    2015-08-01

    A large amount (˜5 ×1010 Msun) of hot gas is thought to exist in an extended (˜200 kpc) hot diffuse halo around the Milky Way (MW). We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation history of gravitationally bound system in this external environment. Ram pressure, Kelvin-Helmholtz instability, Rayleigh-Taylor, and tidal forces are accounted separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment useful in observational applications as well as theoretical interpretations of numerical results.We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance.The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich cluster of stars orbiting within its host galaxy.

  15. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  16. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  17. Rapid population decline in red knots : fitness consequences of decreased refuelling rates and late arrival in Delaware Bay

    NARCIS (Netherlands)

    Baker, AJ; Gonzalez, PM; Piersma, T; Niles, LJ; do Nascimento, IDS; Atkinson, PW; Clark, NA; Minton, CDT; Peck, MK; Aarts, G

    2004-01-01

    Most populations of migrant shorebirds around the world are in serious decline, suggesting that vital condition-dependent rates such as fecundity and annual survival are being affected globally. A striking example is the red knot (Calidris canutus rufa) population wintering in Tierra del Fuego,

  18. Influence of model specifications on the reliabilities of genomic prediction in a Swedish-Finnish red breed cattle population

    DEFF Research Database (Denmark)

    Rius-Vilarrasa, E; Strandberg, E; Fikse, W F

    2012-01-01

    Using a combined multi-breed reference population, this study explored the influence of model specification and the effect of including a polygenic effect on the reliability of genomic breeding values (DGV and GEBV). The combined reference population consisted of 2986 Swedish Red Breed (SRB) and ...

  19. POPULATION EFFECTS ON THE METALLICITY DISTRIBUTION FUNCTION DERIVED FROM THE RED GIANT BRANCH

    International Nuclear Information System (INIS)

    Ordoñez, Antonio J.; Sarajedini, Ata

    2015-01-01

    We have tested the reliability of the red giant branch (RGB) as a metallicity indicator accounting for observational errors as well as the complexity of star formation histories and chemical evolution histories observed in various stellar systems. We generate model color–magnitude diagrams (CMDs) produced with a variety of evolutionary histories and compare the resultant metallicity estimates from the colors and magnitudes of RGB stars to the true input metallicities. We include realistic models for photometric errors and completeness in our synthetic CMDs. As expected, for simple simple stellar populations dominated by old stars, the RGB provides a very accurate estimate of the modular metallicity value for a population. An error in the age of a system targeted for this type of study may produce metallicity errors of a few tenths of a dex. The size of this metallicity error depends linearly on the age error, and we find this dependence to be stronger with more precise photometry. If the population has experienced any significant star formation within the last ∼6 Gyr, the metallicity estimates, [M/H], derived from the RGB may be in error by up to ∼0.5 dex. Perhaps the most important consideration for this technique is an accurate, independent estimate of the average age for the target stellar system, especially if it is probable that a significant fraction of the population formed less than ∼6 Gyr ago

  20. Comparative Analysis of the Anatomy of Two Populations of Red-Root Amaranth (Amaranthus retroflexus L.

    Directory of Open Access Journals (Sweden)

    Sava Vrbničanin

    2009-01-01

    Full Text Available The anatomy of stems and leaves of two populations of the weed species Amaranthus retroflexus L. (red-root amaranth (pop. AMARE1 having green stems covered in sparse hairs and pop. AMARE2 with green but notably dense stem hairs was analysed in order better to understand the uptake and translocation of herbicides that could be indicative of the species’ evolving resistance to herbicides. Samples of the two populations (AMARE1 and AMARE2 were collected from arable land of the Institute of Maize Research at Zemun Polje in 2006. Sampling was performed at the stage of full vegetative growth of plants.Permanent microscoping preparations were made to measure and analyze elements of the anatomy of stems (stem epidermis, cortex, collenchyma, central cylinder and diameter and leaves (leaf epidermis upper surface and underside, mesophyll, leaf thickness and bundle sheath thickness.Both analysed populations of A. retroflexus, morphologically characterized by different density of stem hairiness, were found to have a typical structure of herbaceous dicots. The stem had three distinctive zones: epidermis, cortex and central cylinder. Amaranth leaves have dorsoventral structure, i.e. their upper surface and underside can be differentiated. The results indicated high and very high significance of differences found in stem anatomy between the two analysed populations, while leaf anatomy was not found to display significant differences other than in mesophyll thickness.

  1. Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (river red gum.

    Directory of Open Access Journals (Sweden)

    Shannon Dillon

    Full Text Available As an increasing number of ecosystems face departures from long standing environmental conditions under climate change, our understanding of the capacity of species to adapt will become important for directing conservation and management of biodiversity. Insights into the potential for genetic adaptation might be gained by assessing genomic signatures of adaptation to historic or prevailing environmental conditions. The river red gum (Eucalyptus camaldulensis Dehnh. is a widespread Australian eucalypt inhabiting riverine and floodplain habitats which spans strong environmental gradients. We investigated the effects of adaptation to environment on population level genetic diversity of E. camaldulensis, examining SNP variation in candidate gene loci sampled across 20 climatically diverse populations approximating the species natural distribution. Genetic differentiation among populations was high (F(ST = 17%, exceeding previous estimates based on neutral markers. Complementary statistical approaches identified 6 SNP loci in four genes (COMT, Dehydrin, ERECTA and PIP2 which, after accounting for demographic effects, exhibited higher than expected levels of genetic differentiation among populations and whose allelic variation was associated with local environment. While this study employs but a small proportion of available diversity in the eucalyptus genome, it draws our attention to the potential for application of wide spread eucalypt species to test adaptive hypotheses.

  2. THE GRAVITATIONAL SHEAR-INTRINSIC ELLIPTICITY CORRELATION FUNCTIONS OF LUMINOUS RED GALAXIES IN OBSERVATION AND IN THE ΛCDM MODEL

    International Nuclear Information System (INIS)

    Okumura, Teppei; Jing, Y. P.

    2009-01-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σ θ = 34.9 +1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS):. A quiescent formation of massive red-sequence galaxies over the past 9 Gyr

    Science.gov (United States)

    Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-03-01

    We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS website is http://www.vipers.inaf.it/.Appendices are available in electronic form at http://www.aanda.org

  4. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    Science.gov (United States)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  5. Reconciling Dwarf Galaxies with ΛCDM Cosmology: Simulating A Realistic Population of Satellites Around a Milky Way-Mass Galaxy

    OpenAIRE

    Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot

    2016-01-01

    � 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FI...

  6. Revealing the nature of the ULX and X-ray population of the spiral galaxy NGC 4088

    Energy Technology Data Exchange (ETDEWEB)

    Mezcua, M. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Fabbiano, G. [Harvard-Smithsonian Center for Astrophysics (CfA), 60 Garden Street, Cambridge, MA 02138 (United States); Gladstone, J. C. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Farrell, S. A. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Soria, R., E-mail: mmezcua@iac.es [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2014-04-20

    We present the first Chandra and Swift X-ray study of the spiral galaxy NGC 4088 and its ultraluminous X-ray source (ULX N4088-X1). We also report very long baseline interferometry (VLBI) observations at 1.6 and 5 GHz performed quasi-simultaneously with the Swift and Chandra observations, respectively. Fifteen X-ray sources are detected by Chandra within the D25 ellipse of NGC 4088, from which we derive the X-ray luminosity function (XLF) of this galaxy. We find the XLF is very similar to those of star-forming galaxies and estimate a star-formation rate of 4.5 M {sub ☉} yr{sup –1}. The Chandra detection of the ULX yields its most accurate X-ray position, which is spatially coincident with compact radio emission at 1.6 GHz. The ULX Chandra X-ray luminosity, L {sub 0.2-10.0} {sub keV} = 3.4 × 10{sup 39} erg s{sup –1}, indicates that N4088-X1 could be located at the high-luminosity end of the high-mass X-ray binary (HMXB) population of NGC 4088. The estimates of the black hole (BH) mass and ratio of radio to X-ray luminosity of N4088-X1 rule out a supermassive BH nature. The Swift X-ray spectrum of N4088-X1 is best described by a thermal Comptonization model and presents a statistically significant high-energy cutoff. We conclude that N4088-X1 is most likely a stellar remnant BH in an HMXB, probably fed by Roche lobe overflow, residing in a super-Eddington ultraluminous state. The 1.6 GHz VLBI source is consistent with radio emission from possible ballistic jet ejections in this state.

  7. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    International Nuclear Information System (INIS)

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  8. Measuring the Evolution of Stellar Populations And Gas Metallicity in Galaxies with Far-Infrared Space Spectroscopy

    Science.gov (United States)

    Stacey, Gordon

    We propose a study of the evolution of stellar populations and gas metallicities in about 80 nearby star forming galaxies based on mining the NASA data archives for observations of the [NIII] 57 µm, [OIII] 52 µm and/or 88 µm, [NII] 122 and [CII] 158 µm far-infrared (FIR) fine- structure lines and other archives for thermal radio continuum. These lines are powerful probes of both stellar populations and gas properties and our primary science derives from these tracers. For sources that show both signs of active galactic nuclei (AGN) and star formation, we will take advantage of the readily available NASA Spitzer IRS data base that includes mid-IR [NeII] 12.8 µm, [NeIII] 15.6 µm and [NeV] 14.3 µm, [OIV] 25.9 µm and PAH observations. These complementary data reveal the relative fractions of the FIR line emission that might arise from star formation and the narrow line regions (NLR) associated with an AGN, thereby providing a robust set of observations to compare with star formation models. Subsets of the FIR lines have been detected from hundreds of nearby galaxies. From both theoretical studies and the results of these pioneering observations we know that these lines can be powerful probes of stellar populations and star formation in galaxies. Here we plan to use various combinations of the lines to constrain (1) the age of the stellar populations (through lines that trace the hardness of the stellar radiation fields, hence stellar spectral type), (2) the degree of processing of the interstellar medium (through lines that trace growth of secondary to primary element abundances for example, the N/O ratio), (3) the efficiency of star formation (through growth in absolute abundances of N and O, the N/H and O/H ratios), and (4) the current day mass function of upper main sequence stars. Surprisingly, there has been no systematic study of the large sample of these line detections made with PACS on Herschel in order to truly assess and calibrate their diagnostic

  9. Photometric redshifts as a tool for studying the Coma cluster galaxy populations

    Science.gov (United States)

    Adami, C.; Ilbert, O.; Pelló, R.; Cuillandre, J. C.; Durret, F.; Mazure, A.; Picat, J. P.; Ulmer, M. P.

    2008-12-01

    Aims: We apply photometric redshift techniques to an investigation of the Coma cluster galaxy luminosity function (GLF) at faint magnitudes, in particular in the u* band where basically no studies are presently available at these magnitudes. Methods: Cluster members were selected based on probability distribution function from photometric redshift calculations applied to deep u^*, B, V, R, I images covering a region of almost 1 deg2 (completeness limit R ~ 24). In the area covered only by the u* image, the GLF was also derived after a statistical background subtraction. Results: Global and local GLFs in the B, V, R, and I bands obtained with photometric redshift selection are consistent with our previous results based on a statistical background subtraction. The GLF in the u* band shows an increase in the faint end slope towards the outer regions of the cluster. The analysis of the multicolor type spatial distribution reveals that late type galaxies are distributed in clumps in the cluster outskirts, where X-ray substructures are also detected and where the GLF in the u* band is steeper. Conclusions: We can reproduce the GLFs computed with classical statistical subtraction methods by applying a photometric redshift technique. The u* GLF slope is steeper in the cluster outskirts, varying from α ~ -1 in the cluster center to α ~ -2 in the cluster periphery. The concentrations of faint late type galaxies in the cluster outskirts could explain these very steep slopes, assuming a short burst of star formation in these galaxies when entering the cluster. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is also partly based on data products produced at

  10. PRIMUS: AN OBSERVATIONALLY MOTIVATED MODEL TO CONNECT THE EVOLUTION OF THE ACTIVE GALACTIC NUCLEUS AND GALAXY POPULATIONS OUT TO z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Aird, James [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Coil, Alison L.; Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [MMT Observatory, 1540 E Second Street, University of Arizona, Tucson, AZ 85721 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Zhu, Guangtun, E-mail: j.a.aird@durham.ac.uk [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2013-09-20

    We present an observationally motivated model to connect the active galactic nucleus (AGN) and galaxy populations at 0.2 < z < 1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar masses with slope γ{sub 1} ≈ –0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope γ{sub 2}=-2.1{sup +0.3}{sub -0.5}, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M{sub *} ∼ 10{sup 10}-10{sup 11} M{sub ☉}) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.

  11. Chlamydiosis: seroepidemiologic survey in a red deer (Cervus elaphus) population in Italy.

    Science.gov (United States)

    Di Francesco, Antonietta; Donati, Manuela; Nicoloso, Sandro; Orlandi, Lilia; Baldelli, Raffaella; Salvatore, Daniela; Sarli, Giuseppe; Cevenini, Roberto; Morandi, Federico

    2012-04-01

    Chlamydiae are obligate, intracellular, gram-negative bacteria that are responsible for important diseases in humans, other mammals, and birds. Studies have shown that chlamydiae could be present in wild ruminants, but the serodiagnostic method most commonly used did not allow identification of chlamydial species. We determined the prevalence of antibodies to Chlamydia pecorum, Chlamydia suis, Chlamydia abortus, and Chlamydia psittaci in 271 red deer (Cervus elaphus) of a central Italian population, by using the microimmunofluorescence test that shows antibody response against genus-specific and species-specific antigens. No sera had detectable antibodies to C. pecorum and C. abortus. Antibodies were detected against C. psittaci (9.6%) and C. suis (3.3%). Antibody response could be related to contact of the red deer with birds and wild boars (Sus scrofa), respectively, and confirm an extended host range of individual Chlamydia species. In view of the potential zoonotic risk related to exposition of C. psittaci, our findings suggest surveillance of wild ruminants as potential reservoirs for chlamydiae.

  12. Evaluation of low red blood cell mean corpuscular volume in an apheresis donor population.

    Science.gov (United States)

    Bryant, Barbara J; Hopkins, Julie A; Arceo, Sarah M; Leitman, Susan F

    2009-09-01

    Apheresis donors are routinely evaluated with a complete blood count (CBC). Low red blood cell mean corpuscular volume (MCV) values (or=12.5 g/dL) could be due to iron deficiency or hemoglobinopathy. The etiology of a low MCV in a healthy apheresis donor population was assessed. Predonation samples for CBC were obtained from 1162 consecutive apheresis donors. Donors with a MCV of less than 80 fL were evaluated by CBC, iron studies (ferritin, serum iron, transferrin, percentage of transferrin saturation), and hemoglobin (Hb) electrophoresis. Iron deficiency was defined as a ferritin value below the reference range. Beta chain Hb variants were determined by Hb electrophoresis. Alpha thalassemia trait was presumed if the red blood cell (RBC) count was elevated, no variant Hbs were detected, and the iron studies were within normal ranges. In a 19-month period, 33 of 1162 apheresis donors had low MCV values. Iron deficiency was present in 64%; 49% had isolated iron deficiency and 15% had iron deficiency plus hemoglobinopathy. Hemoglobinopathy without concomitant iron deficiency was found in the remaining 36%. Iron deficiency is present in the majority of apheresis donors with repeatedly low MCV values and Hb levels of 12.5 g/dL or more. Hemoglobinopathy is also commonly present but may not be easily recognized in the setting of iron deficiency. The MCV is a useful screening tool to detect iron deficiency and hemoglobinopathy. Low MCV values should be investigated to determine if iron replacement therapy is indicated.

  13. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  14. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  15. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  16. Genetic differentiation in red-bellied piranha populations (Pygocentrus nattereri, Kner, 1858) from the Solimões-Amazonas River.

    Science.gov (United States)

    Dos Santos, Carlos Henrique Dos A; de Sá Leitão, Carolina S; Paula-Silva, Maria de N; Almeida-Val, Vera Maria F

    2016-06-01

    Red-bellied piranhas (Pygocentrus nattereri) are widely caught with different intensities throughout the region of Solimões-Amazonas River by local fishermen. Thus, the management of this resource is performed in the absence of any information on its genetic stock. P. nattereri is a voracious predator and widely distributed in the Neotropical region, and it is found in other regions of American continent. However, information about genetic variability and structure of wild populations of red-bellied piranha is unavailable. Here, we describe the levels of genetic diversity and genetic structure of red-bellied piranha populations collected at different locations of Solimões-Amazonas River system. We collected 234 red-bellied piranhas and analyzed throughout eight microsatellite markers. We identified high genetic diversity within populations, although the populations of lakes ANA, ARA, and MAR have shown some decrease in their genetic variability, indicating overfishing at these communities. Was identified the existence of two biological populations when the analysis was taken altogether at the lakes of Solimões-Amazonas River system, with significant genetic differentiation between them. The red-bellied piranha populations presented limited gene flow between two groups of populations, which were explained by geographical distance between these lakes. However, high level of gene flow was observed between the lakes within of the biological populations. We have identified high divergence between the Catalão subpopulation and all other subpopulations. We suggest the creation of sustainable reserve for lakes near the city of Manaus to better manage and protect this species, whose populations suffer from both extractive and sport fishing.

  17. The active galactic nucleus population in X-ray-selected galaxy groups at 0.5 < Z < 1.1

    International Nuclear Information System (INIS)

    Oh, Semyeong; Woo, Jong-Hak; Matsuoka, Kenta; Mulchaey, John S.; Finoguenov, Alexis; Tanaka, Masayuki; Cooper, Michael C.; Ziparo, Felicia; Bauer, Franz E.

    2014-01-01

    We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(L X,H >10 42 ;M R <−20)=8.0 −2.3 +3.0 % at z-bar ∼0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of low redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L X, H > 10 41 erg s –1 ) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.

  18. MOIRCS DEEP SURVEY. V. A UNIVERSAL RELATION FOR STELLAR MASS AND SURFACE BRIGHTNESS OF GALAXIES

    International Nuclear Information System (INIS)

    Ichikawa, Takashi; Kajisawa, Masaru; Yamada, Toru; Akiyama, Masayuki; Yoshikawa, Tomohiro; Onodera, Masato; Konishi, Masahiro

    2010-01-01

    We present a universal linear correlation between the stellar mass and surface brightness (SB) of galaxies at 0.3 -2.0∼-0.8 , in addition to dimming as (1 + z) 4 by the cosmological expansion effect. The brightening depends on galaxy color and stellar mass. The blue population (rest-frame U - V -0.8±0.3 in the rest-V band. On the other hand, the red population (U - V>0) and the massive galaxies (M * >10 10 M sun ) show stronger brightening, (1 + z) -1.5±0.1 . By comparison with galaxy evolution models, the phenomena are well understood by the pure luminosity evolution of galaxies out to z ∼ 3.

  19. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    Science.gov (United States)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (zPOX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  20. Population Genetic Structure of red mullet (Mullus barbatus L. in Turkish Sea Based on Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Fevzi Bardakci

    2014-06-01

    Full Text Available Aim: Mullus barbatus (red mullet is a commercial fish species naturally distributed from Eastern Atlantic: British Isles to Dakar, Senegal, Canary Islands, Mediterranean and Black Sea. There is no study in our knowledge aimed to determine population genetic structuring and genetic stocks of M. barbatus species in territorial waters of Turkey. Only a few studies have been carried out on their genetics in Turkey which are limited to determination of phylogenetic relationships between species in familia of Mullidae. In this study population genetic structure and genetic diversity of red mullet (Mullus barbatus L. in Turkish Seas was determined using sequence data of mitochondrial DNA control region. Material and Methods: Red mullet sample were collected from the Mediterranean Sea (Mersin, Antalya, the Aegean Sea (Ayvalık, Marmara Sea (Bandırma, the Black Sea (Zonguldak, Trabzon, Fatsa and Hopa. mtDNA control region of 410 bp in length were amplified and subsequently sequenced. The sequences were aligned in Bioedit ver 7.1.3.0 (Hall, 1999. Genetic distance between populations (γst (Nei, 1982, haplotype diversities (h, nucleotide diversities(π were detected by DNAsp ver. 5.10 (Rozas et al., 2003. Based on pairwise distance matrix data a UPGMA dendogram was constructed by MEGA 5.05 (Kumar et al., 2004. To explain genetic structuring of samples we performed analysis of molecular variance (AMOVA using Arlequin ver. 3.5 (Excoffier et al., 2010. Results: In total 190 individuals were studied and alignment of partial control region of mtDNA revealed 98 mtDNA haplotypes with 75 polymorphic sites. The average of nucleotide diversities and haplotype diversities were calculated 0,015 and 0,963 respectively. Haplotype and nucleotide (π diversities among the populations ranged from 0,907 (Zonguldak to 0,972 (Trabzon and from 0.0155 (Trabzon to 0,0114 (Bandırma, respectively. Distance tree based on gammast pairwise comparisons revealed two main clades, the

  1. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  2. Integrating Fisheries Dependent and Independent Approaches to assess Fisheries, Abundance, Diversity, Distribution and Genetic Connectivity of Red Sea Elasmobranch Populations

    KAUST Repository

    Spaet, Julia L.

    2014-05-01

    The Red Sea has long been recognized as a global hotspot of marine biodiversity. Ongoing overfishing, however, is threatening this unique ecosystem, recently leading to the identification of the Red Sea as one of three major hotspots of extinction risk for sharks and rays worldwide. Elasmobranch catches in Saudi Arabian Red Sea waters are unregulated, often misidentified and unrecorded, resulting in a lack of species-specific landings information, which would be vital for the formulation of effective management strategies. Here we employed an integrated approach of fisheries dependent and independent survey methods combined with molecular tools to provide biological, ecological and fisheries data to aid in the assessment of the status of elasmobranch populations in the Red Sea. Over the course of two years, we conducted market surveys at the biggest Saudi Arabian fish market in Jeddah. Market landings were dominated by, mostly immature individuals - implying both recruitment and growth overfishing. Additionally, we employed baited remote underwater video (BRUVS) and longline surveys along almost the entire length of the Red Sea coast of Saudi Arabia as well as at selected reef systems in Sudan. The comparison of catch per unit effort (CPUE) data for Saudi Arabian Red Sea BRUVS and longline surveys to published data originating from non-Red Sea ocean systems revealed CPUE values several orders of magnitude lower for both survey methods in the Red Sea compared to other locations around the world. Finally, we infered the regional population structure of four commercially important shark species between the Red Sea and the Western Indian Ocean.We genotyped nearly 2000 individuals at the mitochondrial control region as well as a total of 20 microsatellite loci. Genetic homogeneity could not be rejected for any of the four species across the spatial comparison. Based on high levels of region-wide exploitation, we suggest that, for management purposes, the population

  3. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  4. EARLY-TYPE GALAXIES AT z ∼ 1.3. II. MASSES AND AGES OF EARLY-TYPE GALAXIES IN DIFFERENT ENVIRONMENTS AND THEIR DEPENDENCE ON STELLAR POPULATION MODEL ASSUMPTIONS

    International Nuclear Information System (INIS)

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Nakata, F.; Kodama, T.; Stanford, S. A.; Rettura, A.; Jee, M. J.; Holden, B. P.; Illingworth, G.; Postman, M.; White, R. L.; Rosati, P.; Blakeslee, J. P.; Demarco, R.; Eisenhardt, P.; Tanaka, M.

    2011-01-01

    We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ∼ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot and Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual and Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot and Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ∼> 10 11 M sun ) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses.

  5. Estimating precise metallicity and stellar mass evolution of galaxies

    Science.gov (United States)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  6. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NARCIS (Netherlands)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of

  7. The ATLAS(3D) project : XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NARCIS (Netherlands)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-01-01

    We explore the connection between the local escape velocity, V-esc, and the stellar population properties in the ATLAS(3D) survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses

  8. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea

    KAUST Repository

    Cochran, Jesse; Hardenstine, Royale; Braun, C. D.; Skomal, G. B.; Thorrold, S. R.; Xu, K.; Genton, Marc G.; Berumen, Michael L.

    2016-01-01

    The presence of whale sharks Rhincodon typus were recorded around Shib Habil, a small, coastal reef off the Red Sea coast of Saudi Arabia, from 2010 to 2015. A total of 267 suitable photographs resulting in the identification of 136 individuals, were documented from 305 encounters. Sharks were divided evenly between the sexes with no evidence of temporal or spatial segregation. All individuals were immature based on size estimates and, for males, juvenile clasper morphology. Scars were reported for 57% of R. typus with 15% showing evidence of propeller trauma. Estimates of population size and patterns of residency were calculated by modelling the lagged identification rate. Multiple models were run simultaneously and compared using the Akaike information criterion. An open population model was found to best represent the data and estimates a daily abundance between 15 and 34 R. typus during the aggregation season, with local residence times ranging from 4 to 44 days. Residence times away from Shib Habil range from 15 to 156 days with a permanent emigration–death rate between 0·07 and 0·58 individuals year−1. These results are broadly similar to those from other aggregations of R. typus, although the observed sexual parity and integration found at this site is unique for the species and needs further study. © 2016 The Fisheries Society of the British Isles

  9. Population structure of a whale shark Rhincodon typus aggregation in the Red Sea

    KAUST Repository

    Cochran, Jesse

    2016-07-12

    The presence of whale sharks Rhincodon typus were recorded around Shib Habil, a small, coastal reef off the Red Sea coast of Saudi Arabia, from 2010 to 2015. A total of 267 suitable photographs resulting in the identification of 136 individuals, were documented from 305 encounters. Sharks were divided evenly between the sexes with no evidence of temporal or spatial segregation. All individuals were immature based on size estimates and, for males, juvenile clasper morphology. Scars were reported for 57% of R. typus with 15% showing evidence of propeller trauma. Estimates of population size and patterns of residency were calculated by modelling the lagged identification rate. Multiple models were run simultaneously and compared using the Akaike information criterion. An open population model was found to best represent the data and estimates a daily abundance between 15 and 34 R. typus during the aggregation season, with local residence times ranging from 4 to 44 days. Residence times away from Shib Habil range from 15 to 156 days with a permanent emigration–death rate between 0·07 and 0·58 individuals year−1. These results are broadly similar to those from other aggregations of R. typus, although the observed sexual parity and integration found at this site is unique for the species and needs further study. © 2016 The Fisheries Society of the British Isles

  10. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  11. Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea.

    Science.gov (United States)

    Kochzius, Marc; Blohm, Dietmar

    2005-03-14

    The aim of this study is to reveal gene flow between populations of the coral reef dwelling lionfish Pterois miles in the Gulf of Aqaba and northern Red Sea. Due to the fjord-like hydrography and topology of the Gulf of Aqaba, isolation of populations might be possible. Analysis of 5' mitochondrial control region sequences from 94 P. miles specimens detected 32 polymorphic sites, yielding 38 haplotypes. Sequence divergence among different haplotypes ranged from 0.6% to 9.9% and genetic diversity was high (h=0.85, pi=1.9%). AMOVA indicates panmixia between the Gulf of Aqaba and northern Red Sea, but analysis of migration pattern shows an almost unidirectional migration originating from the Red Sea.

  12. The stellar content of the isolated transition dwarf galaxy DDO210

    OpenAIRE

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike; Tolstoy, Eline

    2006-01-01

    We use Subaru Suprime-Cam and VLT FORS1 photometry of the dwarf galaxy DDO210 to study the global stellar content and structural properties of a transition-type galaxy (with properties intermediate between dwarf irregular and dwarf spheroidal systems). This galaxy is sufficiently isolated that tidal interactions are not likely to have affected its evolution in any way. The colour-magnitude diagrams of DDO210 show a red giant branch (RGB) population (with an RGB bump), a bright asymptotic gian...

  13. The origin of ultra diffuse galaxies: stellar feedback and quenching

    Science.gov (United States)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  14. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    Science.gov (United States)

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  15. The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History

    Science.gov (United States)

    Williams, Christina C.; Curtis-Lake, Emma; Hainline, Kevin N.; Chevallard, Jacopo; Robertson, Brant E.; Charlot, Stephane; Endsley, Ryan; Stark, Daniel P.; Willmer, Christopher N. A.; Alberts, Stacey; Amorin, Ricardo; Arribas, Santiago; Baum, Stefi; Bunker, Andrew; Carniani, Stefano; Crandall, Sara; Egami, Eiichi; Eisenstein, Daniel J.; Ferruit, Pierre; Husemann, Bernd; Maseda, Michael V.; Maiolino, Roberto; Rawle, Timothy D.; Rieke, Marcia; Smit, Renske; Tacchella, Sandro; Willott, Chris J.

    2018-06-01

    We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z ≳ 6, and 10s at z ≳ 10 at {m}{AB}≲ 30 (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z ≳ 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.

  16. Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.; Klessen, Ralf S.

    2018-04-01

    The escape of ultraviolet photons from the densest regions of the interstellar medium (ISM) - giant molecular clouds (GMCs) - is a poorly constrained parameter which is vital to understanding the ionization of the ISM and the intergalactic medium. We characterize the escape fraction, fesc,GMC, from a suite of individual GMC simulations with masses in the range 104-6 M⊙ using the adaptive-mesh refinement code FLASH. We find significantly different fesc,GMC depending on the GMC mass that can reach >90 per cent in the evolution of 5 × 104 and 105 M⊙ clouds or remain low at ˜5 per cent for most of the lifetime of more massive GMCs. All clouds show fluctuations over short, sub-Myr time-scales produced by flickering H II regions. We combine our results to calculate the total escape fraction (fesc,tot) from GMC populations in dwarf starburst and spiral galaxies by randomly drawing clouds from a GMC mass distribution (dN/dM ∝ Mα, where α is either -1.5 or -2.5) over fixed time intervals. We find typical fesc,tot values of 8 per cent for both the dwarf and spiral models. The fluctuations of fesc,tot, however, are much larger for the dwarf models with values as high as 90 per cent. The photons escaping from the 5 × 104 and 105 M⊙ GMCs are the dominant contributors to fesc,tot in all cases. We also show that the accompanying star formation rates (SFRs) of our model (˜2 × 10-2 and 0.73 M⊙yr-1) are consistent with observations of SFRs in dwarf starburst and spiral galaxies, respectively.

  17. The phase space and stellar populations of cluster galaxies at z ∼ 1: simultaneous constraints on the location and timescale of satellite quenching

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Van der Burg, R. F. J.; McGee, Sean L.; Balogh, Michael; Franx, Marijn; Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Hudson, Michael J. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Noble, Allison; Taranu, Dan S.; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Webb, Tracy [Department of Physics, McGill University, Montréal, QC (Canada); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-11-20

    We investigate the velocity versus position phase space of z ∼ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent 'ring' in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably well reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 <τ {sub Q} < 0.5 Gyr) after they make their first passage of R ∼ 0.5 R {sub 200}, a process that takes a total time of ∼1 Gyr after first infall. The poststarburst phase space is not well reproduced using long quenching timescales (τ {sub Q} > 0.5 Gyr) or by quenching galaxies at larger radii (R ∼ R {sub 200}). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ {sub Q} = 0.4{sub −0.4}{sup +0.3} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R {sub 200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ∼ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift

  18. AKARI OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT z = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES

    International Nuclear Information System (INIS)

    Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Seong Jin; Jeon, Yiseul; Shim, Hyunjin; Hwang, Ho Seong; Willmer, Christopher N. A.; Weiner, Benjamin J.; Malkan, Matthew A.; Papovich, Casey; Matsuhara, Hideo; Takagi, Toshinobu; Oyabu, Shinki

    2012-01-01

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z ∼ 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg 2 ) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 μm)-mid-IR (11 μm) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominated star-forming galaxies that have star formation rates lower by ∼4 × than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (10 10 M ☉ * 10.5 M ☉ ) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to * > 10 10.5 M ☉ ) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 10 10 M ☉ * 11 M ☉ also decreases as the density and mass increase. In particular, ∼42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.

  19. Evidence for a constant IMF in early-type galaxies based on their X-ray binary populations

    OpenAIRE

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom heavy IMFs. These bottom heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars based ...

  20. Red Sea Acropora hemprichii Bacterial Population Dynamics under Adverse Anthropogenic Conditions

    KAUST Repository

    Lizcano, Javier

    2012-08-01

    Reef-building corals are cornerstones of life in the oceans. Understanding their interactions with microorganisms and their surrounding physicochemical conditions is important to comprehend reef functioning and ultimately protect coral reef ecosystems. Corals associate with a complex and specific array of microorganisms that supposedly affect their physiology and therefore can significantly determine the condition of a coral ecosystem. As environmental conditions may shape bacterial diversity and ecology in the coral symbiosis, ecosystem changes might have unfavorable consequences for the holobiont, to date poorly understood. Here, we were studying microbial community changes in A. hemprichii as a consequence of simulated eutrophication and overfishing over a period of 16 weeks by using in situ caging and slow release fertilizer treatments in an undisturbed Red Sea reef (22.18ºN, 38.57ºW). We used 16S rDNA amplicon sequencing to evaluate the individual and combined effects of overnutrification and fishing pressure, two of the most common local threats to coral reefs. With our data we hope to better understand bacterial population dynamics under anthropogenic influences and its role in coral resilience. Projecting further, this data will be useful to better predict the consequences of human activity on reef ecosystems.

  1. H II region-like galaxies

    International Nuclear Information System (INIS)

    French, H.B.

    1979-01-01

    Line fluxes in the region 3700 to 7100A are presented for 14 galaxies with strong, sharp, H II region-like emission lines. Ten of these galaxies are low luminosity objects (M > -17); the others have M approx. < -20. Ratios of the line fluxes are used to derive electron temperatures and densities, and the abundances of helium, oxygen, nitrogen, neon, and sulfur relative to hydrogen. The low luminosity galaxies are generally found to have oxygen abundances about 30% of normal, while the high luminosity ones generally have about 60% of normal. These galaxies are found to be almost certainly photoionized by hot main sequence stars. The velocity dispersion has been measured for one object; the mass of stars derived for it is several times smaller than the mass of neutral hydrogen which has previously been found in an extended halo around this object. The continuum colors of these galaxies are very blue, and are indistinguishable from those of extragalactic H II regions. No older red population has been convincingly detected. Galactic chemical evolution is investigated through a comparison of the relative abundances in these galaxies with their normal values. It is found that: (i) there is a primary contribution to the nitrogen abundance ((N/O)/sub p = 0.019), but that 80% of the nitrogen in the Galaxy today is of secondary origin; (ii) Ne/O appears to be constant for all objects (Ne/O = 0.23); and (iii) S/O decreases with increasing oxygen abundance, implying that most sulfur is produced in the most massive stars

  2. The V-K colours of the nuclei of bright galaxies

    Science.gov (United States)

    Penston, M. V.

    1973-01-01

    Photometric observations of the nuclei of the galaxies M32, M33, M51, NGC5195 and M101 are reported. These give U-B, B-V, H-K and V-K colours for each object and the K-L colour for M32. No short-wavelength infra-red excesses are found. For M32, published population models (Spinrad & Taylor) predict a V-K colour too red to be compatible with the observations.

  3. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  4. The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies at z < 0.3

    Science.gov (United States)

    San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.

    2018-01-01

    We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  5. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.

    1986-01-01

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  6. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Science.gov (United States)

    P.G. Shaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  7. The Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) Survey: Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Peter, Annika; Price, Paul A.; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2017-01-01

    We discuss the first results of our observational program to comprehensively map nearly the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. These will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. We will detail our discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  8. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  9. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  10. The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations

    Science.gov (United States)

    Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom

    2012-01-01

    By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10-6-10-3.5 Z ⊙. We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 107 M ⊙. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10-3 Z ⊙ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.

  11. THE BIRTH OF A GALAXY: PRIMORDIAL METAL ENRICHMENT AND STELLAR POPULATIONS

    International Nuclear Information System (INIS)

    Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom

    2012-01-01

    By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10 –6 -10 –3.5 Z ☉ . We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 10 7 M ☉ . A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10 –3 Z ☉ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t–Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.

  12. Projection Of The Stellar To Halo Mass Relation Into The Scaling Relations Of A Disc Galaxy Population

    Science.gov (United States)

    Mancillas, Brisa; Ávila-Reese, Vladimir; Rodríguez-Puebla, Aldo; Valls-Gabaud, David

    2017-06-01

    Several pieces of evidence suggest that disk formation is the generic process of assembly of galaxies, while the spheroidal component arises from the merging/interactions of disks as well as from their secular evolution. To understand galaxy formation and evolution, a cosmological framework is required. The current cosmological paradigm is summarized in the so-called Λ-cold dark matter model (ΛCDM). The statistical connection between the masses of the observed galaxies and those of the simulated CDM halos in large volumes leads us to the galaxy-halo mass relation, which summarizes the main astrophysical processes of galaxy formation and evolution (gas heating and cooling, SF, SN- and AGN-driven feedback, etc.). An important question is how this relation constrained by semi-empirical methods (e.g., Rodriguez-Puebla et al. 2014) is "projected" into the disk galaxy scaling relations and other galaxy correlations. To explore this question, we generate a synthetic catalog of thousands of disk/halo systems by means of an extended Mo, Mao & White (1998) model, and by using as input the baryonic-to-halo mass relation, fbar(Mh), of local disk galaxy as recently constrained by Calette et al. (2015).

  13. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  14. What kind of galaxies dominate the cosmic SFR density at z~2?

    Science.gov (United States)

    Perez-Gonzalez, P. G.; Rieke, George; Gonzalez, Anthony; Gallego, Jesus; Guzman, Rafael; Pello, Roser; Egami, Eiichi; Marcillac, D.; Pascual, S.

    2006-08-01

    We propose to obtain near-infrared (JHK-bands) spectroscopy with GEM-S+GNIRS for a sample of 12 galaxies representative of the 3 types of spitzer/MIPS 24 micron detections at 2.0≲z≲2.6: power-law galaxies, star-forming galaxies with prominent 1.6 micron bumps, and Distant Red Galaxies. These sources are located in the Chandra Deep Field South, a unique field for the study of galaxy evolution, given the top quality data available at all wavelengths. Our main goal is to characterize the mid-IR selected galaxy population at this epoch by measuring H(alpha), H(beta), [NII], and [OIII] fluxes and profiles, and combining these observations with the already merged x-ray, ultraviolet, optical, near- and mid-infrared imaging data, to obtain the most reliable estimations of the SFRs, metallicities, stellar and dynamical masses, AGN activity, and extinction properties of the luminous infrared galaxies detected by MIPS, which dominate the SFR density of the Universe at z≳2. Our targets are complementary to others selected in the rest-frame UV/optical at high-z, and they extend the H(alpha) observations of galaxies selected with ISO from z~1 to z~2.6. The work proposed here will help to interpret the results obtained by the spitzer surveys at z≳2, thus substantially improving our understanding of the formation of massive galaxies and their connection to AGN.

  15. SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Rich, Jeffrey A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cales, Sabrina L. [Yale Center for Astronomy and Astrophysics, Physics Department, Yale University, New Haven, CT 06511 (United States); Appleton, Philip N.; Lanz, Lauranne [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Kewley, Lisa J.; Medling, Anne M. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Lacy, Mark; Nyland, Kristina, E-mail: kalatalo@carnegiescience.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  16. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  17. The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr

    Science.gov (United States)

    Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Labbé, I.; Stefanon, M.

    2018-03-01

    We present an analysis of all prime HST legacy fields spanning >800 arcmin2 in the search for z ∼ 10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z ∼ 10 candidates selected from the full Hubble Frontier Field (HFF) data set. Despite the addition of these new fields, we find a low abundance of z ∼ 10 candidates with only nine reliable sources identified in all prime HST data sets that include the HUDF09/12, the HUDF/XDF, all of the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z ∼ 8 to z ∼ 10 over a four-magnitude range. This also implies a decrease of the cosmic star formation rate density by an order of magnitude within 170 Myr from z ∼ 8 to z ∼ 10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build up of the dark matter halo mass function at z > 8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z ∼ 10 galaxies as well as their progenitors at less than 400 Myr after the big bang. Based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555.

  18. Stellar Populations of over 1000 z ∼ 0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from D n 4000 and Hδ

    Science.gov (United States)

    Wu, Po-Feng; van der Wel, Arjen; Gallazzi, Anna; Bezanson, Rachel; Pacifici, Camilla; Straatman, Caroline; Franx, Marijn; Barišić, Ivana; Bell, Eric F.; Brammer, Gabriel B.; Calhau, Joao; Chauke, Priscilla; van Houdt, Josha; Maseda, Michael V.; Muzzin, Adam; Rix, Hans-Walter; Sobral, David; Spilker, Justin; van de Sande, Jesse; van Dokkum, Pieter; Wild, Vivienne

    2018-03-01

    Drawing from the LEGA-C data set, we present the spectroscopic view of the stellar population across a large volume- and mass-selected sample of galaxies at large look-back time. We measure the 4000 Å break (D n 4000) and Balmer absorption line strengths (probed by Hδ) from 1019 high-quality spectra of z = 0.6–1.0 galaxies with M * = 2 × 1010 M ⊙ to 3 × 1011 M ⊙. Our analysis serves as a first illustration of the power of high-resolution, high signal-to-noise ratio continuum spectroscopy at intermediate redshifts as a qualitatively new tool to constrain galaxy formation models. The observed D n 4000–EW(Hδ) distribution of our sample overlaps with the distribution traced by present-day galaxies, but z ∼ 0.8 galaxies populate that locus in a fundamentally different manner. While old galaxies dominate the present-day population at all stellar masses >2 × 1010 M ⊙, we see a bimodal D n 4000–EW(Hδ) distribution at z ∼ 0.8, implying a bimodal light-weighted age distribution. The light-weighted age depends strongly on stellar mass, with the most massive galaxies >1 × 1011 M ⊙ being almost all older than 2 Gyr. At the same time, we estimate that galaxies in this high-mass range are only ∼3 Gyr younger than their z ∼ 0.1 counterparts, at odds with purely passive evolution given a difference in look-back time of >5 Gyr; younger galaxies must grow to >1011 M ⊙ in the meantime, or small amounts of young stars must keep the light-weighted ages young. Star-forming galaxies at z ∼ 0.8 have stronger Hδ absorption than present-day galaxies with the same D n 4000, implying larger short-term variations in star formation activity.

  19. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  20. Fitting and Phenomenology in Type IA Supernova Cosmology: Generalized Likelihood Analyses for Multiple Evolving Populations and Observations of Near-Infrared Lightcurves Including Host Galaxy Properties

    Science.gov (United States)

    Ponder, Kara A.

    In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature

  1. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  2. Migratory patterns and population structure among breeding and wintering red-breasted mergansers (Mergus serrator) and common mergansers (M. merganser)

    Science.gov (United States)

    Pearce, J.M.; McCracken, K.G.; Christensen, Thomas K.; Zhuravlev, Y.N.

    2009-01-01

    Philopatry has long been assumed to structure populations of waterfowl and other species of birds genetically, especially via maternally transmitted mitochondrial DNA (mtDNA), yet other migratory behaviors and nesting ecology (use of ground vs. cavity sites) may also contribute to population genetic structure. We investigated the effects of migration and nesting ecology on the population genetic structure of two Holarctic waterfowl, the Red-breasted Merganser (Mergus serrator) and Common Merganser (M. merganser), using mtDNA control-region sequence data. Red-breasted Mergansers (a ground-nesting species) exhibited lower levels of population differentiation across their North American range, possibly as a result of post-Pleistocene range expansion and population growth. By contrast, Common Mergansers (a cavity-nesting species) breeding in western and eastern North America were strongly differentiated, as were continental groups in North America and Europe. Our hypothesis that population differentiation of breeding female Common Mergansers results from limited migration during non-breeding periods was not supported, in that equally heterogeneous mtDNA lineages were observed in males and females on several wintering areas. The interspecific differences in mtDNA patterns for these two closely related species may have resulted from factors related to nesting ecology (ground vs. cavity nesting) and responses to historical climate change.

  3. SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Poggianti, B. M.; Calvi, R.; Fasano, G.; Vulcani, B.; Bettoni, D.; Gullieuszik, M.; Omizzolo, A.; Bindoni, D.; D'Onofrio, M.; Moretti, A.; Valentinuzzi, T.; Fritz, J.; De Lucia, G.

    2013-01-01

    We search for massive and compact galaxies (superdense galaxies, hereafter SDGs) at z = 0.03-0.11 in the Padova-Millennium Galaxy and Group Catalogue, a spectroscopically complete sample representative of the general field population of the local universe. We find that compact galaxies with radii and mass densities comparable to high-z massive and passive galaxies represent 4.4% of all galaxies with stellar masses above 3 × 10 10 M ☉ , yielding a number density of 4.3 × 10 –4 h 3 Mpc –3 . Most of them are S0s (70%) or ellipticals (23%), are red, and have intermediate-to-old stellar populations, with a median luminosity-weighted age of 5.4 Gyr and a median mass-weighted age of 9.2 Gyr. Their velocity dispersions and dynamical masses are consistent with the small radii and high stellar mass estimates. Comparing with the WINGS sample of cluster galaxies at similar redshifts, the fraction of SDGs is three times smaller in the field than in clusters, and cluster SDGs are on average 4 Gyr older than field SDGs. We confirm the existence of a universal trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. As a consequence, the median mass-size relation shifts toward smaller radii for galaxies with older stars, but the effect is much more pronounced in clusters than in the field. Our results show that, on top of the well-known dependence of stellar age on galaxy mass, the luminosity-weighted age of galaxies depends on galaxy compactness at fixed mass and, for a fixed mass and radius, on environment. This effect needs to be taken into account in order not to overestimate the evolution of galaxy sizes from high to low z. Our results and hierarchical simulations suggest that a significant fraction of the massive compact galaxies at high z have evolved into compact galaxies in galaxy clusters today. When stellar age and environmental effects are taken into account, the average amount of size evolution of individual galaxies between high and low

  4. Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population

    Science.gov (United States)

    Carilli, C. L.; Lee, Nicholas; Capak, P.; Schinnerer, E.; Lee, K.-S.; McCraken, H.; Yun, M. S.; Scoville, N.; Smolčić, V.; Giavalisco, M.; Datta, A.; Taniguchi, Y.; Urry, C. Megan

    2008-12-01

    We present an analysis of the radio properties of large samples of Lyman break galaxies (LBGs) at z ~ 3, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the z ~ 3 LBGs (U-band dropouts), with a 1.4 GHz flux density of 0.90 +/- 0.21 μJy. The stacked emission is unresolved, with a size = 3 is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are (1) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift or (2) cosmic-ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a "submillimeter galaxy"). Based on observations in the COSMOS Legacy Survey including those taken on the HST, Keck, NRAO-VLA, Subaru, KPNO 4 m, CTIO 4 m, and CFHT 3.6 m. The Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Jonathan C.; Kazantzidis, Stelios; Weinberg, David H. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Guedes, Javiera [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Callegari, Simone [Anthropology Institute and Museum, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-08-10

    We analyze the present day structure and assembly history of a high-resolution hydrodynamic simulation of the formation of a Milky-Way-(MW)-like disk galaxy, from the ''Eris'' simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. At z = 0, stars with t{sub form} < 2 Gyr mainly occupy the stellar spheroid, with the oldest (earliest forming) stars having more centrally concentrated profiles. The younger age cohorts populate disks of progressively longer radial scale lengths and shorter vertical scale heights. At a given radius, the vertical density profiles and velocity dispersions of stars vary smoothly as a function of age, and the superposition of old, vertically extended and young, vertically compact cohorts gives rise to a double-exponential profile like that observed in the MW. Turning to formation history, we find that the trends of spatial structure and kinematics with stellar age are largely imprinted at birth, or immediately thereafter. Stars that form during the active merger phase at z > 3 are quickly scattered into rounded, kinematically hot configurations. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms ''inside out'' in a radial sense and ''upside down'' in a vertical sense. Secular heating and radial migration influence the final state of each age cohort, but the changes they produce are small compared to the trends established at formation. The predicted correlations of stellar age with spatial and kinematic structure are in good qualitative agreement with the correlations observed for mono-abundance stellar populations in the MW.

  6. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations.

    Science.gov (United States)

    Geoffroy, Alexandre; Destombe, Christophe; Kim, Byeongseok; Mauger, Stéphane; Raffo, María Paula; Kim, Myung Sook; Le Gall, Line

    2016-08-01

    The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so-called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.

  7. Star Formation Histories of Dwarf Galaxies from the Colour-Magnitude Diagrams of Their Resolved Stellar Populations

    Directory of Open Access Journals (Sweden)

    Michele Cignoni

    2010-01-01

    build synthetic CMDs and to exploit them to derive the SF histories (SFHs are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. To summarize: (1 only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; (2 a few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; (3 no galaxy experiencing now its first SF episode has been found yet; (4 no frequent evidence of strong SF bursts is found; (5 there is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.

  8. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.

  9. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  10. Evolution of the UV upturn in cluster galaxies: Abell 1689

    Science.gov (United States)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    We have measured the strength of the UV upturn for red sequence galaxies in the Abell 1689 cluster at z = 0.18, reaching to or below the L* level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV upturn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.

  11. Genetic analysis of a red tilapia (Oreochromis spp.) population undergoing three generations of selection for increased body weight at harvest.

    Science.gov (United States)

    Hamzah, Azhar; Thoa, Ngo Phu; Nguyen, Nguyen Hong

    2017-11-01

    Quantitative genetic analysis was performed on 10,919 data records collected over three generations from the selection programme for increased body weight at harvest in red tilapia (Oreochromis spp.). They were offspring of 224 sires and 226 dams (50 sires and 60 dams per generation, on average). Linear mixed models were used to analyse body traits (weight, length, width and depth), whereas threshold generalised models assuming probit distribution were employed to examine genetic inheritance of survival rate, sexual maturity and body colour. The estimates of heritability for traits studied (body weight, standard length, body width, body depth, body colour, early sexual maturation and survival) across statistical models were moderate to high (0.13-0.45). Genetic correlations among body traits and survival were high and positive (0.68-0.96). Body length and width exhibited negative genetic correlations with body colour (- 0.47 to - 0.25). Sexual maturity was genetically correlated positively with measurements of body traits (weight and length). Direct and correlated genetic responses to selection were measured as estimated breeding values in each generation and expressed in genetic standard deviation units (σ G ). The cumulative improvement achieved for harvest body weight was 1.72 σ G after three generations or 12.5% per generation when the gain was expressed as a percentage of the base population. Selection for improved body weight also resulted in correlated increase in other body traits (length, width and depth) and survival rate (ranging from 0.25 to 0.81 genetic standard deviation units). Avoidance of black spot parent matings also improved the overall red colour of the selected population. It is concluded that the selective breeding programme for red tilapia has succeeded in achieving significant genetic improvement for a range of commercially important traits in this species, and the large genetic variation in body colour and survival also shows that

  12. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    Science.gov (United States)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the

  13. Spectroscopy of the galaxy components of N and Seyfert galaxies

    International Nuclear Information System (INIS)

    Boroson, T.A.; Oke, J.B.; Palomar Observatory, Pasadena, CA)

    1987-01-01

    Nuclear and off-nuclear spectra of nine active galaxies are presented. The sample consists of four Seyfert galaxies, two N galaxies, one Seyfert radio galaxy, and one liner/Seyfert 2 galaxy. All of the objects show continuum emission off the nucleus. Four clearly show absorption features from a stellar population. Velocities have been measured for the off-nuclear emission and absorption lines. In the case of I Zw 1, the absorption-line velocities are inconsistent with 21-cm H I measurements of this object. 26 references

  14. H I-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. II. THE COLORS OF GAS-RICH GALAXIES

    International Nuclear Information System (INIS)

    West, Andrew A.; Garcia-Appadoo, Diego A.; Dalcanton, Julianne J.; Ivezic, Zeljko; Disney, Mike J.; Rockosi, Constance M.

    2009-01-01

    We utilize color information for an H I-selected sample of 195 galaxies to explore the star formation histories and physical conditions that produce the observed colors. We show that the H I selection creates a significant offset toward bluer colors that can be explained by enhanced recent bursts of star formation. There is also no obvious color bimodality, because the H I selection restricts the sample to bluer, actively star-forming systems, diminishing the importance of the red sequence. Rising star formation rates are still required to explain the colors of galaxies bluer than g - r< 0.3. We also demonstrate that the colors of the bluest galaxies in our sample are dominated by emission lines and that stellar population synthesis models alone (without emission lines) are not adequate for reproducing many of the galaxy colors. These emission lines produce large changes in the r - i colors but leave the g - r color largely unchanged. In addition, we find an increase in the dispersion of galaxy colors at low masses that may be the result of a change in the star formation process in low-mass galaxies.

  15. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    , NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team

  16. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field

  17. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin; Lee, Young-Wook

    2013-01-01

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced by observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.

  18. Within-population variation in response of red oak seedlings to herbivory by gypsy moth larvae

    Science.gov (United States)

    T. Scott Byington; Kurt W. Gottschalk; James B. McGraw

    1994-01-01

    The potential for an evolutionary response to gypsy moth (Lymantna dispar L.) herbivory was investigated in red oak (Quercus rubra L.), a preferred host. Seedlings of nine open-pollinated families were grown in a greenhouse and experimentally defoliated by fourth instar larvae in the summer of 1991 to assay for intraspecific...

  19. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-01-01

    , temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high

  20. Star Formation Histories of Nearby Dwarf Galaxies

    OpenAIRE

    Grebel, Eva K.

    2000-01-01

    Properties of nearby dwarf galaxies are briefly discussed. Dwarf galaxies vary widely in their star formation histories, the ages of their subpopulations, and in their enrichment history. Furthermore, many dwarf galaxies show evidence for spatial variations in their star formation history; often in the form of very extended old populations and radial gradients in age and metallicity. Determining factors in dwarf galaxy evolution appear to be both galaxy mass and environment. We may be observi...

  1. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    Science.gov (United States)

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  2. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    Directory of Open Access Journals (Sweden)

    Taina Conrad

    Full Text Available In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii how odor bouquets of male O. bicornis vary within and between populations, and (iii whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  3. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  4. Migration ecology and stopover population size of Red Knots Calidris canutus rufa at Mingan Archipelago after exiting the breeding grounds

    Science.gov (United States)

    Lyons, James E.; Baker, Allan J.; González, Patricia M.; Aubry, Yves; Buidin, Christophe; Rochepault, Yann

    2018-01-01

    Populations of migratory birds present unique conservation challenges given the often vast distances separating critical resources throughout the annual cycle. Migration areas close to the breeding grounds represent a link between two key stages of the annual cycle, and understanding migration ecology as birds exit the breeding grounds may be particularly informative for successful conservation. We studied migration phenology and stopover ecology of an endangered subspecies of the Red Knot Calidris canutus rufa at a migration area relatively close to its breeding range. Using mark-recapture/resight data and a Jolly-Seber model for open populations, we described the arrival and departure schedules, stopover duration, and passage population size at the Mingan Archipelago, Quebec, Canada. Red Knots arrived at the study area in two distinct waves of birds separated by approximately 22 days. Nearly 30% of the passage population arrived in the first wave of arrivals during 15–18 July, and approximately 22% arrived in a second wave during 8–11 August. The sex-ratio in the stopover population at the time of the first wave was slightly skewed toward females, whereas the second wave was heavily skewed toward males. Because males remain on the breeding grounds to care for young, this may reflect successfulbreeding in the year of our study. The estimated stopover duration (population mean) was 11 days (95% credible interval: 10.3–11.7 days), but stopover persistence was variable throughout the season. We estimated a passage population size of 9,450 birds (8,355–10,710), a minimum estimate for reasons related to the duration of our sampling. Mingan Archipelago is thus an important migration area for this endangered subspecies and could be a priority in conservation planning. Our results also emphasize the advantages of mark-recapture/resight approaches for estimating migration phenology and stopover persistence.

  5. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  6. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  7. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    International Nuclear Information System (INIS)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Espino, Néstor; Gallego, Jesús; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Balcells, Marc; Cepa, Jordi; Alonso-Herrero, Almudena; Cenarro, Javier; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Elbaz, David; Donley, Jennifer; Gobat, R.

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin 2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ∼ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z ∼< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well

  8. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Victor; Cardiel, Nicolas; Espino, Nestor; Gallego, Jesus [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ferreras, Ignacio [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Rodriguez-Espinosa, Jose Miguel; Balcells, Marc; Cepa, Jordi [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Cenarro, Javier [Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta 2, E-44001 Teruel (Spain); Charlot, Stephane [Institut d' Astrophysique de Paris, CNRS, Universite Pierre and Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris (France); Cimatti, Andrea [Dipartimento di Astronomia, Universita degli Studi di Bologna, I-40127 Bologna (Italy); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Daddi, Emmanuele; Elbaz, David [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Donley, Jennifer [Los Alamos National Laboratory, Los Alamos, NM (United States); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); and others

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin{sup 2} at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R {approx} 50). The data reach an AB magnitude of 26.5 (at least at a 3{sigma} level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z {approx}< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at

  9. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  10. WISE Discovery of Hyper Luminous Galaxies at z=2-4 and Their Implications for Galaxy and AGN Evolution

    Science.gov (United States)

    Tsai, Chao Wei; Eisenhardt, Peter; Wu, Jingwen; Bridge, Carrie; Assef, Roberto; Benford, Dominic; Blain, Andrew; Cutri, Roc; Griffith, Robert L.; Jarrett, Thomas; hide

    2014-01-01

    On behalf of the WISE Science team, we present the discovery of a class of distant dust-enshrouded galaxies with extremely high luminosity. These galaxies are selected to have extreme red colors in the mid-IR using NASA's Wide-field Infrared Survey Explorer (WISE). They are faint in the optical and near-IR, predominantly at zeta = 2-4, and with IR luminosity > 10(exp 13) Solar Luminosity, making them Hyper-Luminous Infrared Galaxies (HyLIRGs). SEDs incorporating the WISE, Spitzer, and Herschel PACS and SPIRE photometry indicate hot dust dominates the bolometric luminosity, presumably powered by AGN. Preliminary multi-wavelength follow-up suggests that they are different from normal populations in the local M-sigma relation. Their low source density implies that these objects are either intrinsically rare, or a short-lived phase in a more numerous population. If the latter is the case, these hot, dust-enshrouded galaxies may be an early stage in the interplay between AGN and galaxies.

  11. Detection of a Population of Carbon-enhanced Metal-poor Stars in the Sculptor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Simon, Joshua D.; Frebel, Anna; Thompson, Ian B.; Shectman, Stephen A.; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.; Walker, Matthew

    2018-04-01

    The study of the chemical abundances of metal-poor stars in dwarf galaxies provides a venue to constrain paradigms of chemical enrichment and galaxy formation. Here we present metallicity and carbon abundance measurements of 100 stars in Sculptor from medium-resolution (R ∼ 2000) spectra taken with the Magellan/Michigan Fiber System mounted on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We identify 24 extremely metal-poor star candidates ([Fe/H] 1.0). The existence of a large number of CEMP stars both in the halo and in Sculptor suggests that some halo CEMP stars may have originated from accreted early analogs of dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Population structures of the red fox (Vulpes vulpes) on the Hokkaido Island, Japan, revealed by microsatellite analysis.

    Science.gov (United States)

    Oishi, Takuya; Uraguchi, Kohji; Takahashi, Kenichi; Masuda, Ryuichi

    2011-01-01

    In order to examine the population structures of the red fox (Vulpes vulpes) on the Hokkaido Island in Japan, we conducted analysis on 250 foxes from all over the island for 12 microsatellite loci. Assignment tests using the genotype data set showed that they were divided into 6 subpopulations. Of the 6, one was geographically isolated in the southern region and considered definitive subpopulation, whereas the other 5 were not. The slight differences among the latter 5 subpopulations were explained by the high adaptability and long dispersal of the red fox on the Hokkaido Island. Although there are few ecological data to explain the genetic differentiation of the southern population, we have proposed some hypotheses from the present ecological and geohistorical viewpoints. One convincing reason from the ecological viewpoint is the restriction of gene flow to southern Hokkaido from other areas due to geographical isolation resulting from the land shape. The other explanation is the geohistorical division of southern Hokkaido from other regions on the island during the last interglacial age, resulting in the isolation of the fox population.

  13. Chandra Finds Surprising Black Hole Activity In Galaxy Cluster

    Science.gov (United States)

    2002-09-01

    bright active galaxies, often referred to as Active Galactic Nuclei, or AGN. Many astronomers think that all galaxies have central, supermassive black holes, yet only a small percent show activity. What is needed to power the AGN is fuel in the form of a nearby reservoir of gas and dust. Galaxy clusters contain hundreds to thousands of galaxies. They are the largest known structures in the universe and serve as a microcosm for the mechanics of the Universe at large. The galaxies in clusters are often old, reddish elliptically shaped galaxies, distinct from blue, spiral galaxies like our own. These old galaxies also do not have many young stars. The theory now in question is that as galaxies enter into clusters at high speeds, they are stripped of their interstellar gas, much as a strong wind strips leaves from a tree. Galaxies may also collide with one another and use up all of their gas in one huge burst of star formation triggered by this interaction. These processes remove most, if not all, of the gas that isn't locked up in stars. As they no longer have the raw material to form new stars, the stellar population slowly gets old and the Galaxy appears red. No gas is left to fuel an AGN. Previous surveys of galaxy clusters with optical telescopes have found that about only one percent of the galaxies in a cluster have AGN. This latest Chandra observation if typical, however, bumps the count up to about 5 percent. The team found six red galaxies with high X-ray activity during a nearly 14-hour Chandra observation of a galaxy cluster named Abell 2104, over 700 million light years from Earth. Based on previous optical surveys, only one was expected. "If we relied on optical data alone, we would have missed these hidden monsters," said co-author Dr. John Mulchaey. Only one of the six AGN, in fact, had the optical spectral properties typical of AGN activity. "The presence of these AGN indicate that supermassive black holes have somehow retained a fuel source, despite the

  14. What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis

    Science.gov (United States)

    Kim, Dohyeong; Im, Myungshin

    2018-02-01

    Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31

  15. BOOSTING LY α   AND He ii λ 1640 LINE FLUXES FROM POPULATION III GALAXIES: STOCHASTIC IMF SAMPLING AND DEPARTURES FROM CASE-B

    International Nuclear Information System (INIS)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-01-01

    We revisit calculations of nebular hydrogen Ly α and He ii λ 1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Ly α flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n  = 2 state of atomic hydrogen. The increased sensitivity of the Ly α flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ∼4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  16. Boosting Lyα and He II λ1640 Line Fluxes from Population III Galaxies: Stochastic IMF Sampling and Departures from Case-B

    Science.gov (United States)

    Mas-Ribas, Lluís; Dijkstra, Mark; Forero-Romero, Jaime E.

    2016-12-01

    We revisit calculations of nebular hydrogen Lyα and He II λ1640 line strengths for Population III (Pop III) galaxies, undergoing continuous, and bursts of, star formation. We focus on initial mass functions (IMFs) motivated by recent theoretical studies, which generally span a lower range of stellar masses than earlier works. We also account for case-B departures and the stochastic sampling of the IMF. In agreement with previous work, we find that departures from case-B can enhance the Lyα flux by a factor of a few, but we argue that this enhancement is driven mainly by collisional excitation and ionization, and not due to photoionization from the n = 2 state of atomic hydrogen. The increased sensitivity of the Lyα flux to the high-energy end of the galaxy spectrum makes it more subject to stochastic sampling of the IMF. The latter introduces a dispersion in the predicted nebular line fluxes around the deterministic value by as much as a factor of ˜4. In contrast, the stochastic sampling of the IMF has less impact on the emerging Lyman Werner photon flux. When case-B departures and stochasticity effects are combined, nebular line emission from Pop III galaxies can be up to one order of magnitude brighter than predicted by “standard” calculations that do not include these effects. This enhances the prospects for detection with future facilities such as the James Webb Space Telescope and large, ground-based telescopes.

  17. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  18. THE RELATION BETWEEN DYNAMICAL MASS-TO-LIGHT RATIO AND COLOR FOR MASSIVE QUIESCENT GALAXIES OUT TO z ∼ 2 AND COMPARISON WITH STELLAR POPULATION SYNTHESIS MODELS

    International Nuclear Information System (INIS)

    Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska; Bezanson, Rachel; Van Dokkum, Pieter G.

    2015-01-01

    We explore the relation between the dynamical mass-to-light ratio (M/L) and rest-frame color of massive quiescent galaxies out to z ∼ 2. We use a galaxy sample with measured stellar velocity dispersions in combination with Hubble Space Telescope and ground-based multi-band photometry. Our sample spans a large range in log M dyn /L g (of 1.6 dex) and log M dyn /L K (of 1.3 dex). There is a strong, approximately linear correlation between the M/L for different wavebands and rest-frame color. The root-mean-square scatter in log M dyn /L residuals implies that it is possible to estimate the M/L with an accuracy of ∼0.25 dex from a single rest-frame optical color. Stellar population synthesis (SPS) models with a Salpeter stellar initial mass function (IMF) cannot simultaneously match M dyn /L g versus (g – z) rest-frame and M dyn /L K versus (g – K) rest-frame . By changing the slope of the IMF we are still unable to explain the M/L of the bluest and reddest galaxies. We find that an IMF with a slope between α = 2.35 and α = 1.35 provides the best match. We also explore a broken IMF with a Salpeter slope at M < 1 M ☉ and M > 4 M ☉ and a slope α in the intermediate region. The data favor a slope of α = 1.35 over α = 2.35. Nonetheless, our results show that variations between different SPS models are comparable to the IMF variations. In our analysis we assume that the variation in M/L and color is driven by differences in age, and that other contributions (e.g., metallicity evolution, dark matter) are small. These assumptions may be an important source of uncertainty as galaxies evolve in more complex ways

  19. SHARDS: An Optical Spectro-photometric Survey of Distant Galaxies

    Science.gov (United States)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Alonso-Herrero, Almudena; Balcells, Marc; Cenarro, Javier; Cepa, Jordi; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Donley, Jennifer; Elbaz, David; Espino, Néstor; Gallego, Jesús; Gobat, R.; González-Martín, Omaira; Guzmán, Rafael; Hernán-Caballero, Antonio; Muñoz-Tuñón, Casiana; Renzini, Alvio; Rodríguez-Zaurín, Javier; Tresse, Laurence; Trujillo, Ignacio; Zamorano, Jaime

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ~ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described by an exponentially decaying star formation history with scale τ = 100-200 Myr, age around 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V) ~ 0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This

  20. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous,

  1. The sloan lens acs survey. II. Stellar populations and internal structure of early-type lens galaxies

    NARCIS (Netherlands)

    Treu, Tommaso; Koopmans, Léon V.; Bolton, Adam S.; Burles, Scott; Moustakas, Leonidas A.

    2006-01-01

    We use HST images to derive effective radii and effective surface brightnesses of 15 early-type (E+S0) lens galaxies identified by the SLACS Survey. Our measurements are combined with stellar velocity dispersions from the SDSS database to investigate for the first time the distribution of lens

  2. Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation

    Science.gov (United States)

    Brainerd, Tereasa G.

    2017-06-01

    In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the

  3. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION

    International Nuclear Information System (INIS)

    Stark, Daniel P.; Ellis, Richard S.; Targett, Tom; Benson, Andrew; Bunker, Andrew; Bundy, Kevin; Lacy, Mark

    2009-01-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z ≅ 4 and z ≅ 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ∼ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z ∼> 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z ≅ 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 ∼ 11 M sun ) z ≅ 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 ∼ 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z ≅ 2.

  4. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: a population-based cohort study.

    Directory of Open Access Journals (Sweden)

    Martin Söderholm

    Full Text Available Increased red cell distribution width (RDW has been related to poor prognosis in patients with cardiovascular disease, and is a predictor of cardiovascular mortality in the general population. The purpose of the present study was to investigate if RDW is associated with increased incidence of stroke and its subtypes in individuals from the general population.Red cell distribution width was measured in 26,879 participants (16,561 women and 10,318 men aged 45-73 years without history of coronary events or stroke, from the population-based Malmö Diet and Cancer Study. Incidences of total stroke and stroke subtypes over a mean follow-up of 15.2 years were calculated in relation to sex-specific quartiles of RDW. The presence of carotid plaque and intima-media thickness, as assessed by ultrasound, was studied in relation to RDW in a randomly selected subcohort (n = 5,309.Incidences of total stroke (n = 1,869 and cerebral infarction (n = 1,544 were both increased in individuals with high RDW. Hazard ratios (HRs in the highest compared to the lowest quartile were 1.31 for total stroke (95% confidence interval [CI]: 1.11-1.54, p for trend = 0.004 and 1.32 for cerebral infarction (95% CI: 1.10-1.58, p for trend = 0.004 after adjustment for stroke risk factors and hematological parameters. The adjusted HR for intracerebral hemorrhage (n = 230 was 1.44 (95% CI: 0.90-2.30 and the HR for subarachnoid hemorrhage (n = 75 was 0.94 (95% CI: 0.43-2.07, in the highest compared to the lowest quartile of RDW. Red cell distribution width was positively associated with intima-media thickness of the common carotid artery (p for trend = 0.011.Red cell distribution width in the highest quartile was associated with increased incidence of total stroke and cerebral infarction. There was no significant association between RDW and incidence of intracerebral or subarachnoid hemorrhage.

  5. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B.; Romanek, Christopher S.; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure

  6. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Lloret, Pedro, E-mail: pedroalvarez@geol.uniovi.es [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Departament of Geology, University of Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo (Spain); Rodríguez-Navarro, Alejandro B. [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Romanek, Christopher S. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY (United States); Ferrandis, Pablo [Department of Plant Production and Agricultural Technology, E.T.S. Ingenieros Agrónomos, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Martínez-Haro, Mónica [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); IMAR-Instituto do Mar, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra (Portugal); Mateo, Rafael [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure.

  7. Sarcoptic mange and other ectoparasitic infections in a red fox (Vulpes vulpes population from central Italy

    Directory of Open Access Journals (Sweden)

    S. Perrucci

    2016-06-01

    Full Text Available Fifty red foxes (Vulpes vulpes from the district of Pisa (central Italy were examined for ectoparasites. Sarcoptic mange was diagnosed on the presence of clearly visible skin lesions with confirmatory demonstration of Sarcoptes scabiei at parasitological and histopathological analysis. Ticks and fleas were collected directly from the carcases during post mortem examination, fixed and identified by morphological examination. For the detection of ear Malassezia and mite infections, cytological and parasitological examinations of ear wax samples were performed. All data were statistically analysed using a χ2 test with the Yates correction. An overall prevalence of 84% for ectoparasitic infections was found in examined subjects. In regard to isolated ectoparasites, 38%, 8%, 82%, 6% and 8% of foxes resulted positive for S. scabiei, Otodectes cynotis, Malassezia spp., fleas (Archaeopsylla erinacei, Pulex irritans, Ctenocephalides canis and ticks (Ixodes ricinus and Rhipicephalus sanguineus, respectively. Malassezia ear infection was significantly more prevalent in animals older than 1 year (P < 0.01. Prevalence (38%, severity of lesions and poor body conditions observed in most Sarcoptes-infected animals indicate that sarcoptic mange should be considered the most important ectoparasitic infection of red foxes in the examined area.

  8. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  9. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  10. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice

    2013-01-01

    redshift and galaxy shape catalogs. The complete galaxy sample consists of a total number of 5 x 10 6 lens galaxies within a redshift range of 0.05 phot ≤1 and 1.7 x 10 6 corresponding source galaxies with redshifts of 0.05 phot ≤2 and successfully extracted shapes. Assuming that the galaxy halos can be described by analytic profiles, the scaling relations with absolute luminosity for the galaxy masses, their mass-to-light ratios and the corresponding halo parameters have been extracted. Based on the obtained scaling relations, the average values for the corresponding halo parameters and the mean galaxy masses for a given luminosity were derived as a function of considered halo model, the galaxy SED and the local environment density. We obtain a total mass of M total =23.2 +2.8 -2.5 x 10 11 h -1 M s un for an average galaxy with chosen reference luminosity of L * =1.6 x 10 10 h -2 L s un. In contrast, the mean total masses for red galaxies of same luminosity exceed the value of the average galaxy about 130%, while the mass of a blue galaxy is about 65% below the value of an average fiducial galaxy. Investigating the influence of the environmental density on the galaxy properties we observe a significant increase of the total integrated masses with galaxy density, however the velocity dispersions are not affected. This indicates that the central galaxy matter density mostly depends on the galaxy luminosity but not on the environment. Simulations based on the extracted scientific results were built, verifying the robustness of the scientific results. They give a clear hint that multiple deflections on different lens galaxies have to be properly accounted for in order to avoid systematically biased results.

  11. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  12. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  13. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  14. DISCOVERY OF A LARGE POPULATION OF ULTRALUMINOUS X-RAY SOURCES IN THE BULGELESS GALAXIES NGC 337 AND ESO 501-23

    Energy Technology Data Exchange (ETDEWEB)

    Somers, Garrett; Mathur, Smita; Martini, Paul; Grier, Catherine J. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Watson, Linda [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ferrarese, Laura, E-mail: somers@astronomy.ohio-state.edu [Hertzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2013-11-01

    We have used Chandra observations of eight bulgeless disk galaxies to identify new ultraluminous X-ray source (ULX) candidates, study their high-mass X-ray binary (HMXB) population, and search for low-luminosity active galactic nuclei (AGNs). We report the discovery of 16 new ULX candidates in our sample of galaxies. Eight of these are found in the star forming galaxy NGC 337, none of which are expected to be background contaminants. The HMXB luminosity function of NGC 337 implies a star formation rate (SFR) of 6.8{sup +4.4}{sub -3.5} M{sub ☉} yr{sup –1}, consistent at 1.5σ with a recent state of the art SFR determination. We also report the discovery of a bright ULX candidate (X-1) in ESO 501-23. X-1's spectrum is well fit by an absorbed power law with Γ= 1.18{sup +0.19}{sub -0.11} and N{sub H} = 1.13{sup +7.07}{sub -1.13}×10{sup 20} cm{sup –2}, implying a 0.3-8 keV flux of 1.08{sup +0.05}{sub -0.07}×10{sup -12} erg s{sup –1} cm{sup –2}. Its X-ray luminosity (L{sub X} ) is poorly constrained due to uncertainties in the host galaxy's distance, but we argue that its spectrum implies L{sub X} > 10{sup 40} erg s{sup –1}. An optical counterpart to this object may be present in an Hubble Space Telescope image. We also identify ULX candidates in IC 1291, PGC 3853, NGC 5964, and NGC 2805. We find no evidence of nuclear activity in the galaxies in our sample, placing a flux upper limit of 4 × 10{sup –15} erg s{sup –1} cm{sup –2} on putative AGN. Additionally, the Type II-P supernova SN 2011DQ in NGC 337, which exploded two months before our X-ray observation, is undetected.

  15. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    International Nuclear Information System (INIS)

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-01-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun , [Fe/H]∼ sun . This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  16. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  17. CATCHING QUENCHING GALAXIES: THE NATURE OF THE WISE INFRARED TRANSITION ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Appleton, Philip N.; Rich, Jeffrey A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Lisenfeld, Ute [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Nyland, Kristina, E-mail: kalatalo@caltech.edu [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States)

    2014-10-10

    We present the discovery of a prominent bifurcation between early-type galaxies and late-type galaxies, in [4.6]-[12] μm colors from the Wide Field Infrared Survey Explorer (WISE). We then use an emission-line diagnostic comparison sample to explore the nature of objects found both within and near the edges of this WISE infrared transition zone (IRTZ). We hypothesize that this bifurcation might be due to the presence of hot dust and polyaromatic hydrocarbon (PAH) emission features in late-type galaxies. Using a sample of galaxies selected through the Shocked Poststarburst Galaxy Survey (SPOGS), we are able to identify galaxies with strong Balmer absorption (EW(Hδ) > 5 Å) as well as emission lines inconsistent with star formation (deemed SPOG candidates, or SPOGs*) that lie within the optical green valley. Seyferts and low-ionization nuclear emission line regions, whose u – r colors tend to be red, are strongly represented within IRTZ, whereas SPOGs* tend to sit near the star-forming edge. Although active galactic nuclei are well represented in the IRTZ, we argue that the dominant IRTZ population is composed of galaxies that are in late stages of transitioning across the optical green valley, shedding the last of their remnant interstellar media.

  18. A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey

    Science.gov (United States)

    Meusinger, H.; Brünecke, J.; Schalldach, P.; in der Au, A.

    2017-01-01

    Context. The galaxy population in the contemporary Universe is characterised by a clear bimodality, blue galaxies with significant ongoing star formation and red galaxies with only a little. The migration between the blue and the red cloud of galaxies is an issue of active research. Post starburst (PSB) galaxies are thought to be observed in the short-lived transition phase. Aims: We aim to create a large sample of local PSB galaxies from the Sloan Digital Sky Survey (SDSS) to study their characteristic properties, particularly morphological features indicative of gravitational distortions and indications for active galactic nuclei (AGNs). Another aim is to present a tool set for an efficient search in a large database of SDSS spectra based on Kohonen self-organising maps (SOMs). Methods: We computed a huge Kohonen SOM for ∼106 spectra from SDSS data release 7. The SOM is made fully available, in combination with an interactive user interface, for the astronomical community. We selected a large sample of PSB galaxies taking advantage of the clustering behaviour of the SOM. The morphologies of both PSB galaxies and randomly selected galaxies from a comparison sample in SDSS Stripe 82 (S82) were inspected on deep co-added SDSS images to search for indications of gravitational distortions. We used the Portsmouth galaxy property computations to study the evolutionary stage of the PSB galaxies and archival multi-wavelength data to search for hidden AGNs. Results: We compiled a catalogue of 2665 PSB galaxies with redshifts z 3 Å and z cloud, in agreement with the idea that PSB galaxies represent the transitioning phase between actively and passively evolving galaxies. The relative frequency of distorted PSB galaxies is at least 57% for EW(Hδ) > 5 Å, significantly higher than in the comparison sample. The search for AGNs based on conventional selection criteria in the radio and MIR results in a low AGN fraction of ∼2-3%. We confirm an MIR excess in the mean SED of

  19. Rebuilding Spiral Galaxies

    Science.gov (United States)

    2005-01-01

    NASA/ESA Hubble Space Telescope, the ESA Infrared Space Observatory (ISO) satellite and the NRAO Very Large Array. With the Very Large Telescope, observations were performed on Antu and Kueyen over a two-year period using the quasi-twin instruments FORS1 and FORS2 in the visible and ISAAC in the infrared. In both cases, it was essential to rely on the unique capabilities of the VLT to obtain high-quality spectra with the required resolution. A fleet of results ESO PR Photo 02a/05 ESO PR Photo 02a/05 Luminosity - Oxygen Abundance Relation for Galaxies [Preview - JPEG: 400 x 455 pix - 81k] [Normal - JPEG: 800 x 910 pix - 208k] Caption: ESO PR Photo 02a/05 shows the oxygen abundance (expressed in fraction of the solar value) as a function of the luminosity of the galaxies (in logarithm scale). This relation is fundamental in astrophysics. The relation for local galaxies is shown by the solid red line. The blue dots are the values derived from VLT spectra in a subset of the studied galaxies. They reveal for the first time that this relation is changing with time: for a given value of the luminosity, galaxies of different ages present different values of the oxygen abundance. From their extensive set of data, the astronomers could draw a number of important conclusions. First, based on the near-infrared luminosities of the galaxies, they infer that most of the galaxies they studied contain between 30,000 million and 300,000 million times the mass of the Sun in the form of stars. This is roughly a factor 0.2 to 2 the amount of mass locked in stars in our own Milky Way. Second, they discovered that contrary to the local Universe where so-called Luminous Infrared Galaxies (LIRGs; [3]) are very rare objects, at a redshift from 0.4 to 1, that is, 4,000 to 8,000 million years ago, roughly one sixth of bright galaxies were LIRGs. Because this peculiar class of galaxies is believed to be going through a very active phase of star formation, with a doubling of the stellar mass

  20. Replicated population divergence caused by localized coevolution? A test of three hypotheses in the red crossbill-lodgepole pine system.

    Science.gov (United States)

    Edelaar, P; Benkman, C W

    2006-09-01

    Several lines of evidence support the hypothesis that local populations of red crossbills (Loxia curvirostra complex) enter into a predator-prey arms race with lodgepole pine (Pinus contorta latifolia) in the absence of competing pine squirrels (Tamiasciurus hudsonicus). Nevertheless, the alternative hypotheses that neutral evolution or factors other than squirrels have caused crossbill population differentiation have not been thoroughly tested. We compared crossbill and pine cone morphology between island populations where squirrels are absent or present, and mainland sites where squirrels are present, in order to distinguish among these hypotheses. All comparisons supported an effect of squirrel absence, not island status, on crossbill and cone morphology. Hence our results provide further evidence that strong localized coevolutionary interactions in a geographic mosaic have driven adaptive population differentiation. In addition, vocal differentiation of crossbills was related to the absence of squirrels, but not to island status. As morphological and vocal differentiation is correlated with reproductive isolation in crossbills, the geographic mosaic of coevolution also seems to promote ecological speciation.

  1. On the origin of the Hubble sequence: I. Insights on galaxy color migration from cosmological simulations

    International Nuclear Information System (INIS)

    Cen, Renyue

    2014-01-01

    An analysis of more than 3000 galaxies resolved at better than 114 h –1 pc at z = 0.62 in a 'LAOZI' cosmological adaptive mesh refinement hydrodynamic simulation is performed and insights are gained on star formation quenching and color migration. The vast majority of red galaxies are found to be within three virial radii of a larger galaxy at the onset of quenching, when the specific star formation rate experiences the sharpest decline to fall below ∼10 –2 -10 –1 Gyr –1 (depending on the redshift). Thus, we shall call this mechanism 'environment quenching', which encompasses satellite quenching. Two physical processes are largely responsible: Ram pressure stripping first disconnects the galaxy from the cold gas supply on large scales, followed by a longer period of cold gas starvation taking place in a high velocity-dispersion environment, in which during the early part of the process, the existing dense cold gas in the central region (≤10 kpc) is consumed by in situ star formation. On average, quenching is found to be more efficient (i.e., a larger fraction of galaxies being quenched) but not faster (i.e., the duration being weakly dependent on the environment) in a denser environment. Throughout this quenching period and the ensuing one in the red sequence, galaxies follow nearly vertical tracks in the color-stellar mass diagram. In contrast, individual galaxies of all masses grow most of their stellar masses in the blue cloud, prior to the onset of quenching, and progressively more massive blue galaxies with already relatively older mean stellar ages continue to enter the red sequence. Consequently, correlations among observables of red galaxies—such as the age-mass relation— are largely inherited from their blue progenitors at the onset of quenching. While the color makeup of the entire galaxy population strongly depends on the environment, which is a direct result of environment quenching, physical properties of blue

  2. Potential for adaptive evolution at species range margins: contrasting interactions between red coral populations and their environment in a changing ocean.

    Science.gov (United States)

    Ledoux, Jean-Baptiste; Aurelle, Didier; Bensoussan, Nathaniel; Marschal, Christian; Féral, Jean-Pierre; Garrabou, Joaquim

    2015-03-01

    Studying population-by-environment interactions (PEIs) at species range margins offers the opportunity to characterize the responses of populations facing an extreme regime of selection, as expected due to global change. Nevertheless, the importance of these marginal populations as putative reservoirs of adaptive genetic variation has scarcely been considered in conservation biology. This is particularly true in marine ecosystems for which the deep refugia hypothesis proposes that disturbed shallow and marginal populations of a given species can be replenished by mesophotic ones. This hypothesis therefore assumes that identical PEIs exist between populations, neglecting the potential for adaptation at species range margins. Here, we combine reciprocal transplant and common garden experiments with population genetics analyses to decipher the PEIs in the red coral, Corallium rubrum. Our analyses reveal partially contrasting PEIs between shallow and mesophotic populations separated by approximately one hundred meters, suggesting that red coral populations may potentially be locally adapted to their environment. Based on the effective population size and connectivity analyses, we posit that genetic drift may be more important than gene flow in the adaptation of the red coral. We further investigate how adaptive divergence could impact population viability in the context of warming and demonstrate differential phenotypic buffering capacities against thermal stress. Our study questions the relevance of the deep refugia hypothesis and highlights the conservation value of marginal populations as a putative reservoir of adaptive genetic polymorphism.

  3. STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Salim, Samir; Rich, R. Michael

    2010-01-01

    In recent years, an argument has been made that a high fraction of early-type galaxies (ETGs) in the local universe experience low levels (∼ sun yr -1 ) of star formation (SF) that causes strong excess in UV flux, yet leaves the optical colors red. Many of these studies were based on Galaxy Evolution Explorer imaging of Sloan Digital Sky Survey (SDSS) galaxies (z ∼ 0.1), and were thus limited by its 5'' FWHM. Poor UV resolution left other possibilities for UV excess open, such as the old populations or an active galactic nucleus (AGN). Here, we study high-resolution far-ultraviolet HST/ACS images of optically quiescent early-type galaxies with strong UV excess. The new images show that three-quarters of these moderately massive (∼5 x 10 10 M sun ) ETGs shows clear evidence of extended SF, usually in form of wide or concentric UV rings, and in some cases, striking spiral arms. SDSS spectra probably miss these features due to small fiber size. UV-excess ETGs have on average less dust and larger UV sizes (D > 40 kpc) than other green-valley galaxies, which argues for an external origin for the gas that is driving the SF. Thus, most of these galaxies appear 'rejuvenated' (e.g., through minor gas-rich mergers or intergalactic medium accretion). For a smaller subset of the sample, the declining SF (from the original internal gas) cannot be ruled out. SF is rare in very massive early-types (M * > 10 11 M sun ), a possible consequence of AGN feedback. In addition to extended UV emission, many galaxies show a compact central source, which may be a weak, optically inconspicuous AGN.

  4. The Cambridge photographic atlas of galaxies

    CERN Document Server

    König, Michael

    2017-01-01

    Galaxies - the Milky Way's siblings - offer a surprising variety of forms and colours. Displaying symmetrical spiral arms, glowing red nebulae or diffuse halos, even the image of a galaxy can reveal much about its construction. All galaxies consist of gas, dust and stars, but the effects of gravity, dark matter and the interaction of star formation and stellar explosions all influence their appearances. This volume showcases more than 250 of the most beautiful galaxies within an amateur's reach and uses them to explain current astrophysical research. It features fantastic photographs, unique insights into our knowledge, tips on astrophotography and essential facts and figures based on the latest science. From the Andromeda Galaxy to galaxy clusters and gravitational lenses, the nature of galaxies is revealed through these stunning amateur photographs. This well illustrated reference atlas deserves a place on the bookshelves of astronomical imagers, observers and armchair enthusiasts.

  5. Anomalous evolution of the dwarf galaxy HIPASS J1321-31

    NARCIS (Netherlands)

    Pritzl, BJ; Knezek, PM; Gallagher, JS; Grossi, M; Disney, MJ; Minchin, RF; Freeman, KC; Tolstoy, E; Saha, A

    2003-01-01

    We present Hubble Space Telescope/WFPC2 observations of the dwarf galaxy HIPASS J1321-31. This unusual galaxy lies in the direction of the Centaurus A group of galaxies and has a color-magnitude diagram with a distinctive red plume of luminous stars. This feature could arise from (1) a red giant

  6. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  7. Roseobacter-Like Bacteria in Red and Mediterranean Sea Aerobic Anoxygenic Photosynthetic Populations

    Czech Academy of Sciences Publication Activity Database

    Oz, A.; Sabehi, G.; Koblížek, Michal; Massana, R.; Béja, O.

    2005-01-01

    Roč. 71, č. 1 (2005), s. 344-353 ISSN 0099-2240 R&D Projects: GA ČR GP206/03/P079; GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z5020903 Keywords : Roseobacter * photosynthetic population Subject RIV: EE - Microbiology, Virology Impact factor: 3.818, year: 2005

  8. Post-Starburst Galaxies At The End of The E+A Phase

    Science.gov (United States)

    Liu, Charles; Marinelli, Mariarosa; Chang, Madeleine; Lyczko, Camilla; Vega Orozco, Cecilia; SDSS-IV Collaboration

    2018-06-01

    Post-starburst galaxies, once thought to be rare curiosities, are now recognized to represent a key phase in the galaxy evolution. The post-starburst, or E+A phase, should however not be considered as a single, short-lived phenomenon; rather, it is an extended evolutionary process that occurs a galaxy transitions from an actively star-forming system into a quiescent one. We present a study of nearby galaxies at or near the end of the E+A phase, wherein all star formation has been quenched, the fossilized stellar population of the most recent starburst is highly localized, and the remainder of the galaxy's stellar population is old and quiescent. The luminosity and stellar age distribution of these "end-phase E+As" can provide insights into the evolution of galaxies onto and within the red sequence, from active to passive systems. This work is supported by National Science Foundation grants to CUNY College of Staten Island and the American Museum of Natural History; the College of Staten Island Office of Academic Affairs; the Sherman Fairchild Science Pathways Scholars Program (SP^2) at Barnard College; and the Alfred P. Sloan Foundation.

  9. The environments of Markarian galaxies

    International Nuclear Information System (INIS)

    Mackenty, J.W.; Simpson, C.; Mclean, B.

    1990-01-01

    The extensively studied Markarian sample of 1500 ultraviolet excess galaxies contains many Seyfert, starburst, and peculiar galaxies. Using the 20 minute V plates obtained for the construction of the Hubble Space Telescope Guide Star Catalog, the authors investigated the morphologies of the Markarian galaxies and the environments in which they are located. The relationship between the types of nuclear activity and the morphologies and environments of the Markarian galaxies is discussed. The authors conclude that the type of nuclear activity present in the galaxies of the Markarian sample is not dependent on either the morphology or the local environment of the galaxy. This is not to imply that nuclear activity per se is not influenced by the environment in which the nucleus is located. Rather the type of nuclear activity (at least in the Markarian population) does not appear to be determined by the environment

  10. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  11. Identification of novel loci associated with gastrointestinal parasite resistance in a Red Maasai x Dorper backcross population.

    Directory of Open Access Journals (Sweden)

    Magda Vieira Benavides

    Full Text Available Gastrointestinal (GI parasitic infection is the main health constraint for small ruminant production, causing loss of weight and/or death. Red Maasai sheep have adapted to a tropical environment where extreme parasite exposure is a constant, especially with highly pathogenic Haemonchus contortus. This breed has been reported to be resistant to gastrointestinal parasite infection, hence it is considered an invaluable resource to study associations between host genetics and resistance. The aim of this study was to identify polymorphisms strongly associated with host resistance in a double backcross population derived from Red Maasai and Dorper sheep using a SNP-based GWAS analysis. The animals that were genotyped represented the most resistant and susceptible individuals based on the tails of phenotypic distribution (10% each for average faecal egg counts (AVFEC. AVFEC, packed cell volume (AVPCV, and live weight (AVLWT were adjusted for fixed effects and co-variables, and an association analysis was run using EMMAX. Revised significance levels were calculated using 100,000 permutation tests. The top five significant SNP markers with - log10 p-values >3.794 were observed on five different chromosomes for AVFEC, and BLUPPf90/PostGSf90 results confirmed EMMAX significant regions for this trait. One of these regions included a cluster of significant SNP on chromosome (Chr 6 not in linkage disequilibrium to each other. This genomic location contains annotated genes involved in cytokine signalling, haemostasis and mucus biosynthesis. Only one association detected on Chr 7 was significant for both AVPCV and AVLWT. The results generated here reveal candidate immune variants for genes involved in differential response to infection and provide additional SNP marker information that has potential to aid selection of resistance to gastrointestinal parasites in sheep of a similar genetic background to the double backcross population.

  12. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  13. The Milky Way galaxy

    International Nuclear Information System (INIS)

    Woerden, H. van; Allen, R.J.; Burton, W.B.

    1985-01-01

    IAU Symposium 106, held at the Kapteyn Institute in Groningen, presents an overview of all major aspects of galactic astronomy. The vast subject is covered in 20 authoritative review papers and 22 invited papers, each with discussion, plus 81 shorter contributions. The book opens with 4 reviews by historians of science, outlining the history of galactic research. Part 2 deals with (i) galactic rotation, (ii) the large-scale distributions of matter, of both old and young stellar populations, and of the atomic, molecular and high-energy components of the interstellar medium, (iii) small-scale structure in the gas, (iv) the galactic nucleus, (v) the high-velocity clouds. Part 3 discusses the dynamics of the local group of Galaxies and of the Milky Way-Magellanic clouds system, the dynamical and chemical evolution of the Galaxy and of its disk and halo components and the formation of the Galaxy. The controversial subject of spiral structure and star formation is analyzed in several extensive reviews and lively discussions, featuring both observational and theoretical developments. Results of extragalactic research are blended with studies of our Galaxy throughout the book, and there is a separate comparison between Andromeda and Milky Way Galaxies. The Symposium featured the first maps produced by IRAS, and results from most major telescopes in a variety of wavebands. Many review papers present material not published elsewhere. The book closes with a lecture on life in the Galaxy and with an imaginative symposium summary. (orig.)

  14. Destruction of a Holothuria scabra population by overfishing at Abu Rhamada Island in the Red Sea.

    Science.gov (United States)

    Hasan, Mohamed Hamza

    2005-10-01

    Populations of Holothuria scabra at Abu Rhamada Island were investigated during 52 months, from July 1999 to October 2003. During the first 23 months (July, 1999-May, 2001) the Island had a robust population with a tri-modal size frequency distribution curve, very high densities (85.7-95.1 ind./100 m2 at the sandy habitat), high abundance (3362-3110 individuals) and biomass (46.7-34.3 kg/100 m2). Also, during this period most individuals were at depths between 4 and 6m and no individuals were recorded deeper than 15m. The population declined after harvesting began (June, 2001) and by March, 2002 the size frequency distribution showed a bimodal pattern with an obvious decrease in abundance of large individuals. There was also a slight reduction in densities (73.2-60.1 ind./100 m2 at the sandy habitat), abundance (2292-1682 individuals) and biomass (21.6-11.3 kg/100 m2), and a marked shift towards deeper waters. Overfishing reached its maximum during the final 19 months of the study, and by October, 2003, density (30.7-0.4 ind./100 m2 at the sandy habitat), abundance (802-10 individuals) and biomass (6.9-0.1 kg/100 m2) were all greatly reduced. The size frequency distribution of the population became unimodal, large animals disappeared and no recruits were seen. During this period, individuals were found at very deep depths (30 to >40 m). The study also showed that sandy substrate was the preferred habitat for H. scabra, accommodating the largest number of individuals. The population of H. scabra at Abu Rhamada Island was found to spawn biannually from 1999 to 2001, then only once during 2002 when high fishing pressure occurred, and ceased completely in 2003. The sex ratio was not significantly different from 1:1 before fishing begun, but shifted to an increasing male bias reaching 93% males by January 2003. None of the small animals remaining after January, 2003 could be sexed. Size at sexual maturity decreased from prefishing (185 mm for females and 160 mm for

  15. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Moustakas, John [Center for Astrophysics and Space Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  16. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  17. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  18. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  19. THE HST/ACS COMA CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MASSIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Peng, Eric W.; Ferguson, Henry C.; Goudfrooij, Paul; Hammer, Derek; Lucey, John R.; Marzke, Ronald O.; Puzia, Thomas H.; Carter, David; Balcells, Marc; Bridges, Terry; Chiboucas, Kristin; Del Burgo, Carlos; Graham, Alister W.; Guzman, Rafael; Hudson, Michael J.; Matkovic, Ana

    2011-01-01

    Intracluster stellar populations are a natural result of tidal interactions in galaxy clusters. Measuring these populations is difficult, but important for understanding the assembly of the most massive galaxies. The Coma cluster of galaxies is one of the nearest truly massive galaxy clusters and is host to a correspondingly large system of globular clusters (GCs). We use imaging from the HST/ACS Coma Cluster Survey to present the first definitive detection of a large population of intracluster GCs (IGCs) that fills the Coma cluster core and is not associated with individual galaxies. The GC surface density profile around the central massive elliptical galaxy, NGC 4874, is dominated at large radii by a population of IGCs that extend to the limit of our data (R +4000 -5000 (systematic) IGCs out to this radius, and that they make up ∼70% of the central GC system, making this the largest GC system in the nearby universe. Even including the GC systems of other cluster galaxies, the IGCs still make up ∼30%-45% of the GCs in the cluster core. Observational limits from previous studies of the intracluster light (ICL) suggest that the IGC population has a high specific frequency. If the IGC population has a specific frequency similar to high-S N dwarf galaxies, then the ICL has a mean surface brightness of μ V ∼ 27 mag arcsec -2 and a total stellar mass of roughly 10 12 M sun within the cluster core. The ICL makes up approximately half of the stellar luminosity and one-third of the stellar mass of the central (NGC 4874+ICL) system. The color distribution of the IGC population is bimodal, with blue, metal-poor GCs outnumbering red, metal-rich GCs by a ratio of 4:1. The inner GCs associated with NGC 4874 also have a bimodal distribution in color, but with a redder metal-poor population. The fraction of red IGCs (20%), and the red color of those GCs, implies that IGCs can originate from the halos of relatively massive, L* galaxies, and not solely from the disruption of

  20. A TALE OF DWARFS AND GIANTS: USING A z = 1.62 CLUSTER TO UNDERSTAND HOW THE RED SEQUENCE GREW OVER THE LAST 9.5 BILLION YEARS

    International Nuclear Information System (INIS)

    Rudnick, Gregory H.; Tran, Kim-Vy; Papovich, Casey; Momcheva, Ivelina; Willmer, Christopher

    2012-01-01

    We study the red sequence in a cluster of galaxies at z = 1.62 and follow its evolution over the intervening 9.5 Gyr to the present day. Using deep YJK s imaging with the HAWK-I instrument on the Very Large Telescope, we identify a tight red sequence and construct its rest-frame i-band luminosity function (LF). There is a marked deficit of faint red galaxies in the cluster that causes a turnover in the LF. We compare the red-sequence LF to that for clusters at z 0.6. In this model the cluster accretes blue galaxies from the field whose star formation is quenched and who are subsequently allowed to merge. We find that three to four mergers among cluster galaxies during the 4 Gyr between z = 1.62 and z = 0.6 match the observed LF evolution between the two redshifts. The inferred merger rate is consistent with other studies of this cluster. Our result supports the picture that galaxy merging during the major growth phase of massive clusters is an important process in shaping the red-sequence population at all luminosities.

  1. Population structure of the red mangrove crab, Goniopsis cruentata (Decapoda: Grapsidae under different fishery impacts: Implications for resource management

    Directory of Open Access Journals (Sweden)

    Gustavo L. Hirose

    2015-06-01

    Full Text Available The red mangrove crab, Goniopsis cruentata, influences the recruitment and composition of plant species in the mangrove ecosystem and it is an important fishery resource. Nevertheless, no current management and conservation plans are available for this species for the Brazilian coast. This investigation evaluated the population structure and reproductive biology in populations of G. cruentata under contrasting fishery pressures. The sampling program was carried out in two mangroves, Vaza-Barris and Sergipe River, from January through December 2011. Crabs from both mangroves were randomly collected by a professional fisherman during daytime low tide periods, using a fishing rod baited with pieces of a locally abundant gastropod, Pugilina morio, during 20min/area (catch per unit effort. Monthly measurements of air, sediment surface layer and water temperatures were obtained with a digital thermometer and salinity with an optical refractometer. Both crab populations were compared concerning their abundance, body size, sex ratio, size at onset of sexual maturity and fecundity (FI. Abiotic factors (air, water and mud temperature; and salinity showed no significant differences between sampling localities. A total of 4 370 crabs were sampled, 2 829 from the Sergipe River and 1 541 from the Vaza-Barris River. The abundance and body size of crabs were compared between mangroves, and statistically significant differences were found. The sex ratio for both populations differed from the expected 1:1 ratio, and a significant deviation in favor of juvenile males was obtained, while adults showed a bias toward females. The estimated size at onset of sexual maturity for both sexes was similar in both populations. However, the populations differed significantly in the number and volume of eggs: a higher FI was obtained in females from the Sergipe River, while a higher egg volume was observed in females from the Vaza-Barris River mangrove. These results indicated

  2. Low-ionization galaxies and evolution in a pilot survey up to z = 1

    International Nuclear Information System (INIS)

    Giraud, Edmond; Gu Qiusheng; Melnick, Jorge; Selman, Fernando; Quintana, Hernan; Toledo, Ignacio; Zelaya, Paula

    2011-01-01

    We present galactic spectroscopic data from a pencil beam of 10.75' x 7.5' centered on the X-ray cluster RXJ0054.0-2823 at z = 0.29. We study the spectral evolution of galaxies from z = 1 down to the cluster redshift in a magnitude-limited sample at R ≤ 23, for which the statistical properties of the sample are well understood. We divide emission-line galaxies into star-forming galaxies, Low Ionization Nuclear Emission line Regions (LINERs), and Seyferts by using emission-line ratios of [OII], Hβ, and [OIII], and derive stellar fractions from population synthesis models. We focus our analysis on absorption and low-ionization galaxies. For absorption-line galaxies, we recover the well-known result that these galaxies have had no detectable evolution since z ∼ 0.6 - 0.7, but we also find that in the range z = 0.65 - 1, at least 50% of the stars in bright absorption systems are younger than 2.5 Gyr Faint absorption-line galaxies in the cluster at z = 0.29 also had significant star formation during the previous 2 - 3 Gyr, but their brighter counterparts seem to be only composed of old stars. At z ∼ 0.8, our dynamically young cluster had a truncated red-sequence. This result seems to be consistent with a scenario where the final assembly of E/S0 took place at z < 1. In the volume-limited range 0.35 ≤ z ≤ 0.65, we find that 23% of the early-type galaxies have LINER-like spectra with Hβ in absorption and have a significant component of A stars. The vast majority of LINERs in our sample have significant populations of young and intermediate-aged stars and are thus not related to AGNs, but to the population of 'retired galaxies' recently identified by Cid Fernandes et al. in the Sloan Digital Sky Survey (SDSS). Early-type LINERs with various fractions of A stars and E+A galaxies appear to play an important role in the formation of the red sequence.

  3. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  4. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR

    International Nuclear Information System (INIS)

    Muzzin, Adam; Marchesini, Danilo; Van Dokkum, Pieter G.; Labbe, Ivo; Kriek, Mariska; Franx, Marijn

    2009-01-01

    We present spectral energy distribution (SED) modeling of a sample of 34 K-selected galaxies at z∼ 2.3. These galaxies have near-infrared (NIR) spectroscopy that samples the rest-frame Balmer/4000 A break as well as deep photometry in 13 broadband filters. New to our analysis is Infrared Array Camera (IRAC) data that extend the SEDs into the rest-frame NIR. Comparing parameters determined from SED fits with and without the IRAC data we find that the IRAC photometry significantly improves the confidence intervals of τ, A v , M star , and SFR for individual galaxies, but does not systematically alter the mean parameters of the sample. We use the IRAC data to assess how well current stellar population synthesis codes describe the rest-frame NIR SEDs of young galaxies where discrepancies between treatments of the thermally pulsating asymptotic giant branch phase of stellar evolution are most pronounced. The models of Bruzual and Charlot, Maraston, and Charlot and Bruzual all successfully reproduce the SEDs of our galaxies with ≤5% differences in the quality of fit; however, the best-fit masses from each code differ systematically by as much as a factor of 1.5, and other parameters vary more, up to factors of 2-3. A comparison of best-fit stellar population parameters from different stellar population synthesis (SPS) codes, dust laws, and metallicities shows that the choice of SPS code is the largest systematic uncertainty in most parameters, and that systematic uncertainties are typically larger than the formal random uncertainties. The SED fitting confirms our previous result that galaxies with strongly suppressed SF account for ∼50% of the K-bright population at z∼ 2.3; however, the uncertainty in this fraction is large due to systematic differences in the specific star formation rates derived from the three SPS models.

  5. Seeing red in M32: Constraints on the stellar content from near- and mid-infrared observations and applications for studies of more distant galaxies {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J. [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2014-08-10

    The properties of asymptotic giant branch (AGB) stars in the Local Group galaxy M32 are investigated using ground- and space-based observations that span the 1-8 μm wavelength interval, with the goal of demonstrating the utility of infrared observations as probes of stellar content. Comparisons with isochrones indicate that the brightest resolved stars in M32 have ages of a few gigayears and are younger on average than AGB stars with the same intrinsic brightness in the outer disk of M31. Accounting for stellar variability is shown to be essential for modeling AGB luminosity functions (LFs). Model LFs that assume the star-forming history measured by Monachesi et al. and the variability properties of Galactic AGB stars match both the K and [5.8] LFs of M32. Models also suggest that the slope of the [5.8] LF between M{sub [5.8]} = –8.5 and –10.0 is sensitive to the mix of stellar ages, and a sizeable fraction of the stars in M32 must have an age older than 7 Gyr in order to match the [5.8] LF. The structural properties of M32 in the infrared are also investigated. The effective radii that are computed from near-infrared and mid-infrared isophotes are similar to those measured at visible wavelengths, suggesting that the stellar content of M32 is well mixed. However, isophotes at radii >16'' (>60 pc) in the near- and mid-infrared are flatter than those at visible wavelengths. The coefficient of the fourth-order cosine term in the Fourier expansion of isophotes changes from 'boxy' values at r < 16'' to 'disky' values at r > 48''in [3.6] and [4.5]. The mid-infrared colors near the center of M32 do not vary systematically with radius, providing evidence of a well mixed stellar content in this part of the galaxy.

  6. Dwarf Galaxies Swimming in Tidal Tails

    Science.gov (United States)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground. Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born. The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic a