WorldWideScience

Sample records for recycling spent sandblasting

  1. Recycling cobalt from spent lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong XIA; Xiao-qian XIE; Yao-wu SHI; Yong-ping LEI; Fu GUO

    2008-01-01

    Spent lithium ion battery is a useful resource of cobalt. In this paper, cobalt was recovered by a chemical process based upon the analysis of the structure and com-position of the lithium ion battery. X-ray diffraction results show that cobalt oxalate and cobaltous sulfate have been obtained in two different processes. Compared with the cobaltous oxalate process, the cobaltous sulfate process was characterized by less chemical substance input and a cobalt recovery rate of as much as 88%. A combination of these two processes in the recycling industry may win in the aspects of compact process and high recovery rate.

  2. Recycling of Spent Nickel-Cadmium Batteries

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A technique for recycling spent nickel-cadmium batteries, which makes separation of cadmium and nickel possible, is developed by laboratory-scale experiments. NH3-H2CO3 aqueous solution was used in this leaching technique. Since neutralization and/or solvent extraction were not required in the separation procedure of nickel and cadmium, the closed systemization of the process becomes possible. Experimental results show that, (1) if the NH3 concentration of leaching solution is sufficiently high and the ratio of H2CO3 to NH3 is properly adjusted, both Ni(OH)2 and Cd(OH)2 react with NH3 and quickly dissolve into leaching solution, and (2) Ni(OH)2 can be converted into insoluble NiO by calcination at 500€癈, and CdO from Cd(OH)2 by calcination maintains good solubility in NH3-H2CO3 aqueous solution. As a conclusion, the recycling technique characterized by two step leaching can be developed based on such changes in dissolution behavior by calcination. Meanwhile, the yields of 99.8% for nickel and 97.6% for cadmium are obtained, and the purities of recovered nickel and cadmium are 99.9% and 98.6%, respectively.

  3. Graphite Recycling from Spent Lithium-Ion Batteries.

    Science.gov (United States)

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi1/3 Co1/3 Mn1/3 O2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced recycling network for spent e-bicycle batteries: A case study in Xuzhou, China.

    Science.gov (United States)

    Chen, Fu; Yang, Baodan; Zhang, Wangyuan; Ma, Jing; Lv, Jie; Yang, Yongjun

    2017-02-01

    Electric bicycles (e-bicycles) are a primary means of commuting in China because of their light weight, speed, and low maintenance costs. Owing to short service life and environmental pollution hazards, recycling and reuse of e-bicycle batteries has always been a focus of industry and academia. As a typical case of both production and use of large electric bicycles, 113 major sellers, 378 corporate and individual buyers, 147 large e-bicycle repair centers, and 1317 e-bicycle owners in Xuzhou City were investigated in order to understand the sales, use, recycling, and disposal of spent e-bicycle batteries. The findings show that the existing distempered recycling system is the main limitation of spent battery recovery, and the actual recovery rate of spent batteries is lower than the estimated output (QW) for the years 2011-2014. Electric bicycle sellers play a fundamental role in the collection of spent batteries in Xuzhou, accounting for 42.3±8.3% of all batteries recovered. The widespread use of lithium batteries in recent years has resulted in a reduction in spent battery recycling because of lower battery prices. Furthermore, consumer preferences are another important factor affecting the actual recovery rate according to survey results evaluated using canonical correspondence analysis. In this paper, we suggest that a reverse logistics network system for spent battery recycling should be established in the future; in addition, enhancing producer responsibility, increasing publicity, raising of public awareness, developing green public transport, and reducing dependence on e-bicycles also should be pursued. This study seeks to provide guidance for planning construction and management policies for an effective spent battery recycling system in China and other developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A closed loop process for recycling spent lithium ion batteries

    Science.gov (United States)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  6. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O ...

    African Journals Online (AJOL)

    Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O 4 using Waste Polypropylene as Reductant in a Microwave Oven. ... The residual casing was dismantled and scrap iron, plastic and paper separated. The removed mixture ...

  7. Spent nuclear fuel recycling with plasma reduction and etching

    Science.gov (United States)

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  8. Spent nuclear fuel recycling with plasma reduction and etching

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  9. Recycling research on spent fluorescent lamps on the basis of extended producer responsibility in China.

    Science.gov (United States)

    Peng, Lihong; Wang, Yejun; Chang, Chang-Tang

    2014-11-01

    Mercury is a physiological toxin released by spent fluorescent lamps (SFLs) and is considered a serious pollutant. As the world's largest producer of fluorescent lamps, China suffers from SFL pollution because of inefficient recycling and management of SFLs. Drawing upon the most successful practices worldwide, this paper suggests the recycling of SFLs on the basis of the extended producer responsibility (EPR) system in China. Manufacturers and importers are the main parties responsible for the take-back, recycling, and disposal ofSFLs in the EPR system. In view of the situation in China and to address the objectives of the EPR system, this paper recommends the implementation of a third-party take-back mode for small- and medium-scale enterprises and of a takeback mode for large enterprises to be carried out by original equipment manufacturers. This paper suggests an extended responsibility fund to finance and support the SFL recycling system and discusses in detail the different recycling network systems and fund flows of the two take-back modes. By conducting a case study, the authors determine that the subsidy rate for SFLs that a recycling company can obtain from the extended responsibility fund for recycling and disposing of lamps can be set at $1.35/kg. The authors also predict the levy level that fluorescent lamp manufacturers must submit.

  10. Conversion of Guanidine Nitrate to Nitroguanidine with Recycle of Spent Acid

    Science.gov (United States)

    1975-10-01

    ammonium salt in concentrated sulfuric acid solutions is actually present as ammonium bisulfate and, therefore, the available free sulfuric ...of ammonium bisulfate . This plot more closely corresponds to handbook data for sulfuric acid -water but still exhibits a depression of the boiling...Sulfate Recycled Spent Acid Ammonium Sulfate Sulfuric Acid 20 ABSTRACT (Continue on revet»» elate If neceaeary and Identify by

  11. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  12. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  13. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    Science.gov (United States)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  14. Penetration analysis of elements and bioleaching treatment of spent refractory for recycling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Acidithiobacillus ferrooxidans ATCC23270 and Acidithiobacillus thiooxidans TM-32 were used for bioleaching of spent refractories of aluminium and copper melting furnaces for their recycling.Firstly,penetration of elements into aluminium melting furnace refractory was investigated and it was found that up to 7 cm from surface was contaminated.Comparison on leaching efficiency by the strains ATCC23270 and TM-32 found that the strain ATCC23270 could treat larger amount of the refractories than the strain TM-32 could do.In the experiment of bioleaching of spent refractory aluminium melting furnace by the strain ATCC23270,high leaching efficiency were obtained on A1,Si,and Ca,and extremely low leaching performance was,however,shown on the rest of elements i.e.,Na,Mn,and Zn.Under the strain TM-32 use,relatively high leaching performance was recognized on Al,Si,Ca,Na,Mn,and Zn.In the experiment of bioleaching for spent refractory copper melting furnace,almost the same leaching trends were shown on Cu,Zn,Al,and Si under the strains ACTT23270 and TM-32 uses.

  15. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  16. Fractal dimension analysis of aluminum oxide particle for sandblasting dental use.

    Science.gov (United States)

    Oshida, Y; Munoz, C A; Winkler, M M; Hashem, A; Itoh, M

    1993-01-01

    Aluminum oxide particles are commonly used as a sandblasting media, particularly in dentistry, for multiple purposes including divesting the casting investment materials and increasing effective surface area for enhancing the mechanical retention strengths of succeedingly applied fired porcelain or luting cements. Usually fine aluminum oxide particles are recycled within the sandblasting machine. Ceramics such as aluminum oxides are brittle, therefore, some portions of recycling aluminum oxide particles might be brittle fractured. If fractured sandblasting particles are involved in the recycling media, it might result in irregularity metallic materials surface as well as the recycling sandblasting media itself be contaminated. Hence, it is necessary from both clinical and practical reasons to monitor the particle conditions in terms of size/shape and effectiveness of sandblasting, so that sandblasting dental prostheses can be fabricated in optimum and acceptable conditions. In the present study, the effect of recycling aluminum oxide particles on the surface texture of metallic materials was evaluated by Fractal Dimension Analysis (FDA). Every week the alumina powder was sampled and analyzed for weight fraction and contaminants. Surface texture of sandblasted standard samples was also characterized by FDA. Results indicate very little change in particle size, while the fractal dimension increased. Fractal dimension analysis showed that the aluminum oxide particle as a sandblasting media should be replaced after 30 or 40 min of total accumulated operation time.

  17. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.

    Science.gov (United States)

    Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen

    2017-09-01

    In the present study, cathode materials (C/LiCoO2) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO2/PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe4O6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe4O6. This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.

  18. THE POSSIBILITY OF DISPOSING OF SPENT COFFEE GROUND WITH ENERGY RECYCLING

    Directory of Open Access Journals (Sweden)

    Tomasz Ciesielczuk

    2015-09-01

    Full Text Available The current policy of waste management requires, above all, a gradual reduction of waste amount and, to a larger extent, forces us to seek new methods of waste disposal. Recycling the energy contained in biomass waste is a more and more universally applied method of thermal converting. Biomass combustion allows saving fossil fuels which fits into sustainable development. This paper checks the possibility of using spent coffee ground (SCG in energy recycling using a combustion process. This particular biomass type up to now has not been widely examined, which inclines to consider its usage as a potential additive to alternative fuels. In the study, we examined the quality of fuel, which was in a form of briquette, made of beech shavings with 10 and 25% of post-exploitation waste obtained during the process of coffee infusion. This waste, if fresh, is distinguished by its high hydration. However, after drying it may constitute a valuable additive to alternative fuels. It increases the calorific value of fuel and reduces briquettes’ hardness what contributes to reducing resistance of conveying screw in stoves.

  19. Process for the recycling of alkaline and zinc-carbon spent batteries

    Science.gov (United States)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  20. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  1. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  2. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.

    Science.gov (United States)

    Yamane, Luciana Harue; de Moraes, Viviane Tavares; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-12-01

    This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.

  3. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead.

    Science.gov (United States)

    Sun, Zhi; Cao, Hongbin; Zhang, Xihua; Lin, Xiao; Zheng, Wenwen; Cao, Guoqing; Sun, Yong; Zhang, Yi

    2017-06-01

    Lead is classified to be one of the top heavy metal pollutants in China. The corresponding environmental issues especially during the management of spent lead-acid battery have already caused significant public awareness and concern. This research gives a brief overview on the recycling situation based on an investigation of the lead industry in China and also the development of technologies for spent lead-acid batteries. The main principles and research focuses of different technologies including pyrometallurgy, hydrometallurgy and greener technologies are summarized and compared. Subsequently, the circulability of lead based on the entire life cycle analyses of lead-acid battery is calculated. By considering different recycling schemes, the recycling situation of spent lead-acid battery in China can be understood semi-quantitatively. According to this research, 30% of the primary lead production can be shut down that the lead production can still ensure consecutive life cycle operation of lead-acid battery, if proper management of the spent lead-acid battery is implemented according to current lead industry situation in China. This research provides a methodology on the view of lead circulability in the whole life cycle of a specific product and is aiming to contribute more quantitative guidelines for efficient organization of lead industry in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk [Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Sookyung [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Donghyo, E-mail: ydh@kigam.re.kr [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo [Urban Mine Department, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon (Korea, Republic of); Kwon, Kyungjung, E-mail: kfromberk@gmail.com [Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2016-08-05

    Highlights: • Ammoniacal leaching is used to recover spent Li-ion battery cathode materials. • Leaching agents consist of ammonia, ammonium sulfite and ammonium carbonate. • Ammonium sulfite is a reductant and ammonium carbonate acts as pH buffer. • Co and Cu can be fully leached while Mn and Al are not leached. • Co recovery via ammoniacal leaching is economical compared to acid leaching. - Abstract: As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn{sub 2}O{sub 4}, LiCo{sub x}Mn{sub y}Ni{sub z}O{sub 2,} Al{sub 2}O{sub 3} and C while the leach residue is composed of LiNi{sub x}Mn{sub y}Co{sub z}O{sub 2}, LiMn{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MnCO{sub 3} and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al.

  5. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn(4+) into Mn(2+) into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution.

  6. Recycling of valuable metals from spent zinc-manganese batteries by vacuum metallurgy

    Institute of Scientific and Technical Information of China (English)

    陈为亮; 柴立元; 闵小波; 彭兵; 张传福; 戴永年

    2003-01-01

    At the total chamber pressure of 1.01×101 Pa, Hg, Cd and Zn were distilled at 773-973 K from spent zinc-manganese batteries, Pb was volatilized at 1 173-1 273 K while Mn, Cu, Fe and C were remained in the residual. MnO2 and ZnO were reduced by carbon in spent dry-batteries at 773-1 273 K. Pure metals including Zn, Cd, Hg and Pb were recovered respectively from their mixed vapor by fractional condensation.

  7. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.

    Science.gov (United States)

    Atabani, A E; Mercimek, S M; Arvindnarayan, Sundaram; Shobana, Sutha; Kumar, Gopalakrishnan; Cadir, Mehmet; Al-Muhatseb, Ala'a H

    2017-08-22

    In this study, recycling of spent coffee grounds (SCG) as a potential feedstock for alternative fuels production and compounds of added value in Turkey was assessed. The average oil content was found (≈ 13% w/w). All samples (before and after extraction) were tested for SEM, DSC, TGA, XRD, calorific value, surface analysis and porosity, FT-IR and elemental analysis to assess their potential towards fuel properties. Elemental analysis indicated that carbon represents the highest percentage (49.59% and 46.42% respectively), followed by Nitrogen (16.7% and 15.5%), Hydrogen (6.74% and 6.04%) and Sulfur (0.851% and 0.561%). These results indicate that SCG can be utilized as compost as it is rich in nitrogen. Properties of the extracted oil were examined, followed by biodiesel production. The quality of biodiesel was compared with ASTM D6751 standards and all the properties complied with standard specifications. The fatty acid compositions were analyzed by Gas chromatography. It is observed that coffee waste methyl ester (CWME) is mainly comprised of palmitic (35.8%) and arachidic (44.6%) acids which are saturated fatty acids. The low degree of unsaturation provides an excellent oxidation stability (10.4 h). CWME has also excellent cetane number, higher heating value and iodine value with poor cold flow properties. The studies also investigated blending of biodiesel with euro diesel and butanol. Following this, a remarkable improvement in cloud and pour points of biodiesel was obtained. Spent coffee grounds after oil extraction is an ideal material for garden fertilizer, feedstock for ethanol, biogas production and as fuel pellets. The outcome of such research work produces valuable insights on the recycling importance of SCG in Turkey. Implication Coffee is a huge industry that has been widely used due to its refreshing properties. This industry generates large quantities of waste. Therefore, recycling of spent coffee grounds for producing alternative fuels and

  8. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    Science.gov (United States)

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium.

  9. Wastes associated with recycling spent MOX fuel into fast reactor oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foare, G.; Meze, F. [AREVA EP, SGN - 1, rue des Herons, 18182 Montigny-le-Bretonneux (France); McGee, D.; Murray, P.; Bader, S. [AREVA Federal Services LLC - 7207 IBM Drive, Charlotte, NC 28262 (United States)

    2013-07-01

    A study sponsored by the DOE has been performed by AREVA to estimate the process and secondary wastes produced from an 800 MTIHM/yr (initial metric tons heavy metal a year) recycling plant proposed to be built in the U.S. utilizing the COEX process and utilized some DOE defined assumptions and constraints. In this paper, this plant has been analyzed for a recycling campaign that included 89% UO{sub x} and 11% MOX UNF to estimate process and secondary waste quantities produced while manufacturing 28 MTIHM/yr of SFR fuel. AREVA utilized operational data from its backend facilities in France (La Hague and MELOX), and from recent advances in waste treatment technology to estimate the waste quantities. A table lists the volumes and types of the different final wastes for a recycling plant. For instance concerning general fission products the form of the final wastes is vitrified glass and its volume generation rate is 135 l/MTHM, concerning Iodine 129 waste its final form is synthetic rock and its volume generation rate is 0.625 l/MTIHM.

  10. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Van Caneghem, Jo; Vandecasteele, Carlo

    2015-11-01

    Spent adsorbents for oxyanion forming elements and heavy metals are classified as hazardous materials and they are typically treated by stabilization/solidification before landfilling. The use of lime or cement for stabilization/solidification entails a high environmental impact and landfilling costs are high. This paper shows that mixing spent adsorbents in the raw material for the production of ceramic materials is a valuable alternative to stabilize oxyanion forming elements and heavy metals. The produced ceramics can be used as construction material, avoiding the high economic and environmental impact of stabilization/solidification followed by landfilling. To study the stabilization of oxyanion forming elements and heavy metals during the production process, two series of experiments were performed. In the first series of experiments, the main pollutant, Mo was adsorbed onto iron-based adsorbents, which were then mixed with industrial sludge (3 w/w%) and heated at 1100°C for 30 min. Mo was chosen, as this element is easily adsorbed onto iron-based adsorbents and it is the element that is the most difficult to stabilize (i.e. the highest temperatures need to be reached before the concentrations in the leachate are reduced). Leaching concentration from the 97/3 sludge/adsorbent mixture before heating ranged between 85 and 154 mg/kg; after the heating process they were reduced to 0.42-1.48 mg/kg. Mo was actually stabilized, as the total Mo concentration after addition was not affected by the heat treatment. In the second series of experiments, the sludge was spiked with other heavy metals and oxyanion forming elements (Cr, Ni, Cu, Zn, As, Cd and Pb) in concentrations 5 times higher than the initial concentrations; after heat treatment the leachate concentrations were below the regulatory limit values. The incorporation of spent adsorbents in ceramic materials is a valuable and sustainable alternative to the existing treatment methods, saving raw materials in the

  11. Recycling of a spent iron based catalyst for the complete oxidation of toluene: effect of palladium.

    Science.gov (United States)

    Kim, Sang Chai; Nah, Jae Woon

    2015-01-01

    Complete oxidation of volatile organic compound (toluene) was carried out to assess the property and activity of the palladium-spent iron based catalyst. The properties of the prepared catalysts were characterized by using the Brunauer-Emmett-Teller method and by conducting temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy and field emission transmission electron microscopy. The addition of palladium to the spent iron based catalyst pretreated with oxalic acid shifted the conversion curve for the total oxidation of toluene to lower temperature. An increase in the toluene conversion due to palladium was highly related to the easier lattice oxygen mobility of the catalysts. Instrumental analysis suggested the presence of a strong interaction between palladium and iron oxide species. Moreover, in the case of reducing the Pd/Fe catalyst with hydrogen, palladium accelerated the reducing iron oxides, subsequently decreasing the toluene conversion. As a result, the oxidation states of palladium and iron had an important effect on the catalytic activity.

  12. A Study on Recycling of Spent Mushroom Substrate to Prepare Chars and Activated Carbon

    Directory of Open Access Journals (Sweden)

    Yuhui Ma

    2014-05-01

    Full Text Available Chars were obtained from spent mushroom substrate (SMS via pyrolysis. It was found that as the pyrolysis temperature increased from 400 to 700 °C, the char yield decreased from 45.10 to 33.79 wt.% and the higher heating value increased from 17.32 to 22.72 MJ/kg. The largest BET surface area (13 m2/g was created at 500 °C. Hydrogen atoms were continuously lost during pyrolysis, whereas oxygen atoms were difficult to eliminate. Whewellite, calcite, lime, and quartz were the minerals in the chars, and their forms and crystallinity changed with changing pyrolysis temperature. Activated carbon with a BET surface area of 1023 m2/g and a total pore volume of 0.595 cm3/g was obtained from the char prepared at 500 °C. Its characteristics were studied by N2-adsorption, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The pyrolysis and KOH-activation processes were investigated by thermogravimetric analysis (TGA. The results showed that the pyrolysis of SMS occurred primarily between 217 and 375 °C and that the energies needed for the pyrolysis reactions were relatively low due to the prior mushroom cultivation. Furthermore, lignin was incompletely decomposed in the char prepared at 500 °C, and KOH suppressed tar evolution and reduced the energy needed to decompose the residual lignin during activation.

  13. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling.

    Science.gov (United States)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong; Tian, Qinghua; Sun, Hongyu

    2017-08-01

    A novel process of lithium recovery as lithium ion sieve from the effluent obtained in the process of spent lithium-ion batteries recycling is developed. Through a two-stage precipitation process using Na2CO3 and Na3PO4 as precipitants, lithium is recovered as raw Li2CO3 and pure Li3PO4, respectively. Under the best reaction condition (both the amounts of Na2CO3 and Li3PO4vs. the theoretical ones are about 1.1), the corresponding recovery rates of lithium (calculated based on the concentration of the previous stage) are 74.72% and 92.21%, respectively. The raw Li2CO3 containing the impurity of Na2CO3 is used to prepare LiMn2O4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na2CO3 in raw Li2CO3 is controlled less than 10%, the Mn corrosion percentage of LiMn2O4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g(-1). The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li2CO3 in the field of lithium ion sieve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Experiment on the improvement of sinterability for dry recycling nuclear fuel pellets by using simulated spent PWR fuel of high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Ki; Kim, S. S.; Park, G. I.; Lee, Jae W.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Lee, J. W.; Yang, M. S.; Shin, W. C

    2004-09-01

    To study the fabrication characteristics of dry recycling nuclear fuel using spent PWR fuel with high burnup of 60,000 MWd/tU, the fission products of spent PWR fuel was analyzed by ORIGEN-2 code. Simulated spent PWR fuel pellets were fabricated by using UO{sub 2} powder added by the simulated fission products. The simulated dry-recycling-fuel pellets were fabricated by dry recycling fuel fabrication flow including 3 cycle treated OREOX(Oxidation and REduction of OXide fuel) process. A small amount of dopant such as TiO{sub 2}, Nb{sub 2}O{sub 5}, Li{sub 2}O are added to increase sinterability of the OREOX treated powder. As the results of experiments, the densities of sintered pellets without dopant ranged from 10.04 to 10.34 g/cm{sup 3}(94.3 to 97.1% of T.D.), the grain size of the pellets ranged from 3 to 4 {mu}m. The sintered density of the pellets with TiO{sub 2} or Nb{sub 2}O{sub 5} ranged from 10.46 to 10.32 g/cm{sup 3}(98.2 to 96.9 % of T.D.) The grain size of the pellets with TiO{sub 2}, Nb{sub 2}O{sub 5} or Li{sub 2}O ranged from 7.3 to 12.2 {mu}m.

  15. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries.

    Science.gov (United States)

    Moura, M N; Barrada, R V; Almeida, J R; Moreira, T F M; Schettino, M A; Freitas, J C C; Ferreira, S A D; Lelis, M F F; Freitas, M B J G

    2017-09-01

    In this study, cobalt (Co) was recycled from spent lithium ion batteries (LIBs) and used to synthesize cobalt ferrite (CoFe2O4-LIBs), which was applied as a catalyst for heterogeneous photo Fenton reactions that discolored methylene blue (MB) dye. The co-precipitation method was used to synthesize CoFe2O4-LIBs and CoFe2O4-R nanoparticles with spinel structures using as raw materials of the LIB cathodes and commercial reagents. X-ray diffraction (XRD) identified the formation of spinel-type CoFe2O4, which formed clusters that could be seen under scanning electron microscopy (SEM) analysis and nanometric particles seen under transmission electron microscopy (TEM). Inductively Coupled Plasma Optical Emission Spectrometer (ICP OES) analysis was used to determine the concentrations of metals present in the ferrite, which reached 6.5% (w/w) of Co. The optimal conditions for discoloring the dye were evaluated using a factorial design. Using CoFe2O4 as a catalyst, the best conditions for catalytic reaction were pH 3, 30.0 mg of catalyst, and 8.0 mL of H2O2 73% (v/v). Discoloration efficiencies of 87.3% and 87.7% were obtained from CoFe2O4-R and CoFe2O4-LIBs, respectively. Therefore, CoFe2O4-LIBs proved to be an efficient catalyst for discoloring MB dye using heterogeneous photo-Fenton reactions. This work is of scientific, social, economic, and environmental interest. It investigates the process of synthesizing,characterizing CoFe2O4LIBs and the efficiency of degrading MB dye, subjects that have economic and environmental, and therefore, social interest. The work has scientific interest particularly because of the correlation between the structure of the recycled material and its catalytic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Studies of stainless steel exposed to sandblasting

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP, positron annihilation spectroscopy (PAS, scanning electron microscopy (SEM, and atomic force microscopy (AFM. Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandblasting during 30 s leads only to the reduction of positron diffusion length to about 60 nm for all samples. Positron lifetimes close to 170 ps measured using positrons emitted directly from the source point to the presence of vacancies on the dislocation lines. SEM and AFM images show that surface roughness depends rather on pressure of sandblasting than time of exposition.

  17. Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, T.F.M.; Santana, I.L.; Moura, M.N.; Ferreira, S.A.D.; Lelis, M.F.F.; Freitas, M.B.J.G., E-mail: marcosbj@hotmail.com

    2017-07-01

    In this study, negative electrodes from spent Ni-Cd batteries were recycled as CdCO{sub 3}, which was thermally treated to produce synthetized, nanostructured CdO. There is interest in CdO because of its energy band gap, high electrical conductivity and selective catalytic properties. CdO was characterized in this study by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The XRD pattern showed CdO peaks in a crystalline cubic phase, and the average crystallite diameter was 22.21 nm. TEM micrographs showed the formation of clusters containing nanostructures. We also tested the efficiency of CdO catalytic activity in degrading Reactive Black 5 (RB5) dye. Degradation was conducted in conditions of pH = 4.0, pH = 5.97 and pH = 8.0. The degradation efficiency was, respectively, 65.42%, 61.80% and 67.01% after 480 min of reaction. The determining step in the reaction mechanism for dye degradation was the formation of the radical ion OH·. Therefore, the degradation exhibited a first-order reaction. The catalytic activity of CdO and the rate constant values were independent of the pH of the solution. This work presents potential solutions for two environmental problems: recycling Cd and dye degradation. - Graphical abstract: Recycling of spent Ni-Cd batteries as CdO nanoparticles. - Highlights: • This work presents solutions for Cd recycling and dye degradation. • Anodes of Ni-Cd batteries were recycled as CdO with nanometer-sized particles. • CdO presents catalytic activity in the degradation of reactive black dye. • Decoloration of reactive black dye exhibits first-order reaction. • The rate constant values are independent of the pH solution.

  18. An investigation of zincite from spent anodic portions of alkaline batteries: An industrial mineral approach for evaluating stock material for recycling potential

    Science.gov (United States)

    Barrett, Heather A.; Borkiewicz, Olaf; Krekeler, Mark P. S.

    The mineralogy of anodic portions of spent alkaline batteries from a leading brand (Duracell) that had been equilibrated in ambient air for approximately 4 months was investigated to determine if material generated from this low energy process may be suitable stock material for recycling. Powder X-ray diffraction (XRD) identified the bulk of the ambient air oxidized anodic material as zincite (ZnO). Scanning electron microscopy investigation indicates a variety of textures of zincite are present with euhedral hexagonal prisms being the most common crystal form. Energy dispersive spectroscopy (EDS) analysis indicates that there are no minor amounts of Mn within the zincite. Transmission electron microscopy investigation indicates a variety of textures exist in the zinc oxide. Impurities in the batteries. A promising applications of zincite are numerous, including the development of new solar cell materials. The spent alkaline battery waste stream may serve as promising resource for driving further development of this sector of the economy.

  19. An epidemic of silicosis among former denim sandblasters

    National Research Council Canada - National Science Library

    Akgun, M; Araz, O; Akkurt, I; Eroglu, A; Alper, F; Saglam, L; Mirici, A; Gorguner, M; Nemery, B

    2008-01-01

    ...s: Denim, jean, sandblasting, silicosis, textile industry, Turkey Received: July 24, 2007 Accepted June 9, 2008 Sandblasting denim using silica has emerged as a new cause of silicosis in Turkey...

  20. Incineration and its heat utilization for sludge and spent grains recycling. Beer kasu dassui odei shokyakunetsu no yuko riyo

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T. (Asahi Breweries, Ltd., Tokyo (Japan))

    1993-06-01

    This paper introduces a case of effectively utilizing dehydrated sludge and spent grains as a boiler fuel, and industrial wastes from breweries to reduce the amount of wastes. These wastes show as high water content as 80% to 83%, but dried wastes are constituted of hydrocarbon, excepting ash. Especially beer spent grains have a calorific power of close to 5000 kcal/kg. The key point is how to blow off water efficiently (existence of a dehydration and drying process accompanies such advantages and disadvantages as facility simplification, necessity of auxiliary fuels, and generation of high-BOD water associated with beer lees dehydration). As a result of discussions and tests, a fluidized bed boiler (with a pressure of 14 kg/cm[sup 2] at a flow rate of 8.1 t/h) was adopted. Wastes to be burned dry up before they reach the floor of a fluidized furnace and are burned on the floor, and any unburned components are burned completely in a secondary combustion chamber. The boiler has been operating smoothly since the operation has started in 1989. An integrating comparison of various costs has resulted in annual economy of 81 million yen. 7 figs., 5 tabs.

  1. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.

    Science.gov (United States)

    Choe, Jong Kwon; Bergquist, Allison M; Jeong, Sangjo; Guest, Jeremy S; Werth, Charles J; Strathmann, Timothy J

    2015-09-01

    Salt used to make brines for regeneration of ion exchange (IX) resins is the dominant economic and environmental liability of IX treatment systems for nitrate-contaminated drinking water sources. To reduce salt usage, the applicability and environmental benefits of using a catalytic reduction technology to treat nitrate in spent IX brines and enable their reuse for IX resin regeneration were evaluated. Hybrid IX/catalyst systems were designed and life cycle assessment of process consumables are used to set performance targets for the catalyst reactor. Nitrate reduction was measured in a typical spent brine (i.e., 5000 mg/L NO3(-) and 70,000 mg/L NaCl) using bimetallic Pd-In hydrogenation catalysts with variable Pd (0.2-2.5 wt%) and In (0.0125-0.25 wt%) loadings on pelletized activated carbon support (Pd-In/C). The highest activity of 50 mgNO3(-)/(min - g(Pd)) was obtained with a 0.5 wt%Pd-0.1 wt%In/C catalyst. Catalyst longevity was demonstrated by observing no decrease in catalyst activity over more than 60 days in a packed-bed reactor. Based on catalyst activity measured in batch and packed-bed reactors, environmental impacts of hybrid IX/catalyst systems were evaluated for both sequencing-batch and continuous-flow packed-bed reactor designs and environmental impacts of the sequencing-batch hybrid system were found to be 38-81% of those of conventional IX. Major environmental impact contributors other than salt consumption include Pd metal, hydrogen (electron donor), and carbon dioxide (pH buffer). Sensitivity of environmental impacts of the sequencing-batch hybrid reactor system to sulfate and bicarbonate anions indicate the hybrid system is more sustainable than conventional IX when influent water contains catalyst reactor systems have potential to reduce resource consumption and improve environmental impacts associated with treating nitrate-contaminated water sources.

  2. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li2CO3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H2SO4, and the cathode material LiNi1/3Co1/3Mn1/3O2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi1/3Co1/3Mn1/3O2 is miro spherical morphology without any impurities, which can meet with LiNi1/3Co1/3Mn1/3O2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    Science.gov (United States)

    Mandal, D.

    2013-09-01

    In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3

  4. Various Effects of Sandblasting of Dental Restorative Materials.

    Directory of Open Access Journals (Sweden)

    Goro Nishigawa

    Full Text Available Sandblasting particles which remain on the surfaces of dental restorations are removed prior to cementation. It is probable that adhesive strength between luting material and sandblasting particle remnants might exceed that with restorative material. If that being the case, blasting particles adhere to sandblasted material surface could be instrumental to increasing adhesive strength like underlying bonding mechanism between luting material and silanized particles of tribochemical silica coating-treated surface. We hypothesize that ultrasonic cleaning of bonding surfaces, which were pretreated with sandblasting, may affect adhesive strength of a resin luting material to dental restorative materials.We therefore observed adhesive strength of resin luting material to aluminum oxide was greater than those to zirconia ceramic and cobalt-chromium alloy beforehand. To measure the shear bond strengths of resin luting material to zirconia ceramic and cobalt-chromium alloy, forty specimens of each restorative material were prepared. Bonding surfaces were polished with silicon abrasive paper and then treated with sandblasting. For each restorative material, 40 sandblasted specimens were equally divided into two groups: ultrasonic cleaning (USC group and non-ultrasonic cleaning (NUSC group. After resin luting material was polymerized on bonding surface, shear test was performed to evaluate effect of ultrasonic cleaning of bonding surfaces pretreated with sandblasting on bond strength.For both zirconia ceramic and cobalt-chromium alloy, NUSC group showed significantly higher shear bond strength than USC group.Ultrasonic cleaning of dental restorations after sandblasting should be avoided to retain improved bonding between these materials.

  5. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel; Evaluacion de los costos del reciclado como una forma de disposicion del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2006-07-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  6. Ductility of copper films on sandblasting polyimide substrates

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Different surface morphologies of polyimide(PI)foils widely applied in flexible electronics were obtained using the technique of sandblasting.Copper(Cu)films were subsequently deposited on the treated surface of PI substrates.Upon tensile loading, the critical strain,crack density and count of cracks were measured to examine the ductility of Cu films on PI substrates.Obtained results show that after sandblasting treatment,the critical strain of Cu film decreases from 8.0%to 6.9%and,in comparison with the case without sandblasting,its surface crack density decreases remarkably,with no saturation of the crack density.The reduced crack density is attributed to the increase of contact area and interfacial adhesion after sandblasting,and whether the crack density is saturated or not is dependent upon the morphology of the cracks formed as a function of tensile strain.

  7. Levi Strauss and H&M Announce Ban on Sandblasting

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a commitment to the health and safety of workers across the apparel industry, Levi Strauss & Co. and Hennes & Mauritz AB (H&M) announced plans to implement a global ban on sandblasting in all of their future product

  8. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  9. Recycling of LiCo0.59Mn0.26Ni0.15O2 cathodic material from spent Li-ion batteries by the method of the citrate gel combustion

    Directory of Open Access Journals (Sweden)

    Senćanski Jelena V.

    2017-01-01

    Full Text Available The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co–Mn–NiO2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700°C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure α-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0

  10. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.

    Science.gov (United States)

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-01-25

    The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs.

  11. Silicosis Caused by Denim Sandblasting: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Dilaver Tas

    2007-10-01

    Full Text Available Summary Silicosis which develops as a results of environmental and occupational silica inhalation is well-known. Although the disease is preventable, it continues to be a problem in our country and other developing countries. Causing silicosis, sandblasting has been a striking occupation last years. We presents two cases who develop silicosis because they worked as sandblasters. Case 1 and 2: Both cases had worked at a denim factory in Istanbul. Case one had worked for 8 months and case two had worked for 2 years and ten months. Chest X ray and thorax high resolution computerized tomography (HRCT revealed that there are bilateral reticulonodular and nodular opacities at the pulmonary paranchima. Silicosis was diagnosed by examining of open lung biopsy (case one and transbronchial biopsy (case two. Because of changes in fashion, denim sandblasting has been occured as an occupation recently years. Workplaces sandblasting denim should be controlled. Even public should be informed of silicosis via media. Thus the disease’s incidence would decrease. [TAF Prev Med Bull 2007; 6(5.000: 395-399

  12. Silicosis Caused by Denim Sandblasting: Two Case Reports

    Directory of Open Access Journals (Sweden)

    Dilaver Tas

    2007-10-01

    Full Text Available Summary Silicosis which develops as a results of environmental and occupational silica inhalation is well-known. Although the disease is preventable, it continues to be a problem in our country and other developing countries. Causing silicosis, sandblasting has been a striking occupation last years. We presents two cases who develop silicosis because they worked as sandblasters. Case 1 and 2: Both cases had worked at a denim factory in Istanbul. Case one had worked for 8 months and case two had worked for 2 years and ten months. Chest X ray and thorax high resolution computerized tomography (HRCT revealed that there are bilateral reticulonodular and nodular opacities at the pulmonary paranchima. Silicosis was diagnosed by examining of open lung biopsy (case one and transbronchial biopsy (case two. Because of changes in fashion, denim sandblasting has been occured as an occupation recently years. Workplaces sandblasting denim should be controlled. Even public should be informed of silicosis via media. Thus the disease’s incidence would decrease. [TAF Prev Med Bull. 2007; 6(5: 395-399

  13. The field enhancement factor of sand-blasted electrodes

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Vibholm (fratrådt), Svend

    1992-01-01

    A sample of six sand-blasted electrodes has been subjected to both mechanical and electrical investigations. When the surfaces of a series of conductors are mechanically treated, the resultant microscopic surface geometries will be similar, but not identical. As a consequence of this spread in th...... enhancement factor m for a particular surface treatment. For the sample studied, the mean electric field enhancement factor was found to be 6.6. The mechanical surface parameters indicated a sand aging effect...

  14. Spent Fuel Characteristics Analyses for Thorium-Uranium Breeding Recycle in PWRs%压水堆内钍-铀增殖循环研究——乏燃料特性分析

    Institute of Scientific and Technical Information of China (English)

    毕光文; 司胜义; 张海俊

    2012-01-01

    利用ORIGEN-S程序对压水堆钍基乏燃料的特性进行分析,揭示了钍基乏燃料在放射性毒性、衰变热、γ射线等方面的特性,相关结果可为钍基乏燃料的贮存、后处理和地质处置提供必要的参考.研究的乏燃料是压水堆内钍-铀增殖循环堆芯设计方案中的4种,包括UOX(铀氧化物)、MOX(钚铀混合氧化物)、PuThOX(钚钍混合氧化物)和U3ThOX(工业级233 U-钍混合氧化物).研究结果表明:1)由于超铀核素的含量极低,在卸料后1000年内,U3ThOX的放射性毒性显著低于超铀核素含量高的乏燃料;2)由于232U衰变链中208T1的贡献,钍基乏燃料中2.6 MeV能量附近的γ射线强度明显高于铀基乏燃料,而这一能量附近的γ射线强度在卸料后约10年达到局部峰值,所以,钍基乏燃料的后处理最好避开此时间.%Spent fuel characteristics analyses of thorium-based fuel were investigated using ORIGEN-S code compared with uranium-based fuel. Such parameters as radioactivity, radiotoxicity, decay heat, and gamma ray were considered. Relative results in this work could provide some reference informations for storage, reprocessing and disposal of thorium-based spent fuel. Four type fuels, thorium-based fuel U3ThOX (mixed reactor grade 233U-thorium oxide), PuThOX (mixed reactor grade plutonium-thorium oxide) , uranium-based fuel UOX (uranium oxide) and MOX (mixed reactor grade plu-tonium-uranium oxide) , on the basis of core designs for thorium-uranium breeding recycle in PWRs were investigated. The calculated results show that: 1) Due to extremely low content of transuranic nuclides, the radiotoxicity of U3ThOX is dramatically lower than that of three other types of spent fuel in 1 000 years after discharge; 2) In thorium-based spent fuel the intensity of gamma ray near 2. 6 MeV mainly generated by 208Tl in 232 U decay chain is much stronger than that in uranium-based fuel. The intensity of y ray near 2. 6 MeV reaches a local peak in

  15. CT findings in silicosis due to denim sandblasting

    Energy Technology Data Exchange (ETDEWEB)

    Alper, Fatih [Atatuerk University, Department of Radiology, School of Medicine, Erzurum (Turkey); Atatuerk Ueniversitesi, Erzurum (Turkey); Akgun, Metin; Araz, Omer [Atatuerk University, Department of Chest Diseases, School of Medicine, Erzurum (Turkey); Onbas, Omer [Atatuerk University, Department of Radiology, School of Medicine, Erzurum (Turkey)

    2008-12-15

    The purpose of this study was to describe the findings of CT performed on denim sandblasters with silicosis. Fifty consecutive male patients with silicosis were evaluated. Their clinical data and pulmonary function tests (PFT) were obtained. The CT findings were recorded and the correlations between CT nodular profusion score and the other parameters were assessed. The diagnoses of the patients were classified as accelerated silicosis (n = 43) and acute silicosis (n = 7). The most common CT finding was centrilobular nodules. Twenty-three patients had complicated silicosis based on pleural involvement and presence of progressive massive fibrosis (PMF). Lymphadenopathy (LAP) was positive in 50% of the patients, with calcification in 24%. The CT grade was highly correlated with the clinical data such as exposure duration and PFT. Our findings suggest that the clinical manifestation of silicosis in denim sandblasters is severe. Although the duration of exposure is shorter the rate of complicated silicosis patients with pleural involvement was unexpectedly higher in the cases. Because the most common radiological appearance was nodules and the CT grading of the nodules was highly correlated with the clinical data, nodule grading may be used in the management of such cases. (orig.)

  16. Sandblasting may damage the surface of composite CAD-CAM blocks.

    Science.gov (United States)

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2017-03-01

    CAD-CAM blocks to fabricate semi-direct and indirect restorations are available in different sorts of ceramics as well as composite. In order to bond restorations prepared out of composite blocks into tooth cavities, it is recommended to gently sandblast the surface prior to the application of a primer/adhesive. Today, the effect of sandblasting composite block surfaces has not thoroughly been investigated. In this study, the ultra-structure of composite CAD-CAM blocks was investigated with special attention to the effect of sandblasting on the surface topography and of silanization on the bonding performance. Five different composite CAD-CAM blocks were involved. We correlatively investigated their structural and chemical composition using X-ray diffraction (XRD), energy dispersion spectroscopy (EDS), scanning electron microscopy (SEM) and (scanning) transmission electron microscopy ((S)TEM). The effect of sandblasting was also imaged in cross-section and at the interface with composite cement. Finally, we measured the shear bond strength to the sandblasted block surface with and without silanization. All composite blocks revealed a different ultra-structure. Sandblasting increased surface roughness and resulted in an irregular surface with some filler exposure. Sandblasting also damaged the surface. When the sandblasted composite blocks were silanized, superior bonding receptiveness in terms of higher bond strength was achieved except for Shofu Block HC. Sandblasting followed by silanization improved the bond strength to composite CAD-CAM blocks. However, sandblasting may also damage the composite CAD-CAM block surface. For the composite CAD-CAM block Shofu Block HC, the damage was so severe that silanization did not improve bond strength. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. 采用P507(HEH/EHP)从废FCC催化剂中回收稀土%Recycling rare earth from spent FCC catalyst using P507 (HEH/EHP) as extractant

    Institute of Scientific and Technical Information of China (English)

    何捍卫; 孟佳

    2011-01-01

    treatment of spent FCC catalyst can be solved. Meanwhile, the techniques reduces pollution of the environment, and rare earth from spent FCC catalyst is also recycled.

  18. Spent Pot Lining Characterization Framework

    Science.gov (United States)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-09-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  19. Spent Pot Lining Characterization Framework

    Science.gov (United States)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-06-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  20. A new insight of recycling of spent Zn-Mn alkaline batteries: Synthesis of Zn{sub x}Mn{sub 1−x}O nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiao, E-mail: qujiao@bhu.edu.cn [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Feng, Yue; Zhang, Qian [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Cong, Qiao [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China); Luo, Chunqiu [School of Chemistry and Chemical Engineering, Bohai University, Jinzhou, Liaoning 121013 (China); Yuan, Xing [School of Urban and Environmental Sciences, Northeast Normal University, Changchun, Jilin 130024 (China)

    2015-02-15

    Highlights: • Zn{sub 0.5}Mn{sub 0.5}O nanoparticles synthesized using SABs were cylinder with 60 nm diameter. • Adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles were achieved in 40 min. • Decomposition yields of BPA were increased with light irradiation and Zn{sub x}Mn{sub 1−x}O nanoparticles. • The findings have positive effects on solving the recycling of SABs. - Abstract: This work focuses on the synthesis of Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles using Zn-Mn spent alkaline batteries (SABs) as raw materials and their applications for photocatalytic degradation of bisphenol A in water. Zn-Mn SABs were manually dismantled into scrap (including plastics, copper cap, zinc crust, and carbon rod) and powder. The mashed zinc crust and pretreated powder were successively added into H{sub 2}SO{sub 4} and NH{sub 3}⋅H{sub 2}O, and the formed precipitates were characterized. The yield (wt) of synthesis of Zn{sub 0.5}Mn{sub 0.5}O (ZnMnO{sub 3}) nanoparticles was 57.1%. The synthesized Zn{sub 0.5}Mn{sub 0.5}O nanoparticles were cylinder, with a length of 60 nm. Afterwards, the removal efficiencies of bisphenol A (BPA) under solar light irradiation with the recovered Zn{sub x}Mn{sub 1−x}O nanoparticles were investigated: (1) the adsorption equilibrium of BPA on Zn{sub x}Mn{sub 1−x}O nanoparticles could be achieved after approximate 40 min. The saturation absorbance of BPA was about 32.40 ± 4.76 mg g{sup −1}, 20.40 ± 3.60 mg g{sup −1}, and 14.50 ± 4.55 mg g{sup −1} by Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles, respectively; (2) compared with the 21.7 ± 1.6% degradation of BPA (only solar light irradiation for 180 min), the combination of solar light irradiation and Zn{sub 0.1}Mn{sub 0.9}O, Zn{sub 0.3}Mn{sub 0.7}O, and Zn{sub 0.5}Mn{sub 0.5}O nanoparticles could lead to 59.41 ± 4.32%, 83.43 ± 2.73%, and 71.22 ± 4

  1. Recycling Paper Recycling

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2014-02-01

    Full Text Available What do you do after a product has served its function and is no longer needed? Ideally, you recycle it. What do you do if people have neglected or forgotten so much of what has been learned in recent years about paper recycling? Well, one of the things that someone can do is to write a book. Very little of the contents of such a book may be new. But the book itself can be highly valuable, representing a lot of effort to select and organized material that will be helpful for the current and upcoming generations of papermaking technologists. This editorial describes a new book by Dr. Pratima Bajpai entitled Recycling and Deinking of Recovered Paper. Readers who deal with the recycling of paper will probably want to have a copy of it on a handy shelf.

  2. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    Directory of Open Access Journals (Sweden)

    An-Shen Siao

    2013-09-01

    Full Text Available Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively.

  3. Effect of Recycling Protocol on Mechanical Strength of Used Mini-Implants

    Directory of Open Access Journals (Sweden)

    Sérgio Estelita

    2014-01-01

    Full Text Available Purpose. This study evaluated the influence of recycling process on the torsional strength of mini-implants. Materials and Methods. Two hundred mini-implants were divided into 4 groups with 50 screws equally distributed in five diameters (1.3 to 1.7 mm: control group (CG: unused mini-implants, G1: mini-implants inserted in pig iliac bone and removed, G2: same protocol of group 1 followed by sonication for cleaning and autoclave sterilization, and G3: same insertion protocol of group 1 followed by sonication for cleaning before and after sandblasting (Al2O3-90 µ and autoclave sterilization. G2 and G3 mini-implants were weighed after recycling process to evaluate weight loss (W. All the screws were broken to determine the fracture torque (FT. The influence of recycling process on FT and W was evaluated by ANOVA, Mann-Whitney, and multiple linear regression analysis. Results. FT was not influenced by recycling protocols even when sandblasting was added. Sandblasting caused weight loss due to abrasive mechanical stripping of screw surface. Screw diameter was the only variable that affected FT. Conclusions. Torsional strengths of screws that underwent the recycling protocols were not changed. Thus, screw diameter choice can be a more critical step to avoid screw fracture than recycling decision.

  4. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  5. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    Science.gov (United States)

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting.

  6. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  7. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces.

    Science.gov (United States)

    Papadopoulos, T; Tsetsekou, A; Eliades, G

    1999-03-01

    Studies on the titanium porcelain interface have shown the presence of alumina, attributed mainly to the sandblasting procedure. In this study, an investigation of the effect of the sandblasting procedure on the microstructure and roughness of a cast commercially pure titanium surface was undertaken using three different particle size alumina powders. The analysis showed that in all cases alumina particles are embedded into the surface layer of titanium. The use of a large particle size alumina seems to be advantageous in reducing the weight of alumina remaining on the titanium surface and while increasing the surface roughness, thus promoting mechanical interlocking with porcelain.

  8. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  9. Sandblasting and tin-plating-surface treatments to improve bonding with resin cements.

    Science.gov (United States)

    McCaughey, A D

    1993-05-01

    The superior cementation strengths of the adhesive resin cements can now be used in the dental surgery for posts, crowns and bridges and for intra-oral repairs to fractured porcelain fused to metal crowns or bridges, thanks to the availability of miniature sandblasters and portable tin-platers. The author describes the techniques involved.

  10. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment.

    Science.gov (United States)

    Sato, Hideo; Yamada, Kiyotaka; Pezzotti, Giuseppe; Nawa, Masahiro; Ban, Seiji

    2008-05-01

    Two types of tetragonal zirconia polycrystals (TZP), a ceria-stabilized TZP/Al2O3 nanocomposite (CZA) and a conventional yttria-stabilized TZP (Y-TZP), were sandblasted with 70-microm alumina and 125-microm SiC powders, then partially annealed at 500-1200 degrees C for five minutes. Monoclinic ZrO2 content was determined by X-ray diffractometry and Raman spectroscopy. Biaxial flexure test was conducted on the specimens before and after the treatments. Monoclinic ZrO2 content and biaxial flexure strength increased after sandblasting, but decreased after heat treatment. However, in both cases, the strength of CZA was higher than that of Y-TZP. Raman spectroscopy showed that a compressive stress field was introduced on the sample surface after sandblasting. It was concluded that sandblasting induced tetragonal-to-monoclinic phase transformation and that the volume expansion associated with such a phase transformation gave rise to an increase in compressive stress on the surface of CZA. With the occurrence of such a strengthening mechanism in the microstructure, it was concluded that CZA was more susceptible to stress-induced transformation than Y-TZP.

  11. MDCT Findings of Denim-Sandblasting-Induced Silicosis: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Senturk Senem

    2010-04-01

    Full Text Available Abstract Background Denim sandblasting is as a novel cause of silicosis in Turkey, with reports of a recent increase in cases and fatal outcomes. We aimed to describe the radiological features of patients exposed to silica during denim sandblasting and define factors related to the development of silicosis. Methods Sixty consecutive men with a history of exposure to silica during denim sandblasting were recruited. All CT examinations were performed using a 64-row multi-detector CT (MDCT. The nodules were qualitatively and semi-quantitatively analyzed by grading nodular profusion (NP on CT images. Results Silicosis was diagnosed radiologically in 73.3% of patients (44 of 60. The latency period (the time between initial exposure and radiological imaging and duration of silica exposure was longer in patients diagnosed with silicosis than in those without silicosis (p Conclusions The duration of exposure and the latency period are important for development of silicosis in denim sandblasters. MDCT is a useful tool in detecting findings of silicosis in workers who has silica exposure.

  12. Sandblasting Effect on Flexural Strength and Fracture Resistance of Two Zirconia with Two Cross Sectional Areas

    Directory of Open Access Journals (Sweden)

    Juan Norberto Calvo Ramírez

    2015-08-01

    Full Text Available Background: Yttrium stabilized zirconia a ceramic material currently considered as an “aesthetic” alternative in fixed partial denture. Clinical studies they have shown micro fractures in the area of the connectors, detachment or “chipping” ceramic coating and also the difficulties in fitting for her cementing. Objective: To establish the influence of sandblasting on flexural strength and fracture toughness of two Yttrium stabilized zirconia with two cross- sectional areas. Material and methods: Two materials were tested VITA Inceram YZ and IPS e.max ZirCAD, for each material was obtained 20 bars of 25mm in length, 2x2mm±0.02 width and height and 20 bars of 3x3mm±0.03 width and height. The samples were sintered; ten samples of each group were subjected to surface treatment with sandblasting. Each specimen was loaded to fracture in a Universal Testing Machine with a transverse head speed of 1±0.5mm/min. The data were analysed with the t student test. Results: The zirconia e.max ZirCAD has the highest flexural strength (1232.78 MPa and the load-bearing fracture (802.74N. Surface treatment VITA Inceram YZ had a higher flexural strength (906.85 MPa and supported a major load 565,55N. The test t student indicated statistically significant differences in the group IPS e.max ZirCAD when it is sandblasting, so much in the resistance to the flexion, since in the maximum load up to the fracture in both areas. There were no statistically significant differences between two ceramics, it having considered both cross-section areas and surface treatment (with and without sandblasting. Conclusions: Sandblasting, the values flexural strength and fracture toughness of the two ceramics in the two areas of cross section significantly decreasing.  

  13. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain.

    Science.gov (United States)

    He, Min; Zhang, Zutai; Zheng, Dongxiang; Ding, Ning; Liu, Yan

    2014-01-01

    This study aims to investigate the effect of sandblasting on the surface roughness of zirconia and the shear bond strength of the veneering porcelain. Pre-sintered zirconia plates were prepared and divided into four groups. Group A were not treated at all; group B were first sandblasted under 0.2 MPa pressure and then densely sintered; group C and D were sintered first, and then sandblasted under 0.2 MPa and 0.4 MPa pressures respectively. Surface roughness was measured and 3D roughness was reconstructed for the specimens, which were also analyzed with X-ray diffractometry. Finally after veneering porcelain sintering, shear bond tests were conducted. Sandblasting zirconia before sintering significantly increased surface roughness and the shear bond strength between zirconia and veneering porcelain (pzirconia before sintering is a useful method to increase surface roughness and could successfully improve the bonding strength of veneering porcelain.

  14. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study.

    Science.gov (United States)

    Li, D; Liu, B; Wu, J; Chen, J

    2001-01-01

    To study the influences of a modified sandblasted surface (developed by the authors) on the integrating status of titanium (Ti) dental implants and bone in vitro, a three-dimensional experimental model of implant material-osteoblast culture was used. The interaction of Ti discs and osteoblasts at the interface was followed with phase-contrast microscope examination and was further observed histologically and ultra-structurally after one-month culture. Results showed that there was no significant difference between the modified sandblasted surface group and the smooth surface group in the capacity of osteoblasts migrating and attaching to Ti discs. There was, however, a significant difference in the pattern of attachment. Around the polished surface, the migrating and attaching osteoblasts oriented themselves parallel to it; however, around the modified sandblasted surface, the osteoblasts were migrating and attaching perpendicularly. There was also a major difference in the shapes of cells lining the interface; spindle-shaped on the smooth surface versus round and ovoid with a large cellular body and abundant cytoplasm on the modified sandblasted surface. Moreover, transmission electron microscopy revealed an active secretion of collagen fibrils, a bone-matrix-vesicles-mediated mineralization process, and the formation of osteocytes in the modified sandblasted surface group. Therefore, at this in vitro level, it can be concluded that the modified sandblasting surface treatment of dental implants can facilitate bone healing at their osseous interface and enable the real perpendicularly connecting bone-fiber osseointegration to form instead of the capsule-like osseous adaptation.

  15. Acute silicosis in teflon-coated pan manufacturing due to metal sandblasting.

    Science.gov (United States)

    Köksal, Nurhan; Kahraman, Hasan

    2011-01-01

    Sandblasting is one of the occupational causes of silicosis. This report details three cases diagnosed as silicosis caused by sandblasting in Teflon-coated pan manufacturing: Case 1--A 24-year-old man admitted with dyspnea and cough; Case 2--An 18-year-old man admitted with shortness of breath and fever; and Case 3--A 25-year-old man admitted with dyspnea and weight loss. Chest examinations of the first and second cases revealed crackles in both lungs, but the third case was normal, no crackles. Chest x-rays showed bilateral reticulonodular densities and hilar enlargement in all cases. They were clinically and radiologically diagnosed as silicosis due to occupational exposure. All cases had worked in the sandblasting unit at a Teflon-coated pan manufacturing factory for one to three years. Silicosis is a preventable occupational lung disease, but no effective treatment is available for the disease yet. Improving workplace conditions is the most effective way to prevent silicosis.

  16. Shear bond strength between titanium alloys and composite resin: sandblasting versus fluoride-gel treatment.

    Science.gov (United States)

    Lim, Bum-Soon; Heo, Seok-Mo; Lee, Yong-Keun; Kim, Cheol-We

    2003-01-15

    The aim of this study was to investigate the effect of fluoride gel treatment on the bond strength between titanium alloys and composite resin, and the effect of NaF solution on the bond strength of titanium alloys. Five titanium alloys and one Co-Cr-Mo alloy were tested. Surface of the alloys were treated with three different methods; SiC polishing paper (No. 2000), sandblasting (50-microm Al2O3), and commercially available acidulated phosphate fluoride gel (F-=1.23%, pH 3.0). After treatment, surfaces of alloy were analyzed by SEM/EDXA. A cylindrical gelatin capsule was filled with a light-curable composite resin. The composite resin capsule was placed on the alloy surface after the application of bonding agent, and the composite resin was light cured for 30 s in four different directions. Shear bond strength was measured with the use of an Instron. Fluoride gel did not affect the surface properties of Co-Cr-Mo alloy and Ni-Ti alloy, but other titanium alloys were strongly affected. Alloys treated with the fluoride gel showed similar bond strengths to the alloys treated with sandblasting. Shear bond strength did not show a significant difference (ptitanium alloys. To enhance the bond strength of composite resin to titanium alloys, fluoride-gel treatment may be used as an alternative technique to the sandblasting treatment.

  17. Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution.

    Science.gov (United States)

    Burnat, Barbara; Walkowiak-Przybyło, Magdalena; Błaszczyk, Tadeusz; Klimek, Leszek

    2013-01-01

    In this work, we performed comparative studies of the effect of surface preparation of Ti6Al4V and Ti6Al7Nb biomedical alloys and the influence of endothelial cells on their corrosion behaviour in PBS (Phosphate Buffered Saline). Two different methods of surface modification were applied - polishing and sandblasting. The polished Ti6Al7Nb alloy was found to have the best resistance against general corrosion in PBS. It was characterized by the lowest corrosion rate, the widest passive range and the lowest reactivity. Both alloys prepared by sandblasting exhibited worse corrosion properties in comparison to the polished ones. This can be associated with a greater development of their surface and the presence of Al2O3 grains which caused an increase of corrosion potential but might also influence the weakening of the passive layer. Results of potentiodynamic anodic polarization indicated that more resistant to pitting corrosion was Ti6Al7Nb alloy regardless of the method of surface preparation. In those cases, anodic polarization caused only an increase of passive layer, while in the case of sandblasted Ti6Al4V alloy it caused a pitting corrosion. The results obtained allowed us to conclude that the niobium-titanium alloys had higher corrosion resistance than titanium alloys with vanadium. Moreover, it was stated that endothelial cells improved the corrosion resistance of all the titanium alloys examined.

  18. Sandblasting as a surface modification technique on titanium alloys for biomedical applications: abrasive particle behavior

    Science.gov (United States)

    Balza, J. C.; Zujur, D.; Gil, L.; Subero, R.; Dominguez, E.; Delvasto, P.; Alvarez, J.

    2013-06-01

    The present work shows the analysis of a sandblasting process using alumina abrasive particles on Ti-6Al-4V surfaces. The metallic samples were first characterized by optical microscopy (OM), revealing an α+β microstructure with a Widmanstätten morphology. Topography of the samples was assessed by scanning electron microscopy (SEM), before and after sandblasting. The Al2O3 particles used had a granulometric distribution between 420 and 850 μm, with a median particle size (d50) of 670 μm, which decreased to 420 μm after sandblasting for 10 seconds. This change in the size of the particles generated a loss on particle kinetic energy by a factor of 3.5. Such variation on processing conditions induced a progressive increase on average roughness (Ra) of the Ti-6Al-4V surfaces, until the first 7 seconds were reached. From that point on, a reverse process was observed, exerting a polishing effect on the surface of the Ti-6Al-4V alloy.

  19. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Science.gov (United States)

    2016-01-01

    This study evaluates tensile bond strength (TBS) of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36) feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF), Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI) scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa) and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  20. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Directory of Open Access Journals (Sweden)

    Amitoj S. Mehta

    2016-01-01

    Full Text Available This study evaluates tensile bond strength (TBS of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36 feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF, Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  1. Exploration of water-recycled cassava bioethanol production ...

    African Journals Online (AJOL)

    Yomi

    2010-09-13

    Sep 13, 2010 ... Distillery spent wash recycle in cassava ethanol fermentation with up flow anaerobic .... The fermentation broth was centrifuged at 13,000 rpm for 10 min. ..... (2008). Pilot-scale recovery of low molecular weight organic acids.

  2. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin.

    Science.gov (United States)

    Su, Naichuan; Yue, Li; Liao, Yunmao; Liu, Wenjia; Zhang, Hai; Li, Xin; Wang, Hang; Shen, Jiefei

    2015-06-01

    To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and 110 µm. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (α=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from 50 µm to 110 µm. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of 110 µm is recommended for dental applications to improve the bonding between zirconia core and ICR.

  3. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

    Science.gov (United States)

    Su, Naichuan; Yue, Li; Liao, Yunmao; Liu, Wenjia; Zhang, Hai; Li, Xin

    2015-01-01

    PURPOSE To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and 110 µm. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (α=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from 50 µm to 110 µm. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of 110 µm is recommended for dental applications to improve the bonding between zirconia core and ICR. PMID:26140173

  4. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    Science.gov (United States)

    Parajuli, Sagar Prasad; Zobeck, Ted M.; Kocurek, Gary; Yang, Zong-Liang; Stenchikov, Georgiy L.

    2016-02-01

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely, clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  5. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  6. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries; Metodo hidrometalurgico para reciclagem de metais terras raras, cobalto, niquel, ferro e manganes de eletrodos negativos de baterias exauridas de Ni-MH de telefone celular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de, E-mail: viniciusemmanuel@hotmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Celante, Vinicius Guilherme [Instituto Federal do Espirito Santo (IFES), Aracruz, ES (Brazil)

    2014-07-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO{sub 4}){sub 2}.H{sub 2}O) and lanthanum sulfate (La{sub 2}(SO{sub 4}){sub 3}.H{sub 2}O) as the major recovered components. Iron was recovered as Fe(OH){sub 3} and FeO. Manganese was obtained as Mn{sub 3}O{sub 4}.The recovered Ni(OH){sub 2} and Co(OH){sub 2} were subsequently used to synthesize LiCoO{sub 2}, LiNiO{sub 2} and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  7. Modelling of radiation field around spent fuel container

    NARCIS (Netherlands)

    Kryuchkov, EF; Opalovsky, VA; Tikhomirov, GV

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiat

  8. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  9. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available . In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  10. A Comparison of Workers Employed in Hazardous Jobs in Terms of Job Satisfaction, Perceived Job Risk and Stress: Turkish Jean Sandblasting Workers, Dock Workers, Factory Workers and Miners

    Science.gov (United States)

    Sunal, Ayda Buyuksahin; Sunal, Onur; Yasin, Fatma

    2011-01-01

    The purpose of this study is to compare job satisfaction, perception of job risk, stress symptoms and vulnerability to stress of miners, dock workers, jean sandblasting workers and factory workers. A job satisfaction scale and stress audit scale were applied to 220 workers. Results revealed that dock and jean sandblasting workers perceived their…

  11. A Comparison of Workers Employed in Hazardous Jobs in Terms of Job Satisfaction, Perceived Job Risk and Stress: Turkish Jean Sandblasting Workers, Dock Workers, Factory Workers and Miners

    Science.gov (United States)

    Sunal, Ayda Buyuksahin; Sunal, Onur; Yasin, Fatma

    2011-01-01

    The purpose of this study is to compare job satisfaction, perception of job risk, stress symptoms and vulnerability to stress of miners, dock workers, jean sandblasting workers and factory workers. A job satisfaction scale and stress audit scale were applied to 220 workers. Results revealed that dock and jean sandblasting workers perceived their…

  12. Immunomodulation and oxidative stress in denim sandblasting workers: changes caused by silica exposure.

    Science.gov (United States)

    Palabiyik, Saziye Sezin; Girgin, Gözde; Tutkun, Engin; Yilmaz, Omer Hinc; Baydar, Terken

    2013-09-01

    Workers in denim sandblasting are at a high risk of developing silicosis, an occupational lung disease caused by inhaling crystalline silica dust. The development and progress of silicosis is associated with the activation of the immune system and oxidative stress. In the former, interferon-gamma induces both neopterin release and the enzyme indoleamine [2, 3]-dioxygenase (IDO) in various cells. The determination of the kynurenine-to-tryptophan ratio and neopterin concentration has proven to be an efficient method to monitor the activation status of IDO and cellular immunity. The present study aimed to investigate whether occupational silica exposure leads to any alterations in neopterin levels, tryptophan degradation, and activities of superoxide dismutase (SOD) and catalase (CAT), agents in the antioxidant defense system. Fifty-five male denim sandblasting workers and twenty-two healthy men as controls were included. Mean neopterin and kynurenine levels, kynurenine-to-tryptophan ratio, and SOD activity were higher in subjects with silicosis compared to non-exposed controls (all, pindicator of cellular immune response.

  13. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    Science.gov (United States)

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-05-06

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  14. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  15. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium.

    Science.gov (United States)

    Inan, Ozgür; Acar, Asli; Halkaci, Selçuk

    2006-08-01

    The aim of this study was to determine the effect of sandblasting and electrical discharge machining (EDM) on cast and machined titanium surfaces and titanium-porcelain adhesion. Twenty machined titanium specimens were prepared by manufacturer (groups 1 and 2). Thirty specimens were prepared with autopolymerizing acrylic resin. Twenty of these specimens (groups 3 and 4) were cast with commercially pure titanium and the alpha-case layer was removed. For control group (group 5), 10 specimens were cast by using NiCr alloy. Groups 2 and 4 were subjected to EDM while groups 1, 3, and 5 were subjected to sandblasting. Surface examinations were made by using a scanning electron microscope (SEM). A low-fusing porcelain was fused on the titanium surfaces, whereas NiCr specimens were covered using a conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Results were analyzed by Kruskal-Wallis and Mann-Whitney U tests. Metal-porcelain interfaces were characterized by SEM. The bond strength of control group was higher than that of the titanium-porcelain system. There was no significant difference between cast and machined titanium groups (p > 0.05). There was no significant difference between EDM and sandblasting processes (p > 0.05). The use of EDM as surface treatment did not improve titanium-porcelain adhesion compared with sandblasting.

  16. Comparison of the resin cement bond strength to an indirect composites treated by Er;YAG laser and sandblast

    Directory of Open Access Journals (Sweden)

    Mansure Mirzaee

    2014-04-01

    Full Text Available   Background and Aims: Indirect composites are designed to overcome the shortcomings of direct composites such as polymerization shrinkage and low degree of conversion. But, good adhesion of resin cements to indirect composites is still difficult. This research was designed to assess the effect of different powers of Er;YAG laser compared with sandblasting. On the micro tensil bond strength of resin cement to indirect composites.   Materials and Methods: Specimens were prepred using dental resin composite (Gradia GC and metallic mold (15×5×5 mm and were cured according to the manufacturer’s instructions. 24 blocks were prepared and randomly divided into 12 groups. G1:no treatment (as control, G 2-6: Er; YAG laser irradiation (2, 3, 4, 5, 6 Watt, G7: sandblast. Two composite blocks were bonded to each other with Panavia F.2. resin cement. The cylindrical sections with dimensions of 1 mm were tested in a microtensile bond strength tester device using 0.5 mm/min speed until fracture points. Data were analyzed using 2-way ANOVA and T-test.   Results: Interaction between lasers irradiation and sandblast treatments were significant (P0.05 whether samples were sandblasted or not. Samples which received 300 mJ of laser showed lower bond strength compared with no laser treatment. Other groups showed no significant difference (P>0.05.   Conclusion: It seems that application of sandblast with proper variables, is a good way to improve bond strength.Laser application had no influence in improving the bond strength between the indirect composite and resin cement.

  17. Study of Temperature Fields at Sprinkled Smooth and Sandblasted Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2014-03-01

    Full Text Available The paper focuses on the influence of sprinkled tube surface on distribution of temperature fields, i.e. the heat transfer coefficient on the tubes surface. Two types of tubes have been tested, a smooth one and a sandblasted one in particular. A tube bundle comprises of thirteen copper tubes divided into two rows and it is located in a low pressure chamber where vacuum is generated using an exhauster via ejector. The liquid tested was water at an absolute pressure in a chamber in between 97 kPa up to 10 kPa and a thermal gradient 55 to 30 °C. The flow of the falling film liquid ranged between zero and 17 litres per minute.

  18. Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Frutos, E. [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)] [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain); Multigner, M. [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain); Gonzalez-Carrasco, J.L., E-mail: jlg@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas, CENIM-CSIC, 28040 Madrid (Spain)] [Centro de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III (Spain)

    2010-07-15

    This research addresses the determination of residual stresses in sandblasted austenitic steel by ultramicroindentation techniques using a sharp indenter, of which the sensitivity to residual stress effects is said to be inferior to that of spherical ones. The introduction of an angular correction in the model of Wang et al. which relates variations in the maximum load to the presence of residual stresses is proposed. Similarly, the contribution to the hardness of grain size refinement and work hardening, developed as a consequence of the severe plastic deformation during blasting, is determined in order to avoid overestimation of the residual stresses. Measurements were performed on polished cross sections along a length of several microns, thus obtaining a profile of the residual stresses. Results show good agreement with those obtained by synchrotron radiation on the same specimens, which validates the method and demonstrates that microindentation using sharp indenters may be sensitive to the residual stress effect.

  19. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates.

    Science.gov (United States)

    Chen, Shuming; Kwok, Hoi Sing

    2010-01-04

    Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.

  20. Time well spent

    DEFF Research Database (Denmark)

    Fallesen, Peter

    2013-01-01

    Individuals who spent time in foster care as children fare on average worse than non-placed peers in early adult life. Recent research on the effect of foster care placement on early adult life outcomes provides mixed evidence. Some studies suggest negative effects of foster care placement on early...... care on income and labor market participation....

  1. Alternative Approaches to Recycling Nuclear Wastes

    Science.gov (United States)

    Hannum, William H.

    2007-04-01

    Nuclear power exists, and as the demand for non-fossil electricity generation increases, many more nuclear plants are being planned and built. The result is growing inventories of spent nuclear fuel containing plutonium that -- in principle, at least -- can be used to make nuclear explosives. There are countries and organizations that are believed to want nuclear weapons, posing a knotty proliferation problem that calls for realistic control of nuclear materials. Phasing out nuclear power and sequestering all dangerous materials in guarded storage or in geological formations would not be a realistic approach. Plutonium from commercial spent fuel is very hard to make into a weapon. However, a rogue nation could operate a power plant so as to produce plutonium with weapons-quality isotopics, and then chemically purify it. IAEA safeguards are designed to discourage this, but the only enforcement is referral to the United Nations General Assembly. The traditional reprocessing method, PUREX, produces plutonium that has the chemical purity needed for weapons. However, there are alternative approaches that produce only highly radioactive blends of fissionable materials and fission products. Recycle offers a market for spent nuclear fuel, promoting more rigorous accounting of these materials. Unlike PUREX, the new technologies permit the recycle and consumption of essentially all of the high-hazard transuranics, and will reduce the required isolation time for the waste to less than 500 years. Facilities for recovering recyclable materials from LWR spent fuel will be large and expensive. Only a very few such plants will be needed, leading to appropriate concentration of safeguards measures. Plants for recycling the spent fuel from fast burner reactors can be collocated with the power plants and share the safeguards.

  2. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  3. Time well spent

    DEFF Research Database (Denmark)

    Fallesen, Peter

    2013-01-01

    Individuals who spent time in foster care as children fare on average worse than non-placed peers in early adult life. Recent research on the effect of foster care placement on early adult life outcomes provides mixed evidence. Some studies suggest negative effects of foster care placement on early...... adult outcomes, others find null effects. This study shows that differences in the average duration of foster care stays explain parts of these discordant findings and then test how foster care duration shapes later life outcomes using administrative data on 7 220 children. The children experienced...... different average durations of foster care because of differences in exposure to a reform. Later born cohorts spent on average 3 months longer in foster care than earlier born cohorts. Isolating exogenous variation in duration of foster care, the study finds positive effects of increased duration of foster...

  4. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  5. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  6. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique

    Science.gov (United States)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; He, Kun; Yuan, Y. F.; Ma, Xiao-Ni; Li, Ying

    2014-02-01

    Sandblasting is one of the most effective methods to modify a metal surface and improve its properties for application. Micro-arc oxidation (MAO) could produce a ceramic coating on a dental implant, facilitating cellular differentiation and osseocomposite on it. This study aims to deposit bioceramic Ca- and P-containing coatings on sandblasted commercially pure titanium by an optimum composite technique to improve the bioactive performance. The effect of sandblasting intensity on microstructures and properties of the implant coatings is examined, and the modified surfaces are characterized in terms of their topography, phase, chemical composition, mechanical properties and hydroxyapatite (HA)-inducing ability. The results show that a moderate sandblasting micromachines the substrate in favorable combination of rough and residual stresses; its MAO coating deposits nano-hydroxyapatite after immersion in simulated body fluid (SBF) for 5 days exhibiting better bioactivity. The further improvement of the implant surface performance is attributed to an optimized composite technique.

  7. Shear Bond Strength of Al2O3 Sandblasted Y-TZP Ceramic to the Orthodontic Metal Bracket

    Directory of Open Access Journals (Sweden)

    Seon Mi Byeon

    2017-02-01

    Full Text Available As the proportion of adult orthodontic treatment increases, mainly for aesthetic reasons, orthodontic brackets are directly attached to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP restorations. This, study analyzed the shear bond strength (SBS between various surface treated Y-TZP and orthodontic metal brackets. The Y-TZP specimens were conditioned by 110 μm Al2O3 sandblasting, or sandblasting followed by coating with one of the primers (silane, MDP, or an MDP-containing silane primer. After surface treatment, the orthodontic metal bracket was bonded to the specimen using a resin cement, and then 24 h storage in water and thermal cycling (5000 cycles, 5–55 °C, SBS was measured. Surface roughness was analyzed for surface morphology, and X-ray photoelectron spectroscopy (XPS was employed for characterization of the chemical bond between the Y-TZP and the MDP-based primers (MDP, MDP containing silane primer. It was found that after surface treatment, the surface roughness of all groups increased. The groups treated with 110 μm Al2O3 sandblasting and MDP, or MDP-containing silane primer showed the highest SBS values, at 11.92 ± 1.51 MPa and 13.36 ± 2.31 MPa, respectively. The SBS values significantly decreased in all the groups after thermal cycling. Results from XPS analysis demonstrated the presence of chemical bonds between Y-TZP and MDP. Thus, the application of MDP-based primers after Al2O3 sandblasting enhances the resin bond strength between Y-TZP and the orthodontic metal bracket. However, bonding durability of all the surface-treated groups decreased after thermal cycling.

  8. Evaluation of Shear Bond Strength of Composite Resin Bonded to Alloy Treated With Sandblasting and Electrolytic Etching

    OpenAIRE

    Goswami, M. M.; Gupta, S.H.; Sandhu, H. S.

    2013-01-01

    Conservation of natural tooth structure precipitated the emergence of resin-retained fixed partial dentures. The weakest link in this modality is the bond between resin cement and alloy of the retainer. Various alloy surface treatment have been recommended to improve alloy–resin bond. This in vitro study was carried out to observe changes in the Nickel–Chromium alloy (Wiron 99, Bego) surface following sandblasting or electrolytic etching treatment by scanning electron microscope (SEM) and to ...

  9. Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes.

    Science.gov (United States)

    Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Miyazaki, Takashi; Hotta, Yasuhiro; Shibata, Yo; Yin, Ling

    2017-01-01

    This paper studied the surface quality (damage, morphology, and phase transformation) of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in CAD/CAM milling, and subsequent polishing, sintering and sandblasting processes applied in dental restorations. X-ray diffraction and scanning electron microscopy (SEM) were used to scan all processed surfaces to determine phase transformations and analyse surface damage morphology, respectively. The average surface roughness (Ra) and maximum roughness (Rz) for all processed surfaces were measured using desk-top SEM-assisted morphology analytical software. X-ray diffraction patterns prove the sintering-induced monoclinic-tetragonal phase transformation while the sandblasting-induced phase transformation was not detected. The CAD/CAM milling of pre-sintered Y-TZP produced very rough surfaces with extensive fractures and cracks. Simply polishing or sintering of milled pre-sintered surfaces did not significantly improve their surface roughness (ANOVA, p>0.05). Neither sintering-polishing of the milled surfaces could effectively improve the surface roughness (ANOVA, p>0.05). The best surface morphology was produced in the milling-polishing-sintering process, achieving Ra=0.21±0.03µm and Rz=1.73±0.04µm, which meets the threshold for bacterial retention. Sandblasting of intaglios with smaller abrasives was recommended as larger abrasive produced visible surface defects. This study provides technical insights into process selection for Y-TZP to achieve the improved restorative quality.

  10. Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. II. Coarsely sandblasted samples.

    Science.gov (United States)

    Contu, F; Elsener, B; Böhni, H

    2003-10-01

    Electrochemical impedance spectroscopy is used to investigate the corrosion resistance of coarsely sandblasted implant alloys, commercially pure titanium, Ti6Al4V, Ti6Al7Nb, and CoCrMo in 0.1M sodium sulfate and fetal bovine serum. Coarsely sandblasted samples have a heterogeneous surface constituted by a large number of protrusions and recessions. Impedance spectra collected in sodium sulfate present two time constants (maxima in the phase-angle of the bode plot) associated with the total surface and with the tips, respectively. In bovine serum, the two maxima in the impedance spectra cannot be distinguished because of the formation of an adsorption layer of organic molecules, which causes a decrease in the values of both the total and tips' capacitances as well as an increase in the polarization resistance. Ti6Al4V and Ti6Al7Nb show the highest corrosion rate both in serum and in sodium sulfate. Based on the capacitance values obtained in sodium sulfate, the real surface area of the coarsely sandblasted electrodes has been estimated relative to mechanically polished surfaces. The values of the effective electrode area correlate with the mechanical properties of the samples: in fact, the softest electrode (commercially pure titanium) shows the largest effective electrode area, whereas the hardest material (CoCrMo alloy) shows the smallest surface area.

  11. Comparative evaluation of shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown

    Directory of Open Access Journals (Sweden)

    Khatri A

    2007-06-01

    Full Text Available To evaluate and compare the shear bond strength of conventional composite resin and nanocomposite resin to sandblasted primary anterior stainless steel crown. The study samples consisted of 30 primary anterior stainless steel crowns (Unitek TM , size R4, embedded in resin blocks with crown, in test groups of 15 samples each. Mounting of the crown was done using resin block with one crown each. Sandblasting was done and the bonding agent Prime and Bond NT (Dentsply was applied on the labial surface of the primary anterior sandblasted crown. The composite resin and nanocomposite resin were placed into the well of Teflon jig and bonded to Stainless Steel Crowns. The cured samples were placed in distilled water and stored in incubator at 37°C for 48 hours. Shear bond strength was measured using universal testing machine (Hounsefield U.K. Model, with a capacity of 50 KN. Independent sample ′t′ test revealed a nonsignificant ( P < 0.385 difference between mean shear bond strength values of conventional and nanocomposite group. The bond strength values revealed that nanocomposite had slightly higher mean shear bond strength (21.04 ± 0.56 compared to conventional composite (20.78 ± 0.60. It was found that conventional composite resin and nanocomposite resin had statistically similar mean shear bond strength, with nanocomposite having little more strength compared to conventional composite.

  12. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    Science.gov (United States)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  13. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  14. Criticality safety aspects of spent fuel arrays from emerging nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Nuclear Technology, Kimmerria Campus, 67100 Xanthi (Greece)

    2010-07-01

    Emerging nuclear fuel cycles: fuels with Pu or minor actinides (MA) for their self-generated recycling or transmutation in PWR or FR {yields} reduction of radiotoxicity of HLW. The aim of work is to assess criticality (k{sub {infinity}}) of arrays of spent nuclear fuels from these emerging fuel cycles. Procedures: Calculations of - k{sub {infinity}}, using MCNP5 based on fresh and spent fuel compositions (infinite arrays), - spent fuel compositions using ORIGEN. Fuels considered: - commercial PWR-UO{sub 2} (R1) and -MOX (R2), [45 GWd/t] and fast reactor [100 GWd/t] (R3), - PWR self-generated Pu recycling (S1) and MA recycling (S2), FR self-generated MA recycling (S3), FR with 2% {sup 237}Np for transmutation purposes (T). Results: k{sub {infinity}} based on fresh and spent fuel compositions is shown. Fuels are clustered in two distinct families: - fast reactor fuels, - thermal reactor fuels; k{sub {infinity}} decreases when calculated on the basis of actinide and fission product inventory. In conclusions: - Emerging fuels considered resemble their corresponding commercial fuels; - k{sub {infinity}} decreases in all cases when calculated on the basis of spent fuel compositions (reactivity worth {approx}-20%{Delta}k/k), hence improving the effectiveness of packaging. (author)

  15. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  16. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Science.gov (United States)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  17. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S.

    1993-05-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

  18. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants.

    Science.gov (United States)

    Park, Jun-Beom; Lee, Sung-Hoon; Kim, NamRyang; Park, Seojin; Jin, Seong-Ho; Choi, Bong-Kyu; Kim, Kack-Kyun; Ko, Youngkyung

    2015-08-01

    Mechanical instrumentation is widely used to debride dental implants, but this may alter the surface properties of titanium, which in turn may influence bacterial adhesion and make it more difficult to remove the biofilm. This in vitro study was performed (1) to assess the amount of biofilm formation on a sand-blasted and acid-etched titanium fixture treated with ultrasonic scalers with metal, plastic, and carbon tips and (2) to evaluate how this treatment of titanium surfaces affects implant cleaning by brushing with dentifrice. The titanium fixtures were treated with various ultrasonic scaler tips, and surface roughness parameters were measured by confocal microscopy. Biofilm was formed on the treated fixtures by using pooled saliva from 10 subjects, and the quantity of the adherent bacteria was compared with crystal violet assay. The fixture surfaces with biofilm were brushed for total of 30 seconds with a toothbrush with dentifrice. The bacteria remaining on the brushed fixture surfaces were quantified by scanning electron microscopy. Surface changes were evident, and the changes of the surfaces were more discernible when metal tips were used. A statistically significant decrease in roughness value (arithmetic mean height of the surface) was seen in the 2 metal-tip groups and the single plastic-tip group. After brushing with dentifrice, the treated surfaces in all the treatment groups showed significantly fewer bacteria compared with the untreated surfaces in the control group, and the parts of the surfaces left untreated in the test groups. Within the limits of this study, treatment of titanium fixture surfaces with ultrasonic metal, plastic, or carbon tips significantly enhanced the bacterial removal efficacy of brushing. Thorough instrumentation that smooths the whole exposed surface may facilitate maintenance of the implants.

  19. Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Taschieri, Silvio; Del Fabbro, Massimo; Coelho, Paulo Guilherme

    2015-10-01

    The aim of this study was to evaluate the physico-chemical properties and the in vivo host response of a surface sandblasted with particles of titanium oxide (TiO2) followed by acid etching as an alternative to aluminium oxide. Thirty titanium disks manufactured in the same conditions as the implants and 24 conventional cylindrical implants were used. Half of the implants had a machined surface (Gcon) while in the other half; the surface was treated with particles of TiO2 followed by acid etching (Gexp). Surface characterization was assessed by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), profilometry, and wettability. For the in vivo test, 12 implants of each group were implanted in the tibia of 6 rabbits, and were reverse torque tested after periods of 30 or 60 days after implantation. Following torque, SEM was utilized to assess residual bone-implant contact. The surface characterization by SEM showed a very homogeneous surface with uniform irregularities for Gexp and a small amount of residues of the blasting procedure, while Gcon presented a surface with minimal irregularities from the machining tools. Wettability test showed decreased contact angle for the Gcon relative to the Gexp. The Gexp removal torque at 30 and 60 days was 28.7%, and 33.2% higher relative to the Gcon, respectively. Blasting the surface with particles of TiO2 represents an adequate option for the surface treatment of dental implants, with minimal risk of contamination by the residual debris from the blasting procedure.

  20. Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE)

    Science.gov (United States)

    Grini, Alf; Zender, Charles S.

    2004-04-01

    Recent field observations demonstrate that a significant discrepancy exists between models and measurements of large dust aerosol particles at remote sites. We assess the fraction of this bias explained by assumptions involving four different dust production processes. These include dust source size distribution (constant or dynamically changing according to saltation and sandblasting theory), wind speed distributions (using mean wind or a probability density function (PDF)), parent soil aggregate size distribution, and the discretization (number of bins) in the dust size distribution. The Dust Entrainment and Deposition global model is used to simulate the measurements from the Puerto Rican Dust Experiment (PRIDE) (2000). Using wind speed PDFs from observed National Centers for Environmental Prediction winds results in small changes in downwind size distribution for the production which neglects sandblasting, but it results in significant changes when production includes sandblasting. Saltation-sandblasting generally produces more large dust particles than schemes which neglect sandblasting. Parent soil aggregate size distribution is an important factor when calculating size-distributed dust emissions. Changing from a soil with large grains to a soil with smaller grains increases by 50% the fraction of large aerosols (D >5 μm) modeled at Puerto Rico. Assuming that the coarse medium sand typical of West Africa dominates all source regions produces the best agreement with PRIDE observations.

  1. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  2. Evaluation of shear bond strength of composite resin bonded to alloy treated with sandblasting and electrolytic etching.

    Science.gov (United States)

    Goswami, M M; Gupta, S H; Sandhu, H S

    2014-03-01

    Conservation of natural tooth structure precipitated the emergence of resin-retained fixed partial dentures. The weakest link in this modality is the bond between resin cement and alloy of the retainer. Various alloy surface treatment have been recommended to improve alloy-resin bond. This in vitro study was carried out to observe changes in the Nickel-Chromium alloy (Wiron 99, Bego) surface following sandblasting or electrolytic etching treatment by scanning electron microscope (SEM) and to evaluate the shear bond strength of a resin luting cement bonded to the surface treated alloy. 80 alloy blocks were cast and divided into four groups of 20 each. In groups-A & B, the test surfaces were treated by sandblasting with 50 and 250 μm sized aluminium oxide particles respectively. In groups-C & D, the test surfaces were first treated by sandblasting with 50 and 250 μm sized aluminium oxide particles respectively followed by electrolytic etching. Test surfaces were observed under SEM at 1,000× magnification. Two alloy blocks of each group were luted together by a resin luting cement (Rely X, 3M) and their shear bond strength was tested. The mean shear bond strength in MPa of groups-A to D were 6.44 (±0.74), 8.18 (±0.51), 14.45 (±0.59) and 17.43 (±1.20) respectively. Group-D showed bond strength that is more than clinically acceptable bond strength. It is recommended that before luting resin-retained fixed partial dentures, the fitting surface of the retainer should be electrolytically etched to achieve adequate micromechanical retention.

  3. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  4. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  5. Chemical Recycle of Plastics

    Directory of Open Access Journals (Sweden)

    Sara Fatima

    2014-11-01

    Full Text Available Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  6. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  7. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  8. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  9. Life cycle assessment of three different management options for spent alkaline batteries.

    Science.gov (United States)

    Xará, Susana; Almeida, Manuel Fonseca; Costa, Carlos

    2015-09-01

    The potential environmental impact of Landfilling, Incineration and Recycling of spent household alkaline batteries collected in continental Portugal was compared using LCA methodology and the Recipe Impact Assessment method. Major contributors and improvement opportunities for each system were identified and scenarios for 2012 and 2016 legislation targets were evaluated. For 13 out of the 18 impact categories, the Recycling system is the worst alternative, Incineration is the worst option for 4 and Landfill is the worst option only for one impact category. However if additionally in each system the recovery of materials and energy is taken into account there is a noticeable advantage of the Recycling system for all the impact categories. The environmental profiles for 2012 and 2016 scenarios (25% and 45% recycling rates, respectively) show the dominance of the Recycling system for most of the impact categories. Based on the results of this study, it is questioned whether there are environmental benefits of recycling abroad the household alkaline batteries collected in continental Portugal and, since the low environmental performance of the Recycling system is particularly due to the international transport of the batteries to the recycling plant, is foreseen that a recycling facility located in Portugal, could bring a positive contribution to the environmental impact of the legislation compliance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessment of spent fuel cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F. [and others

    1997-02-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD`s work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools.

  11. Clearance effect of sandblasting and hand scaling on subgingival plaque and their effect on interleukin 1/6/8/10 and MMP8/TIMP1 levels

    Institute of Scientific and Technical Information of China (English)

    Lei Li

    2016-01-01

    Objective:To study the clearance effect of sandblasting and hand scaling on subgingival plaque and their effect on interleukin 1/6/8/10 and MMP8/TIMP1 levels.Methods: A total of 40 patients with subgingival plaque were selected for study, subgingival plaque of left half mouth received hand scaling and was included in hand scaling group, subgingival plaque of right half mouth received sandblasting scaling and was included in sandblasting group, probing depth (PD) and bleeding on probing (BOP) were assessed and the percentage of closed periodontal pocket was calculate before and after treatment; gingival crevicular fluid was collected after treatment to determine interleukin 1/6/8/10 and MMP8/TIMP1 levels.Results:7 d and 30 d after treatment, PD and BOP percentage of both groups were lower than those before treatment and the percentage of closed periodontal pocket were higher than those before treatment, the PD and BOP percentage of sandblasting group after treatment were lower than those of hand scaling group and the percentage of closed periodontal pocket was higher than that of hand scaling group; 7 d after treatment, IL-1, -6, -8 and MMP8 levels and MMP8/TIMP1 ratio in gingival crevicular fluid of sandblasting group were significantly lower than those of hand scaling group while IL-10 and TIMP1 levels were significantly higher than those of hand scaling group.Conclusion:Sandblasting scaling has better clearance effect on subgingival plaque than hand scaling, and can adjust the interleukin 1/6/8/10 and MMP8/TIMP1 levels to relieve periodontal tissue inflammation and alveolar bone resorption.

  12. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  13. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  14. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars - An in vitro comparative study

    Directory of Open Access Journals (Sweden)

    M M Veerabadhran

    2012-01-01

    Full Text Available Purpose: This in vitro study was conducted to find out the effect of retentive groove, sand blasting and cement type on the retentive strength of stainless steel crowns in primary second molars. Materials and Methods: Thirty-two extracted intact human maxillary and mandibular primary second molars were embedded in aluminum blocks utilizing autopolymerising acrylic resin. After tooth preparation, the 3M stainless steel crown was adjusted to the prepared tooth. Then weldable buccal tubes were welded on the buccal and lingual surfaces of each crown as an attachment for the testing machine. A full factorial design matrix for four factors (retentive groove placement on the tooth, cement type, sandblasting and primary second molar at two levels each was developed and the study was conducted as dictated by the matrix. The lower and upper limits for each factor were without and with retentive groove placement on the tooth, GIC and RMGIC, without and with sandblasting of crown, maxillary and mandibular second primary molar. For those teeth for which the design matrix dictated groove placement, the retentive groove was placed on the middle third of the buccal surface of the tooth horizontally and for those crowns for which sandblasting of the crowns are to be done, sandblasting was done with aluminium oxide with a particle size of 250 mm. The crowns were luted with either GIC or RMGIC, as dictated by the design matrix. Then the retentive strength of each sample was evaluated by means of an universal testing machine. The obtained data was analyzed using ANOVA for statistical analysis of the data and ′t′- tests for pairwise comparison. Results: The mean retentive strength in kg/cm 2 stainless steel crowns luted with RMGIC was 19.361 and the mean retentive strength of stainless steel crowns luted with GIC was 15.964 kg/cm 2 with a mean difference of 3.397 kg/cm 2 and was statistically significant. The mean retentive strength in kg/cm 2 of stainless steel

  15. Sand-blasting treatment as a way to improve the adhesion strength of hydroxyapatite coating on titanium implant

    Science.gov (United States)

    Grubova, I.; Priamushko, T.; Surmeneva, M.; Korneva, O.; Epple, M.; Prymak, O.; Surmenev, R.

    2017-05-01

    In the current study, the effect of corundum particle sizes (50 and 250-320 μm) used for sand-blasting on the structure, roughness, wettability, mechanical properties, and adhesion of radio frequency magnetron hydroxyapatite coating deposited on treated titanium substrate is studied. Morphology analysis revealed that pretreatment uniformly deforms the surface and induces the formation of pits, which size depends linearly on the grit size. The deposited coatings (Ca/P was in a range of 1.75-1.79) are homogeneous and repeat the relief of the substrate (mean roughness Ra is 1.9±0.1 (250-320 μm) and 0.8±0.1 μm (50 μm)). Texture coefficient calculations revealed the predominant (002) growth texture of hydroxyapatite coatings. The resistance of the coating to plastic deformation and the surface hardening were significantly higher for coatings formed on sand blasted with particle size of 50 μm. Scratch test have shown the significant improvement of wear resistance and lower friction coefficient of coatings for smoother samples. Dynamic contact angle measurements revealed the hydrophilic properties of the hydroxyapatite coating. Thus, sand-blasting of titanium with corundum powder having the size of 50 μm prior to the deposition of RF magnetron coating is recommended for the medical applications intended to improve the bonding between the substrate and coating.

  16. Active Interrogation for Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  17. Active Interrogation for Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dougan, Arden [National Nuclear Security Administration (NNSA), Washington, DC (United States)

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  18. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  19. Recovery Of Electrodic Powder From Spent Lithium Ion Batteries (LIBs

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in cobalt (Co and lithium (Li from spent lithium ion battery. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent lithium ion batteries (LIBs were heated over the range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, and atomic absorption spectroscopy (AA and furthermore image of the powder was taken by scanning electron microscopy (SEM. It was finally found that cobalt and lithium were mainly recovered to about 49 wt.% and 4 wt.% in electrodic powder, respectively.

  20. CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

    Directory of Open Access Journals (Sweden)

    CHAIM BRAUN

    2013-08-01

    Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR. We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-from-reactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

  1. HFIR spent fuel management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  2. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  3. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...

  4. Efficient paper recycling

    OpenAIRE

    Gregor-Svetec, Diana; Možina, Klemen; Blaznik, Barbara; Urbas, Raša; Vrabič Brodnjak, Urška; Golob, Gorazd

    2013-01-01

    Used paper and paper products are important raw material for paper and board industry. Paper recycling increases the material lifespan and is a key strategy that contributes to savings of primary raw material, reduction of energy and chemicals consumption, reduction of the impact on fresh water and improvement of waste management strategies. The paper recycling rate is still highly inhomogeneous among the countries of Central Europe. Since recovered paper is not only recycled in the country w...

  5. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...

  6. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  7. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  8. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  9. Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite.

    Science.gov (United States)

    Tang, Xiaoming; Huang, Kai; Dai, Jian; Wu, Zhaoying; Cai, Liang; Yang, Lili; Wei, Jie; Sun, Hailang

    2017-04-03

    The surfaces of nano-calcium silicate (n-CS)/polyetheretherketone (PK) composites were treated with abrasive paper and sand-blasting, and the surfaces performances of the as-treated composites were studied. The results showed that the surface roughness, hydrophilicity and mineralization of the simulated body fluid (SBF) of the composites surfaces were significantly improved, and the properties of the composites treated by with sand-blasting were better than those treated with abrasive paper. Moreover, the treated composites significantly promoted osteoblasts responses, such as cell attachment, spreading, proliferation and alkaline phosphatase (ALP) activity, compared to un-treated composites, and the cellular responses to the composites treated with sand-blasting were better than those treated with abrasive paper. The results suggested that surface treatment with sand-blasting was an effective method to greatly improve the surface bioperformances of the n-CS/PK composite, and this treated composite with improved bioactivity and cytocompatibility might be a promising implant material for orthopedic applications.

  10. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.

    Science.gov (United States)

    Zhang, Tao; He, Yaqun; Wang, Fangfang; Ge, Linhan; Zhu, Xiangnan; Li, Hong

    2014-06-01

    Mineral processing operation is a critical step in any recycling process to realize liberation, separation and concentration of the target parts. Developing effective recycling methods to recover all the valuable parts from spent lithium-ion batteries is in great necessity. The aim of this study is to carefully undertake chemical and process mineralogical characterizations of spent lithium-ion batteries by coupling several analytical techniques to provide basic information for the researches on effective mechanical crushing and separation methods in recycling process. The results show that the grade of Co, Cu and Al is fairly high in spent lithium ion batteries and up to 17.62 wt.%, 7.17 wt.% and 21.60 wt.%. Spent lithium-ion batteries have good selective crushing property, the crushed products could be divided into three parts, they are Al-enriched fraction (+2 mm), Cu and Al-enriched fraction (-2+0.25 mm) and Co and graphite-enriched fraction (-0.25 mm). The mineral phase and chemical state analysis reveal the electrode materials recovered from -0.25 mm size fraction keep the original crystal forms and chemical states in lithium-ion batteries, but the surface of the powders has been coated by a certain kind of hydrocarbon. Based on these results a flowsheet to recycle spent LiBs is proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Processing of spent nickelcatalyst for fat recovery

    Directory of Open Access Journals (Sweden)

    NASIR Mohammad Ibraim

    2001-01-01

    Full Text Available Spent nickel catalyst (SNC has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.

  12. Recovery of valuable materials from spent NIMH batteries using spouted bed elutriation.

    Science.gov (United States)

    Tanabe, Eduardo H; Schlemmer, Diego F; Aguiar, Mônica L; Dotto, Guilherme L; Bertuol, Daniel A

    2016-04-15

    In recent years, a great increase in the generation of spent batteries occurred. Then, efficient recycling ways and correct disposal of hazardous wastes are necessary. An alternative to recover the valuable materials from spent NiMH batteries is the spouted bed elutriation. The aim of this study was to apply the mechanical processing (grinding and sieving) followed by spouted bed elutriation to separate the valuable materials present in spent NiMH batteries. The results of the manual characterization showed that about 62 wt.% of the batteries are composed by positive and negative electrodes. After the mechanical separation processes (grinding, sieving and spouted bed elutriation), three different fractions were obtained: 24.21 wt.% of metals, 28.20 wt.% of polymers and 42.00 wt.% of powder (the positive and negative electrodes). It was demonstrated that the different materials present in the spent NiMH batteries can be efficiently separated using a simple and inexpensive mechanical processing.

  13. Recycling Wood Composite Panels: Characterizing Recycled Materials

    Directory of Open Access Journals (Sweden)

    Hui Wan

    2014-10-01

    Full Text Available Downgraded medium density fiberboard (MDF, particleboard (PB, and oriented strandboard (OSB panels were individually subjected to steam explosion treatment. Downgraded MDF and PB panels were separately treated with thermal chemical impregnation using 0.5% butanetetracarboxylic acid (BTCA. And downgraded PB panels were processed with mechanical hammermilling. The pH, buffer capacity, fiber length, and particle size of these recycled materials were evaluated. After the steam explosion and thermal chemical impregnation treatments, the pH and buffer capacity of recycled urea formaldehyde resin (UF-bonded MDF and PB furnishes increased and the fiber length decreased. The hammermilling of recycled PB was less likely to break particles down into sizes less than 1 mm2.

  14. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  15. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  16. Plate tectonics: Crustal recycling evolution

    Science.gov (United States)

    Magni, Valentina

    2017-09-01

    The processes that form and recycle continental crust have changed through time. Numerical models reveal an evolution from extensive recycling on early Earth as the lower crust peeled away, to limited recycling via slab break-off today.

  17. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-11-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μm) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport ( Q) and the PM10 emissions ( E), were measured at two friction velocities: 0.2 and 0.3 m s^{-1}. Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  18. PM10 Emission, Sandblasting Efficiency and Vertical Entrainment During Successive Wind-Erosion Events: A Wind-Tunnel Approach

    Science.gov (United States)

    Panebianco, J. E.; Mendez, M. J.; Buschiazzo, D. E.

    2016-06-01

    A wind-tunnel experiment was carried out to measure saltation and PM10 (particulate matter with a mean aerodynamic diameter less than 10 μ m) emission during three successive wind-erosion events on three different surfaces: an unpaved road and two different textured agricultural soils: a sandy loam and a loamy sand. The total horizontal mass transport (Q) and the PM10 emissions (E), were measured at two friction velocities: 0.2 and 0.3 m {s}^{-1} . Results indicated that Q decreased rapidly in time over all surfaces, as the Q values were only 13-17 % of the amount registered during the first event. Similar trends were detected at both wind speeds. However, E values showed a lower relative decrease in the second wind-erosion event at the lower wind speed (25-51 % of the initial amounts) than at the higher wind speed (19-28 % of the initial amounts) over all surfaces. After the second wind-erosion event, both Q and E values remained constant except for the unpaved road, where both values decreased by 50 % in relation to the second event. Emission from the agricultural soils was sustained over successive wind-erosion events even when saltation was low. The sandblasting efficiency for PM10 emission was found to be higher for agricultural soils than for the unpaved road, and increased over wind-erosion events particularly in agricultural soils, and this was also reflected in the PM10 vertical entrainment. Results suggest that sandblasting efficiency and PM10 vertical distribution can change among wind-erosion events even for the same surface. The saltation fraction to PM10 content ratio can be a simple indicator of the general behaviour of an emitting surface during successive wind-erosion events.

  19. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  20. The Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  1. Recovery of Mn as MnO2 from spent batteries leaching solutions

    Directory of Open Access Journals (Sweden)

    Manciulea A. L.

    2013-04-01

    Full Text Available The recycling of spent batteries and recovery of metals from them is of great scientific and economic interest, on account of recycling requirement of these wastes and recovery of valuable materials (De Michellis et al., 2007. Usage of recycled materials is diminishing the energy consumption and pollution. It is important that the recycling process to be environmentally friendly, practical and cost-effective. Tests for the process of manganese removal from spent battery leaching solutions, with ammonium peroxodisulfate, prior to recovery of zinc by electrolysis are presented. The experiments were carried out according to a 23 full factorial design as a function of ammonium peroxodisulfate concentration, temperature and pH. Because the excessive manganese in the spent batteries leach solutions can cause problems in the process of Zn recovery by electrolysis the main focus of this study is the manganese removal without altering the concentration of zinc in solutions. Data from XRF and AAS during the reaction at different time are presented. Manganese is obtained with high extraction degree as MnO2, which is economic and commercial important with applications in battery industry, water treatment plants, steel industry and chemicals (Pagnanelli et al., 2007. The analysis of variance (ANOVA was carried out on the extraction yields of Zn after 30min, 1h, 2h and 3h of reaction. The preliminary results denoted that by chemical oxidation with ammonium peroxodisulfate is a suitable method for manganese removal as MnO2 prior zinc recovery by electrolysis, from spent batteries solutions and it could be used in a plant for recycling batteries.

  2. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...... in the metals producing industry is presented and tested on two printed circuit board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where the scrap constitutes the least environmental problem and where...... resource recovery is largest. It is clearly shown with the two printed circuit board scrap cases that the currently used copper recycling scenario is environmentally inferior to the tin and lead primary production scenarios. The method is a novelty, since no-one has previously put forward a method...

  3. Plastics recycling: challenges and opportunities

    National Research Council Canada - National Science Library

    Jefferson Hopewell; Robert Dvorak; Edward Kosior

    2009-01-01

    .... Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public...

  4. Spent fuel characteristics & disposal considerations

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M.

    1996-06-01

    The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

  5. Fiscal 1998 achievement report on regional consortium research and development project. Venture business fostering regional consortium--Creation of key industries (Research and development of emission-free material separation and recycling process technologies for spent electric/electronic products); 1998 nendo shiyozomi denki denshi kogyo seihin no emissionless sozai bunri saisei junkan system no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The personal computer is taken up as a sample, and studies are conducted about a system for separating and recovering recyclable materials. For the high-speed cutting and crushing of materials and their compaction, a water-jet cutting method is employed, which enables the unification of chip sizes after cutting, the prevention of dust generation, and the realization of clean working environments. For the separation of copper wires from their coats, a high-speed peeling machine is developed, and the copper wires are recovered for reuse. Fluorine plastics and polyester resin that constitute the coats do not show deterioration in their resin properties when put back into use. As for the powder resulting from the crushing of print circuit boards, it produces gas and unburnt carbon when subjected to heat treatment at 600 degrees C in inactive gas. The problem to arise from this recovery method is how to lower the cost. The separation of pelletized polymers and metal constituents can be accomplished by changing the ablation generation limit energy level during excimer laser irradiation, and this allows them to be recycled. (NEDO)

  6. Rethinking nuclear fuel recycling.

    Science.gov (United States)

    von Hippel, Frank N

    2008-05-01

    Spent nuclear fuel contains plutonium which can be extracted and used in new fuel. To reduce the amount of long-lived radioactive waste, the U.S. Department of Energy has proposed reprocessing spent fuel in this way and then "burning" the plutonium in special reactors. But reprocesssing is very expensive. Also, spent fuel emits lethal radiation, whereas separated plutonium can be handled easily. So reprocessing invites the possibility that terrorists might steal plutonium and construct an atom bormb. The authors argue against reprocessing and for storing the waste in casks until an underground repository is ready.

  7. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  8. Mineral processing techniques for recycling investment casting shell

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Cheryl L.; Nilsen, David N.; Dahlin, David C.; Hunt, Alton H.; Collins, W. Keith

    2002-01-01

    The Albany Research Center of the U.S. Department of Energy used materials characterization and minerals beneficiation methods to separate and beneficially modify spent investment-mold components to identify recycling opportunities and minimize environmentally sensitive wastes. The physical and chemical characteristics of the shell materials were determined and used to guide bench-scale research to separate reusable components by mineral-beneficiation techniques. Successfully concentrated shell materials were evaluated for possible use in new markets.

  9. Resource recovery from urban stock, the example of cadmium and tellurium from thin film module recycling.

    Science.gov (United States)

    Simon, F-G; Holm, O; Berger, W

    2013-04-01

    Raw material supply is essential for all industrial activities. The use of secondary raw material gains more importance since ore grade in primary production is decreasing. Meanwhile urban stock contains considerable amounts of various elements. Photovoltaic (PV) generating systems are part of the urban stock and recycling technologies for PV thin film modules with CdTe as semiconductor are needed because cadmium could cause hazardous environmental impact and tellurium is a scarce element where future supply might be constrained. The paper describes a sequence of mechanical processing techniques for end-of-life PV thin film modules consisting of sandblasting and flotation. Separation of the semiconductor material from the glass surface was possible, however, enrichment and yield of valuables in the flotation step were non-satisfying. Nevertheless, recovery of valuable metals from urban stock is a viable method for the extension of the availability of limited natural resources.

  10. Characteristic Analysis for the Recycled Uranium of the Pyroprocess

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Ryu, Ho Jin; Na, Sang Ho; Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    In order to recover uranium and TRU from spent nuclear fuels, a pyroprocessing has been developed through a dry and metallurgical reprocess technology using a series of electrolyses such as an electro-reduction, an electro-refining, and an electro-winning. When the spent fuel is being fed into the pyroprocess, most of the uranium is gathered in metallic form around a solid cathode during an electro-refining process. It is expected that the recovered uranium will be sent to a spent fuel storage site after converting it into a metal ingot form to reduce its storage space and transportation burden. However, the weight percent of U-235 in the recovered uranium is about 0.9 wt% and it is sufficiently re-utilized in a heavy water reactor which uses a natural uranium fuel. The reuse of recovered uranium will bring not only a huge economical profit and save of uranium resources but also an alleviation of burden on the management and disposal of the spent fuel. A previous research on recycling of recovered uranium was carried out and most of the recovered uranium was assumed to be imported from abroad at that time. The preliminary results showed there is a sufficient possibility to recycle recovered uranium in terms of a reactor's characteristics as well as the fuel performance. And the DUPIC (direct use of spent pressurized water reactor fuel into CANDU reactor) program has also been performed and demonstrated the fundamental technologies. The recovered uranium from a pyroprocess contains some TRU as an impurity and it will exhibit a slightly different behavior from the previous recycling options. In this report, the reactor's characteristics including discharge burnup are investigated based on the lattice calculations which are performed for the CANFELX bundle.

  11. Engineered Plastics Containing Recycled Rubber

    Institute of Scientific and Technical Information of China (English)

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  12. Reprocessing method for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hoshikawa, Tadahiro; Sawa, Toshio; Suzuoki, Akira [Hitachi Ltd., Tokyo (Japan); Takashima, Yoichi; Kumagai, Mikiro

    1998-09-29

    The present invention provides a method of reprocessing spent fuels to form MOX having a Pu/U ratio suitable to fuels of LWR or fast reactors and uranium oxides of fuels of an LWR reactor. In a brief separation step for uranium, carbonate is added to a nitric acid solution in which spent fuels are dissolved, to dissolve a portion of uranium in the nitric acid solution. The residual uranium, plutonium and fission products are made into complexes of carboxylic acid ions and precipitated. The precipitated complexes of carboxylic acid ions are brought into contact with a different nitric acid solution to recover the uranium, plutonium and fission products. The concentration of the carbonate in the nitric acid solution in which uranium is partially dissolved is determined in accordance with the plutonium/uranium ratio based on the relation between the saturation concentration of uranium to the concentration of carbonate in the nitric acid solution. (T.M.)

  13. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  14. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production......Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  15. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  16. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  17. Reduce, reuse and recycle

    CSIR Research Space (South Africa)

    Afrika, M

    2010-10-01

    Full Text Available The adoption of the internationally accepted waste management hierarchy (Sakai et al, 1996) into South African policy has changed the focus from “end of pipe” waste management towards waste minimisation (reuse, recycling and cleaner production...

  18. Recycle or pollute?

    NARCIS (Netherlands)

    Guiking, F.C.T.

    1994-01-01

    When growing oil palms, quantities of crop residues are high, which means that recycling is laborious and options to absorb these byproducts are easily saturated. Burning or composting may have harmful environmental effects

  19. Spent fuel receipt scenarios study

    Energy Technology Data Exchange (ETDEWEB)

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  20. Developments in spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, R.A. [USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States)

    1995-04-01

    The author gives a brief review of the his efforts to negotiate a site for monitored retrieval storage (MRS) of spent fuels in 1994. His efforts were centered on finding a voluntary host for the MRS site. He found politician were not opposed but did not want to make it a campaign issue during 1994. The author and his office came to the conclusion that to find a site voluntarily, the project would have to be an economic opportunity for the region.

  1. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  2. Recycling of nonmetallics

    Science.gov (United States)

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  3. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  4. Approaching Moisture Recycling Governance

    Science.gov (United States)

    Keys, Patrick; Wang-Erlandsson, Lan; Gordon, Line; Galaz, Victor; Ebbesson, Jonas

    2017-04-01

    The spatial and temporal dynamics of water resources are a continuous challenge for effective and sustainable national and international governance. Despite the surface watershed being the typical unit of water management, recent advances in hydrology have revealed 'atmospheric watersheds' - otherwise known as precipitationsheds. Also, recent research has demonstrated that water flowing within a precipitationshed may be modified by land-use change in one location, while the effect of this modification could be felt in a different province, nation, or continent. Notwithstanding these insights, the major legal and institutional implications of modifying moisture recycling have remained unexplored. In this presentation, we examine potential approaches to moisture recycling governance. We first identify a set of international study regions, and then develop a typology of moisture recycling relationships within these regions ranging from bilateral moisture exchange to more complex networks. This enables us to classify different types of legal and institutional governance principles. Likewise, we relate the moisture recycling types to existing land and water governance frameworks and management practices. The complexity of moisture recycling means institutional fit will be difficult to generalize for all moisture recycling relationships, but our typology allows the identification of characteristics that make effective governance of these normally ignored water flows more tenable.

  5. A influência do jateamento na cimentação de bandas ortodônticas The effect of sandblasting in band cementation

    Directory of Open Access Journals (Sweden)

    Felipe Weissheimer

    2006-06-01

    Full Text Available OBJETIVO: comparar a resistência ao cisalhamento de cinco materiais utilizados na cimentação de bandas ortodônticas: um cimento de ionômero de vidro convencional (Ketac Cem, dois cimentos de ionômero de vidro modificados por resina (3M Multicure Glass Ionomer Cement e Fuji Ortho LC e duas resinas compostas modificadas por poliácidos (Ultra Band-Lok e Transbond Plus. METODOLOGIA: sobre a superfície de um segmento de banda (6 x 6mm foi posicionada uma matriz com um orifício de 3mm de diâmetro na qual foi inserido o material para cimentação. Metade da amostra foi jateada com partículas de óxido de alumínio. Os corpos-de-prova foram armazenados a 37ºC por 24 horas em umidade relativa de 100% e submetidos ao teste de cisalhamento a uma velocidade de 0,5mm/min. Utilizou-se ANOVA e o teste de comparações múltiplas de Tukey para comparar os grupos em cada tipo de superfície estudada (com ou sem jateamento, e o teste t Student para amostras pareadas para a comparação dos grupos jateados e não-jateados (p=0,01. RESULTADOS: nos grupos não-jateados, Ultra Band-Lok apresentou uma resistência de união significativamente maior (pAIM: to compare the shear-peel bond strength of five orthodontic cements: a conventional glass ionomer cement (Ketac Cem, two resin-modified glass ionomer cements (3M Multicure Glass Ionomer and Fuji Ortho LC and two polyacid-modified composite resin cement (Ultra Band-Lok and Transbond Plus. METHODS: cements were placed in a 3mm diameter mold at bonding interface and bonded to 6 x 6mm standard and sandblasted stainless steel band specimens mounted to acrylic blocks. Specimens were stored at 37ºC and 100% relative humidity for 24 hours and debonded in tension on a testing machine at 0.05cm/minutes. Data were analyzed by one-way analysis of variance (ANOVA followed by a Tukey multiple comparison procedure in the same surface treatment groups (sandblasted or non-sandblasted and by paired t-tests in different

  6. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation

    Science.gov (United States)

    Wang, Hong-Yuan; Zhu, Rui-Fu; Lu, Yu-Peng; Xiao, Gui-Yong; Ma, Xiao-Ni; Li, Ying

    2013-10-01

    Sandblasting is the most ordinary approach not only to leave the treated regions in compressive residual stress states but also to alter the surface topography of an implant, and micro-arc oxidation (MAO) provides a novelly effective way to produce porous, adhesive and bioactive implant coatings. In this study, ceramic coatings containing Ca and P elements were deposited on the sandblasted pure titanium substrates through the MAO process, and the bioactive performance of the coatings was improved. In addition, the variation of morphology and microstructure, phase and element composition of the coatings according to treating time and related properties were characterized and analyzed, respectively. It was indicated that the hybrid-treated coatings exhibited better properties than that by MAO method, especially in hydroxyapatite (HA) inducing ability, as evidenced by characterization test and HA formation after simulated body fluid (SBF) immersion for days. The enhancement of modified surface was attributed to the combination of the physical and electrochemical treatments.

  7. Spent fuel data for waste storage programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  8. Recycling MgO-C refractory in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, A.N. [Metallurgy Department, Morelia Technological Institute, Morelia (Mexico); Lule, R.G.; Lopez, F. [Process Engineering Department-Steelmaking Shop, Lazaro Cardenas City (Mexico); Rodriguez, R. [Refractories Department, Lazaro Cardenas City (Mexico)

    2006-11-15

    MgO-C refractory recycling from electric arc furnaces and ladle furnaces has been carried out during the melting of direct reduced iron (DRI). Metallurgical trials to define the effects of refractory recycling on energy consumption, melting time, flux consumption and refractory consumption are reported in this work. The method of preparation as well as the method of injection is also included in this study. Based on current results, the practice of recycling spent refractory is highly recommended. Visual inspection indicates the potential benefits in slag foaming which starts to form at the beginning of the heat thus allowing the use of full power transformer and in turn results in faster melting rates. (author)

  9. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4.

    Science.gov (United States)

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; Sawase, Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment were used as controls. After resin composite veneer placement and 24-h water immersion, the shear bond strengths of the specimens in descending order were: sand/SH-etchant/MDP-primer, sand/SH-etchant/no primer, no sand/SH-etchant/MDP-primer, sand/no etch/MDP-primer, no sand/SH-etchant/no primer, sand/no etch/no primer, no sand/no etch/MDP-primer, no sand/no etch/no primer. Scanning electron microscope observations revealed that sandblasting and SH-etchant created many micro- and nanoscale cavities on the titanium surface. Results showed that a combined use of sandblasting, SH-etchant, and MDP-primer application had a cooperative effect on titanium bonding.

  10. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization.

    Science.gov (United States)

    Higashi, Mami; Matsumoto, Mariko; Kawaguchi, Asuka; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of sandblasting and silanization on resin cement bond strengths to CAD/CAM resin blocks. Twenty four blocks (KATANA AVENCIA BLOCK) were divided into two resin cement groups (PANAVIA V5 [PV5] and PANAVIA SA CEMENT HANDMIX [PSA]), and further divided into four subgroups representing different surface treatment methods: no treatment (Ctl), silanization (Si), sandblasting (Sb), and Sb+Si. After resin application, microtensile bond strengths (μTBSs) were measured immediately, 1, 3 and 6 months after water storage. In addition, surfaces resulting from each of the treatment methods were analyzed by scanning electron microscopy (SEM). Three-way analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=370), 'resin cement' (p<0.001, F=103, PSAsandblasting roughened surfaces.

  11. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Effect of Carbon Dioxide (CO2) Laser on Sandblasting with Large Grit and Acid Etching (SLA) Surface.

    Science.gov (United States)

    Foroutan, Tahereh; Ayoubian, Nader

    2013-01-01

    The purpose of this study was to investigate the effect of 6W power Carbon Dioxide Laser (CO2) on the biologic compatibility of the Sandblasting with large grit and acid etching (SLA) titanium discs through studying of the Sarcoma Osteogenic (SaOS-2) human osteoblast-like cells viability. Sterilized titanium discs were used together with SaOS-2 human osteoblast-like cells. 6 sterilized SLA titanium discs of the experimental group were exposed to irradiation by CO2 laser with a power of 6W and 10.600nm wavelength, at fixed frequency of 80Hz during 45 seconds in both pulse and non-contact settings. SaOS-2 human osteoblast-like cells were incubated under 37°C in humid atmosphere (95% weather, 5% CO2) for 72 hours. MTT test was performed to measure the ratio level of cellular proliferation. The results indicated that at 570nm wavelength, the 6W CO2 laser power have not affected the cellular viability. CO2 laser in 6w power has had no effect on the biologic compatibility of the SLA titanium surface.

  13. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  14. Fermentation applications of brewer' s spent grain%啤酒糟发酵应用

    Institute of Scientific and Technical Information of China (English)

    邹正; 陈力力; 王雅君; 廖杰琼

    2011-01-01

    啤酒糟是微生物发酵的良好基质,利用微生物发酵啤酒糟的用途非常广泛.啤酒糟的再利用,有利于保护生态环境和节约资源.综述了近年来国内外啤酒糟在酶制剂、动物饲料、活性物质、食品添加剂方面的发酵应用.%Brewer's spent grain was good resource for microorganism fermentation, which was widely utilized. Recycling brewer's spent grain was good for protecting ecological environment and saving resources. The applications of brewer's spent grain in enzyme preparation, animal feed, active substances and food additives from home and abroad were summarized.

  15. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  16. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  17. Recycling as moral behaviour

    DEFF Research Database (Denmark)

    Thøgersen, John

    of Reasoned Action (TRA) with regard to understanding recycling behaviour. Further, examples of misleading policy conclusions are discussed suggested that within the framework of cognitive psychology, Schwartz's model of altruistic behaviour offers a more satisfying starting point for understanding recycling......It is argued in this paper that in the affluent, industrial societies, environmental behaviours like recycling are typically classified within ""the domain of morality"" in people's minds. Intentions regarding these types of behaviours are not ba a thorough - conscious or unconscious - calculation...... of the balance of costs and benefits. Rather, they are a function of the person's moral beliefs, i.e., beliefs in what is the right or wrong thing to do. The paper gives a brief review of the literature with the intention of uncovering problems and shortcomings in the framework of the SEU-model and the Theory...

  18. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  19. Business Plan: Paper Recycling Plant

    OpenAIRE

    Ali, Muhammad; Askari, Sana; Salman, Muhammad; Askari, Sheba

    2008-01-01

    This Business Plan was written for Business Plan competition organized by Ministry of Youth Affairs Government of Pakistan. It explains the paper recycling business, its pros and cons, cost of paper recycling, plant options and feasibility.

  20. Vanadium recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  1. Economical aspects of multiple plutonium and uranium recycling in VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N.; Bobrov, E.A.; Dudnikov, A.A.; Teplov, P.S. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    The basic strategy of Russian Nuclear Energy development is the formation of the closed fuel cycle based on fast breeder and thermal reactors, as well as the solution of problems of spent nuclear fuel accumulation and availability of resources. Three options of multiple Pu and U recycling in VVER reactors are considered in this work. Comparison of MOX and REMIX fuel recycling approaches for the closed fuel cycle involving thermal reactors is presented. REMIX fuel is supposed to be fabricated from non-separated mixture of uranium and plutonium obtained in spent fuel reprocessing with further makeup by enriched U. These options make it possible to recycle several times the total amount of Pu and U obtained from spent fuel. The main difference is the full or partial fuel loading of the core by assemblies with recycled Pu. The third option presents the concept of heterogeneous arrangement of fuel pins made of enriched uranium and MOX in one fuel assembly. It should be noted that fabrication of all fuel assemblies with Pu requires the use of expensive manufacturing technology. These three options of core loading can be balanced with respect to maximum Pu and U involvement in the fuel cycle. Various physical and economical aspects of Pu and U multiple recycling for selected options are considered in this work.

  2. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  3. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  4. Preparation and performance of two new chelants for recycling Co(Ⅱ) from spent Li-ion batteries%用于回收废旧锂离子电池中Co(Ⅱ)的2种新型螯合剂的制备及其性能

    Institute of Scientific and Technical Information of China (English)

    湛雪辉; 周随安; 曹芬; 李侠; 李飞

    2011-01-01

    以对甲基苯硫酚为原料,通过硝化、还原、重氮化等一系列反应合成4-甲基-2-羟基硫酚(A).考察重氮化过程中NaNO2的用量、硫酸浓度、反应温度以及水解时硫酸浓度对产率的影响.在最佳影响因素下得到最高产率71.2%.通过氯磺化、还原以及最佳反应条件合成含有邻羟基苯硫酚的螯合树脂(B).使用傅里叶红外光谱表征4-甲基-2-羟基硫酚与螯合树脂.在废旧锂离子电池浸出液中进行分批实验考察4-甲基-2-羟基硫酚与螯合树脂的性能,并且使用HCI溶液提取所螯合的Co2+.研究结果表明:螯合树脂显示良好的可循环性.%4-methyl-2-hydroxythiophenol(A) was synthesized by nitration, reduction and diazotization of p-thiophenol. The influence of dosage of NaNO2, concentration of sulfuric acid, temperature and concentration of H2SO4 in hydrolysis reaction on the yield of 4-methyl-2-hydroxythiophenol was studied. A high yield (71.2%) was achieved under the optimal reaction conditions. And a new chelating resin (B) containing o-hydroxythiophenol was synthesized through chlorosulfonation, reduction and the optimal reactions above. The FT-IR was used to identify the formation of 4-methyl-2-hydroxythiophenol and chelating resin. The adsorption performance of 4-methyl-2-hydroxythiophenol and chelating resin was processed in batch solution which was generated by leaching from LiCoO2, and finally Co2+ was eluted from chelant with HC1 solution. Chelating resin displays good recyclability.

  5. Fermentation to ethanol of pentose-containing spent sulphite liquor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Wayman, M.; Parekh, S.K.

    1987-06-01

    Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem. By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose:xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates. (Refs. 6).

  6. Fermentation to ethanol of pentose-containing spent sulfite liquor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Wayman, M.; Parekh, S.K.

    1987-01-01

    Ethanolic fermentation of spent sulfite liquor with ordinary bakers' yeast is incomplete because of this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem. By using the yeast Candida shehatae (R) for fermentation of the spent sulfite liquor from a large Canadian alcohol-producing sulfite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose:xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached over 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly.

  7. Preparation of Potassium Ferrate from Spent Steel Pickling Liquid

    Directory of Open Access Journals (Sweden)

    Yu-Ling Wei

    2015-09-01

    Full Text Available Potassium ferrate (K2FeO4 is a multi-functional green reagent for water treatment with considerable combined effectiveness in oxidization, disinfection, coagulation, sterilization, adsorption, and deodorization, producing environment friendly Fe(III end-products during the reactions. This study uses a simple method to lower Fe(VI preparation cost by recycling iron from a spent steel pickling liquid as an iron source for preparing potassium ferrate with a wet oxidation method. The recycled iron is in powder form of ferrous (93% and ferric chlorides (7%, as determined by X-ray Absorption Near Edge Spectrum (XANES simulation. The synthesis method involves three steps, namely, oxidation of ferrous/ferric ions to form ferrate with NaOCl under alkaline conditions, substitution of sodium with potassium to form potassium ferrate, and continuously washing impurities with various organic solvents off the in-house ferrate. Characterization of the in-house product with various instruments, such as scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, X-ray diffraction (XRD, and X-ray absorption spectroscopy (XAS, proves that product quality and purity are comparative to a commercialized one. Methylene blue (MB de-colorization tests with in-house potassium ferrate shows that, within 30 min, almost all MB molecules are de-colorized at a Fe/carbon mole ratio of 2/1.

  8. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  9. Recycled Insect Models

    Science.gov (United States)

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  10. What does time spent on searching indicate?

    DEFF Research Database (Denmark)

    Borlund, Pia; Jensen, Sabine Dreier Elgaard; Byström, Katriina

    2012-01-01

    . This phenomenon of time spent is interesting from an IR evaluation point of view with reference to how time spent is to be interpreted. A comparison of time spent between a semi-lab interactive IR (IIR) study using simulated work task situations and a naturalistic IIR study is presented. The findings...... of this comparison are further related to a study on information searching and seeking in the real work environment that provides a resonance board for the reported IIR studies. The main conclusion is that time spent searching depends not only on interest, but also on circumstances such as prior knowledge...

  11. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4

    OpenAIRE

    Egoshi, Takafumi; Taira, Yohsuke; Soeno, Kohyoh; SAWASE Takashi

    2013-01-01

    This study investigated the effects of surface treatments on the bond strength of a resin composite to a commercially pure titanium. The bonding surfaces of all titanium specimens were ground with 1,000-grit silicon carbide paper and then subjected to one or more of these surface treatments: sandblasting with alumina (sand), etching with 45wt% H2SO4 and 15wt% HCl (SH-etchant) at 70°C for 10 min, and/or phosphate primer (MDP-primer) application. Specimens not subjected to any surface treatment...

  12. Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

    OpenAIRE

    2011-01-01

    Purpose The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy ...

  13. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  14. Recycling, Canadian update

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, V. I. [Process Research ORTECH Inc., Mississauga, ON (Canada); Shaw, L. [Canadian Association of Recycling Industries, Almonte, ON (Canada)

    2001-07-01

    An update on the recycling industry in Canada is provided by way of selected examples involving the recovery of gallium from electronic scrap, magnesium recovery from mine tailings and energy recovery from metal industry processes. These examples have been selected to illustrate the synergy between major mining, metallurgical and utility industries with end users in the building materials, automotive and electronic industries. 1 tab., 1 fig.

  15. Recycling of merchant ships

    Directory of Open Access Journals (Sweden)

    Magdalena Klopott

    2013-12-01

    Full Text Available The article briefly outlines the issues concerning ship recycling. It highlights ships' high value as sources of steel scrap and non-ferrous metals, without omitting the fact that they also contain a range of hazardous substances. Moreover, the article also focuses on basic ship demolition methods and their environmental impact, as well as emphasizes the importance of “design for ship recycling” philosophy.

  16. Inspection of state of spent fuel elements stored in RA reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Bulkin, S.Yu.; Sokolov, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Matausek, M.V.; Vukadin, Z. [VINCA Institute of Nuclear Science, Belgrade (Yugoslavia)

    1999-07-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has recently been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  17. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process

    Science.gov (United States)

    Li, Li; Zhai, Longyu; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil

    2014-09-01

    The anticipated significant use of lithium-ion batteries (LIBs) for energy storage applications in electric grid modernization and vehicle electrification shall generate a large quantity of solid waste that could become potential environmental hazards and waste natural resources. Recycling of the major components from spent LIBs is, therefore, considered desirable to prevent environmental pollution and to recycle valuable metals. This study reports on the application of ultrasonic-assisted technology to the leaching of cobalt and lithium from the cathode active materials of spent LIBs. Three acids were tested for the leaching process: two inorganic acids (H2SO4 and HCl) and one organic acid (citric acid, C6H8O7·H2O). The results show that the leaching of Co and Li is more efficient with citric acid than with the two inorganic acids. More than 96% Co and nearly 100% Li were recovered from spent LIBs. The optimal leaching conditions were 0.5 M citric acid with 0.55 M H2O2, a solid-to-liquid ratio of 25 g L-1, a temperature of 60 °C, leaching time of 5 h, and ultrasonic power of 90 W. The high leaching efficiency is mainly ascribed to the unique cavitation action of the ultrasonic waves. This ultrasonic-assisted leaching process with organic acid is not only effective but also environmentally friendly.

  18. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Science.gov (United States)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H 2SO 4 solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO 2 positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up.

  19. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  20. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2015-12-01

    Cathode materials are difficult to separate from Al-foil substrates during the recycling of spent lithium-ion batteries (LIBs), because of the strong bonding force present. In this study, ultrasonic cleaning was used to separate and recycle these cathode materials. The mechanism of separation was ascribed to the dissolution of polyvinylidene fluoride (PVDF) and the cavitation caused by ultrasound. Based on this mechanism, the key parameters affecting the peel-off efficiency of cathode materials from Al foil was identified as solvent nature, temperature, ultrasonic power, and ultrasonic time. The peel-off efficiency of cathode materials achieved ∼ 99% under the optimized conditions of N-methyl-2-pyrrolidone (NMP) cleaning fluid, 70°C process temperature, 240 W ultrasonic power, and 90 min of ultrasonication. The cathode materials separated from Al foil displayed a low agglomeration degree, which is beneficial to the subsequent leaching process. Finally, a new, environmentally-sound process was proposed to efficiently recycle cathode materials and Al from spent LIBs, consisting of manual dismantling, ultrasonic cleaning, and picking.

  1. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries

    Science.gov (United States)

    Li, Li; Lu, Jun; Ren, Yang; Zhang, Xiao Xiao; Chen, Ren Jie; Wu, Feng; Amine, Khalil

    2012-11-01

    Recycling of the major components from spent Li-ion batteries (LIBs) is considered desirable to prevent environmental pollution and recycle valuable metals. The present work investigates a novel process for recovering Co and Li from the cathode materials (containing LiCoO2 and Al) by a combination of ultrasonic washing, calcination, and organic acid leaching. Copper can also be recovered from the anode materials after they are manually separated from the cathode. Ascorbic acid is chosen as both leaching reagent and reducing agent to improve the Co recovery efficiency. Leaching efficiencies as high as 94.8% for Co and 98.5% for Li are achieved with a 1.25 mol L-1 ascorbic acid solution, leaching temperature of 70 °C, leaching time of 20 min, and solid-to-liquid ratio of 25 gL-1. The acid leaching reaction mechanism has been preliminarily studied based on the structure of ascorbic acid. This method is shown to offer an efficient way to recycle valuable materials from spent LIBs, and it can be scaled up for commercial application.

  2. Fracture mechanics of polymer mortar made with recycled raw materials

    Directory of Open Access Journals (Sweden)

    Marco Antonio Godoy Jurumenha

    2010-12-01

    Full Text Available The aim of this work is to show that industrial residues could be used in construction applications so that production costs as well as environmental protection can be improved. The fracture properties of polymer mortar manufactured with recycled materials are investigated to evaluate the materials behaviour to crack propagation. The residues used in this work were spent sand from foundry industry as aggregate, unsaturated polyester resin from polyethylene terephthalate (PET as matrix and polyester textile fibres from garment industry, producing an unique composite material fully from recycled components with low cost. The substitution of fresh by used foundry sand and the insertions of textile fibres contribute to a less brittle behaviour of polymer mortar.

  3. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  4. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  5. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: juan.luis.francois@gmail.com; Guzman, J.R. [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico)], E-mail: maestro_juan_rafael@hotmail.com; Martin-del-Campo, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: cecilia.martin.del.campo@gmail.com

    2009-10-15

    In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.

  6. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  7. Emulsified industrial oils recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  8. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  9. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  10. Depression Common After Time Spent in ICU

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160482.html Depression Common After Time Spent in ICU About one- ... of former intensive care unit (ICU) patients have depression, a new review finds. Each year, more than ...

  11. Biodegradation of hydrocarbons exploiting spent substrate from ...

    African Journals Online (AJOL)

    The production of edible mushrooms generates spent mushroom substrate that ... specific enzymatic lacasses, manganese peroxidases, versatile peroxidases, ... nitrogen and 0.3% phosphorus) and bioaugmentation of the microorganisms of ...

  12. Spent fuel storage requirements 1993--2040

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  13. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  14. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  15. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... recycling has been recognised as a backbone of circular economy, with constant measures and initiatives being proposed in order to increase the recycling rates of materials being consumed. Material cycles are complex and dynamic systems where chemicals are added and removed in production, manufacturing...

  16. The conceptual analysis of MBA and KMP for advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yoon; Ko, Won Il; Ha, Jang Ho; Kim, Ho Dong; Koo, Dae Seo [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    This report describes the concept of dry reprocessing of molten salt which is proposed as nuclear fuel cycle with nuclear proliferation resistance. These basic researches in Japan, U. S., Russia are in progress, and Republic of Korea is performing basic research of metallic conversion fabrication of molten salt of uranium dioxide fuels through nuclear research project. In this report, we have performed conceptual analysis and establishment of MBA and KMP for nuclear material safeguards in order to accomplish metallic conversion research of molten salt of uranium dioxide fuels. This report will contribute to the implementation of nuclear material safeguards of advanced spent fuel management process, and also the usage of basic data of nuclear material safeguards for spent fuel recycling process of native country. 11 refs., 17 figs., 8 tabs. (Author)

  17. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans.

    Science.gov (United States)

    Cerruti, C; Curutchet, G; Donati, E

    1998-07-16

    In this study, the production of sulphuric acid in bioreactors with Thiobacillus ferrooxidans attached on elemental sulphur was investigated. These bioreactors reached a maximum H+ productivity of 80 mmol kg-1 d-1 of support. This medium was used for the indirect dissolution of spent nickel-cadmium batteries recovering after 93 days 100% of cadmium, 96.5% of nickel and 95.0% of iron. Moreover, recoveries higher than 90.0% were reached when anodic and cathodic materials were directly added to Thiobacillus ferrooxidans cultures with sulphur as the sole energy source. The results presented show an economic and effective method which could be considered the first step to recycle spent and and discarded batteries preventing one of the many problems of environmental pollution.

  18. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  19. Design by recycling

    Energy Technology Data Exchange (ETDEWEB)

    Catalli, V. [By Design Consultants, Ottawa, ON (Canada)

    2001-07-01

    A 'cradle to cradle' concept of building materials' lifecycle is presented in an effort to highlight the advantages of designing buildings in such a way as to ensure sound waste management strategies and practices, facilitate future renovation and demolition by reducing the generation of wastes, and allow for individual materials to be reused and recycled for use in new projects or products, continuing their lifecycle by diverting them from landfill. Some techniques to achieve these objectives include (1) avoidance of concealed, fixed connections, (2) use of reversible type connections, (3) use of materials that have an inherent finish, (4) use of simplified assemblies and modular materials. Examples of 'design for recycling' are cited, including Ottawa's Grace Hospital for the waste management program developed for use during its demolition, and the Mountain Equipment Co-Op for various features such as exposed timber posts with bolted connections, removable interior partitions with inherent finishes and exposed removable light and electrical fixtures. tabs., figs.

  20. Regeneration and treatment of sulfidic spent caustic using analytic hierarchy process

    Directory of Open Access Journals (Sweden)

    Asadollah Karimi

    2016-10-01

    Full Text Available Background: Sulfur compounds must be removed from petroleum because they contribute to environmental pollution. A strong alkaline solution such as caustic soda is used to remove these compounds. This spent caustic has high values for chemical oxygen demand (COD concentration, pH and total sulfur. In this study, the regeneration and treatment methodology of sulfidic spent caustic was investigated by applying the analytic hierarchy process (AHP. Methods: The evaluation index system developed was based on group decision-improved AHP. Expert Choice software was used to simplify decision-making when choosing a practical method and prioritizing treatment of spent caustic. Cost, environmental considerations, availability and scale-up were chosen as criteria and wet air oxidation and biological and catalytic methods were selected as alternative methods. The treatment and regeneration of spent caustic was carried out in a batch bubble column reactor loaded with IVKAZ catalyst and the effluent was treated in a precipitation-stirred tank reactor. Results: Evaluation indicated that cost ranked first among criteria at 40.9%. The results showed that the proposed process produced about 13% (wt of caustic, 50 g/L of COD and 36 g/L of S2-. Conclusion: The results indicate that the catalytic method was more effective (0.45 than wet air oxidation and the biological method. This process regenerated more than 85% of initial caustic and the economy of the process improved by the recycling of the stream of caustic.

  1. LWR fuel recycle program quarterly progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Jarrett, J.H. (comp.)

    1977-08-01

    The LWR Fuel Recycle Program is designed to provide information needed by industry to close the back end of the commercial light water reactor (LWR) fuel cycle. Included in this program are activities in support of specific design studies as well as activities with more general application to fuel recycle technology: economic and environmental studies; spent fuel receipt and storage; head-end processes; off-gas treatment; purex process (solvent extraction); finishing processes; waste management; environmental effects; and general support. 11 figures, 7 tables. (DLC)

  2. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  3. Collection of Recyclables from Cubes

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Bogh, Morten Bie; Mikkelsen, Hardy

    2014-01-01

    Collection of recyclable materials is a major part of reverse logistics and an important issue in sustainable logistics. In this paper we consider a case study where paper and glass are collected from recycling cubes and transported to a treatment facility where it is processed for reuse. We anal...

  4. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  5. Making sense of plastics recycling

    NARCIS (Netherlands)

    Van Bruggen, E.; Koster, R.P.; Rageart, K.; Cardon, L.; Moerman, M.; Blessing, E.

    2012-01-01

    Major benefits of plastics recycling are reduced depletion of non-renewable resources and reduction of world-wide waste. Traditional thermo-mechanical recycling causes reduction of mechanical properties for most thermoplastics. Down-cycled materials may nevertheless be suited for certain useful appl

  6. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    Recycling of paper and glass from household waste is an integrated part of waste management in Denmark, however, increased recycling is a legislative target. The questions are: how much more can the recycling rate be increased through improvements of collection schemes when organisational...... and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  7. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...... waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  8. Nanodomains in biomembranes with recycling

    CERN Document Server

    Berger, Mareike; Destainville, Nicolas

    2016-01-01

    Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e. active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains. It includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases at equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that when taking recycling into account, the typical cluster size increases logarithmically with the recycling rate. Using physically realistic model parameters, the predicted two-fold increase due to recycling in living cells is very likely experimentally measurable with the help of super-resolution microscopy.

  9. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling.......Paper and cardboard are produced from pulp derived from plant fibers, primarily wood. Paper and cardboard is used for many different products, such as for packaging material, newsprint and advertisements. Most of these products have very short lifetimes and thus constitute a major fraction of most...

  10. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  11. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries

    Science.gov (United States)

    Hu, Juntao; Zhang, Jialiang; Li, Hongxu; Chen, Yongqiang; Wang, Chengyan

    2017-05-01

    The aim of the paper is to present a promising approach for recycling high value-added metals from the cathode materials of spent LIBs. The synthesis process of NCM cathode material enlightened us to apply reduction roasting to break LiNixCoyMnzO2 into simple compounds or metals. Accordingly, the effect of several factors such as temperature, carbon dosage and roasting time is assessed on the leaching efficiency of valuable metals. The roasted products are analyzed by XRD and SEM-EDS, and the results show that the cathode material after reduction roasting is primarily transformed into Li2CO3, Ni, Co and MnO. However, the solubility of Li2CO3 is relatively low, so carbonated water leaching is used to treat the roasted products. Then the filtrate is evaporated for the preparation of pure Li2CO3, and residue is leached to recycle other metals with H2SO4. The results indicate that, after roasted at 650 °C for 3 h with 19.9% carbon dosage, 84.7% Li is preferentially recovered via carbonated water leaching, and more than 99% Ni, Co and Mn are recycled via acid leaching without adding reductant. Finally, the products of Li2CO3, NiSO4, CoSO4 and MnSO4 are obtained. The process have great potential for industrial-scale recycling from spent LIBs.

  12. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  13. Radiation chemistry in the reprocessing and recycling of spent nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher

    2015-04-01

    The interaction of ionizing radiation with solvent extraction solutions results in the ionization, excitation, and decay to neutral radicals of mainly diluent molecules. These produced reactive species diffuse into the bulk solution to react with solvent extraction ligands. Ligand reactions often result in deleterious effects such as loss in ligand concentration or the production of decomposition products that may also be complexing agents. This often interferes with desired separations. The common radiolysis reactions and their potential effects on solvent extraction are reviewed here.

  14. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn2O4 ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... casing was dismantled and scrap iron, plastic and paper separated. ... residual reduced mass showed that it consisted of several peaks of ZnMn2O4 along with peaks of .... Burri, R. (1999), “The Oxyreducer Technology: A.

  15. Urban water recycling.

    Science.gov (United States)

    Asano, T

    2005-01-01

    Increasing urbanization has resulted in an uneven distribution of population, industries, and water in urban areas; thus, imposing unprecedented pressures on water supplies and water pollution control. These pressures are exacerbated during the periods of drought and climatic uncertainties. The purpose of this paper is to summarize emergence of water reclamation, recycling and reuse as a vital component of sustainable water resources in the context of integrated water resources management in urban and rural areas. Water quality requirements and health and public acceptance issues related to water reuse are also discussed. Reclaimed water is a locally controllable water resource that exists right at the doorstep of the urban environment, where water is needed the most and priced the highest. Closing the water cycle loop not only is technically feasible in agriculture, industries, and municipalities but also makes economic sense. Society no longer has the luxury of using water only once.

  16. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitrostudy

    Directory of Open Access Journals (Sweden)

    Sandeep Kalra

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa. Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy.

  17. Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An In Vivo Study in Rabbit Femur

    Directory of Open Access Journals (Sweden)

    Lory Melin Svanborg

    2014-01-01

    Full Text Available This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone.

  18. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    Science.gov (United States)

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.

  19. Brewer's spent grain: a valuable feedstock for industrial applications.

    Science.gov (United States)

    Mussatto, Solange I

    2014-05-01

    Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas.

  20. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  1. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  2. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  3. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  4. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  5. Spent fuel management of Jose Cabrera NPP

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Zurro, J.E.; Garcia Costilla, M. [Area de Generacion - Unidad Nuclear, Gas Natural Fenosa, Avda. de San Luis, 77, 28033 Madrid (Spain); Lavara Sanz, A. [Division Nuclear, SOCOIN, P. del Club Deportivo, 1 - Edificio 5, 28223 Pozuelo de Alarcon, Madrid (Spain); Martinez Abad, J.E. [Departamento de Residuos de Alta Actividad, ENRESA, C/ Emilio Vargas, 7, 28043 Madrid (Spain)

    2010-07-01

    The definitive shutdown of Jose Cabrera Nuclear Power Plant took place on 30. of April 2006. From this moment, cooperation agreements between ENRESA and GAS NATURAL FENOSA were established to reach, among others objectives, its decommissioning, 3 years after the shutdown of the reactor. In order to accomplish the Spanish nuclear regulation, a spent fuel management plan was developed. This plan determined that the fuel assemblies placed in the spent fuel pool would be managed by means of their storage in an interim installation. For this reason, an Independent Spent Fuel Storage Installation (ISFSI) was built at plant site, pioneer in Spain by its characteristics of design. Different administrative authorizations from the point of view of nuclear safety as well as from the environmental were required for ISFSI licensing process. The transference and storage of spent fuel was carried out using the HI-STORM 100Z Dry Storage System, developed by HOLTEC INTERNATIONAL. This system, designed for the spent fuel storage in casks, supports abnormal and very hard accident conditions. The system has three main components: Storage Cask (HI-STORM), Transfer Cask (HI-TRAC) and Multipurpose Canister (MPC). In addition to this, the system has a specific Transport Cask (HI-STAR) for the future transport out of the Plant. More than 30 Design Modifications to the system and plant were implemented to solve structural problems and to include safety and ALARA improvements. The transfer of the spent fuel and its emplacement in the ISFSI began on January 2009 and finished on September of that year allowing starting the decommissioning process, three years and a half after Jose Cabrera NPP shutdown. (authors)

  6. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  7. Biodiesel Production from Spent Coffee Grounds

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  8. Spent fuel container and a material thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, Motoji; Kikuchi, Masaaki

    1998-12-04

    The material of a vessel for containing spent fuels of the present invention is prepared by compositing boron fibers in a volume rate of about 30% in a metal base of Al-Mg-Si alloy containing 3% of boron. It has characteristics of the maximum strength at break being 1.8 times or more at a room temperature and at 200degC, a neutron transmittance being about 1/4, and a specific gravity being 1/3 or less compared with those of conventional austenite stainless steel to which 6% of boron is added. With such a constitution, spent fuels can be used smoothly. (T.M.)

  9. Spent Nuclear Fuel Transport Reliability Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL

    2016-01-01

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  10. Release of segregated nuclides from spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Tait, J.C. [Atomic Energy Canada Ltd., Pinawa, MB (Canada). Whiteshell Laboratories

    1997-10-01

    The potential release of fission and activation products from spent nuclear fuel into groundwater after container failure in the Swedish deep repository is discussed. Data from studies of fission gas release from representative Swedish BWR fuel are used to estimate the average fission gas release for the spent fuel population. Information from a variety of leaching studies on LWR and CANDU fuel are then reviewed as a basis for estimating the fraction of the inventory of key radionuclides that could be released preferentially (the Instant Release Fraction of IRF) upon failure of the fuel cladding. The uncertainties associated with these estimates are discussed. 33 refs, 6 figs, 3 tabs.

  11. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; Li, Zhen; Wang, Jianlong; Zhao, Zhongwei; Xu, Zhenghe

    2016-11-15

    Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO4 or NiMoO4) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90°C, 0.1wt% SDS, 2.0wt% NaOH and 10ml/gL/S ratio for 4h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO4 is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts.

  12. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  13. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    Science.gov (United States)

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals.

  14. Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling

    Science.gov (United States)

    Berry, Gregory F.

    1991-01-01

    A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.

  15. New approaches to recycling tires

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.

    1991-03-01

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  16. Ship recycling and marine pollution.

    Science.gov (United States)

    Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri

    2010-09-01

    This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community.

  17. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.

  18. Designing and examining e-waste recycling process: methodology and case studies.

    Science.gov (United States)

    Li, Jinhui; He, Xin; Zeng, Xianlai

    2017-03-01

    Increasing concerns on resource depletion and environmental pollution have largely obliged electrical and electronic waste (e-waste) should be tackled in an environmentally sound manner. Recycling process development is regarded as the most effective and fundamental to solve the e-waste problem. Based on global achievements related to e-waste recycling in the past 15 years, we first propose a theory to design an e-waste recycling process, including measuring e-waste recyclability and selection of recycling process. And we summarize the indicators and tools in terms of resource dimension, environmental dimension, and economic dimension, to examine the e-waste recycling process. Using the sophisticated experience and adequate information of e-waste management, spent lithium-ion batteries and waste printed circuit boards are chosen as case studies to implement and verify the proposed method. All the potential theory and obtained results in this work can contribute to future e-waste management toward best available techniques and best environmental practices.

  19. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  20. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  1. Spent Nuclear Fuel Project Technical Databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  2. Spent nuclear fuel rods encapsulated in copper

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, H.D.

    1984-04-01

    Using hot isostatic pressing, spent nuclear fuel rods and other radioactive wastes can be encapsulated in solid copper. The copper capsule which is formed is free of pores and cracks, and is highly resistant to attack by reducing ground waters. Such capsules should contain radioactive materials safely for hundreds of thousands of years in underground storage.

  3. Older peoples' perspectives on time spent alone.

    Science.gov (United States)

    Stanley, Mandy; Richard, Ashley; Williams, Shoshannah

    2017-06-01

    Large amounts of time spent alone by older people have been associated with loneliness and poor mental and physical health. There is a paucity of research, however, that examines time alone from an occupational perspective. In this exploratory study we explored the perspectives of older people on their time spent alone. A qualitative descriptive study design was selected. With the aim of maximising variation, five participants were recruited from retirement villages and seven participants who lived independently in the community. Participants recorded time spent alone in a time diary for three days as priming for a semi-structured in-depth interview. Transcripts were analysed thematically. Three key themes were identified: 'it is a matter of getting some balance'; 'keeping busy'; and 'the nights are the worst'. The study highlights the importance older people place on the need to manage time alone so that it is a positive and nourishing experience and to avoid experiencing extended periods of boredom potentially leading to loneliness. Older people utilise occupations to keep busy and achieve an individually acceptable level of time alone. Enabling older people to balance time spent alone by addressing barriers to participation in the community in addition to finding engaging occupations to occupy time has the potential to prevent boredom, loneliness and improve wellbeing. © 2016 Occupational Therapy Australia.

  4. Reconstruction of Spent Fuel Dissolver Critical Assembly

    Institute of Scientific and Technical Information of China (English)

    LIANG; Shu-hong; ZHU; Qing-fu; ZHOU; Qi; QUAN; Yan-hui; YANG; Li-jun; LUO; Huang-da; LIU; Yang; ZHANG; Wei; ZHOU; Xiao-ping; LIU; Dong-hai

    2015-01-01

    During the twelfth Five-Year period,Reactor Physics Laboratory has taken on the research item about spent fuel dissolver critical experiment in nuclear power development project,which should be accomplished by using the uranium solution nuclear critical safety experiment device.Due to the differences of experimental content

  5. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  6. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  7. Electro Static Precipitator for Spent Wash Application.

    Directory of Open Access Journals (Sweden)

    Mulagala Srinivas Rama Kumar (M.S.Rama Kumar

    2016-05-01

    Full Text Available The distillery sector is major polluting industries in India & world. These units generate large volume of dark brown colored wastewater, which is known as “spent wash”. Liquid wastes from breweries and distilleries possess a characteristically high pollution load and have continued to pose a critical problem of environmental pollution in India and many countries.

  8. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Zweibel, K. (eds.)

    1992-01-01

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  9. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Zweibel, K. [eds.

    1992-10-01

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  10. Numerical Estimation of the Spent Fuel Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilke, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Margraf, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank

  11. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  12. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  13. Physical and economical aspects of Pu multiple recycling on the basis of REMIX reprocessing technology in thermal reactors

    Directory of Open Access Journals (Sweden)

    Teplov Pavel S.

    2016-01-01

    Full Text Available The basic strategy of Russian nuclear energy is propagation of a closed fuel cycle on the basis of fast breeder and thermal reactors, as well as the solution of the spent nuclear fuel accumulation and resource problems. The three variants of multiple Pu and U recycling in Russian pressurized water reactor concept reactors on the basis of REgenerated MIXture of U, Pu oxides (REMIX reprocessing technology are considered in this work. The REMIX fuel is fabricated from an unseparated mixture of uranium and plutonium obtained during spent fuel reprocessing with further makeup by enriched natural U or reactor grade Pu. This makes it possible to recycle several times the total amount of Pu obtained from the spent fuel. The main difference in Pu recycling is the concept of 100% or partial fuel loading of the core. The third variant is heterogeneous composition of enriched uranium and uranium–plutonium mixed oxide fuel pins in one fuel assembly. It should be noted that all fuel assemblies with Pu require the involvement of expensive technologies during manufacturing. These three variants of the full core loadings can be balanced on zero Pu accumulation in the cycle. The various physical and economical aspects of Pu and U multiple recycling in selected variants are observed in the given work.

  14. A combined recovery process of metals in spent lithium-ion batteries.

    Science.gov (United States)

    Li, Jinhui; Shi, Pixing; Wang, Zefeng; Chen, Yao; Chang, Chein-Chi

    2009-11-01

    This work proposes a new process of recovering Co from spent Li-ion batteries (LIBs) by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonic washing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution. Spent LIBs were crushed with a 12 mm aperture screen, and the undersize products were put into an ultrasonic washing container to separate electrode materials from their support substrate. The washed materials were filtered through a 2mm aperture screen to get underflow products, namely recovered electrodes. Ninety two percent of the Co was transferred to the recovered electrodes where Co accounted for 28% of the mass and impurities, including Al, Fe, and Cu, accounted for 2%. The valuable materials left in 2-12 mm products, including Cu, Al, and Fe, were presented as thin sheets, and could be easily separated. The recovered electrodes were leached with 4.0M HCl for 2.0 h, at 80 degrees C, along with concurrent agitation. Ninety seven percent of the Li and 99% of the Co in recovered electrodes could be dissolved. The impurities could be removed at pH 4.5-6.0 with little loss of Co by chemical precipitation. This process is feasible for recycling spent LIBs in scale-up.

  15. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  16. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Prisciandaro, Marina; Medici, Franco; Vegliò, Francesco

    2017-09-01

    The purpose of this work is to describe and review the current status of the recycling technologies of spent NiMH batteries. In the first part of the work, the structure and characterization of NiMH accumulators are introduced followed by the description of the main scientific studies and the industrial processes. Various recycling routes including physical, pyrometallurgical and hydrometallurgical ones are discussed. The hydrometallurgical methods for the recovery of base metals and rare earths are mainly developed on the laboratory and pilot scale. The operating industrial methods are pyrometallurgical ones and are efficient only on the recovery of certain components of spent batteries. In particular fraction rich in nickel and other materials are recovered; instead the rare earths are lost in the slag and must be further refined by hydrometallurgical process to recover them. Considering the actual legislation regarding the disposal of spent batteries and the preservation of raw materials issues, implementations on laboratory scale and plant optimization studies should be conducted in order to overcome the industrial problems of the scale up for the hydrometallurgical processes.

  17. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).

    Science.gov (United States)

    Guo, Yang; Li, Feng; Zhu, Haochen; Li, Guangming; Huang, Juwen; He, Wenzhi

    2016-05-01

    Spent lithium-ion batteries (LIBs) are considered as an important secondary resource for its high contents of valuable components, such as lithium and cobalt. Currently, studies mainly focus on the recycling of cathode electrodes. There are few studies concentrating on the recovery of anode electrodes. In this work, based on the analysis result of high amount of lithium contained in the anode electrode, the acid leaching process was applied to recycle lithium from anode electrodes of spent LIBs. Hydrochloric acid was introduced as leaching reagent, and hydrogen peroxide as reducing agent. Within the range of experiment performed, hydrogen peroxide was found to have little effect on lithium leaching process. The highest leaching recovery of 99.4wt% Li was obtained at leaching temperature of 80°C, 3M hydrochloric acid and S/L ratio of 1:50g/ml for 90min. The graphite configuration with a better crystal structure obtained after the leaching process can also be recycled.

  18. DWPF Recycle Evaporator Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted

  19. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential.

  20. 水力喷砂射流器切割效果数值模拟%Numerical Simulation on Cutting Results of Sandblast Perforation

    Institute of Scientific and Technical Information of China (English)

    李朝阳; 马贵阳; 田丽

    2011-01-01

    为了有效地保持油田的稳产增产,科学工作者提出了用于切割、破岩和清洗的水力喷砂射流技术.它能增加弹道的穿透深度,减少压实伤害,改善压裂效果.因为对水力喷砂射流机理、影响因素研究的不够深入及成本高等因素,在很长一段时间内水力喷砂射流技术未能得到广泛应用.迅速发展的计算机技术与日益成熟的计算流体力学,为水力喷砂器的数值研究提供了可靠途径.采用计算流体力学的方法,利用仿真软件,对不同磨料密度、粒径和喷射速度下的喷砂器工作情况进行了数值研究.切割口处的压力随颗粒直径和射流速度的增加而增加,随粒径的增加而减少.这一研究结果,可为水力喷砂射流器优化方案的研究提供理论基础.%In order to effectively maintain a stable crude oil production, scientific workers put forward a hydraulic sandblasting jet technology for cutting, rock fragmentation and cleaning. It can increase the penetration depth, reduce ballistic compaction damage, and improve the fracturing effect. Due to the factors of superficial study and high cost, it failed to get extensive application over a long period of time. Rapid development of computer technology and increasingly mature computational fluid dynamics for hydraulic provides a reliable way to injection desander numerical study. Using computational fluid dynamics method and simulation software, the different abrasive density, size and jet speed spray desander working conditions were on the numerical researched. Pressure of cutting sewing place increases with particle diameter and jet speed ,but decreases with particle size. It provides the improvement of sandblast Perforation with basis theory.

  1. Time Spent in Indirect Nursing Care

    Science.gov (United States)

    1983-09-01

    WAIl TIME 9 741 5.3 5.3 1000 -.- *; ICTAL 13932 100.0 100.0 VALID CASES 13932 PI SSING CASES 0 18-G °. Table 10 Darnal1 TIME SPENT IN INDIRECT NURSING...91C 4 1668 180C 18.0 67.8 LPN 5 192 29 1 2.1 69.9 91B 91F 91G 6 1452 15.6 15.6 85.5 AIDE 7 762 8.2 8.2 93.7 WARD CLERK 8 582 6.3 6.3 100.0 ICTAL 9282...27o8 94.9 SATURDAY 7 168 5.1 .o1 100.0 ICTAL 3276 100.0 300.0 VALID CASES 3276 MISSING CASES 0 24-C Table 3 ’I" Ft Devens TIME SPENT IN INDIRECT

  2. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  3. Robotic cleaning of a spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Roman, H.T.; Marian, F.A. (PSE and G Research Corp., Newark, NJ (US)); Silverman, E.B.; Barkley, V.P. (ARD Corp., Columbia, MD (US))

    1987-05-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant.

  4. Effects of spent mushroom compost on quality and productivity of ...

    African Journals Online (AJOL)

    Effects of spent mushroom compost on quality and productivity of cucumber ... to determine the effects of spent mushroom compost (SMC), which is a waste product ... processing through a year, on greenhouse cucumber growth as an organic

  5. 77 FR 28406 - Spent Fuel Transportation Risk Assessment

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Spent Fuel Transportation Risk Assessment AGENCY: Nuclear Regulatory Commission. ACTION: Draft... issuing for public comment a draft NUREG, NUREG-2125, ``Spent Fuel Transportation Risk Assessment (SFTRA...): You may access publicly-available documents online in the NRC Library at...

  6. Experience on management of CANDU spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.-Y.; Choi, B.-I.; Yoon, J.-H.; Seo, U.-S. [Korea Hydro and Nuclear Power Co. Ltd., Nuclear Environment Technology Inst. (KHNP/NETEC), Yusung-Gu, Daejeon (Korea, Republic of)

    2002-07-01

    In Korea, national policy on the management of spent fuel from both PWR and CANDU reactors demands that all the spent fuel be kept within reactor site in until 2016 the time spent fuel interim storage facility might open. Based on the end of 2001, KHNP has 4 CANDU reactors in operation generating approximately 5,000 bundles of spent fuels per each unit annually. The generation, accumulation, and management of CANDU spent fuel by KHNP in Korea are reviewed. CANDU spent fuel storage technology including pool storage in fuel building, concrete silo storage, and on going project for consolidating storage adapting modular vault type MACSTOR concept are outlined. Especially current joint development of storage of CANDU spent fuel for improving land usage is addressed. The explanation of the new consolidated dry storage system includes description of the storage facility, its safety evaluations, and final implementation. Finally future movement on management of spent fuel in Korea is also briefly introduced. (author)

  7. Direct reuse of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2014-10-15

    Highlights: • A new design for the PWR assemblies for direct use of spent fuel was proposed. • The PWR spent fuel will be transferred directly (after a certain cooling time) to CANDU reactors. • The proposed assembly has four zircaloy-4 tubes contains a number of CANDU fuel bundles (7 or 8 bundles per tube) stacked end to end. • MCNPX is used for the calculations that showed that the burnup can be increased by about 25%. • Acceptable linear heat generation rate in hot rods and improved Pu proliferation resistance. - Abstract: In this paper we proposed a new design for the PWR fuel assembly for direct use of the PWR spent fuel without processing. The PWR spent fuel will be transferred directly (after a certain cooling time) to CANDU reactors which preferably built in the same site to avoid the problem of transportations. The proposed assembly has four zircaloy-4 tubes contains a number of CANDU fuel bundles (7 or 8 bundles per tube) stacked end to end. Each tube has the same inner diameter of that of CANDU pressure tube. The spaces between the tubes contain low enriched UO{sub 2} fuel rods and guide tubes. MCNPX code is used for the simulation and calculation of the burnup of the proposed assembly. The bundles after the discharge from the PWR with their materials inventories are burned in a CANDU cell after a certain decay time. The results were compared with reference results and the impact of this new design on the uranium utilization improvement and on the proliferation resistance of plutonium is discussed. The effect of this new design on the power peaking, moderator temperature coefficient of reactivity and CANDU coolant void reactivity are discussed as well.

  8. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  9. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  10. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  11. Recycling Expensive Medication: Why Not?

    Science.gov (United States)

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  12. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  13. Conditioning technology of spent radium sources

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, K. J.; Jang, K. D

    2001-03-01

    In order to avoid accidents that could be resulted from improper storage of spent radium sources, it is necessary to condition and store them safely. The program for safe conditioning of spent radium sources by IAEA has been established to assist the developing countries. The main object of this report is to understand well and apply the technology that was applied in conditioning the national inventory of Ra-226 sources in Myanmar, as a part of IAEA's project by the Korean expert team. The report is the result that the Korean expert team carried out in Myanmar under the project title 'Radium Conditioning Service in Myanmar(INT4131-06646C)'. As a result of the mission, a whole inventory, 1,429.5 mCi of spent radium sources was safely conditioned by the Korean expert team according to the manual under the supervision of IAEA's technical officer, Mr. Al-Mughrabi, and under the control of DAE authority. These sources were encapsuled in 27 small capsules and 3 large capsules, and conditioned in 3 lead shields, producing 3 packages. The inventories were distributed into 3 shielding devices, holding 500, 459.5, and 470 mCi.

  14. Report on interim storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  15. Efficient regeneration of partially spent ammonia borane fuel

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin Lee [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Stephens, Frances [Los Alamos National Laboratory; Dixon, David A [UNIV OF ALABAMA; Matus, Myrna H [UNIV OF ALABAMA

    2008-01-01

    A necessary target in realizing a hydrogen (H{sub 2}) economy, especially for the transportation sector, is its storage for controlled delivery, presumably to an energy producing fuel cell. In this vein, the U.S. Department of Energy's (DOE) Centers of Excellence (CoE) in Hydrogen Storage have pursued different methodologies, including metal hydrides, chemical hydrides, and sorbents, for the expressed purpose of supplanting gasoline's current > 300 mile driving range. Chemical hydrogen storage has been dominated by one appealing material, ammonia borane (H{sub 3}B-NH{sub 3}, AB), due to its high gravimetric capacity of hydrogen (19.6 wt %) and low molecular weight (30.7 g mol{sup -1}). In addition, AB has both hydridic and protic moieties, yielding a material from which H2 can be readily released. As such, a number of publications have described H{sub 2} release from amine boranes, yielding various rates depending on the method applied. Even though the viability of any chemical hydrogen storage system is critically dependent on efficient recyclability, reports on the latter subject are sparse, invoke the use of high energy reducing agents, and suffer from low yields. For example, the DOE recently decided to no longer pursue the use of NaBH{sub 4} as a H{sub 2} storage material, in part because of inefficient regeneration. We thus endeavored to find an energy efficient regeneration process for the spent fuel from H{sub 2} depleted AB with a minimum number of steps.

  16. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  17. Recycling dodecylamine intercalated vanadate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Odair P., E-mail: odair@iqm.unicamp.br; Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br; Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.b [Universidade Estadual de Campinas-UNICAMP, LQES - Laboratorio de Quimica do Estado Solido, Instituto de Quimica (Brazil)

    2010-01-15

    In this article, we report the thermal decomposition processes of dodecylamine intercalated vanadate nanotubes and their recycling process. Structural, vibrational, and morphological properties of the annealed samples were investigated by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy, respectively. The data analysis unveiled that vanadate nanotubes (VONTs) decompose into nanoplates which is isostructural to xerogel, and finally to nanoparticle aggregates whose composition is a single V{sub 2}O{sub 5} bulk phase. These aggregates can be successfully recycled for converting the residues of decomposition process into vanadate nanotubes again.

  18. 5 CFR 551.422 - Time spent traveling.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  19. 5 CFR 551.425 - Time spent receiving medical attention.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Time spent receiving medical attention... Relation to Other Activities § 551.425 Time spent receiving medical attention. (a) Time spent waiting for and receiving medical attention for illness or injury shall be considered hours of work if: (1)...

  20. The Recycling Solution: How I Increased Recycling on Dilworth Road

    Science.gov (United States)

    Keller, J. Jacob

    2010-01-01

    The grandson of Fred Keller, one of the founders of behavior analysis, Jacob was 10 years old when he conducted the project for his elementary school science fair. We recently contacted Jacob to learn more about his project. He told us the inspiration came from a class field trip to the county recycling center, which included seeing video footage…

  1. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: characterization, biomechanical analysis and histological evaluation in pigs.

    Science.gov (United States)

    Chiang, Hsi-Jen; Hsu, Heng-Jui; Peng, Pei-Wen; Wu, Ching-Zong; Ou, Keng-Liang; Cheng, Han-Yi; Walinski, Christopher J; Sugiatno, Erwan

    2016-02-01

    The purpose of the present study was to examine early tissue response and osseointegration in the animal model. The surface morphologies of SLAffinity were characterized using scanning electron microscopy and atomic force microscopy. The microstructures were examined by X-ray diffraction, and hardness was measured by nanoindentation. Moreover, the safety and toxicity properties were evaluated using computer-aided programs and cell cytotoxicity assays. In the animal model, implants were installed in the mandibular canine-premolar area of 12 miniature pigs. Each pig received three implants: machine, sandblasted, large grit, acid-etched, and SLAffinity-treated implants. The results showed that surface treatment did affect bone-to-implant contact (BIC) significantly. At 3 weeks, the SLAffinity-treated implants were found to present significantly higher BIC values than the untreated implants. The SLAffinity treatments enhanced osseointegration significantly, especially at early stages of bone tissue healing. As described above, the results of the present study demonstrate that the SLAffinity treatment is a reliable surface modification method. © 2015 Wiley Periodicals, Inc.

  2. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    Directory of Open Access Journals (Sweden)

    Nam-Ho Kim

    2015-01-01

    Full Text Available This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL. After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ values were recorded and vertical bone height (VBH, mm, bone-to-implant contact ratio (BIC, %, and bone volume (BV, % in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm, BIC (%, and BV (% were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration.

  3. Interpretation on Recycling Plastics from Shredder Residue

    Science.gov (United States)

    EPA is considering an interpretation of its regulations that would generally allow for recycling of plastic separated from shredder residue under the conditions described in the Voluntary Procedures for Recycling Plastics from Shredder Residue.

  4. Recycling of used perfluorosulfonic acid membranes

    Science.gov (United States)

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  5. QUALITY AND SHELF LIFE EVALUATION OF NUGGETS PREPARED FROM SPENT DUCK AND SPENT HEN MEAT

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-12-01

    Full Text Available A study was conducted to compare the quality of nuggets prepared from spent hen and duck meat. The cooked nuggets were analyzed for pH, thiobarbituric acid (TBA, tyrosine value (TV, moisture, fat, protein, total plate count (TPC and sensory evaluations. Nuggets prepared from spent hen meat showed significantly higher (p<0.05 moisture content however pH, fat and protein content were significantly higher (p<0.05 in duck nuggets. TBA values, TVs and (TPC were highest in duck nuggets but were within the acceptable level up to 7th day of refrigerated storage (4±1°C in both types of nuggets. Both nuggets maintain their sensory quality up to 7th day of refrigeration storage but spent hen nuggets were preferred by consumers compared to nuggets prepared from spent duck meat. Result of the study indicated that, despite the comparative differences among these nuggets, spent duck and hen meat could be used for preparation of nutritionally rich and acceptable nuggets.

  6. Continental moisture recycling as a Poisson process

    OpenAIRE

    2013-01-01

    On their journey across large land masses, water molecules experience a number of precipitation-evaporation cycles (recycling events). We derive analytically the frequency distributions of recycling events for the water molecules contained in a given air parcel. Given the validity of certain simplifying assumptions, continental moisture recycling is shown to develop either into a Poisson distribution or a geometric distribution. We distinguish two cases: in case (A) recycling events a...

  7. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  8. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  9. Recycling nutrients in algae biorefinery

    NARCIS (Netherlands)

    Garcia Alba, Laura; Vos, M.P.; Torri, C.; Fabbri, D.; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Algal fuel cells: Repeated nutrient recycling is demonstrated by reusing the aqueous phase obtained from the hydrothermal liquefaction (HTL) of microalgae. This is achieved, for the first time, by performing a complete set of four continuous growth–HTL cycles. Results show similar growth rates in

  10. Chemical recycling of scrap composites

    Science.gov (United States)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  11. The chemical recycle of cotton

    Directory of Open Access Journals (Sweden)

    Alice Beyer Schuch

    2016-09-01

    Full Text Available The chemical recycle of cotton textiles and/or other cellulosic materials for the purpose of manufacturing regenerated high quality textiles fibres is a novel process. The objective of related research is based on the forecast of population growth, on resource scarcity predictions, and on the negative environmental impact of the textile industry. These facts lead the need of broadening the scope for long-term textile-to-textile recycle - as the mechanical recycle of natural fibres serve for limited number of cycles, still depends on input of virgin material, and offer a reduced-in-quality output. Critical analysis of scientific papers, relevant related reports, and personal interviews were the base of this study, which shows viable results in laboratorial scale of using low-quality cellulosic materials as input for the development of high-quality regenerated textile fibres though ecological chemical process. Nevertheless, to scale up and implement this innovative recycle method, other peripheral structures are requested, such as recover schemes or appropriate sort, for instance. Further researches should also be considered in regards to colours and impurities.

  12. Sustainability issues in circuit board recycling

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca

    1995-01-01

    The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...... the impacts on the external environment from recycling...

  13. Textile Recycling, Convenience, and the Older Adult.

    Science.gov (United States)

    Domina, Tanya; Koch, Kathryn

    2001-01-01

    Results of a study to examine the recycling practices and needs of older adults (n=217) indicated that older adults do recycle traditional materials, but need accommodations for physical limitations. They report textile recycling as time consuming and difficult and used donations to religious organizations as their principal means of textile…

  14. Recycling in Schools: From Fad to Business.

    Science.gov (United States)

    Porter, J. Winston

    1991-01-01

    Numerous business issues arise when organizing a school recycling program. Important questions include the appropriate program organization, deciding what materials to recycle, the selection of appropriate business partners, and various financial issues. Offers suggestions for achieving a successful recycling program. (MLF)

  15. 78 FR 69531 - America Recycles Day, 2013

    Science.gov (United States)

    2013-11-19

    ... Second World Wars, Americans showed their patriotism by participating in scrap drives and salvage... our health and harm our environment if not recycled properly. Recycling not only reduces pollution... the world around us. In our homes, offices, and schools, let us strive to make recycling a part of...

  16. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Sun, Liang; Qiu, Keqiang

    2011-10-30

    Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO(2) and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600°C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2M sulfuric acid leaching solution at 80°C and solid/liquid ratio of 50 g L(-1) for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  17. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  18. CO2 Sequestration within Spent Oil Shale

    Science.gov (United States)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  19. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  20. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions.

  1. On the Spent Coffee Grounds Biogas Production

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2016-01-01

    Full Text Available Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.

  2. Dynamic Analysis of a Pyroprocessing Coupled SFR Fuel Recycling

    Directory of Open Access Journals (Sweden)

    Fanxing Gao

    2012-01-01

    Full Text Available Numerous studies have attempted to solve the problems constraining the sustainable utilization of nuclear power, for example, the already accumulated HLWs, the worsening environment due to greenhouse emissions, the questionable reliability of natural uranium resources, and the argument over nuclear safety, which are certainly top issues to be addressed. A well-organized nuclear fuel cycle system is the basis for nuclear power sustainability. Therefore, which type of reactor to be employed and whether or not to adopt a reprocessing technique for spent fuel are two key issues to be addressed. A Sodium Fast Reactor (SFR, a Generation IV reactor, has gained considerable attention worldwide. SFR recycling coupled to pyroprocessing, a so-called Pyro-SFR Recycling, shows promising advantages, and therefore, this paper focuses on exploring a strategy of how to realize it, which can offer informative procedures for a better use of nuclear power. A dynamic model has been developed to quantitatively analyze a country-specific case employing two scenarios, a once-through and Pyro-SFR, for a comprehensive comparison, especially focusing on the uranium utilization, the HLW reduction, and the electricity generation cost.

  3. Recycling of Waste Streams of the Biotechnological Poly(hydroxyalkanoate Production by Haloferax mediterranei on Whey

    Directory of Open Access Journals (Sweden)

    Martin Koller

    2015-01-01

    Full Text Available For manufacturing “bioplastics” such as poly(hydroxyalkanoates (PHA, the combination of utilization of inexpensive carbon sources with the application of robust microbial production strains is considered a decisive step to make this process more cost-efficient and sustainable. PHA production based on surplus whey from dairy industry was accomplished by the extremely halophile archaeon Haloferax mediterranei. After fermentative production of PHA-rich biomass and the subsequent cell harvest and downstream processing for PHA recovery, environmentally hazardous, highly saline residues, namely spent fermentation broth and cell debris, remain as residues. These waste streams were used for recycling experiments to assess their recyclability in subsequent production processes. It was demonstrated that spent fermentation broth can be used to replace a considerable part of fresh saline fermentation medium in subsequent production processes. In addition, 29% of the expensive yeast extract, needed as nitrogen and phosphate source for efficient cultivation of the microorganism, can be replaced by cell debris from prior cultivations. The presented study provides strategies to combine the reduction of costs for biomediated PHA production with minimizing ecological risks by recycling precarious waste streams. Overall, the presented work shall contribute to the quick economic success of these promising biomaterials.

  4. Greener routes for recycling of polyethylene terephthalate

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-03-01

    Full Text Available The article reviews the different routes for recycling of polyethylene terephthalate. Chemical recycling processes are divided into six groups: methanolysis, glycolysis, hydrolysis, ammonolysis, aminolysis, and other methods. In a large collection of researches for the chemical recycling of PET, the primary objective is to increase the monomer yield while reducing the reaction time and/or carrying out the reaction under mild conditions. This article also presents the impact of the new recyclable catalysts such as ionic liquids on the future developments in the chemical recycling of PET.

  5. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  6. High Purity Tungsten Spherical Particle Preparation From WC-Co Spent Hard Scrap

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.

  7. The dissolution mechanism of cathodic active materials of spent Zn-Mn batteries in HCl.

    Science.gov (United States)

    Li, Yunqing; Xi, Guoxi

    2005-12-09

    The cathodic active materials of spent Zn-Mn batteries are complicated. The majority materials that they contain are Mn(OH)(2), Mn(2)O(4), lambda-Mn(2)O(2), ZnMn(2)O(4), Zn(NH(3))(2)Cl(2), [Zn(OH)(2)](4).ZnCl(2), etc. Dissolving these kinds of materials is important to the environmental pollution control and materials recycle. In present paper we investigated the dissolution mechanism of the cathodic active materials in HCl by testing the factors that can influence the dissolution procedure, including temperature, time, and the concentration of HCl and H(2)O(2). Our results showed that both neutralization and oxidation-reduction reactions occurred in the dissolution process, and that H(2)O(2) had a great effect on the dissolution efficiency.

  8. Some Problems of Recycling Industrial Materials

    Institute of Scientific and Technical Information of China (English)

    CAI Jiu-ju; LU Zhong-wu; YUE Qiang

    2008-01-01

    The industrial system should learn from the natural ecosystem.The resource utilization efficiency should be increased and the environmental load should be decreased,depending on the materials recycled in the system.The classification of industrial materials from the viewpoint of large-scale recycling was stated.Recycling of materials,on three different levels,was introduced in the industrial system.The metal flow diagram in the life cycle of products,in the case of no materials recycled,materials partially recycled,and materials completely recycled,was given.The natural resource conservation and the waste emission reduction were analyzed under the condition of materials completely recycled.The expressions for the relation between resource efficiency and material recycling rate,and the relation between eco-effieiency and material recycling rate were derived,and the curves describing the relationship between them were protracted.The diagram of iron flow in the life cycle of iron and steel products in China,in 2001,was given,and the iron resource efficiency,material recycling rate,and iron coo-efficiency were analyzed.The variation of iron resource efficiency with the material recycling rate was analyzed for two different production ratios.

  9. Development of Spent Fuel Examination Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Park, K. J.; Shin, H. S. (and others)

    2007-04-15

    For the official operation of ACPF Facility Attachment based on facility declared DIQ was issued by IAEA and officialized upon ROK government approval. This procedure gives an essential ground to negotiate Joint Determination between governments of ROK and US. For ACPF process material accountability a neutron coincidence counting system was developed and calibrated with Cf-252 source. Its performance test demonstrated that over-all counting efficiency was about 21% with random error, 1.5% against calibration source, which found to be satisfactory to the expected design specification. A calibration curve derived by MCNP code with relationship between ASNC doublet counts vs. neutron activity of Cm-244 showed calibration constant to be 2.78x10E5 counts/s.g which would be used for initial ACP hot operation test. Nuclear material transportation and temporary storage system was established for active demonstration of advanced spent fuel management process line and would be directly applied to the effective management of wastes arising from active demonstration and would later contribute as a base data to development of inter hot-cell movement system in pyro-processing line. In addition, an optimal spent fuel for the ACP demonstration was selected and a computer code was developed as a tool to estimate the expected source term at each key measurement point of ACP.

  10. Antineutrino monitoring of spent nuclear fuel

    CERN Document Server

    Brdar, Vedran; Kopp, Joachim

    2016-01-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries world wide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this letter, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to re-verify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in ...

  11. Spent Nuclear Fuel Vibration Integrity Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Jiang, Hao [ORNL; Yan, Yong [ORNL; Bevard, Bruce Balkcom [ORNL

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  12. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  13. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  14. Safety aspects of dry spent fuel storage and spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Botsch, Wolfgang; Smalian, Silva; Hinterding, Peter [TUV NORD EnSys Hannover, GmbH and Co. KG, Hanover (Germany); Volzke, Holger; Wolff, Dietmar; Kasparek, Eva-Maria [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2013-07-01

    As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. TUV and BAM, who work as independent experts for the competent authorities, present the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All safety relevant issues like safe enclosure, shielding, removal of the decay heat or behavior of cask and building under accident conditions are checked and validated with state-of-the-art methods and computer codes before the license approval. It is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  15. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  16. Recyclable and Green Triboelectric Nanogenerator.

    Science.gov (United States)

    Liang, Qijie; Zhang, Qian; Yan, Xiaoqin; Liao, Xinqin; Han, Linhong; Yi, Fang; Ma, Mingyuan; Zhang, Yue

    2017-02-01

    A recyclable and green triboelectronic nanogenerator (TENG) is developed based on triboelectrification and designed cascade reactions. Once triggered by water, the TENG can fully dissolve and degrade into environmentally benign end products. With features of rapid dissolution, reproductivity, and green electronic, the TENG has potential of serving as clearable energy harvester and nanosensor for health monitoring and motion sensing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sorting Techniques for Plastics Recycling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the basic principles of three different types of separating methods and a general guideline for choosing the most effective method for sorting plastic mixtures. It also presents the results of the tests carried out for separation of PVC, ABS and PET from different kinds of plastic mixtures in order to improve the grade of the raw input used in mechanical or feedstock recycling.

  18. Life cycle and textiles recycling

    OpenAIRE

    2011-01-01

    Within the vision of development of European textile and clothing industry for 2020 from the standpoint of the European Technology Platform (ETP), the paper analyzes a segment which includes life cycle and recycling of textiles. It is the fact that the complexity of new textile and clothing product has caused the development of new-higher standards. For this reason in development of highly innovative products, today is included also quality assurance during his whole life cycle starting from ...

  19. Comparison of recycling outcomes in three types of recycling collection units.

    Science.gov (United States)

    Andrews, Ashley; Gregoire, Mary; Rasmussen, Heather; Witowich, Gretchen

    2013-03-01

    Commercial institutions have many factors to consider when implementing an effective recycling program. This study examined the effectiveness of three different types of recycling bins on recycling accuracy by determining the percent weight of recyclable material placed in the recycling bins, comparing the percent weight of recyclable material by type of container used, and examining whether a change in signage increased recycling accuracy. Data were collected over 6 weeks totaling 30 days from 3 different recycling bin types at a Midwest University medical center. Five bin locations for each bin type were used. Bags from these bins were collected, sorted into recyclable and non-recyclable material, and weighed. The percent recyclable material was calculated using these weights. Common contaminates found in the bins were napkins and paper towels, plastic food wrapping, plastic bags, and coffee cups. The results showed a significant difference in percent recyclable material between bin types and bin locations. Bin type 2 was found to have one bin location to be statistically different (p=0.048), which may have been due to lack of a trash bin next to the recycling bin in that location. Bin type 3 had significantly lower percent recyclable material (precycling bin and increased contamination due to the combination of commingled and paper into one bag. There was no significant change in percent recyclable material in recycling bins post signage change. These results suggest a signage change may not be an effective way, when used alone, to increase recycling compliance and accuracy. This study showed two or three-compartment bins located next to a trash bin may be the best bin type for recycling accuracy.

  20. Vitrification of spent ion exchange resin from Korean NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Jiawei [Kyoto University, Osaka (Japan); Choi, Kwan Sik; Yang, Kyung Hwa; Lee, Myung Chan; Song, Myung Jae [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    1999-07-01

    Spent resin is the main wet waste generated by nuclear power plants (NPPs). Vitrification is conceptually attractive because of the potential durability of the final product and the large volume reduction. The vitrification of spent resin from NPPs is examined. There is a large amount of sulfate in spent resin ash. However, the limited solubility of sulfate in glass resulted in the low waste loading of spent resin. High sulfate in glass led to the phase separation. Some well-developed glasses frits have been used to vitrify spent resin from Korean NPPs. The waste loading is less than 5 wt percent of resin ash. Spent resin also was added to the borate waste glasses, 20 g of dry resin could be vitrified in 100 g of borate waste glass without phase separation and final waste from has good durability. (author). 12 refs., 6 tabs.

  1. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  2. Estimation of mercury amount in the components of spent U-type lamp.

    Science.gov (United States)

    Rhee, Seung-Whee

    2016-09-20

    Spent U-type lamps are strongly encouraged to be separately managed in Korea, because U-type lamps are categorized as a household waste and thereby could not be managed properly. Determination of mercury amount in the components of U-type lamp, such as plastics, glass tube and phosphor powder from 3 U-type lamp manufacturers (A, B and C), is carried out to estimate the mercury content in spent U-type lamps. Regardless of lamp manufacturers, the portion of mercury in phosphor powder was higher than 90%, but that in plastics and others was less than 1%. At an air flow rate of 1.0 L/min, the range of the initial mercury concentration in vapor phase for U-type lamp was between 849 and 2076 µg/m(3) from 3 companies. The estimated mercury amount in vapor phase of U-type lamp was in the range from 0.206 mg for company A to 0.593 mg for company B. And the portion of mercury in vapor phase in the total amount of mercury was estimated in the range from 3.0% for company A to 6.7% for company B. Hence, it is desirable to get rid of mercury from phosphor powder in order to perform U-type lamps recycling.

  3. Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries

    Science.gov (United States)

    Veloso, Leonardo Roger Silva; Rodrigues, Luiz Eduardo Oliveira Carmo; Ferreira, Daniel Alvarenga; Magalhães, Fernando Silva; Mansur, Marcelo Borges

    A hydrometallurgical route is proposed in this paper for the selective separation of zinc and manganese from spent alkaline batteries. The recycling route comprises the following steps: (1) batteries dismantling to separate the spent batteries dust from other components (iron scraps, plastic and paper), (2) grinding of the batteries dust to produce a black homogeneous powder, (3) leaching of the powder in two sequential steps, "neutral leaching with water" to separate potassium and produce a KOH solution, followed by an "acidic leaching with sulphuric acid" to remove zinc and manganese from the powder, and (4) selective precipitation of zinc and manganese using the KOH solution (pH around 11) produced in the neutral leaching step. For the acidic leaching step, two alternative routes have been investigated (selective leaching of zinc and total leaching) with regard to the following operational variables: temperature, time, sulphuric acid concentration, hydrogen peroxide concentration and solid/liquid ratio. The results obtained in this study have shown that the proposed route is technically simple, versatile and provides efficient separation of zinc and manganese.

  4. The Concept about the Regeneration of Spent Borohydrides and Used Catalysts from Green Electricity

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Liu

    2015-06-01

    Full Text Available Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4. However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4 and ammonia borane (NH3BH3, in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1 that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2 that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides.

  5. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  6. Characterization plan for Hanford spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  7. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  8. Advanced waste forms from spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  9. Durable titania films for solar treatment of biomethanated spent wash

    Science.gov (United States)

    Akbarzadeh, Rokhsareh; S. Ghole, Vikram; Javadpour, Sirus

    2016-10-01

    The use of TiO2 films for treatment of biomethanated spent wash is reported. The films of TiO2 were formed and photocatalytic performance of the prepared films in degradation of methylene blue and biomethanated spent wash were studied. Photocatalytic use of these films was found to be effective for degradation of biomethanated spent wash. The photocatalyst was used up for 20 cycles without significant reduction in activities showing long life of the catalyst.

  10. Transportation capabilities study of DOE-owned spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  11. Transportation and storage of foreign spent power reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage.

  12. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    Science.gov (United States)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  13. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.

    Science.gov (United States)

    Xiao, Jiefeng; Li, Jia; Xu, Zhengming

    2017-09-15

    The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn2O4) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn2O4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li2CO3) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li2CO3 is leached from roasted powders by water and then high value-added Li2CO3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn3O4) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The recycling industries : a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, L. [CARI, Almonte, ON (Canada); Lakshmanan, V.I. [Ortech International, Mississauga, ON (Canada)

    2000-07-01

    The economic and environmental benefits that the recycling sector has to offer in terms of resource conservation benefits was discussed with particular focus on the synergies that exist between major mining and metallurgical industries and end users. The main objective of recycling is to conserve natural resources, reducing primary process waste as well as air and water effluent generated by these processes. Recycling provides energy conservation, creates jobs and reduces the demand for sanitary landfills. The main concerns that exist within the recycling industry is the government's actions through laws, regulations and taxes which sometimes discourage recycling. The need for the public to become more informed about the benefits of recycling was emphasized. It was also noted that manufacturers should consider the final disposition of a product in their product design and manufacture. 1 tab.

  15. Recyclability of PET from virgin resin

    Directory of Open Access Journals (Sweden)

    Mancini Sandro Donnini

    1999-01-01

    Full Text Available Bottle grade virgin PET (polyethylene terephthalate resin was investigated through five consecutive injection molding steps to simulate recycling cycles. Tests were carried out after each recycling to evaluate degradation, crystallinity (by density and Differential Scanning Calorimetry-DSC measurements, hardness, and tensile and flexural properties. Consecutive recycling resulted in cumulative chain breaks caused by the material's contact with degrading agents such as temperature, oxygen, mechanical stresses, light, and water. In the fifth recycling step, for example, the number of carboxylic end groups, an indicator of the extent of chain-break, tripled in comparison to the initial molecule. The smaller chains that were formed fit more easily among the larger ones, thus increasing the percentage of crystalline phase in the structure. These two changes in the polymer's structure explained the recycled products' final properties, i.e., the injected samples became progressively harder and more fragile in each recycling step.

  16. Spent nuclear fuel project detonation phenomena of hydrogen/oxygen in spent fuel containers

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, T.D.

    1996-09-30

    Movement of Spent N Reactor fuels from the Hanford K Basins near the Columbia River to Dry interim storage facility on the Hanford plateau will require repackaging the fuel in the basins into multi-canister overpacks (MCOs), drying of the fuel, transporting the contained fuel, hot conditioning, and finally interim storage. Each of these functions will be accomplished while the fuel is contained in the MCOs by several mechanisms. The principal source of hydrogenand oxygen within the MCOs is residual water from the vacuum drying and hot conditioning operations. This document assesses the detonation phenomena of hydrogen and oxygen in the spent fuel containers. Several process scenarios have been identified that could generate detonation pressures that exceed the nominal 10 atmosphere design limit ofthe MCOS. Only 42 grams of radiolized water are required to establish this condition.

  17. Carbon Revenue Recycling - Opportunities and Challenges

    OpenAIRE

    Elena Simonova; Rock Lefebvre

    2009-01-01

    Environmental policy instruments that generate budget revenues may become an increasingly attractive policy option for Canada's federal government due to amplified fiscal pressures. If that is the case, revenue recycling is an essential element of pricing carbon. This paper present a brief overview of benefits of recycling carbon revenues and the challenges that may be encountered when choosing a specific option for revenue recycling. The analysis shows that the existing research leaves the o...

  18. Continental moisture recycling as a Poisson process

    OpenAIRE

    2013-01-01

    On their journey over large land masses, water molecules experience a number of precipitation–evaporation cycles (recycling events). We derive analytically the frequency distributions of recycling events for the water molecules contained in a given air parcel. Given the validity of certain simplifying assumptions, the frequency distribution of recycling events is shown to develop either into a Poisson distribution or a geometric distribution. We distingu...

  19. Length sensing and control of a Michelson interferometer with Power Recycling and Twin Signal Recycling cavities

    CERN Document Server

    Gräf, Christian; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2012-01-01

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled. In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michel...

  20. Development of spent fuel remote handling technology - Kinematic analysis of bilateral arms for abnormal spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyu Won; Yoo, Ju Sang; Kim, Jong Yoon [Chungbuk National University, Chongju (Korea)

    2000-03-01

    In the project of 'Development of Spent Fuel Remote Handling Technology', Preprocessing technique, mechanism and teleoperation technique are being developed. One of the mechanisms is a device for disassembling of the spent fuel bundle. However, there may be abnormal fuel bar among the fuel bundle, In this case the unpacking task will be difficult and dangerous. So, in that case, a force reflected teleoperation manipulator is desirable. The system is composed of a anthropomorphic input device at control site, power manipulator at remote site and control system. In this research, the forward and inverse kinematic equations of input device and manipulators has been solved, respectively. In addition, the mapping algorithm is proposed and shown using computer simulation. The reaction force of the telemanipulator with the environmental object is reflected through control system. The reaction force is decomposed into joint torque of the input device based on the jacobian equation. The obtained theoretical relations are verified through computer simulation and they will be used effectively in the spent fuel remote handling technology. 6 refs., 26 figs., 7 tabs. (Author)

  1. Sorting Recycled Trash: An Activity for Earth Day 2007

    Science.gov (United States)

    Harris, Mary E.; Harris, Harold H.

    2007-01-01

    Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.

  2. Public Perception of Strategies for Increasing Participation in Recycling Programs.

    Science.gov (United States)

    Nyamwange, Monica

    1996-01-01

    Assesses public perception of selected strategies for increasing participation in city recycling programs: increasing the level of knowledge about recycling, using effective channels to inform the community about recycling, increasing the convenience of recycling by placing recycling containers in accessible locations, and getting input from the…

  3. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  4. Gold recycling; a materials flow study

    Science.gov (United States)

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  5. An Investigation on Thermal Recycling of Recycled Plastic Resin

    Science.gov (United States)

    Yamakita, Ryuji; Miura, Katsuya; Ishino, Yojiro; Ohiwa, Norio

    Thermal recycling of recycled plastic resin is focused in this investigation. Fine grinding of plastic resin and preparation of high temperature oxidizing atmosphere are indispensable for effective and successful burn-up of plastic resin. Polyethylene terephthalate resin powder is employed and high temperature oxidizing atmosphere is generated downstream an annular burner. Through a circular nozzle set coaxially in the closed bottom end of the annular burner, PET-powder and propane-air mixture are issued vertically upward into the high temperature oxidizing atmosphere. Temperature and O2 concentration fields downstream the annular burner are first examined by varying the circular jet equivalence ratio with the air flow rate kept constant and without PET-powder supply. PET-powder having a mass-median diameter of either 89.7µm or 145µm is then issued into the high temperature region along with propane-air mixture by varying the PET-powder mass flow rate. Appearances of the PET-powder flame are observed using a high-speed CCD video camera and unburnt PET particles are traced during their passages in the high temperature region. Variation of O2 concentration fields due to PET-powder combustion is also measured in the PET flame. According to the results, overall limit conditions for effective burn-up of PET-powder are finally discussed.

  6. Zircon Recycling in Arc Intrusions

    Science.gov (United States)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  7. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  8. Long-term results of a three arms prospective cohort study on implants in periodontally compromised patients: 10-year data around sandblasted and acid-etched (SLA) surface.

    Science.gov (United States)

    Roccuzzo, Mario; Bonino, Luca; Dalmasso, Paola; Aglietta, Marco

    2014-10-01

    The aim of this study was to compare the long-term outcomes of sandblasted and acid-etched (SLA) implants in patients previously treated for periodontitis and in periodontally healthy patients (PHP). One hundred and forty-nine partially edentulous patients were consecutively enrolled in private specialist practice and divided into three groups according to their periodontal condition: PHP, moderately periodontally compromised patients (PCP) and severely PCP. Implants were placed to support fixed prostheses, after successful completion of initial periodontal therapy. At the end of active periodontal treatment (APT), patients were asked to follow an individualized supportive periodontal therapy (SPT) program. Diagnosis and treatment of peri-implant biological complications were performed according to cumulative interceptive supportive therapy (CIST). At 10 years, clinical and radiographic measures were recorded by two calibrated operators, blind to the initial patient classification, on 123 patients, as 26 were lost to follow up. The number of sites treated according to therapy modalities C and D (antibiotics and/or surgery) during the 10 years was registered. Six implants were removed for biological complications. The implant survival rate was 100% for PHP, 96.9% for moderate PCP and 97.1% for severe PCP. Antibiotic and/or surgical therapy was performed in 18.8% of cases in PHP, in 52.2% of cases in moderate PCP and in 66.7% cases in severe PCP, with a statistically significant differences between PHP and both PCP groups. At 10 years, the percentage of implants, with at least one site that presented a PD ≥ 6 mm, was, respectively, 0% for PHP, 9.4% for moderate PCP and 10.8% for severe PCP, with a statistically significant difference between PHP and both PCP groups. This study shows that SLA implants, placed under a strict periodontal control, offer predictable long-term results. Nevertheless, patients with a history of periodontitis, who did not fully adhere to

  9. The First Dissolution of Real Spent Fuel in CRARL

    Institute of Scientific and Technical Information of China (English)

    LIU; Fang; CHANG; Shang-wen; LUO; Fang-xiang; YAN; Tai-hong; HE; Hui; ZHENG; Wei-fang

    2015-01-01

    The dissolution of the spent fuel was accomplished in CRARL under the cooperation among three divisions of department of radiochemistry.The experiment was started in 22September,and was completed in 27September.Two batches spent fuel of xx reactor was dissolved in these 6days.About 13liters feed of the co-decontamination

  10. Breeder Spent Fuel Handling Program multipurpose cask design basis document

    Energy Technology Data Exchange (ETDEWEB)

    Duckett, A.J.; Sorenson, K.B.

    1985-09-01

    The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

  11. Monitoring instrumentation spent fuel management program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Preliminary monitoring system methodologies are identified as an input to the risk assessment of spent fuel management. Conceptual approaches to instrumentation for surveillance of canister position and orientation, vault deformation, spent fuel dissolution, temperature, and health physics conditions are presented. In future studies, the resolution, reliability, and uncertainty associated with these monitoring system methodologies will be evaluated.

  12. An approach to meeting the spent fuel standard

    Energy Technology Data Exchange (ETDEWEB)

    Makhijani, A. [Institute for Energy and Environmental Research, Takoma Park, MD (United States)

    1996-05-01

    The idea of the spent fuel standard is that there should be a high surface gamma radiation to prevent theft. For purposes of preventing theft, containers should be massive, and the plutonium should be difficult to extract. This report discusses issues associated with the spent fuel standard.

  13. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly R. [Univ. of New Mexico, Albuquerque, NM (United States)

    2003-06-01

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium (~40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

  14. Reduction of the Radiotoxicity of Spent Nuclear Fuel Using a Two-Tiered System Comprising Light Water Reactors and Accelerator-Driven Systems

    Energy Technology Data Exchange (ETDEWEB)

    H.R. Trellue

    2003-06-01

    Two main issues regarding the disposal of spent nuclear fuel from nuclear reactors in the United States in the geological repository Yucca Mountain are: (1) Yucca Mountain is not designed to hold the amount of fuel that has been and is proposed to be generated in the next few decades, and (2) the radiotoxicity (i.e., biological hazard) of the waste (particularly the actinides) does not decrease below that of natural uranium ore for hundreds of thousands of years. One solution to these problems may be to use transmutation to convert the nuclides in spent nuclear fuel to ones with shorter half-lives. Both reactor and accelerator-based systems have been examined in the past for transmutation; there are advantages and disadvantages associated with each. By using existing Light Water Reactors (LWRs) to burn a majority of the plutonium in spent nuclear fuel and Accelerator-Driven Systems (ADSs) to transmute the remainder of the actinides, the benefits of each type of system can be realized. The transmutation process then becomes more efficient and less expensive. This research searched for the best combination of LWRs with multiple recycling of plutonium and ADSs to transmute spent nuclear fuel from past and projected nuclear activities (assuming little growth of nuclear energy). The neutronic design of each system is examined in detail although thermal hydraulic performance would have to be considered before a final system is designed. The results are obtained using the Monte Carlo burnup code Monteburns, which has been successfully benchmarked for MOX fuel irradiation and compared to other codes for ADS calculations. The best combination of systems found in this research includes 41 LWRs burning mixed oxide fuel with two recycles of plutonium ({approx}40 years operation each) and 53 ADSs to transmute the remainder of the actinides from spent nuclear fuel over the course of 60 years of operation.

  15. Some factors to consider in handling and storing spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1985-11-01

    This report includes information from various studies performed under the Wet Storage Task of the Behavior of Spent Fuel in Storage Project of the Commercial Spent Fuel Management (CSFM) Program at Pacific Northwest Laboratory. Wet storage experience has been summarized earlier in several other reports. This report summarizes pertinent items noted during FY 1985 concerning recent developments in the handling and storage of spent fuel and associated considerations. The subjects discussed include recent publications, findings, and developments associated with: (1) storage of water reactor spent fuel in water pools, (2) extended-burnup fuel, (3) fuel assembly reconstitution and reinsertion, (4) rod consolidation, (5) variations in the US Nuclear Regulatory Commission's definition of failed fuel, (6) detection of failed fuel rods, and (7) extended integrity of spent fuel. A list of pertinent publications is included.

  16. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  17. Stabilization and/or regeneration of spent sorbents from coal gasification. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

    1992-12-31

    The objective of this investigation was to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide during the stabilization step. An additional objective of this study was to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent Ca-based sorbent, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents were reacted with oxygen and SO{sub 2} at various operating conditions and the extent of CaS and CaO conversion were determined. Partially sulfided dolomite was used in sulfidation/regeneration over several cycles and the regeneration efficiency and sorbent reactivity were determined after each cycle. The results of the stabilization tests show that partially sulfided Ca-based sorbents (both limestone and dolomite) can be sulfated at temperatures above 1500{degrees}F resulting in high CaS conversion without release of SO{sub 2} producing environmentally acceptable material for disposal in landfills. The results also indicate that spent dolomite can be regenerated in the SSRP process, in successive cycles, with high regeneration efficiency without loss of reactivity toward hydrogen sulfide.

  18. Enzymatic hydrolysis of spent coffee ground.

    Science.gov (United States)

    Jooste, T; García-Aparicio, M P; Brienzo, M; van Zyl, W H; Görgens, J F

    2013-04-01

    Spent coffee ground (SCG) is the main residue generated during the production of instant coffee by thermal water extraction from roasted coffee beans. This waste is composed mainly of polysaccharides such as cellulose and galactomannans that are not solubilised during the extraction process, thus remaining as unextractable, insoluble solids. In this context, the application of an enzyme cocktail (mannanase, endoglucanase, exoglucanase, xylanase and pectinase) with more than one component that acts synergistically with each other is regarded as a promising strategy to solubilise/hydrolyse remaining solids, either to increase the soluble solids yield of instant coffee or for use as raw material in the production of bioethanol and food additives (mannitol). Wild fungi were isolated from both SCG and coffee beans and screened for enzyme production. The enzymes produced from the selected wild fungi and recombinant fungi were then evaluated for enzymatic hydrolysis of SCG, in comparison to commercial enzyme preparations. Out of the enzymes evaluated on SCG, the application of mannanase enzymes gave better yields than when only cellulase or xylanase was utilised for hydrolysis. The recombinant mannanase (Man1) provided the highest increments in soluble solids yield (17 %), even when compared with commercial preparations at the same protein concentration (0.5 mg/g SCG). The combination of Man1 with other enzyme activities revealed an additive effect on the hydrolysis yield, but not synergistic interaction, suggesting that the highest soluble solid yields was mainly due to the hydrolysis action of mannanase.

  19. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  20. Modeling of molecular and particulate transport in dry spent nuclear fuel canisters

    Science.gov (United States)

    Casella, Andrew M.

    2007-09-01

    The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If

  1. Chemical solutions for greywater recycling.

    Science.gov (United States)

    Pidou, Marc; Avery, Lisa; Stephenson, Tom; Jeffrey, Paul; Parsons, Simon A; Liu, Shuming; Memon, Fayyaz A; Jefferson, Bruce

    2008-03-01

    Greywater recycling is now accepted as a sustainable solution to the general increase of the fresh water demand, water shortages and for environment protection. However, the majority of the suggested treatments are biological and such technologies can be affected, especially at small scale, by the variability in strength and flow of the greywater and potential shock loading. This investigation presents the study of alternative processes, coagulation and magnetic ion exchange resin, for the treatment of greywater for reuse. The potential of these processes as well as the influence of parameters such as coagulant or resin dose, pH or contact time were investigated for the treatment of two greywaters of low and high organic strengths. The results obtained revealed that magnetic ion exchange resin and coagulation were suitable treatment solutions for low strength greywater sources. However, they were unable to achieve the required level of treatment for the reuse of medium to high strength greywaters. Consequently, these processes could only be considered as an option for greywater recycling in specific conditions that is to say in case of low organic strength greywater or less stringent standards for reuse.

  2. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  3. Recycling of typical supercapacitor materials.

    Science.gov (United States)

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2.

  4. Integrated Recycling Test Fuel Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  5. Fermilab Recycler Collimation System Design

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. C. [Fermilab; Adamson, P. [Fermilab; Ainsworth, R. [Fermilab; Capista, D. [Fermilab; Hazelwood, K. [Fermilab; Kourbanis, I. [Fermilab; Mokhov, N. V. [Fermilab; Morris, D. K. [Fermilab; Murphy, M. [Fermilab; Sidorov, V. [Fermilab; Stern, E. [Fermilab; Tropin, I. [Fermilab; Yang, M-J. [Fermilab

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  6. optimization of the development of a plastic recycling machine

    African Journals Online (AJOL)

    machine and shows that at a speed of 268 rpm the machine functions effectively ... Keywords: recycling machine, plastics-recycling, recyclability/efficiency, throughput/capacity, ...... cycling such as the sorting and cleaning should be efficient so ...

  7. 78 FR 3853 - Retrievability, Cladding Integrity and Safe Handling of Spent Fuel at an Independent Spent Fuel...

    Science.gov (United States)

    2013-01-17

    ... COMMISSION 10 CFR Parts 71 and 72 Retrievability, Cladding Integrity and Safe Handling of Spent Fuel at an... several key areas, such as: retrievability, cladding integrity, and safe handling of spent fuel... potential policy issues and requirements related to retrievability, cladding integrity, and safe handling...

  8. Study of the preparation of NI–Mn–Zn ferrite using spent NI–MH and alkaline Zn–Mn batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Guoxi, E-mail: xuhuidao1983@hotmail.com; Xi, Yuebin; Xu, Huidao, E-mail: xuhuidao1983@163.com; Wang, Lu

    2016-01-15

    Magnetic nanoparticles of Ni–Mn–Zn ferrite have been prepared by a sol–gel method making use of spent Ni–MH and Zn–Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The M{sub s} values increase and the H{sub c} values decrease as the size of the Ni–Mn–Zn ferrite particles increases. - Highlights: • Ni–Mn–Zn ferrites could be prepared using spentbatteries as raw materials. • This work could provide an environmentally friendly process to recycle spent batteries. • The process could reduce cost and secondary pollution of spent batteries recycling. • The magnetic property of the ferrite could be controlled by changing the temperature.

  9. Effect of Zn-substitution on the structural and magnetic properties of Mn–Zn ferrites synthesized from spent Zn–C batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com; Al-Luhaibi, R.S.; Al Angari, Y.M.

    2013-12-15

    The present study aimed at the production of manganese–zinc ferrites through the recycling process of spent Zn–C batteries. Firstly, the spent Zn–C batteries were dismantled, crushed and leached in nitric acid and the composition of the acid solution was analyzed using atomic absorption spectroscopy. Secondly, stoichimetric amounts of metal nitrates were used to adjust the metallic concentration and prepare respective Mn{sub 1–x}Zn{sub x}Fe{sub 2}O{sub 4} ferrites (x=0.2–0.8) through the urea auto-combustion method. The obtained ferrites were examined by X-ray diffraction and Fourier transform infrared for crystalline phase identification, transmission electron microscopy for particle size and morphology and vibrating sample magnetometer for magnetic properties. The obtained structural and magnetic properties such as lattice parameter, infrared band positions saturation magnetization and coercivity were used to estimate the proper cation distribution of the system. The magnetic measurements showed that the change in the values of saturation magnetization with increasing Zn-content can be described according to the cation distribution while, that in the coercivity values can be explained on the basis of the magneto-crystalline anisotropy. - Highlights: • Spent Zn–C battery was exploited for the preparation of valuable Mn–Zn ferrites. • Magnetic properties obtained suggesting feasibility of this recycling process. • A proper cation distribution of the investigated system was estimated.

  10. India's ship recycling trade-off

    NARCIS (Netherlands)

    Worrell, E.; Athanasopoulou, V.

    2014-01-01

    The special nature of India's steel industry lends particular importance to ship recycling as a source of scrap. Ship recycling in upgraded 'green' facilities can substitute other 'dirty' ironmaking processes, resulting in energy savings and air pollutant emission reductions for the Indian steel sec

  11. Non-Recycled Pulsars in Globular Clusters

    CERN Document Server

    Lynch, Ryan S; Lorimer, Duncan R; Mnatsakanov, Robert; Turk, Philip J; Ransom, Scott M

    2011-01-01

    We place limits on the population of non-recycled pulsars originating in globular clusters through Monte Carlo simulations and frequentist statistical techniques. We set upper limits on the birth rates of non-recycled cluster pulsars and predict how many may remain in the clusters, and how many may escape the cluster potentials and enter the field of the Galaxy.

  12. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the tre

  13. Recycled Pulsars: Spins, Masses and Ages

    CERN Document Server

    Tauris, Thomas M

    2016-01-01

    Recycled pulsars are mainly characterized by their spin periods, B-fields and masses. All these quantities are affected by previous interactions with a companion star in a binary system. Therefore, we can use these quantities as fossil records and learn about binary evolution. Here, I briefly review the distribution of these observed quantities and summarize our current understanding of the pulsar recycling process.

  14. 75 FR 71003 - America Recycles Day, 2010

    Science.gov (United States)

    2010-11-19

    ... the product lifecycle--from design and manufacturing through their use and eventual recycling... progress and to drawing attention to further developments, including the recycling of electronic products... disposal of these products. Currently, most discarded consumer electronics end up in our landfills or are...

  15. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    Science.gov (United States)

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  16. Recycling of WEEE by magnetic density separation

    NARCIS (Netherlands)

    Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C.

    2011-01-01

    The paper introduces a new recycling method of WEEE: Magnetic Density Separation. By using this technology, both grade and recovery rate of recycled products are over 90%. Good separations are not only observed in relatively big WEEE samples, but also in samples with smaller sizes or electrical wire

  17. The Effectiveness of Dutch Municipal Recycling Policies

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); R.H.J.M. Gradus (Raymond)

    2014-01-01

    markdownabstract__Abstract__ The EU advocates a household waste recycling rate of more than 70%. Although the Netherlands already years ago invested in recycling policies heavily, this is still a large challenge as nowadays on average this rate is approximately 50% and nearly no municipalities

  18. Recycling Today Makes for a Better Tomorrow.

    Science.gov (United States)

    Raze, Robert E., Jr.

    1992-01-01

    Today's children must be educated about solid waste management and recycling to reduce the amount of waste that goes into landfills. The article describes what can be recycled (newspapers, corrugated cardboard, paper, glass, aluminum, textiles, motor oil, organic wastes, appliances, steel cans, and plastics). It also lists student environment…

  19. Recycling of WEEE by magnetic density separation

    NARCIS (Netherlands)

    Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C.

    2011-01-01

    The paper introduces a new recycling method of WEEE: Magnetic Density Separation. By using this technology, both grade and recovery rate of recycled products are over 90%. Good separations are not only observed in relatively big WEEE samples, but also in samples with smaller sizes or electrical wire

  20. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated v

  1. Greenelec: Product design linked to recycling

    NARCIS (Netherlands)

    Balkenende, R.; Occhionorelli, V.; Van Meensel, W.; Felix, J.; Sjölin, S.; Aerts, M.; Huisman, J.; Becker, J.; Van Schaik, A.; Reuter, M.

    2014-01-01

    GreenElec aims to significantly improve on the resource efficiency of electronics and electronic products. This is accomplished by close cooperation between manufacturers and recyclers. Design guidelines for improved recycling have been formulated and products (lamps and displays) have been redesign

  2. Rubber Recycling: Chemistry, Processing, and Applications

    NARCIS (Netherlands)

    Myhre, M.; Saiwari, S.; Dierkes, W.K.; Noordermeer, J.W.M.

    2012-01-01

    For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing wi

  3. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  4. Recycling from endosomes to the plasma membrane

    NARCIS (Netherlands)

    Dam, E.M. van

    2001-01-01

    Summary V Chapter?Summary Many membrane proteins are, after endocytic uptake, efficiently recycled back to the plasma membrane. The aim of the studies presented in this thesis was to determine pathways and molecular mechanisms that are involved in recycling. Plasma membrane-derived clathrin-coated

  5. Hot Mix Asphalt Recycling: Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a hi

  6. WATER RESISTANCE OF RECYCLED PAPER PANEL

    Directory of Open Access Journals (Sweden)

    Alexander Rani Suryandono

    2017-06-01

    Alice Wisler (2015 Facts about Recycling Paper. http://greenliving.lovetoknow.com/Facts_About_Recycling_Paper. Accessed 2 April 2016 Clay Miller (2011 5 Benefits of Recycling Paper. http://www.ways2gogreenblog.com/2011/09/28/5-benefits-of-recycling-paper/. Accessed 10 May 2016 Hari Goyal (2015 Grades of Paper. http://www.paperonweb.com/grade.htm. Accessed 2 April 2016 Hari Goyal (2015 Properties of Paper. http://www.paperonweb.com/paperpro.htm. Accessed 2 April 2016 Kathryn Sukalich (2016 Everything You Need to Know about Paper Recycling. http://earth911.com/business-policy/business/paper-recycling-details-basics/. Accessed 15 July 2016 [U1] Larry West (2015 Why Recycle Paper. http://environment.about.com/od/recycling/a/The-Benefits-Of-Paper-Recycling-Why-Recycle-Paper.htm. Accesed 15 June 2016 Marie-Luise Blue (2008 The Advantages of Recycling Paper. http://education.seattlepi.com/advantages-recycling-paper-3440.html. Accessed 15 June 2016 Nina Spitzer (2009 http://www.sheknows.com/home-and-gardening/articles/810025/the-impact-of-disposable-coffee-cups-on-the-environment. Accessed 15 June 2016 Radio New Zealand (2010 Iwi not Giving Up Fight against Tasman Mill Discharges. http://www.radionz.co.nz/news/regional/64521/iwi-not-giving-up-fight-against-tasman-mill-discharges. Accessed 15 July 2016 Rick LeBlanc (2016 Paper Recycling Facts, Figures and Information Sources. https://www.thebalance.com/paper-recycling-facts-figures-and-information-sources-2877868?_ga=1.192832942.544061388.1477446686. Accesed 2 April 2016 Robinson Meyer (2016 Will More Newspapers Go Nonprofit? http://www.theatlantic.com/technology/archive/2016/01/newspapers-philadelphia-inquirer-daily-news-nonprofit-lol-taxes/423960/. Accessed 3 August 2016 School of Engineering at Darthmouth (2010 Forest and Paper Industry. http://engineering.dartmouth.edu/~d30345d/courses/engs171/Paper.pdf. Accessed 2 April 2016 T. Subramani, V. Angappan. (2015. Experimental Investigation of Papercrete Concrete

  7. Linguistic recycling in typical and atypical interaction.

    Science.gov (United States)

    Perkins, Michael R

    2014-01-01

    I present evidence that linguistic "recycling" - i.e., the redeployment of linguistic material from prior utterances during conversation - is a striking and prevalent feature not only of interaction between typical speakers, but also, and notably, of interaction involving the communication impaired. In the latter case, recycling may sometimes be used as a compensatory communicative resource when linguistic ability is compromised. Despite its prevalence, however, recycling has largely been ignored by clinical linguists. In addition to providing illustrations of linguistic recycling across a range of communication disorders, I also examine how it is subserved by phenomena such as priming, short-term memory and alignment. I subsequently argue for a shift in perspective that puts recycling at the heart of our perception of how typical and atypical interaction works, and suggest a number of potential benefits for clinical linguistics, ranging from the way we understand and analyse communication disorders to how we assess and treat them.

  8. Preconceptual Design Description for Caustic Recycle Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  9. Waste Printed Circuit Board (PCB) Recycling Techniques.

    Science.gov (United States)

    Ning, Chao; Lin, Carol Sze Ki; Hui, David Chi Wai; McKay, Gordon

    2017-04-01

    With the development of technologies and the change of consumer attitudes, the amount of waste electrical and electronic equipment (WEEE) is increasing annually. As the core part of WEEE, the waste printed circuit board (WPCB) is a dangerous waste but at the same time a rich resource for various kinds of materials. In this work, various WPCB treatment methods as well as WPCB recycling techniques divided into direct treatment (landfill and incineration), primitive recycling technology (pyrometallurgy, hydrometallurgy, biometallurgy and primitive full recovery of NMF-non metallic fraction), and advanced recycling technology (mechanical separation, direct use and modification of NMF) are reviewed and analyzed based on their advantages and disadvantages. Also, the evaluation criteria are discussed including economic, environmental, and gate-to-market ability. This review indicates the future research direction of WPCB recycling should focus on a combination of several techniques or in series recycling to maximize the benefits of process.

  10. Recycling under a material balance constraint

    Energy Technology Data Exchange (ETDEWEB)

    Pittel, Karen [ETH Zurich, CER-ETH - Center of Economic Research, ZUE F14, 8092 Zurich (Switzerland); Amigues, Jean-Pierre [INRA/University of Toulouse, Universite des Sciences Sociales, INRA (IDEI and LERNA), 21 Allee de Brienne, 31000 Toulouse (France); Kuhn, Thomas [Chemnitz University of Technology, Department of Economics, TU Chemnitz, 09107 Chemnitz (Germany)

    2010-08-15

    In this paper we analyze the dynamic implications of recycling for resource use, the level of economic activity and the long-run development of the economy. In contrast to former approaches, we take explicit account of the circulation of matter in the economy. We consider virgin resources and recycled wastes as essential inputs to production. These material inputs either end up as waste after consumption or are bound in the capital stock - depending on the utilization of the produced output. As accumulating wastes can be recycled and again be employed in production, the waste stock serves as a source of valuable inputs in our model. We focus on the implications of recycling-related market failures and the integration of material balances on the dynamics of the economy. It is shown that a market for waste and subsidies to resource extractors and recycling firms can restore optimality in the decentralized economy. (author)

  11. Microbiology of spent nuclear fuel storage basins.

    Science.gov (United States)

    Santo Domingo, J W; Berry, C J; Summer, M; Fliermans, C B

    1998-12-01

    Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 10(4) to 10(7) cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biologtrade mark plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms.

  12. Design analysis: Understanding e-waste recycling by generation Y

    OpenAIRE

    Zhang, Xiao; Wakkary, Ron

    2011-01-01

    This paper aims to understand e-waste recycling behavior of Generation Y. It presents a pilot study that explores this generation’s e-waste recycling practices, their attitudes towards ewaste recycling, and the barriers to e-waste recycling. The findings reveal the complexity of the actual e-waste recycling behavior, many participants in this study hold a positive attitude towards e-waste recycling, yet there is a shortage of convenient recycling options and e-waste recycling information. Bas...

  13. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  14. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    Science.gov (United States)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  15. Estimation of CANDU spent fuel disposal canister lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Dong Hak; Lee, Min Soo; Hwang, Yong Soo; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Active nuclear energy utilization causes significant spent fuel accumulation problem. The cumulative amount of spent fuel is about 10,083 ton as of Dec. 2008, and is expected to increase up to 19,000 ton by 2020. Of those, CANDU spent fuels account for more than 60% of the total amounts. CANDU spent fuels had been stored in dry concrete silos since 1991 and during the past 15 years, 300 silos were constructed and {approx}3,200 ton of spent fuels are stored now. Another dry storage facility MACSTOR /KN-400 will store new-coming CANDU spent fuels from 2009. But, after intermediate storage ends, all CANDU spent fuels have to be disposed within multi-layer metallic canister which is composed of cast iron inside and copper outside. Canister lifetime estimation, therefore, is very important for the final disposal safety analysis. The most significant factor of lifetime is copper corrosion, and Y. S. Hwang developed a corrosion model in order to predict the general corrosion effect on copper canister lifetime during the final disposal period. This research applied his model to KURT1 where many disposal researches are being performed actively and the results shows safe margin of the copper canister for the very long-term disposal.

  16. Source term reduction at DAEC (including stellite ball recycling)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Schebler, D. [Duane Arnold Energy Center, Palo, IA (United States)

    1995-05-01

    The Duane Arnold Energy Center was seeking methods to reduce dose rates from the drywell due to Co-60. Duane Arnold is known in the industry to have one of the highest drywell dose rates from the industry standardized `BRAC` point survey. A prime method to reduce dose rates due to Co-60 is the accelerated replacement of stellite pins and rollers in control rod blades due to their high stellite (cobalt) content. Usually the cobalt content in alloys of stellite is greater than 60% cobalt by weight. During the RFO-12 refueling outage at Duane Arnold, all of the remaining cobalt bearing control rod blades were replaced and new stellite free control rod blades were installed in the core. This left Duane Arnold with the disposal of highly radioactive stellite pins and rollers. The processing of control rod blades for disposal is a very difficult evolution. First, the velocity limiter (a bottom portion of the component) and the highly radioactive upper stellite control rod blade ins and rollers are separated from the control rod blade. Next, the remainder of the control rod blade is processed (chopped and/or crushed) to aid packaging the waste for disposal. The stellite bearings are then often carefully placed in with the rest of the waste in a burial liner to provide shielding for disposal or more often are left as `orphans` in the spent fuel pool because their high specific activity create shipping and packaging problems. Further investigation by the utility showed that the stellite balls and pins could be recycled to a source manufacturer rather than disposed of in a low-level burial site. The cost savings to the utility was on the order of $200,000 with a gross savings of $400,000 in savings in burial site charges. A second advantage of the recycling of the stellite pins and rollers was a reduction in control in radioactive waste shipments.

  17. Processing solid propellants for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Whinnery, L.L.; Griffiths, S.K.; Handrock, J.L.; Lipkin, J.

    1994-05-01

    Rapid evolution in the structure of military forces worldwide is resulting in the retirement of numerous weapon systems. Many of these systems include rocket motors containing highly energetic propellants based on hazardous nitrocellulose/nitroglycerin (NC/NG) mixtures. Even as the surplus quantities of such material increases, however, current disposal methods -- principally open burning and open detonation (OB/OD) -- are coming under close scrutiny from environmental regulators. Environmentally conscious alternatives to disposal of propellant and explosives are thus receiving renewed interest. Recycle and reuse alternatives to OB/OD appear particularly attractive because some of the energetic materials in the inventories of surplus weapon systems represent potentially valuable resources to the commercial explosives and chemical industries. The ability to reclaim such resources is therefore likely to be a key requirement of any successful technology of the future in rocket motor demilitarization. This document consists of view graphs from the poster session.

  18. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  19. Analytical methodology and facility description spent fuel policy

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Three generic environmental impact statements (GEISs) on domestic fuels, foreign fuels, and storage charges are being prepared to provide environmental input into decisions on whether, and if so how the 1977 Presidential policy on spent fuel storage should be implmented. This report provides background information for two of these environmental impact statements: Storage of U.S. Spent Power Reactor Fuel and Storage of Foreign Spent Power Reactor Fuel. It includes the analytical methodology used in GEISs to assess the environmental effects and a description of the facilities used in the two GEISs.

  20. Existing Condition Analysis of Dry Spent Fuel Storage Technology

    Institute of Scientific and Technical Information of China (English)

    LI Ning; XU Lan; HAO Jian-sheng

    2016-01-01

    As in some domestic nuclear power plants, spent fuel pools near capacity, away-from-reactor type storage should be arranged to transfer spent fuel before the pool capacity is full and the plants can operate in safety. This study compares the features of wet and dry storage technology, analyzes the actualities of foreign dry storage facilities and then introduces structural characteristics of some foreign dry storage cask. Finally, a glance will be cast on the failure of away-from-reactor storage facilities of Pressurized Water Reactor(PWR)to meet the need of spent-fuel storage. Therefore, this study believes dry storage will be a feasible solution to the problem.

  1. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  2. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  3. Biochar characteristics produced from malt spent rootlets

    Science.gov (United States)

    Fotopoulou, Kalliopi N.; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.

    2013-04-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. Malt spent rootlets (MSR) is a by-product formed during beer production, is inexpensive and is produced in high quantities. The objective of the present study was to characterize the surface properties of biochar produced from MSR, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. Raw MSR demonstrates low surface area that increases by 1 order of magnitude by thermal treatment up to 750oC. At temperatures from 750 up to 900oC, pyrolysis results to biochars with surface areas 210-340 m2/g. For the same temperature range, a high percentage (46-73%) of the pore volume of the biochars is due to micropores. Similar results were observed for all the grain size fractions of the raw MSR. The up-scaling of the biochar production was easily performed by using increased biomass analogous to the bigger vessels used each time. Positive results were obtained

  4. Optical properties of polypropylene upon recycling.

    Science.gov (United States)

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  5. Exploring metal recycling business in China

    Energy Technology Data Exchange (ETDEWEB)

    Soga, K. [DOWA Environmental Management Co., Ltd., Suzhou, Jiangsu (China)

    2007-07-01

    Recycling activities related to the copper smelting process in China were discussed. Although China is a key player in terms of resource circulation in the world, the lack of proper recycling capabilities has hindered the growth of a recycling industry in China. A recycling network established by DOWA Environmental Management was established by contracting with Chinese smelters and refineries. This paper also provided details of recent recycling initiatives, metal scrap processes, industrial waste treatment processes, and soil remediation programs recently initiated in the country. The study concluded by suggesting that the trade of recycling materials must not remain one-sided between China and other developed countries. The high demand for natural resources in Brazil, Russia, India and China can be used as an incentive to increase recycling processes on a wider scale. A pilot project is now being planned by DOWA to establish an international network to collect and transfer used cellular phones to Japan for resource recovery. The company will research and evaluate feasible collection schemes for each participating country. The project may be expanded to include other products. 3 tabs., 5 figs.

  6. Optical Properties of Polypropylene upon Recycling

    Directory of Open Access Journals (Sweden)

    Felice De Santis

    2013-01-01

    Full Text Available In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  7. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taghipour, Hassan, E-mail: hteir@yahoo.com [Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Amjad, Zahra [Student Research Committee, Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Jafarabadi, Mohamad Asghari [Medical Education Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Gholampour, Akbar [Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Norouz, Prviz [Environmental Health Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-15

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of

  8. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2016-08-01

    Despite osmotic dehydration being a cost effective process for moisture removal, the cost implications of making, regenerating, and properly disposing of the spent osmotic solutions contributes greatly to the economic feasibility of the drying operation. The potential for recycling of osmotic solutions and their use for creation of a novel product was explored using microwave-osmotic dehydration under continuous flow spray (MWODS) conditions. Identical runs were repeated 10 times to determine the progressive physical and compositional effects of the thermal treatment and leaching from the cranberry samples. The microbiological stability and constant drying performance indicated that MWODS would be well suited for employing recycled solutions. While the anthocyanin content of the solution never approached that of cranberry juice concentrate, it is demonstrated that the spent syrup can infuse these health positive components into another product (apple). This study found that re-using osmotic solutions is a viable option to reduce cost in future MWODS applications, with no detriment to product quality and potential to use the spent solution for novel products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Scientists warn of 'trillion-dollar' spent-fuel risk

    Science.gov (United States)

    Gwynne, Peter

    2016-07-01

    A study by two Princeton University physicists suggests that a major fire in the spent nuclear fuel stored on the sites of US nuclear reactors could “dwarf the horrific consequences of the Fukushima accident”.

  10. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  11. Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes

    NARCIS (Netherlands)

    Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.W.A.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J.

    2008-01-01

    In this work four commercial cellulase-hemicellulase mixtures with different activity profiles were used for solubilization of carbohydrates from brewers' spent grain (BSG). After the enzyme treatment, both the solubilised fraction and the unhydrolysed residue were characterized. Treatment with

  12. Changes in the Nutrient Composition of Brewery Spent Grain ...

    African Journals Online (AJOL)

    BSN

    The Crude Fibre content of the spent grain dropped to 10.54% while Calcium and phosphorous ..... amino acids from protein metabolism causes the release of ammonia ... growing rabbit diets on growth performance, digestibility, carcass traits ...

  13. Decolourisation of chemically different dyes by enzymes from spent ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... Key words: Synthetic dye decolourisation, spent mushroom compost, Pleurotus sajor-caju, dye kinetics. ... photocatalysis or ozonation are effective but rather costly ... organic matter, balance pH, add beneficial micro-.

  14. Planning logistics network for recyclables collection

    Directory of Open Access Journals (Sweden)

    Ratković Branislava

    2014-01-01

    Full Text Available Rapid urbanization, intensified industrialization, rise of income, and a more sophisticated form of consumerism are leading to an increase in the amount and toxicity of waste all over the world. Whether reused, recycled, incinerated or put into landfill sites, the management of household and industrial waste yield financial and environmental costs. This paper presents a modeling approach that can be used for designing one part of recycling logistics network through defining optimal locations of collection points, and possible optimal scheduling of vehicles for collecting recyclables. [Projekat Ministarstva nauke Republike Srbije, br. TR36005

  15. CHALLENGES FOR PROCESS INDUSTRIES IN RECYCLING

    Institute of Scientific and Technical Information of China (English)

    Lothar Reh

    2006-01-01

    Increasing population and individual wealth have led to a higher demand for energy and raw material resources as well as for steady improvement of processing technology in view of efficient use of resources and avoiding emissions in production and recycling processes. Present situation and future trend of recycling processing are discussed by examples from the aluminium and steel industries, recycling of cars and post-consumer municipal recovery.The importance of more intense observance of thermodynamic laws and of a 4E strategy "Economy, Energy, Environment and Education" is outlined.

  16. Breaking the COPI monopoly on Golgi recycling.

    Science.gov (United States)

    Storrie, B; Pepperkok, R; Nilsson, T

    2000-09-01

    The unexpected discovery of a transport pathway from the Golgi to the endoplasmic reticulum (ER) independent of COPI coat proteins sheds light on how Golgi resident enzymes and protein toxins gain access to the ER from as far as the trans Golgi network. This new pathway provides an explanation for how membrane is recycled to allow for an apparent concentration of anterograde cargo at distinct stages of the secretory pathway. As signal-mediated COPI-dependent recycling also involves the concentration of resident proteins into retrograde COPI vesicles, the main bulk of lipids must be recycled, possibly through a COPI-independent pathway.

  17. The continued quest to better recycling behaviour

    CSIR Research Space (South Africa)

    Strydom, WF

    2012-10-01

    Full Text Available : ?never really thought about it? (23 and 7%), ?not enough materials to recycle? (21 and 14%) and ?too much effort? (16 and 7%) (Perrin and Barton 2001). In the Robinson and Read (2005) study, almost 60% of the respondents indicated a lack of awareness... of services as a reason for not recycling. Other reasons for non-recycling, with indication of the percentage responses are: disinterest 14.3%; lack of time 8.2%; inadequate provision/poor service 7.2%; lack of storage space 6.5%; and, insufficient waste 3...

  18. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  19. Economic and Innovative Spent Fuel Pool Level Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, R.; Scecina, J.; Koenig, W.

    2014-07-01

    At Fukushima, significant attention and resources were concentrated on providing makeup water to the Spent Fuel Pools (SFP). No level indication was available and the assumption was that the water level was dangerously low. As it later turned out, the applied resources could have been used more effectively elsewhere. In reaction, Nuclear Regulatory Authorities worldwide have issued orders to add rugged, seismically qualified level instrumentation to Spent Fuel Pools. (Author)

  20. Spent nuclear fuel discharges from U.S. reactors 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  1. Modelling Methods of Magnetohydrodynamic Phenomena Occurring in a Channel of the Device Used to Wash Out the Spent Automotive Catalyst by a Liquid Metal

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-06-01

    Full Text Available The recovery of precious metals is necessary for environmental and economic reasons. Spent catalysts from automotive industry containing precious metals are very attractive recyclable material as the devices have to be periodically renovated and eventually replaced. This paper presents the method of removing platinum from the spent catalytic converters applying lead as a collector metal in a device used to wash out by using mangetohydrodynamic stirrer. The article includes the description of the methods used for modeling of magnetohydrodynamic phenomena (coupled analysis of the electromagnetic, temperature and flow fields occurring in this particular device. The paper describes the general phenomena and ways of coupling the various physical fields for this type of calculation. The basic computational techniques with a discussion of their advantages and disadvantages are presented.

  2. Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling

    DEFF Research Database (Denmark)

    Guo, Xueyi; Cao, Xiao; Huang, Guoyong

    2017-01-01

    of Na2CO3 is used to prepare LiMn2O4 as lithium ion sieve, and the tolerant level of sodium on its property is studied through batch tests of adsorption capacity and corrosion resistance. When the weight percentage of Na2CO3 in raw Li2CO3 is controlled less than 10%, the Mn corrosion percentage of LiMn2......O4 decreases to 21.07%, and the adsorption capacity can still keep at 40.08 mg g-1. The results reveal that the conventional separation sodium from lithium may be avoided through the application of the raw Li2CO3 in the field of lithium ion sieve....

  3. Modification of spent filter treat method at Uljin nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong rak; Ha, Jong Hyun [Nuclear Environment Technology Institute, Taejon (Korea, Republic of)

    1999-07-01

    Spent resin drying system(SRDS) and concentrated waste drying system (CWDS) have been introduced into Uljin NPP designed to treat spent resin, concentrated waste and spent filter at the waste cementation facility. Spent filter has been the only waste to treat at the cementation facility so that it is to become difficult to be provided the C-type containers needed to treat spent filter. To solve this problem, two programs including to change the spent filter container have been considered. One os to treat spent filter at the cementation facility using DOT - 17H drum, and another is to contain several spent filters in a High Integrated Container(HIC). (author)

  4. Reactor-specific spent fuel discharge projections, 1987-2020

    Energy Technology Data Exchange (ETDEWEB)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  5. Reactor-specific spent fuel discharge projections: 1986 to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.; Walling, R.C.; Purcell, W.L.

    1987-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from US commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent-fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water reactors (BWR). The projections are based on individual reactor information supplied by the US reactor owners. The basic information is adjusted to conform to Energy Information Agency (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: (1) No new orders with extended burnup, (2) No new orders with constant burnup, (3) Upper reference (which assumes extended burnup), (4) Upper reference with constant burnup, and (5) Lower reference (which assumes extended burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum-at-reactor storage, and for storage requirements assuming maximum-at-reactor plus intra-utility transshipment of spent fuel. 6 refs., 8 figs., 8 tabs.

  6. Reactor-specific spent fuel discharge projections, 1987-2020

    Energy Technology Data Exchange (ETDEWEB)

    Walling, R.C.; Heeb, C.M.; Purcell, W.L.

    1988-03-01

    The creation of five reactor-specific spent fuel data bases that contain information on the projected amounts of spent fuel to be discharged from U.S. commercial nuclear reactors through the year 2020 is described. The data bases contain detailed spent fuel information from existing, planned, and projected pressurized water reactors (PWR) and boiling water eactors (BWR), and one existing high temperature gas reactor (HTGR). The projections are based on individual reactor information supplied by the U.S. reactor owners. The basic information is adjusted to conform to Energy Information Administration (EIA) forecasts for nuclear installed capacity, generation, and spent fuel discharged. The EIA cases considered are: No New Orders (assumes increasing burnup), No New Orders with No Increased Burnup, Upper Reference (assumes increasing burnup), Upper Reference with No Increased Burnup, and Lower Reference (assumes increasing burnup). Detailed, by-reactor tables are provided for annual discharged amounts of spent fuel, for storage requirements assuming maximum at-reactor storage, and for storage requirements assuming maximum at-reactor storage plus intra-utility transshipment of spent fuel. 8 refs., 8 figs., 10 tabs.

  7. Financing electronic waste recycling Californian households' willingness to pay advanced recycling fees.

    Science.gov (United States)

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-09-01

    The growth of electronic waste (e-waste) is of increasing concern because of its toxic content and low recycling rates. The e-waste recycling infrastructure needs to be developed, yet little is known about people's willingness to fund its expansion. This paper examines this issue based on a 2004 mail survey of California households. Using an ordered logit model, we find that age, income, beliefs about government and business roles, proximity to existing recycling facilities, community density, education, and environmental attitudes are significant factors for explaining people's willingness to pay an advanced recycling fee (ARF) for electronics. Most respondents are willing to support a 1% ARF. Our results suggest that policymakers should target middle-aged and older adults, improve programs in communities with existing recycling centers or in rural communities, and consider public-private partnerships for e-waste recycling programs.

  8. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    Science.gov (United States)

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-09-21

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m(2) g(-1). Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH4(+)-N/NO3(-)-N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  9. Stabilization and/or regeneration of spent sorbents from coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1991-01-01

    The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient SO{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined. During this quarter sulfidation tests were conducted in a quartz fluidized-bed reactor in which the selected calcium-based sorbents were first calcined and then were reacted with hydrogen sulfide at ambient pressure and 1650{degree}F. These tests were conducted with each sorbent in two particle sizes. Chemical analyses of the partially sulfided sorbents indicate that the extent of sulfidation was in the range of 40--50%. The partially sulfided material will be reacted with oxygen to determine the effects of temperature and SO{sub 2} partial pressure on the stabilization of the calcium sulfide in solid waste materials. 23 refs., 1 fig., 2 tabs.

  10. Consequences of postulated losses of LWR spent fuel and plutonium shipping packages at sea

    Energy Technology Data Exchange (ETDEWEB)

    Heaberlin, S.W.; Baker, D.A.; Beyer, C.E.; Friley, J.R.; Mandel, S.; Peterson, P.L.; Sominen, F.A.

    1977-10-01

    The potential consequences of the loss of a large spent fuel cask and of a single 6M plutonium shipping package into the sea for two specific accident cases are estimated. The radiation dose to man through the marine food chain following the loss of undamaged and fire-damaged packages to the continental shelf and in the deep ocean are conservatively estimated. Two failure mechanisms that could lead to release of radioactive material after loss of packages into the ocean have been considered: corrosion and hydrostatic pressure. A third possible mechanism is thermal overpressurization following burial in marine sediments. It was determined that the seals or pressure relief devices on an undamaged spent fuel cask might fail from hydrostatic forces for losses on the continental shelf although some cask designs would retain their integrity at this depth. The population dose to man through the marine food chain following these scenarios has been estimated. The dose estimates are made relating the radioactive material released and the seafood productivity in the region of the release. Doses are based on a one-year consumption of contaminated seafood. The loss of a single plutonium package on the continental shelf is estimated to produce a population dose commitment of less than 250 man-rem for recycle plutonium. The dose commitment to the average individual is less than one millirem. Doses for losses of undamaged casks to the continental shelf and deep ocean and for loss of a fire-damaged cask to the deep ocean were determined to be several orders of magnitude smaller. 22 tables, 10 figures.

  11. INFLUENCE OF MICROBIAL INOCULANTS ON FEEDING VALUE OF SPENT LENTINULA EDODES SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Yunfu Gu

    2012-01-01

    Full Text Available Sawdust-based Spent Lentinula Edodes Substrate (SLES is an important agricultural waste resource for its’ huge production amount, on the other hand, it is hard to recycling because of the low digestibility. For the purpose of recycling the SLES, a study was conducted to improve the feeding values of SLES via microbial inoculation. The SLES was ensiled with 0.5% (v/w Lactic Acid Bacteria (LAB, Lactobacillus plantarum or 0.5% (v/w yeast (Saccharomyces cerevisiae for 15 days. Four treatments were made included 100% SLES (control, 99% SLES +0.5% LAB (T1, 99% SLES +0.5% yeast (T2 and 99% SLES +0.5% LAB +0.5% yeast (T3. Compared with the raw SLES (not fermentation, 100% SLES (control after ensiling showed higher (p<0.05 pH (5.47 and lower lactic acid production. The addition of microbe to the SLES improved most of the physical parameters, fermentation parameters and microbial populations compared to the control experiments. On the other hand, microbial-blending to SLES decreased most of the chemical parameters except for the Crude Protein (CP. Compared to the raw, ensile fermentation would increase the amino acids and microbial inoculants to the SLES could increase the total amount of amino acids further and the most abundant component of essential-amino acid and non-essential amino acid were valine and glutamate, respectively. Among the four ensile treatments, the impact of the addition of 0.5% LAB and 0.5% yeast (T3 on the SLES storage and feeding value was the greatest one (p<0.05. In conclusion: Microbial inoculation improved ensiling and feeding values of SLES.

  12. Comparative analysis of radiation characteristics from various types of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Opalovsky, V.A.; Tikhomirov, G.V. [Moscow Engineering Physics Institute (State University) (Russian Federation)

    2003-07-01

    At the present time, in purposes of the most effective utilization of nuclear materials, new advanced fuel cycles are under development. These cycles imply application of uranium-plutonium, uranium-thorium and some other types of nuclear fuel. However, it is obvious that the parameters of new nuclear fuel (NF) types will be quite different from those for traditional NF types. These differences can affect significantly the conditions for storage, transportation and reprocessing of spent nuclear fuel (SNF). So, it is necessary to carry out a comparative analysis of radiation characteristics for various NF types at different stages of nuclear fuel cycle (NFC). The present paper addresses radiation properties of the following NF types: UO{sub 2}, UO{sub 2}-PuO{sub 2}, ThO{sub 2}-PaO{sub 2}-UO{sub 2}. Numerical studies have been carried out to determine radiation properties of these NF types at the following NFC stages: radiation properties of NF directly before and after irradiation in the reactor core, after different cooling time, radiation properties of uranium and plutonium fractions after chemical separation, radiation properties of NF re-fabricated for recycle, radiation properties of NF after the second and third recycles. The computer code package SCALE is used for evaluating the radiation properties of different SNF types. Finally, the following major conclusions can be made: 1) Correct description of SNF radiation and dosimetric properties requires available benchmark data on contents of heavy nuclides in SNF; 2) ThO{sub 2}-PaO{sub 2}-UO{sub 2} fuel demonstrates an important feature: internal transmutation of minor actinides provided the ultra-high fuel burn-up is achieved.

  13. Sucrose-supplemented distillery spent wash as a medium for production of ethanol at 45 C by free and alginate-immobilized preparations of Kluyveromyces marxianus IMB3

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, P.; Mulholland, H.; Barron, N.; Brady, D.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster (United Kingdom)

    1998-04-01

    Ethanol production by the thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3, was compared during growth on sucrose-supplemented laboratory-based media and distillery spent wash from the Old Bushmill`s Distillery Co., Ltd., Co. Antrim, Northern Ireland. Fermentations were carried out using preparations of the free and alginate-immobilized microorganism as inocula in media supplemented with 2 and 10% (w/v) sucrose. Maximum ethanol concentrations accounted for 75-99% of the maximum theoretical yield and in all cases maximum concentrations obtained using the spent wash were similar if not slightly higher than those obtained on the sucrose-supplemented yeast growth media. In addition, the highest concentrations of ethanol were produced by the alginate-immobilized biocatalyst on both types of media. Analysis of exhausted media in the spent wash-based systems demonstrated significant decreases in the total organic carbon content following fermentation. These results confirm our earlier suggestion that ethanol production based on this microorganism in a recycle system may provide a more cost-effective means of disposing of whiskey distillery spent wash. (orig.) With 1 tab., 8 refs.

  14. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann

    2012-10-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  15. Ascorbate recycling in human neutrophils: Induction by bacteria

    OpenAIRE

    Wang, Yaohui; Russo, Thomas A.; Kwon, Oran; Chanock, Stephen; Rumsey, Steven C.; Levine, Mark

    1997-01-01

    Ascorbate (vitamin C) recycling occurs when extracellular ascorbate is oxidized, transported as dehydroascorbic acid, and reduced intracellularly to ascorbate. We investigated microorganism induction of ascorbate recycling in human neutrophils and in microorganisms themselves. Ascorbate recycling was determined by measuring intracellular ascorbate accumulation. Ascorbate recycling in neutrophils was induced by both Gram-positive and Gram-negative pathogenic bacteria, and the fungal pathogen C...

  16. Experiment on the improvement of OREOX process for fabrication of dry recycling nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Ki; Kim, S. S.; Park, G. I. [and others

    2004-01-01

    The OREOX(Oxidation and REduction of OXide fuel) process has been performed to fabricate dry recycling(DUPIC ; Direct Use of spent PWR fuel In CANDU reactor) nuclear fuel pellets by using spent PWR fuel. Generally, sinterable DUPIC powder has been manufactured from spent PWR fuel pellets by the 3 cycles of oxidation and reduction treatment. The OREOX process is one of the most important processes for DUPIC pellet fabrication. A lot of time more than 37 hours as well as a lot of reaction gas is required to perform 3 cycles of OREOX treatments. In this experiment, 1 cycle OREOX process was adopted to improve the powdering process of DUPIC pellet manufacturing processes. As a result of experiment, the densities of pellets sintered at 1800 .deg. C for 10 hours ranged from 10.15 to 10.22 g/cm{sup 3}(93.8{approx}94.5 % of T.D.). The pellets were sintered again to increase the sintered density. The sintered densities of pellets re-sintered at 1850 .deg. C for 7 hours ranged from 10.27 to 10.33 g/cm{sup 3}(94.9{approx} 95.5 % of T.D)

  17. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    Science.gov (United States)

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS. Copyright © 2015. Published by Elsevier Ltd.

  18. Exploring the recycling dilemma: consumer motivation and experiences in mandatory garbage recycling programs.

    OpenAIRE

    Smeesters, Dirk; Warlop, Luk; Vanden Abeele, Pierre; Ratneshwar, S

    1999-01-01

    Household recycling is conceptualized as a social dilemma in which households have a choice between cooperative and defective options. Promoting cooperative choice in the recycling dilemma has emerged as an important issue for social marketing in recent years. Most of the available insights that could guide policy makers in designing appropriate social marketing strategies are based on research conducted in the context of voluntary recycling programs. Increasingly social marketing action take...

  19. Recycling industrial architecture : the redefinition of the recycling principles in the context of sustainable architectural design

    OpenAIRE

    Šijaković, Milan

    2015-01-01

    The aim of this thesis is the elucidation of the concept of architectural recycling as an environmentally sustainable alternative to demolition and preservation. More precisely, the research aim relates to the redefinition of recycling design principles in the context of the sustainable architectural design. The process of architectural recycling was placed in the context of a sustainable architectural design, as the global concept of sustainable development is imposed as a general context fo...

  20. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Science.gov (United States)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  1. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  2. ONE – STAGE METAL WASTES RECYCLING

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2011-01-01

    Full Text Available Rotary tilting furnace is the most efficient installation for recycling of dispersible metal wastes of any alloy. Several constructions have been designed for chips heating and melting, scale recovery, ets.

  3. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  4. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  5. Solid Waste and Recycling Collection Routes

    Data.gov (United States)

    Town of Cary, North Carolina — View the Town’s current collection schedule, including pick-up day and recycling week designation.The Town of Cary collects garbage weekly at the curb on the same...

  6. Benchmarking in municipal solid waste recycling.

    Science.gov (United States)

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal.

  7. Planning logistics network for recyclables collection

    National Research Council Canada - National Science Library

    Ratkovic, Branislava; Popovic, Drazen; Radivojevic, Gordana; Bjelic, Nenad

    2014-01-01

    .... This paper presents a modeling approach that can be used for designing one part of recycling logistics network through defining optimal locations of collection points, and possible optimal scheduling...

  8. Design and optimization of photovoltaics recycling infrastructure.

    Science.gov (United States)

    Choi, Jun-Ki; Fthenakis, Vasilis

    2010-11-15

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  9. Design and Optimization of Photovoltaics Recycling Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  10. Proposal of recycling system for waste aluminum

    Directory of Open Access Journals (Sweden)

    Š. Valenčík

    2008-04-01

    Full Text Available Introduced work is focused on waste aluminum recycling process with objective to propose complex production system for recovering of aluminum and some aluminum alloys. Solution is supported by extended analysis concerning purpose, basis and system sequences for recyclation. Based on that, sources, possibilities and conditions for recycling are formed. This has been used in proposal of manufacturing system. The principle is the structural proposal of manufacturing system, which does not only differentiate the stage of aluminum melting process, but also related stages as gross separation, sizing, containerisation and batching, palletisation, stacking and some related operations. Production system respects technological specifications, requirements for rationalisation of manufacturing systems, technical and economical feasibility conditions and is considered in lower automation level. However production system solves complex problem of recycling of some types of aluminum, it improves flexibility, production, quality (melting by high enforcements and in protective atmosphere and extention of production (final products production.

  11. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.

    Science.gov (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2013-03-11

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  12. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    Science.gov (United States)

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  13. STAGE OF TEXTILE RECYCLE WASTE IN ROMANIA

    OpenAIRE

    TRIPA Simona

    2014-01-01

    Aim of this article is to examine the stage of textile recycle waste in Romania. For this purpose were analyzed the main sources of textile waste from Romania (industry of manufacture of textiles, wearing apparel, leather and related products, imports of textiles, clothing and footwear and imports of second hand clothing) and also evolution of the quantity of textile waste in Romania. The benefits (economic and environmental) of the collection and recycling of waste and the legislation ...

  14. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, LIU; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  15. WE(EE) Demand - Recycled Plastic

    OpenAIRE

    Førby, Marie; Pedersen, Jakob; Borgen, Nanna; Hansen, Rasmus Nør

    2015-01-01

    Plastic management – from production to waste – has massive negative effects on the environment of which one of the main problems are the CO2 released from the fossil fuels. The focus of this paper lies on the possibilities of increasing demand for recycled plastics from electric and electronic equipment (WEEE-plastic) through modifications in the Danish waste systems. Due to the chemical build of plastic, it is not possible to reprocess it with mechanical recycle technologies while keeping t...

  16. Survey of metallurgical recycling processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pemsler, J.P.

    1979-03-01

    In the year 2000, the US will consume about 3.2 x 10/sup 15/ Btu to produce the seven major nonferrous metals Al, Cu, Zn, Pb, Ni, Mg, and Ti. Of this amount, 82% will be used in the production of Al. It is projected that 0.6 x 10/sup 15/ Btu will be saved by the recycle of secondary metals. Major opportunities for increasing the extent of recycle and thereby increasing the energy savings are discussed. An inherent feature in the energistics of recycle is that physical processes such as magnetic separation, density separations, melting, and in some instances vaporization are far less energy intensive than are chemical processes associated with dissolution and electrowinning. It is in the domain of scrap of complex composition and physical form, difficult to handle by existing technology, that opportunities exist for new chemical recycle technology. Recycle of scrap metal of adequate grade is currently achieved through pyrometallurgical processes which, in many cases, are not very energy intensive as compared with hydrometallurgical processes. Preliminary flowsheets are presented for the recovery of value metals from batteries considered for use in vehicular propulsion and load leveling applications. The battery types examined are lead/acid, nickel/zinc, nickel/iron, zinc/chlorine, lithium-aluminum/iron sulfide, and sodium/sulfur. A flow sheet has been outlined for an integrated hydrometallurgical process to treat low-grade copper scrap. A fully integrated hydrometallurgical process is outlined, and costs and energy consumption are derived, for recovering zinc metal from electric furnace flue dusts. Costs and energy are high and the process does not appear to warrant development at this time. Improvement in the recycle of magnesium is associated primarily with improved recycle in the Al industry where Mg is an important alloy additive. Ni and Ti recycle are associated with improved collection and sorting of stainless steel and specialty alloys.

  17. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  18. Modern recycling methods in metallurgical industry

    Directory of Open Access Journals (Sweden)

    M. Maj

    2010-04-01

    Full Text Available The contamination of environment caused by increased industrial activities is the main topic of discussions in Poland and in the world. The possibilities of waste recovery and recycling vary in different sectors of the industry, and the specific methods, developed and improved all the time, depend on the type of the waste. In this study, the attention has been focussed mainly on the waste from metallurgical industry and on the available techniques of its recycling

  19. Economical and Ecological Fesasibility of Plastic Recycling

    OpenAIRE

    Hirschpold, Andrew; Juctye, Kristina; Renzhong, Jiang; Debin, Liu; Varona, Hector P.; Kevelaitis, Karolis

    2005-01-01

    #Group 3 International Nat Bas Economical and Ecological Feasibility of Plastic Recycling Abstract This project is carried out as the final project for the first semester of Bachelor of Science studies. Our project will aim on plastic recycling. Plastic is a manmade material which covers a range of synthetic or semi-synthetic products made thru polymerization. The development of plastic products has accompanied the development of human’s history since it was invented while they ...

  20. Recycling of coal combustion wastes.

    Science.gov (United States)

    Oz, Derya; Koca, Sabina; Koca, Huseyin

    2009-05-01

    The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.