WorldWideScience

Sample records for rectangular coordinate method

  1. Method and structure for cache aware transposition via rectangular subsections

    Science.gov (United States)

    Gustavson, Fred Gehrung; Gunnels, John A

    2014-02-04

    A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.

  2. A new modeling of loading margin and its sensitivities using rectangular voltage coordinates in voltage stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Vander Menengoy da; Rosa, Arlei Lucas de Sousa [Department of Electrical Engineering, Federal University of Juiz de Fora, Campus Universitario - Bairro Martelos, 36036-330 Juiz de Fora - MG (Brazil); Guedes, Magda Rocha [Federal Center of Technologic Education of Minas Gerais - CEFET, Rua Jose Peres, 558 36700-000 Leopoldina - MG (Brazil); Cantarino, Marcelo [Centrais Eletricas Brasileiras S.A - ELETROBRAS, Av. Rio Branco, 53, Centro, 14 andar, 20090-004 Rio de Janeiro - RJ (Brazil)

    2010-05-15

    This paper presents new mathematical models to compute the loading margin, as well as to perform the sensitivity analysis of loading margin with respect to different electric system parameters. The innovative idea consists of evaluating the performance of these methods when the power flow equations are expressed with the voltages in rectangular coordinates. The objective is to establish a comparative process with the conventional models expressed in terms of power flow equations with the voltages in polar coordinates. IEEE test system and a South-Southeastern Brazilian network are used in the simulations. (author)

  3. 基于非线性三维直角坐标转换的耐压壳体径向初挠度测量算法%Calculation Method of Pressure Hull Radial Initial Deflection Based on Nonlinear Rectangular Coordinate Transformation Method

    Institute of Scientific and Technical Information of China (English)

    刘序辰; 彭飞; 朱志洁; 李宁

    2014-01-01

    A method based on six-parameter rectangular coordinate transformation which is propitious to measure submarine's pressure hull radial initial deflection is presented. It resolves the problem that tradi⁃tional seven-parameter bursa mathematical models are unsuitable for large-rotation-angle cases and rely most on the initial value that could lead to large coordinate conversion deviance. To do so, the six-parame⁃ter rectangular coordinate model is first adopted to be derived on the basis of complete coordinate transfor⁃mation formulas. Then, the computational process is enhanced with the improved Gauss-Newton method. Finally, the proposed method is realized by the MATLAB program. Using the analog data and actual project data, a comparison between the traditional bursa mathematical model verifies the accuracy and stability of the proposed algorithm.%针对传统的bursa七参数坐标转换模型不适合大旋转角度测量、过于依赖初值等问题,提出一种适合潜艇耐压壳体径向初挠度测量的基于六参数的非线性三维直角坐标转换模型计算方法。首先,在坐标转换的完整公式基础上推导出六参数模型公式。随后,利用改进的高斯—牛顿法对解算过程进行优化。最后,通过MATLAB程序将算法实现,代入工程实测数据和仿真数据,从解算精度和稳定性两方面与传统bursa模型进行对比,验证了算法的可行性与正确性。

  4. Phase-domain power flows in the rectangular co-ordinates frame of reference including VSC-based FACTS controllers

    Energy Technology Data Exchange (ETDEWEB)

    Angeles-Camacho, C. [Universidad Nacional Autonoma de Mexico, Instituto de Ingenieria, Edif. Bernardo Quintana, Circuito Exterior Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Acha, E. [Electronics and Electrical Engineering, The University of Glasgow (United Kingdom)

    2008-03-15

    This paper presents a method for systematic modelling of VSC-based FACTS controllers within three-phase power flows in rectangular co-ordinates. Among the FACTS controllers modelled are the STATCOM, SSSC, UPFC and HVDC-VSC. The approach taken is to represent the fundamental frequency operation of each power converter as a three-phase voltage source behind a leakage reactance, where one or two of them may be connected in either series or parallel depending on the FACTS controller being modelled. Active and reactive power flow equations are developed for each voltage source circuit together with constraint equations to account for co-ordinated operation of two converters, such as in modelling of UPFC and HVDC-VSC. The power flow equations representing the VSC-based FACTS controllers are combined with the nodal power equations of the power network for a combined iterative solution using a Newton-Raphson three-phase power flow algorithm in rectangular co-ordinates enabling robust and efficient solutions of three-phase power networks with any number and kind of VSC-based controllers. (author)

  5. Two-Dimensional Rectangular Stock Cutting Problem and Solution Methods

    Institute of Scientific and Technical Information of China (English)

    Zhao Hui; Yu Liang; Ning Tao; Xi Ping

    2001-01-01

    Optimal layout of rectangular stock cutting is still in great demand from industry for diversified applications. This paper introduces four basic solution methods to the problem: linear programming, dynamic programming, tree search and heuristic approach. A prototype of application software is developed to verify the pros and cons of various approaches.

  6. Generalized rectangular finite difference beam propagation method.

    Science.gov (United States)

    Sujecki, Slawomir

    2008-08-10

    A method is proposed that allows for significant improvement of the numerical efficiency of the standard finite difference beam propagation algorithm. The advantages of the proposed method derive from the fact that it allows for an arbitrary selection of the preferred direction of propagation. It is demonstrated that such flexibility is particularly useful when studying the properties of obliquely propagating optical beams. The results obtained show that the proposed method achieves the same level of accuracy as the standard finite difference beam propagation method but with lower order Padé approximations and a coarser finite difference mesh.

  7. Logically rectangular mixed methods for Darcy flow on general geometry

    Energy Technology Data Exchange (ETDEWEB)

    Arbogast, T.; Keenan, P.T.; Wheeler, M.F.; Yotov, I. [Rice Univ., Houston, TX (United States)

    1995-12-31

    The authors consider an expanded mixed finite element formulation (cell centered finite difference) for Darcy flow with a tensor absolute permeability. The reservoir can be geometrically general with internal features, but the computational domain is rectangular. The method is defined on a curvilinear grid that need not be orthogonal, obtained by mapping the rectangular, computational grid. The original flow problem becomes a similar problem with a modified permeability on the computational grid. Quadrature rules turn the mixed method into a cell-centered finite difference method with a 9 point stencil in 2-D and 19 in 3-D. As shown by theory and experiment, if the modified permeability on the computational domain is smooth, then the convergence rate is optimal and both pressure and velocity are superconvergent at certain points. If not, Lagrange multiplier pressures can be introduced on boundaries of elements so that optimal convergence is retained. This modification presents only small changes in the solution process; in fact, the same parallel domain decomposition algorithms can be applied with little or no change to the code if the modified permeability is smooth over the subdomains. This Lagrange multiplier procedure can be used to extend the difference scheme to multi-block domains, and to give a coupling with unstructured grids. In all cases, the mixed formulation is locally conservative. Computational results illustrate the advantage and convergence of this method.

  8. Solution of non-rectangular plates with macroelement method

    Science.gov (United States)

    Delyavskyy, Mykhaylo; Rosinski, Krystian

    2017-03-01

    New approach to static analysis of thin non-rectangular arbitrarily loaded plates, called the macroelement method, has been developed in this paper. Macroelement is a rectangular plate which entirely contains real plate. The mathematical model of macroelement was built. The equilibrium equations are performed for macroelement and boundary conditions are written on the line corresponding to contour of real plate in the nodes which are zero points of trigonometric functions, included in the macroelement model. The load is applied only to separate nodes on the surface of real plate, whereas the complement of a plate to macroelement is unloaded. Analysis of construction is reduced to solving a system of linear algebraic equations. The method provides better accuracy compared to finite element method and requires less equations. There is trapeze plate clamped at inclined edge and simply supported at opposite one considered in this paper. The other edges of the plate are free. Uniformly distributed load on the surface of real plate is taken into account.

  9. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  10. New method for solving the bending problem of rectangular plates with mixed boundary conditions

    Directory of Open Access Journals (Sweden)

    Liu Xin Min

    2016-01-01

    Full Text Available A new method is used to solve the rectangular plate bending problem with mixed boundary conditions. The method overcomes the complicated derivation of the classical solution by Fourth-order differential problem into integrating question. Under uniform loading rectangular plate bending problem with one side fixed the opposite side half simply supported half fixed the other two sides free rectangular plate, one side simply supported the opposite side half simply supported half fixed the other two sides free rectangular plate is systematically solved. According to the actual boundary conditions of the rectangular plate, the corresponding characteristic equation can easily be set up. It is presented deflection curve equation and the numerical calculation. By compared the results of the equation to the finite element program, we are able to demonstrate the correctness of the method. So the method not only has certain theoretical value, but also can be directly applied to engineering practice.

  11. Tapered Simplified Modal Method for Analysis of Non-rectangular Gratings

    CERN Document Server

    Li, Shuai; Barbastathis, George

    2016-01-01

    The Simplified Modal Method (SMM) provides a quick and intuitive way to analyze the performance of gratings of rectangular shapes. For non-rectangular shapes, a version of SMM has been developed, but it applies only to the Littrow-mounting incidence case and it neglects reflection. Here, we use the theory of mode-coupling in a tapered waveguide to improve SMM so that it applies to non-rectangular gratings at arbitrary angles of incidence. Moreover, this new 'Tapered Simplified Modal Method' (TSMM) allows us to properly account for reflected light. We present here the analytical development of the theory and numerical simulations, demonstrating the validity of the method.

  12. FREE VIBRATION OF ANISOTROPIC RECTANGULAR PLATES BY GENERAL ANALYTICAL METHOD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the differential equation for transverse displacement function of anisotropic rectangular thin plates in free vibration, a general analytical solution is established. This general solution, composed of the composite solutions of trigonometric function and hyperbolic function, can satisfy the problem of arbitrary boundary conditions along four edges. The algebraic polynomial with double sine series solutions can also satisfy the problem of boundary conditions at four corners. Consequently, this general solution can be used to solve the vibration problem of anisotropic rectangular plates with arbitrary boundaries accurately. The integral constants can be determined by boundary conditions of four edges and four corners. Each natural frequency and vibration mode can be solved by the determinate of coefficient matrix from the homogeneous linear algebraic equations equal to zero. For example, a composite symmetric angle ply laminated plate with four edges clamped has been calculated and discussed.

  13. A FINITE ELEMENT METHOD WITH RECTANGULAR PERFECTLY MATCHED LAYERS FOR THE SCATTERING FROM CAVITIES

    Institute of Scientific and Technical Information of China (English)

    Deyue Zhang; Fuming Ma; Heping Dong

    2009-01-01

    We develop a finite element method with rectangular perfectly matched layers (PMLs) for the wave scattering from two-dimensional cavities. The unbounded computational domain is truncated to a bounded one by using of a rectangular perfectly matched layer at the open aperture. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. Numerical experiments are carried out to illustrate the competitive behavior of the proposed method.

  14. LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Shiquan Zhang; Xiaoping Xie; Yumei Chen

    2009-01-01

    In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.

  15. Transverse operator method for wakefields in a rectangular dielectric loaded accelerating structure

    Directory of Open Access Journals (Sweden)

    S. S. Baturin

    2013-05-01

    Full Text Available Cherenkov radiation generated by a relativistic electron bunch in a rectangular dielectric-loaded waveguide is analyzed under the assumption that the dielectric layers are inhomogeneous normal to the beam path. We propose a method that uses eigenfunctions of the transverse operator applied to develop a rigorous full solution for the wakefields that are generated. The dispersion equation for the structure is derived and the wakefield analysis is carried out. The formalism developed here allows the direct solution of the inhomogeneous system of Maxwell equations, an alternative analytic approach to the analysis of wakefields in contrast to the previously used impedance method for rectangular structure analysis. The formalism described here was successfully applied to the analysis of rectangular dielectric-lined structures that have been recently beam tested at the Argonne (ANL/AWA and Brookhaven (BNL/ATF accelerator facilities.

  16. Tree Formation Using Coordinate Method

    Directory of Open Access Journals (Sweden)

    Monika Choudhary

    2015-06-01

    Full Text Available In this paper we are introducing a new method of tree formation, we propose a coordinate based method by which we can store and access tree structures. As we know in NLP, parsing is the most important module. The output of this module is generally parsed trees. Currently, TAG (Tree Adjoining Grammar is widely used grammar due to its linguistic and formal nature. It is simply tree generating system. The unit structure used in TAG is structured trees. So we used our new method to store trees where we worked on English to Hindi language. We worked on different sentences from English to Hindi, our method is the easiest way to manipulate tree. We have implemented within small corpus and for finite number of structures and further can be extended in future.

  17. Comparison of CAD Formulas, Method of Moments and Experiments for Rectangular Microstrip Antennas

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2003-04-01

    Full Text Available Calculations of several cases for rectangular microstrip patchantennas using more accurate cavity model have been compared with theconventional cavity calculations, expressions generated by curvefitting to full wave solutions and method of moments. Calculated aswell as experimental values have been studied for different thickness,patch sizes and substrate materials with different permittivities andlosses.

  18. Power allocation and mode selection methods for cooperative communication in the rectangular tunnel

    Institute of Scientific and Technical Information of China (English)

    Zhai Wenyan; Sun Yanjing; Xu Zhao; Li Song

    2015-01-01

    For the multipath fading on electromagnetic waves of wireless communication in the confined areas, the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained. On the optimal criterion of the channel capacity, the power allocation methods of both amplifying and forwarding (AF) and decoding and forwarding (DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity. The mode selection methods of single input single output (SISO) and single input multiple output (SIMO) models in the rectangular tunnel, through which the higher channel capacity can be obtained, were put forward as well. The theoretical analysis and simulation comparison show that, channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology; channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods, and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.

  19. A multiresolution finite element method based on a new locking-free rectangular Mindlin plate element

    CERN Document Server

    Xia, Yi-Ming

    2015-01-01

    A locking-free rectangular Mindlin plate element with a new multi-resolution analysis (MRA) is proposed and a multireolution finite element method is hence presented. The MRA framework is formulated out of a mutually nesting displacement subspace sequence. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node rectangular Mindlin plate element and method is a mono-resolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The rational MRA enables the implementation of the multiresolution Mindlin plate element method to be more rational and efficient than that of the conventional monoresolution or o...

  20. Theoretical investigation on a general class of 2D quasicrystals with the rectangular projection method

    Science.gov (United States)

    Yue, Yang-Yang; Lu, Rong-er; Yang, Bo; Huang, Huang; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-10-01

    We take a theoretical investigation on the reciprocal property of a class of 2D nonlinear photonic quasicrystal proposed by Lifshitz et al. in PRL 95, 133901 (2005). Using the rectangular projection method, the analytical expression for the Fourier spectrum of the quasicrystal structure is obtained explicitly. It is interesting to find that the result has a similar form to the corresponding expression of the well-known 1D Fibonacci lattice. In addition, we predict a further extension of the result to higher dimensions. This work is of practical importance for the photonic device design in nonlinear optical conversion progresses.

  1. Numerical methods for estimating J integral in models with regular rectangular meshes

    Science.gov (United States)

    Kozłowiec, B.

    2017-02-01

    Cracks and delaminations are the common structural degradation mechanisms studied recently using numerous methods and techniques. Among them, numerical methods based on FEM analyses are in widespread commercial use. The scope of these methods has focused i.e. on energetic approach to linear elastic fracture mechanics (LEFM) theory, encompassing such quantities as the J-integral and the energy release rate G. This approach enables to introduce damage criteria of analyzed structures without dealing with the details of the physical singularities occurring at the crack tip. In this paper, two numerical methods based on LEFM are used to analyze both isotropic and orthotropic specimens and the results are compared with well-known analytical solutions as well as (in some cases) VCCT results. These methods are optimized for industrial use with simple, rectangular meshes. The verification is made based on two dimensional mode partitioning.

  2. Semi-Analytical Finite Strip Transfer Matrix Method for Buckling Analysis of Rectangular Thin Plates

    Directory of Open Access Journals (Sweden)

    Li-Ke Yao

    2015-01-01

    Full Text Available Plates and shells are main components of modern engineering structures, whose buckling analysis has been focused by researchers. In this investigation, rectangular thin plates with loaded edges simply supported can be discretized by semi-analytical finite strip technology. Then the control equations of the strip elements of the buckling plate will be rewritten as the transfer equations by transfer matrix method. A new approach, namely semi-analytical Finite Strip Transfer Matrix Method, is developed for the buckling analysis of plates. This method requires no global stiffness matrix of the system, reduces the system matrix order, and improves the computational efficiency. Comparing with some theoretical results and FEM’s results of two illustrations (the plates and the ribbed plates under six boundary conditions, the method is proved to be reliable and effective.

  3. Methods of Experimental Investigation of Cavitation in a Convergent - Divergent Nozzle of Rectangular Cross Section

    Science.gov (United States)

    Jablonská, Jana; Kozubková, Milada; Himr, Daniel; Weisz, Michal

    2016-08-01

    Cavitation is a phenomenon with both positive and negative effects and with dynamic manifestations in hydraulic, food, chemical and other machinery. This article deals with the detection and dynamic behavior of cavitation clouds in water flows through a rectangular cross-section convergent-divergent nozzle. Cavitation was measured by methods applicable in engineering practice. Pressure, flow rate, noise, vibration, and amount of air dissolved in the liquid were measured and cavitation region was recorded with a high-speed camera. Evaluation of acquired images in connection with measured pressure pulsations and mechanical vibrations was performed with the use of the FFT method. In certain cases, dimensionless parameters were used to generalize the measurements. The results will be used to specify multiphase mathematical cavitation model parameters.

  4. Simulation of Temperature Distribution In a Rectangular Cavity using Finite Element Method

    CERN Document Server

    Naa, Christian

    2013-01-01

    This paper presents the study and implementation of finite element method to find the temperature distribution in a rectangular cavity which contains a fluid substance. The fluid motion is driven by a sudden temperature difference applied to two opposite side walls of the cavity. The remaining walls were considered adiabatic. Fluid properties were assumed incompressible. The problem has been approached by two-dimensional transient conduction which applied on the heated sidewall and one-dimensional steady state convection-diffusion equation which applied inside the cavity. The parameters which investigated are time and velocity. These parameters were computed together with boundary conditions which result in temperature distribution in the cavity. The implementation of finite element method was resulted in algebraic equation which is in vector and matrix form. Therefore, MATLAB programs used to solve this algebraic equation. The final temperature distribution results were presented in contour map within the re...

  5. Two-Dimensional DOA Estimation for Uniform Rectangular Array Using Reduced-Dimension Propagator Method

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    2015-01-01

    Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.

  6. An Analytical Method for Static Earth Pressure Distribution against Rectangular Shallow Tunnels Using Lateral Deformation

    Directory of Open Access Journals (Sweden)

    Farzad Habibbeygi

    2015-10-01

    Full Text Available Analytical methods for computing the lateral earth pressure against tunnel is vastly used by engineers all over the world. Conventional analytical methods compute the lateral pressure in either active or passive state while the stress state usually falls between these two boundaries in many practical cases. Furthermore, using these boundary coefficients lead to either overestimated or underestimated results in design. Thus, a modified method based on the strain increment theory for calculating the lateral pressure against rectangular tunnels is presented herein to consider the amount of lateral deformation at each depth. First, the results for different values of overburden depth, friction angle and wall mobilized angle are investigated. Then comparative finite element analyses were performed to examine the effectiveness of the method. According to this study, the pressure pattern is completely nonlinear especially at the corners of tunnel lining. In fact, the pressure increases nonlinearly to about three times of the value at top. Lateral earth pressure decreases with the increase of friction angle which is in good agreement with finite element results. Overall, the pressure patterns derived by this method for shallow depths (less than tunnel height are almost the same as those computed by finite element method.

  7. A novel prediction method of vibration and acoustic radiation for rectangular plate with particle dampers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqiang; Wu, Chengjun [Xi' an Jiaotong University, Xi' an (China)

    2016-03-15

    Particle damping technology is widely used in mechanical and structural systems or civil engineering to reduce vibration and suppress noise as a result of its high efficiency, simplicity and easy implementation, low cost, and energy-saving characteristic without the need for any auxiliary power equipment. Research on particle damping theory has focused on the vibration response of the particle damping structure, but the acoustic radiation of the particle damping structure is rarely investigated. Therefore, a feasible modeling method to predict the vibration response and acoustic radiation of the particle damping structure is desirable to satisfy the actual requirements in industrial practice. In this paper, a novel simulation method based on multiphase flow theory of gas particle by COMSOL multiphysics is developed to study the vibration and acoustic radiation characteristics of a cantilever rectangular plate with Particle dampers (PDs). The frequency response functions and scattered far-field sound pressure level of the plate without and with PDs under forced vibration are predicted, and the predictions agree well with the experimental results. Results demonstrate that the added PDs have a significant effect on vibration damping and noise reduction for the primary structure. The presented work in this paper shows that the theoretical work is valid, which can provide important theoretical guidance for low-noise optimization design of particle damping structure. This model also has an important reference value for the noise control of this kind of structure.

  8. On modification of certain methods of the conjugate direction type for solving rectangular systems of linear algebraic equations

    Science.gov (United States)

    Yukhno, L. F.

    2007-12-01

    The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.

  9. Shape optimization of rotating rectangular channels with pin-fins by kriging method

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Mi Ae; Husain, Afzal; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)

    2009-07-01

    This paper presents numerical optimization of the design of a rotating rectangular channel with staggered arrays of pin-fins with Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to diameter of the pin-fin and the ratio of the spacing between the pin-fins to diameter of the pin-fins are chosen as design variables. The objective function as a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. Objective function values at twenty training points generated by Latin Hypercube Sampling (LHS) are evaluated by three-dimensional ReynoldsAveraged Navier-Stokes (RANS) method with the Shear Stress Transport (SST) turbulence model. The prediction of objective function by Kriging metamodeling at optimum point shows reasonable accuracy in comparison with the values calculated by RANS analysis. With increase in height of the pin-fin, heat transfer is decreased and at the same time pressure drop is also decreased, while opposite behavior is obtained for the pin-fin spacing.

  10. Intelligent Layout Method of the Powerhouse for Tank & Armored Vehicles Based on 3-Dimensional Rectangular Packing Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-long; MAO Ming; LU Yi-ping; BIE Jie-min

    2005-01-01

    Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.

  11. 2D-DOA estimation of noncircular signals for uniform rectangular array via NC-PARAFAC method

    Science.gov (United States)

    Zhang, Licen; Lv, Weihua; Zhang, Xiaofei; Li, Shu

    2016-11-01

    In this paper, we propose a two-dimensional direction of arrival (2D-DOA) estimation algorithm for uniform rectangular array via noncircular-parallel factor (NC-PARAFAC) method. Compared to the conventional parallel factor (PARAFAC) algorithm, the proposed algorithm exploits the property of noncircular signals to double the array aperture. Therefore, the angle estimation performance of the proposed algorithm is better than the conventional PARAFAC method. The proposed algorithm achieves automatically paired two-dimensional angle estimates, and has better 2D-DOA estimation performance than some conventional algorithms, which include estimation of signal parameters via rotational invariance technique (ESPRIT), propagator method (PM), PARAFAC algorithm, noncircular-ESPRIT (NC-ESPRIT) and noncircular-PM (NC-PM). We also derive the Cramér-Rao bound for the 2D-DOA estimation of noncircular signals with uniform rectangular array. Simulation results verify the effectiveness and improvement of the proposed algorithm.

  12. Vibration Analysis of Rectangular Plates with One or More Guided Edges via Bicubic B-Spline Method

    Directory of Open Access Journals (Sweden)

    W.J. Si

    2005-01-01

    Full Text Available A simple and accurate method is proposed for the vibration analysis of rectangular plates with one or more guided edges, in which bicubic B-spline interpolation in combination with a new type of basis cubic B-spline functions is used to approximate the plate deflection. This type of basis cubic B-spline functions can satisfy simply supported, clamped, free, and guided edge conditions with easy numerical manipulation. The frequency characteristic equation is formulated based on classical thin plate theory by performing Hamilton's principle. The present solutions are verified with the analytical ones. Fast convergence, high accuracy and computational efficiency have been demonstrated from the comparisons. Frequency parameters for 13 cases of rectangular plates with at least one guided edge, which are possible by approximate or numerical methods only, are presented. These results are new in literature.

  13. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation

    Science.gov (United States)

    Manzhos, Sergei; Carrington, Tucker

    2016-12-01

    We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H2CO, we obtain a mean absolute error of less than 1 cm-1; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm-1.

  14. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation.

    Science.gov (United States)

    Manzhos, Sergei; Carrington, Tucker

    2016-12-14

    We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H2CO, we obtain a mean absolute error of less than 1 cm(-1); with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm(-1).

  15. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    Science.gov (United States)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  16. Belief Propagation Methods for Intercell Interference Coordination

    CERN Document Server

    Rangan, Sundeep

    2010-01-01

    We consider a broad class of interference coordination and resource allocation problems for wireless links where the goal is to maximize the sum of functions of individual link rates. Such problems arise in the context of, for example, fractional frequency reuse (FFR) for macro-cellular networks and dynamic interference management in femtocells. The resulting optimization problems are typically hard to solve optimally even using centralized algorithms but are an essential computational step in implementing rate-fair and queue stabilizing scheduling policies in wireless networks. We consider a belief propagation framework to solve such problems approximately. In particular, we construct approximations to the belief propagation iterations to obtain computationally simple and distributed algorithms with low communication overhead. Notably, our methods are very general and apply to, for example, the optimization of transmit powers, transmit beamforming vectors, and sub-band allocation to maximize the above object...

  17. Direct Timing Method for Longitudinal Coordinate Determination in Straws

    OpenAIRE

    Makhankin, A. M.; Myalkovsky, V. V.; Peshekhonov, V. D.; Vasilyev, S. E.

    2013-01-01

    The considering different technics of measuring the longitudinal coordinates by the drift tubes. It is shown that the determination of the longitudinal coordinate by the direct time method provides the best longitudinal resolution. The realization of this method enables the development of coordinate detectors based on the straw with two-dimensional readout, which can be fast enough and not very complex.

  18. A Second Order Nonconforming Rectangular Finite Element Method for Approximating Maxwell's Equations

    Institute of Scientific and Technical Information of China (English)

    Dong-yang SHI; Xiao-bin HAO

    2011-01-01

    The main objective of this paper is to present a new rectangular nonconforming finite element scheme with the second order convergence behavior for approximation of Maxwell's equations.Then the corresponding optimal error estimates are derived.The difficulty in construction of this finite element scheme is how to choose a compatible pair of degrees of freedom and shape function space so as to make the consistency error due to the nonconformity of the element being of order O(h3),properly one order higher than that of its interpolation error O(h2) in the broken energy norm,where h is the subdivision parameter tending to zero.

  19. Combined Method of Datum Transformation Between Different Coordinate Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method.

  20. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CABS......), is introduced. The system utilizes front loudspeakers and extra loudspeakers on the opposite wall of the room processed to cancel out the rear-wall reflections, which effectively conveys a more uniform sound field. The system works in the time domain and presents good performance over the loudspeaker low...

  1. ESTIMATION OF 2-D DOA USING NON-CIRCULAR MUSIC METHOD FOR UNIFORM CIRCULAR AND RECTANGULAR ARRAYS

    Institute of Scientific and Technical Information of China (English)

    Li Rui; Shi Xiaowei; Xu Le; Bi Xiaojun; Li Ping

    2011-01-01

    This paper extends the Non-Circular MUltiple SIgnal Classification (MUSIC) (NC-MUSIC)method for the common array geometries including Uniform Circular Arrays (UCAs) and Uniform Rectangular Arrays (URAs),which enables the algorithm to estimate 2-D Direction Of Arrival (DOA).A comparison between UCAs and URAs of NC-MUSIC is made in this paper.The simulations show that the NC-MUSIC method doubles the maximum estimation number of standard MUSIC.Using non-circular signals,the performance of URAs is improved remarkably while the improvement of UCAs is not so significantly.Moreover,the influence of arrays structures on the NC-MUSIC method is dis-cussed.

  2. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  3. The open method of coordination in vocational education and training

    DEFF Research Database (Denmark)

    Cort, Pia

    2009-01-01

    Analysis of EU modes of governance within the Copenhagen Process with a specific focus on the Open Method of Coordination.......Analysis of EU modes of governance within the Copenhagen Process with a specific focus on the Open Method of Coordination....

  4. Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

    Directory of Open Access Journals (Sweden)

    Morteza karimi

    2015-07-01

    Full Text Available In this article, finite difference method (FDM is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. To include the surface effects in the equations, Gurtin-Murdoch continuum elasticity approach has been employed. The effects of surface properties including the surface elasticity, surface residual stress and surface mass density are considered to be the main causes for size-dependent behaviors that arise from the increase in surface-to-volume ratios at smaller scales. Numerical results are presented to demonstrate the difference between the natural frequency obtained by considering the surface effects and that obtained without considering surface properties. It is observed that the effects of surface properties tend to diminish in thicker nanoplates, and vice versa.

  5. Modeling and Eigenfrequency Analysis of Sound-Structure Interaction in a Rectangular Enclosure with Finite Element Method

    Directory of Open Access Journals (Sweden)

    Samira Mohamady

    2009-01-01

    Full Text Available Vibration of structures due to external sound is one of the main causes of interior noise in cavities like automobile, aircraft, and rotorcraft, which disturb the comfort of passengers. Accurate modelling of such phenomena is required in eigenfrequency analysis and in designing an active noise control system to reduce the interior noise. In this paper, the effect of periodic noise travelling into a rectangular enclosure is investigated with finite element method (FEM using COMSOL Multiphysics software. The periodic acoustic wave is generated by a point source outside the enclosure and propagated through the enclosure wall and excites an aluminium flexible panel clamped onto the enclosure. The behaviour of the transmission of sound into the cavity is investigated by computing the modal characteristics and the natural frequencies of the cavity. The simulation results are compared with previous analytical and experimental works for validation and an acceptable match between them were obtained.

  6. An efficient rectangular plate element

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new 12-parameter rectangular plate element is presented by useof the double set parameter method. The error in the energy norm is of order O(h2), one order higher than the commonly used Adini nonconforming element.

  7. Consistent projection methods for variable density incompressible Navier-Stokes equations with continuous surface forces on a rectangular collocated mesh

    Science.gov (United States)

    Ni, Ming-Jiu

    2009-10-01

    Two consistent projection methods of second-order temporal and spatial accuracy have been developed on a rectangular collocated mesh for variable density Navier-Stokes equations with a continuous surface force. Instead of the original projection methods (denoted as algorithms I and II in this paper), in which the updated cell center velocity from the intermediate velocity and the pressure gradient is not guaranteed solenoidal, the consistent projection methods (denoted as algorithms III and IV) obtain the cell center velocity based on an interpolation from a conservative fluxes with velocity unit on surrounding cell faces. Dependent on treatment of the continuous surface force, the pressure gradient in algorithm III or the sum of the pressure gradient and the surface force in algorithm IV at a cell center is then conducted from the difference between the updated velocity and the intermediate velocity in a consistent projection method. A non-viscous 3D static drop with serials of density ratios is numerically simulated. Using the consistent projection methods, the spurious currents can be greatly reduced and the pressure jump across the interface can be accurately captured without oscillations. The developed consistent projection method are also applied for simulation of interface evolution of an initial ellipse driven by the surface tension and of an initial sphere bubble driven by the buoyancy with good accuracy and good resolution.

  8. Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz

    2017-01-01

    . Am. A 33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions...... convergence enabling more accurate and efficient modeling of open 3D nanophotonic structures....

  9. Recent Developments in Methods for Identifying Reaction Coordinates

    CERN Document Server

    Li, Wenjin

    2015-01-01

    In the study of rare events in complex systems with many degrees of freedom, a key element is to identify the reaction coordinates of a given process. Over recent years, a number of methods and protocols have been developed to extract the reaction coordinates based on limited information from molecular dynamics simulations. In this review, we provide a brief survey over a number of major methods developed in the past decade, some of which are discussed in greater detail, to provide an overview of the problems that are partially solved and challenges that still remain. A particular emphasis has been placed on methods for identifying reaction coordinates that are related to the committor.

  10. Recent developments in methods for identifying reaction coordinates.

    Science.gov (United States)

    Li, Wenjin; Ma, Ao

    2014-01-01

    In the study of rare events in complex systems with many degrees of freedom, a key element is to identify the reaction coordinates of a given process. Over recent years, a number of methods and protocols have been developed to extract the reaction coordinates based on limited information from molecular dynamics simulations. In this review, we provide a brief survey over a number of major methods developed in the past decade, some of which are discussed in greater detail, to provide an overview of the problems that are partially solved and challenges that still remain. A particular emphasis has been placed on methods for identifying reaction coordinates that are related to the committor.

  11. Application of Space Rectangular Coordinate System in the Space Analytic Geometry Problem Solving%空间直角坐标系在空间解析几何解题中的应用

    Institute of Scientific and Technical Information of China (English)

    赵丽

    2015-01-01

    解决立体几何问题的关键就是利用几何图形中的垂直关系,建立恰当的空间直角坐标系,运用几何图形中所涉及的点表示向量,进而解决空间立体几何问题. 本文针对高职学生在空间解析几何解题中的问题,运用空间直角坐标系分析空间几何解题思路,总结出空间直角坐标系在空间解析几何解题中的具体应用.%abstract:The key to solve the problems of solid geometry is using the geometry of the vertical relations ,setting up appropriate space rectangular coordinate system ,and using geometry point vector .To deal with the problem solving of higher vocational students in space analytic geometry ,this paper applies the space rectangular coordinate system to analyzing the space geometry problem solving ,and concludes some specific ways .

  12. Methods for Coordinated Inventory Control in Supply Chain Management

    DEFF Research Database (Denmark)

    Larsen, Christian; Thorstenson, Anders

    2010-01-01

    and heuristic control methods for coordination. The numerical results obtained by simulation are compared with the solutions found when inventories in the supply chain are controlled independently of each other. Findings Coordinated inventory control can offer a significant potential for cost reduction...... in a supply chain. However, the resulting inventory allocations are not always obvious without thorough analyses of the coordination effects. Research limitations/implications Some of the conclusions are formed on the basis of numerical examples and future research could involve investigation of a wider set...

  13. Assessing the open method of coordination: institutional design and national influence of EU social policy coordination

    NARCIS (Netherlands)

    Barcevičius, E.; Weishaupt, J.T.; Zeitlin, J.

    2014-01-01

    Based on the findings of a large-scale, comparative research project, this book systematically assesses the institutional design and national influence of the Open Method of Coordination (OMC) on Social Inclusion and Social Protection, at the European Union (EU) level and in ten EU Member States.

  14. Characterization of ferrimagnetic and dielectric materials with a rectangular waveguide-method, limits of validity

    Energy Technology Data Exchange (ETDEWEB)

    Nader, Chadi [Laboratoire Dispositifs et Optoelectronique et Microondes, Universite Jean Monnet, 23 rue Paul Michelon, 42023 St Etienne (France)]. E-mail: chadi.nader@univ-st-etienne.fr; Bayard, Bernard [Laboratoire Dispositifs et Optoelectronique et Microondes, Universite Jean Monnet, 23 rue Paul Michelon, 42023 St Etienne (France); Siblini, Ali [Laboratoire Dispositifs et Optoelectronique et Microondes, Universite Jean Monnet, 23 rue Paul Michelon, 42023 St Etienne (France); Sauviac, Bruno [Laboratoire Dispositifs et Optoelectronique et Microondes, Universite Jean Monnet, 23 rue Paul Michelon, 42023 St Etienne (France); Jammal, Ahmad [Laboratoire d' Electronique et d' Electrotechnique, Universite Libanaise, Liban (Libya)

    2005-04-15

    The development of passive components in the microwave range for telecommunication applications is a major focus for the next years. Some microwave passive components (such as circulators, isolators, etc.) still use magnetic materials. It is then necessary to characterize the electromagnetic properties of such materials, their scattering behaviours and to eventually highlight a non-reciprocal propagation. A method for the dielectric and magnetic characterization of multi-layer materials in the X-band (8.2-12.4 GHz) is presented as well as its reliability and its domain of validity. It allows to determine the elements of the permeability tensor of ferrite sample.

  15. Effect of aspect ratio on large amplitude free vibrations of simply supported and clamped rectangular Mindlin plates using coupled displacement field method

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar, K. Krishna; Saheb, K. Meera [University College of Engineering, Kakinada (India)

    2017-05-15

    We propose a novel method, known as Coupled displacement field (CDF) method, an alternative to study large amplitude free vibration behavior of moderately thick rectangular plates. An admissible trial function was assumed for one of the variables, say, the total rotations (in both X, Y directions). The function for lateral displacement field is derived in terms of the total rotations with the help of coupling equations, where the two independent variables become dependent on one another. This method makes use of the energy formulation, where it contains only half the number of undetermined coefficients when compared with conventional Rayleigh-Ritz method. The vibration problem is simplified significantly due to the reduction in number of undetermined coefficients. The frequency -amplitude relationship for the moderately thick rectangular plates with various aspect ratios for all edges simply supported and clamped boundary conditions was obtained. Closed form expressions for linear and nonlinear fundamental frequency parameters were derived.

  16. Comprehensive two-dimensional river ice model based on boundary-fitted coordinate transformation method

    Directory of Open Access Journals (Sweden)

    Ze-yu MAO

    2014-01-01

    Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.

  17. The volume of fluid method in spherical coordinates

    NARCIS (Netherlands)

    Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.

    2000-01-01

    The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel

  18. Research of fan trim balance for on-wing aircraft engines based on a rectangular coordinate system%基于直角坐标的在翼航空发动机风扇三圆配平方法研究

    Institute of Scientific and Technical Information of China (English)

    夏存江

    2015-01-01

    简要介绍了航空发动机三圆配平的基本方法,并在直角坐标系下推导了刚性转动系统的三圆配平法的基本原理,为解决涡扇发动机在翼风扇配平问题提供了理论支持。给出了直角坐标系下利用三圆配平方法计算风扇不平衡量的过程及结果,分析了三圆配平法适用对象及在涡扇发动机风扇配平中的实际应用。本研究成果能有效解决在翼涡扇发动机不具备现成配平条件,或具备现成配平条件但给出配平方案效果不佳时的风扇配平问题。%The basic process of three shot plot for fan trim balance was introduced. Based on a rectangular coordinate system,the fundamental principle of the method was overall demonstrated, which provided theo⁃retical support to trim balance the fan of on-wing aircraft engines. Meanwhile the process and result were given to calculate the unbalanced weight by three shot plot on a rectangular coordinate system. The applica⁃ble object of three shot plot and its application on fan trim balance on turbo-fan engines were analyzed. The research can effectively resolve the fan unbalance issues for on-wing aircraft engines when there is no ready-made trim balance method or the result is unsatisfactory.

  19. Generator Coordinate Method Analysis of Xe and Ba Isotopes

    Science.gov (United States)

    Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri

    Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.

  20. Open Method of Co-Ordination for Demoi-Cracy?

    DEFF Research Database (Denmark)

    Borrás, Susana; Radaelli, Claudio

    2014-01-01

    Under which conditions does the open method of co-ordination match the standards for demoi-cracy? To answer this question, we need some explicit standards about demoi-cracy. In fact, open co-ordination serves three different but interrelated purposes in European Union policy: to facilitate...... considering the empirical evidence on how normative principles hit the road of implementation. In the final part of this paper, we look into the demoi-cratic effects of the Eurozone's economic and financial crisis on our findings....

  1. Adaptive-Anisotropic Wavelet Collocation Method on general curvilinear coordinate systems

    Science.gov (United States)

    Brown-Dymkoski, Eric; Vasilyev, Oleg V.

    2017-03-01

    A new general framework for an Adaptive-Anisotropic Wavelet Collocation Method (A-AWCM) for the solution of partial differential equations is developed. This proposed framework addresses two major shortcomings of existing wavelet-based adaptive numerical methodologies, namely the reliance on a rectangular domain and the "curse of anisotropy", i.e. drastic over-resolution of sheet- and filament-like features arising from the inability of the wavelet refinement mechanism to distinguish highly correlated directional information in the solution. The A-AWCM addresses both of these challenges by incorporating coordinate transforms into the Adaptive Wavelet Collocation Method for the solution of PDEs. The resulting integrated framework leverages the advantages of both the curvilinear anisotropic meshes and wavelet-based adaptive refinement in a complimentary fashion, resulting in greatly reduced cost of resolution for anisotropic features. The proposed Adaptive-Anisotropic Wavelet Collocation Method retains the a priori error control of the solution and fully automated mesh refinement, while offering new abilities through the flexible mesh geometry, including body-fitting. The new A-AWCM is demonstrated for a variety of cases, including parabolic diffusion, acoustic scattering, and unsteady external flow.

  2. Efficient Algorithm for Rectangular Spiral Search

    Science.gov (United States)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    An algorithm generates grid coordinates for a computationally efficient spiral search pattern covering an uncertain rectangular area spanned by a coordinate grid. The algorithm does not require that the grid be fixed; the algorithm can search indefinitely, expanding the grid and spiral, as needed, until the target of the search is found. The algorithm also does not require memory of coordinates of previous points on the spiral to generate the current point on the spiral.

  3. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.

    Science.gov (United States)

    Guo, Zhaoli; Zhao, T S

    2003-06-01

    In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.

  4. Projectile Two-dimensional Coordinate Measurement Method Based on Optical Fiber Coding Fire and its Coordinate Distribution Probability

    Science.gov (United States)

    Li, Hanshan; Lei, Zhiyong

    2013-01-01

    To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.

  5. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  6. Study of Shielding Properties of a Rectangular Enclosure with Apertures Having Different Shapes but Same Area Using Modal Method of Moments

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2013-01-01

    Full Text Available In this study, electric field Shielding Effectiveness (SE of rectangular enclosure with apertures illuminated by vertical polarization plane wave has been studied by using modal method of moment technique. Electric field SE of enclosure with different shape apertures but same area has been c alculated at three different points inside enclosure. To achieve this, assuming appropriate electric field distribution on the aperture, fields inside the cavity are determined using rectangular cavity Green’s function. Electromagnetic fields outside the cavity and scattered due to the aperture are obtained using the free space Green’s function. Matching the tangential magnetic field across the apertures, the integral equation with aperture fields as unknown variables is obtained. A very good agreement among the results of the proposed technique, results available in the literature and experimental results is observed. The simulation results show that the electric field SE is seriously affected by calculation points, aperture shape and the number of aperture. It has been shown that usual assumption made in EMC literature that lower electric field SE near the aperture than at location inside the enclosure farther away from the aperture is not always true to square aperture at some frequency and square aperture has higher electric field SE than rectangular aperture even though they have same area.

  7. Laser Radar Through the Window (LRTW) Coordinate Correction Method

    Science.gov (United States)

    Hayden, Joseph Ethan (Inventor); Kubalak, David Albert (Inventor); Hadjimichael, Theodore John (Inventor); Eegholm, Bente Hoffmann (Inventor); Ohl, IV, Raymond George (Inventor); Telfer, Randal Crawford (Inventor); Coulter, Phillip (Inventor)

    2015-01-01

    A method for corrections of measurements of points of interests measured by beams of radiation propagating through stratified media including performance of ray-tracing of at least one ray lunched from a metrology instrument in a direction of an apparent point of interest, calculation a path length of the ray through stratified medium, and determination of coordinates of true position of the point interest using the at least one path length and the direction of propagation of the ray.

  8. An Analysis of Elasto-Plastic Bending of Rectangular Plate

    OpenAIRE

    Matsuda, Hiroshi; Sakiyama, Takeshi

    1988-01-01

    In this paper, a discrete method for analyzing the problem of elasto-plastic bending of a rectangular plate is proposed. The solutions for partial differential equation of rectangular plate are obtained in discrete forms by applying numerical integnltion. An incremental variable elasticity procedure has been used for the clasta-plastic analysis of the rectangular plate. As the applications of the proposed method, clasta-plastic bending of rectangular plate with four types of boundary conditio...

  9. Method and apparatus for determining the coordinates of an object

    Science.gov (United States)

    Pedersen, Paul S; Sebring, Robert

    2003-01-01

    A method and apparatus is described for determining the coordinates on the surface of an object which is illuminated by a beam having pixels which have been modulated according to predetermined mathematical relationships with pixel position within the modulator. The reflected illumination is registered by an image sensor at a known location which registers the intensity of the pixels as received. Computations on the intensity, which relate the pixel intensities received to the pixel intensities transmitted at the modulator, yield the proportional loss of intensity and planar position of the originating pixels. The proportional loss and position information can then be utilized within triangulation equations to resolve the coordinates of associated surface locations on the object.

  10. A new method for thread calibration on coordinate measuring machines

    DEFF Research Database (Denmark)

    Carmignato, Simone; De Chiffre, Leonardo

    2003-01-01

    CIRP Annals – Paper proposal temporary reference: P15. This paper presents a new method for the calibration of thread gauges on coordinate measuring machines. The procedure involves scanning of thread profiles using a needle-like probe, achieving traceability by substitution of different thread......-3 gave measuring uncertainties comparable to the values from usual calibration methods on dedicated equipment, e.g. a measuring uncertainty of 1.5 µm was achieved for measurement of the pitch, and 2-2.5 µm for diameter measurements....

  11. Implementing the Open Method of Co-ordination in Pensions

    Directory of Open Access Journals (Sweden)

    Jarosław POTERAJ

    2009-01-01

    Full Text Available The article presents an insight into the European Union Open Methodof Co-ordination (OMC in area of pension. The author’s goal was to presentthe development and the effects of implementation the OMC. The introductionis followed by three topic paragraphs: 1. the OMC – step by step, 2. theevaluation of the OMC, and 3. the effects of OMC implementation. In thesummary, the author highlights as except of advantages there are alsodisadvantages of the implementation of the OMC, and there are many doubtsexist in the context of efficiency of performing that method in the future.

  12. Generator coordinate method and superdeformation in A=190 nuclei

    CERN Document Server

    Dancer, H; Bonche, P; Flocard, H; Heenen, P H; Meyer, J; Meyer, M

    1999-01-01

    The Generator Coordinate Method with particle number projection using a set of Hartree-Fock plus BCS states is applied to the superdeformed even-even Hg and Pb isotopes. The q sub 3 sub 0 and q sub 3 sub 2 octupole vibrations are investigated in even-even Hg and Pb isotopes. These one-dimensional calculations predict that the collective octupole K suppi=0 sup - excitations are the lowest mode in energy. The electric monopole E0 decay out of superdeformed states is also compared to the electric quadrupole E2 transition rates.

  13. Generator coordinate method and superdeformation in A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dancer, H.; Perres, S.; Bonche, P.; Flocard, H.; Heenen, P.-H.; Meyer, J. E-mail: jmeyer@ipnl.in2p3.fr; Meyer, M

    1999-07-26

    The Generator Coordinate Method with particle number projection using a set of Hartree-Fock plus BCS states is applied to the superdeformed even-even Hg and Pb isotopes. The q{sub 30} and q{sub 32} octupole vibrations are investigated in even-even Hg and Pb isotopes. These one-dimensional calculations predict that the collective octupole K{sup {pi}}=0{sup -} excitations are the lowest mode in energy. The electric monopole E0 decay out of superdeformed states is also compared to the electric quadrupole E2 transition rates.

  14. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration

    Science.gov (United States)

    Peretti, L. F.; Dowell, E. H.

    1992-01-01

    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  15. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration

    Science.gov (United States)

    Peretti, L. F.; Dowell, E. H.

    1992-10-01

    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  16. Systems and Methods of Coordination Control for Robot Manipulation

    Science.gov (United States)

    Chang, Chu-Yin (Inventor); English, James (Inventor); Tardella, Neil (Inventor); Bacon, James (Inventor)

    2013-01-01

    Disclosed herein are systems and methods for controlling robotic apparatus having several movable elements or segments coupled by joints. At least one of the movable elements can include one or more mobile bases, while the others can form one or more manipulators. One of the movable elements can be treated as an end effector for which a certain motion is desired. The end effector may include a tool, for example, or represent a robotic hand (or a point thereon), or one or more of the one or more mobile bases. In accordance with the systems and methods disclosed herein, movement of the manipulator and the mobile base can be controlled and coordinated to effect a desired motion for the end effector. In many cases, the motion can include simultaneously moving the manipulator and the mobile base.

  17. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)

    2016-08-15

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.

  18. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    Science.gov (United States)

    Fu, Chengfang; Wei, Yanyu; Zhao, Bo; Yang, Yudong; Ju, Yongfeng

    2016-08-01

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.

  19. Analysis of global static and time-dependent topography from laser altimeter data records using a rectangular-grid method

    Science.gov (United States)

    Koch, Ch.; Christensen, U. R.; Kallenbach, R.

    2008-09-01

    ABSTRACT BepiColombo is one of the cornerstone missions of ESA to investigate Mercury. The mission consists of two orbiters, one for studying Mercury's magnetosphere (MMO) and the other for investigating the planet itself (MPO). MPO includes the laser altimeter BELA whose main goals are the mapping of the long-wavelength topography and retrieving time-dependent variations of Mercury's surface. Due to its proximity to the Sun tidal elevations ofMercury's surface of order one meter are likely, if the planet's core is partly liquid. The tidal amplitude is characterized by the tidal Love number h2. Its quantity reveals information on the interior structure of Mercury such as the thickness of the liquid outer core. In previous simulations, Mercury's topography data from synthetic laser altimeter records have directly been decomposed into a spherical harmonic expansion. In this work, we test a decomposition of the data using a rectangular grid. In latitudinal direction, the basis functions are simple step functions which are only non-zero for a particular grid cell. In longitudinal direction, the basis functions are either step functions, linear functions, or more sophisticated interpolations. This choice of basis functions is well suited for the nearly polar orbit of MPO which makes laser shots very dense in latitudinal direction but less dense in longitudinal direction. We show first results on the extraction of the global topography and the tidal Love number h2.

  20. Mapping the Generator Coordinate Method to the Coupled Cluster Approach

    CERN Document Server

    Stuber, Jason L

    2015-01-01

    The generator coordinate method (GCM) casts the wavefunction as an integral over a weighted set of non-orthogonal single determinantal states. In principle this representation can be used like the configuration interaction (CI) or shell model to systematically improve the approximate wavefunction towards an exact solution. In practice applications have generally been limited to systems with less than three degrees of freedom. This bottleneck is directly linked to the exponential computational expense associated with the numerical projection of broken symmetry Hartree-Fock (HF) or Hartree-Fock-Bogoliubov (HFB) wavefunctions and to the use of a variational rather than a bi-variational expression for the energy. We circumvent these issues by choosing a hole-particle representation for the generator and applying algebraic symmetry projection, via the use of tensor operators and the invariant mean (operator average). The resulting GCM formulation can be mapped directly to the coupled cluster (CC) approach, leading...

  1. OPEN METHOD OF COORDINATION AND EUROPEAN COOPERATION OPPORTUNITIES

    Directory of Open Access Journals (Sweden)

    STEGĂROIU CARINA-ELENA

    2014-08-01

    Full Text Available The theoretical 3-level model used to analyse the Open Method of Coordination belongs to a “rational” view of the international cooperation. Although considered to be a far too simplistic framework to be able to accurately describe a highly complex phenomenon, it does justice to the idea that actors have predetermined preferences in specific areas and they systematically act in order to achieve those priorities within the constraints of an institutional system. According to this hypothesis, the OMC has been analysed by breaking the process down into three stages (i.e. the influence of the internal structure, the intergovernmental negotiation model and the institutional choice. Detailed theories have been used to describe each stage (e.g. neoliberalism, neorealism, neofunctionalism, institutionalism, but also abiding by the overall rational context. In conclusion, these elements will be amassed in order to create a comprehensive explanation of this complex phenomenon.

  2. Refining developmental coordination disorder subtyping with multivariate statistical methods

    Directory of Open Access Journals (Sweden)

    Lalanne Christophe

    2012-07-01

    Full Text Available Abstract Background With a large number of potentially relevant clinical indicators penalization and ensemble learning methods are thought to provide better predictive performance than usual linear predictors. However, little is known about how they perform in clinical studies where few cases are available. We used Random Forests and Partial Least Squares Discriminant Analysis to select the most salient impairments in Developmental Coordination Disorder (DCD and assess patients similarity. Methods We considered a wide-range testing battery for various neuropsychological and visuo-motor impairments which aimed at characterizing subtypes of DCD in a sample of 63 children. Classifiers were optimized on a training sample, and they were used subsequently to rank the 49 items according to a permuted measure of variable importance. In addition, subtyping consistency was assessed with cluster analysis on the training sample. Clustering fitness and predictive accuracy were evaluated on the validation sample. Results Both classifiers yielded a relevant subset of items impairments that altogether accounted for a sharp discrimination between three DCD subtypes: ideomotor, visual-spatial and constructional, and mixt dyspraxia. The main impairments that were found to characterize the three subtypes were: digital perception, imitations of gestures, digital praxia, lego blocks, visual spatial structuration, visual motor integration, coordination between upper and lower limbs. Classification accuracy was above 90% for all classifiers, and clustering fitness was found to be satisfactory. Conclusions Random Forests and Partial Least Squares Discriminant Analysis are useful tools to extract salient features from a large pool of correlated binary predictors, but also provide a way to assess individuals proximities in a reduced factor space. Less than 15 neuro-visual, neuro-psychomotor and neuro-psychological tests might be required to provide a sensitive and

  3. Growing string method with interpolation and optimization in internal coordinates: method and examples.

    Science.gov (United States)

    Zimmerman, Paul M

    2013-05-14

    The growing string method (GSM) has proven especially useful for locating chemical reaction paths at low computational cost. While many string methods use Cartesian coordinates, these methods can be substantially improved by changes in the coordinate system used for interpolation and optimization steps. The quality of the interpolation scheme is especially important because it determines how close the initial path is to the optimized reaction path, and this strongly affects the rate of convergence. In this article, a detailed description of the generation of internal coordinates (ICs) suitable for use in GSM as reactive tangents and in string optimization is given. Convergence of reaction paths is smooth because the IC tangent and orthogonal directions are better representations of chemical bonding compared to Cartesian coordinates. This is not only important quantitatively for reducing computational cost but also allows reaction paths to be described with smoothly varying chemically relevant coordinates. Benchmark computations with challenging reactions are compared to previous versions of GSM and show significant speedups. Finally, a climbing image scheme is included to improve the quality of the transition state approximation, ensuring high reliability of the method.

  4. Evaluation of TEP Deaeration Tower Rectangular Flange

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhi-hao

    2013-01-01

    The rectangular flange is adapted in the heater of TEP deaeration tower(Fig.1).The rectangular flange is no-round type flange,the evaluation of which is worked on equivalent round flange method.Thecalculation is based on no-round type flange evaluation chapter in HGT 20582—2011 Steel chemical vessel strength calculation code.The loads on the flange are inner pressure,nozzle loads and seismic loads.The nozzle loads is

  5. Supercritical Airfoil Coordinates

    Data.gov (United States)

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  6. Buckling analysis of rectangular composite plates with rectangular cutout subjected to linearly varying in-plane loading using fem

    Indian Academy of Sciences (India)

    A Lakshmi Narayana; Krishnamohana Rao; R Vijaya Kumar

    2014-06-01

    A numerical study is carried out using finite element method, to examine the effects of square and rectangular cutout on the buckling behavior of a sixteen ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate $[0^\\circ /+45^\\circ /-45^\\circ /90^\\circ ]_{2s}$, subjected to various linearly varying in-plane compressive loads. Further, this paper addresses the effects of size of square/rectangular cutout, orientation of square/rectangular cutout, plate aspect ratio(a/b), plate length/thickness ratio(a/t), boundary conditions on the buckling bahaviour of symmetrically laminated rectangular composite plates subjected to various linearly varying in-plane compressive loading. It is observed that the various linearly varying in-plane loads and boundary conditions have a substantial influence on buckling strength of rectangular composite plate with square/rectangular cutout.

  7. Best connected rectangular arrangements

    Directory of Open Access Journals (Sweden)

    Krishnendra Shekhawat

    2016-03-01

    Full Text Available It can be found quite often in the literature that many well-known architects have employed either the golden rectangle or the Fibonacci rectangle in their works. On contrary, it is rare to find any specific reason for using them so often. Recently, Shekhawat (2015 proved that the golden rectangle and the Fibonacci rectangle are one of the best connected rectangular arrangements and this may be one of the reasons for their high presence in architectural designs. In this work we present an algorithm that generates n-4 best connected rectangular arrangements so that the proposed solutions can be further used by architects for their designs.

  8. Coordinate descent methods for the penalized semiparametric additive hazards model

    DEFF Research Database (Denmark)

    Gorst-Rasmussen, Anders; Scheike, Thomas

    . The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The algorithm requires...

  9. Coordinate descent methods for the penalized semiprarametric additive hazard model

    DEFF Research Database (Denmark)

    Gorst-Rasmussen, Anders; Scheike, Thomas

    2012-01-01

    . The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The algorithm requires...

  10. Microporous coordination complex and method of making the same

    Science.gov (United States)

    Matzger, Adam J.; Koh, Kyoungmoo

    2016-05-31

    Disclosed herein is a three-dimensional coordination complex that includes a plurality of inorganic centers; a plurality of a first bis(bidentate) linker; and a plurality of a second bis(bidentate) linker, where the first and the second bis(bidentate) linkers are have different lengths, and the bidentate binding sites on each linker face in opposite directions on an axis.

  11. Coordinates Used in Derivation of Hawking Radiation via Hamilton-Jacobi Method

    Science.gov (United States)

    Liu, Bo; He, Xiaokai; Liu, Wenbiao

    2009-05-01

    Coordinates used in derivation of Hawking radiation via Hamilton-Jacobi method are investigated more deeply. In the case of a 4-dimensional Schwarzschild black hole, a direct computation leads to a wrong result. In the meantime, making use of the isotropic coordinate or invariant radial distance, we can get the correct conclusion. More coordinates including Painleve and Eddington-Finkelstein are tried to calculate the semi-classical Hawking emission rate. The reason of the discrepancy between naive coordinate and well-behaved coordinates is also discussed.

  12. Topology optimization design of space rectangular mirror

    Science.gov (United States)

    Qu, Yanjun; Wang, Wei; Liu, Bei; Li, Xupeng

    2016-10-01

    A conceptual lightweight rectangular mirror is designed based on the theory of topology optimization and the specific structure size is determined through sensitivity analysis and size optimization in this paper. Under the load condition of gravity along the optical axis, compared with the mirrors designed by traditional method using finite element analysis method, the performance of the topology optimization reflectors supported by peripheral six points are superior in lightweight ratio, structure stiffness and the reflective surface accuracy. This suggests that the lightweight method in this paper is effective and has potential value for the design of rectangular reflector.

  13. Porous coordination copolymers and methods for their production

    Science.gov (United States)

    Matzger, Adam J.; Wong-Foy, Antek G.; Koh, Kyoungmoo

    2012-07-17

    A coordination polymer includes a plurality of metal atoms or metal clusters linked together by a plurality of organic linking ligands. Each linking ligand comprises a residue of a negatively charged polydentate ligand. Characteristically, the plurality of multidentate ligands include a first linking ligand having first hydrocarbon backbone and a second ligand having a second hydrocarbon backbone. The first hydrocarbon backbone is different than the second hydrocarbon backbone.

  14. Calculation of Clay Permeability Using a Rectangular Particle-Water Film Model by the Double-Scale Asymptotic Expansion Method

    Directory of Open Access Journals (Sweden)

    Xiaowu Tang

    2016-01-01

    Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.

  15. A Rectangular Mixed Finite Element Method with a Continuous Flux for an Elliptic Equation Modelling Darcy Flow

    Directory of Open Access Journals (Sweden)

    Xindong Li

    2013-01-01

    Full Text Available We introduce a mixed finite element method for an elliptic equation modelling Darcy flow in porous media. We use a staggered mesh where the two components of the velocity and the pressure are defined on three different sets of grid nodes. In the present mixed finite element, the approximate velocity is continuous and the conservation law still holds locally. The LBB consistent condition is established, while the error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to confirm the theoretical analysis.

  16. Path optimization by a variational reaction coordinate method. II. Improved computational efficiency through internal coordinates and surface interpolation.

    Science.gov (United States)

    Birkholz, Adam B; Schlegel, H Bernhard

    2016-05-14

    Reaction path optimization is being used more frequently as an alternative to the standard practice of locating a transition state and following the path downhill. The Variational Reaction Coordinate (VRC) method was proposed as an alternative to chain-of-states methods like nudged elastic band and string method. The VRC method represents the path using a linear expansion of continuous basis functions, allowing the path to be optimized variationally by updating the expansion coefficients to minimize the line integral of the potential energy gradient norm, referred to as the Variational Reaction Energy (VRE) of the path. When constraints are used to control the spacing of basis functions and to couple the minimization of the VRE with the optimization of one or more individual points along the path (representing transition states and intermediates), an approximate path as well as the converged geometries of transition states and intermediates along the path are determined in only a few iterations. This algorithmic efficiency comes at a high per-iteration cost due to numerical integration of the VRE derivatives. In the present work, methods for incorporating redundant internal coordinates and potential energy surface interpolation into the VRC method are described. With these methods, the per-iteration cost, in terms of the number of potential energy surface evaluations, of the VRC method is reduced while the high algorithmic efficiency is maintained.

  17. Coordinate descent methods for the penalized semiprarametric additive hazard model

    DEFF Research Database (Denmark)

    Gorst-Rasmussen, Anders; Scheike, Thomas

    2012-01-01

    For survival data with a large number of explanatory variables, lasso penalized Cox regression is a popular regularization strategy. However, a penalized Cox model may not always provide the best fit to data and can be difficult to estimate in high dimension because of its intrinsic nonlinearity....... The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The algorithm requires...

  18. Trefftz method in solving Fourier-Kirchhoff equation for two-phase flow boiling in a vertical rectangular minichannel

    Science.gov (United States)

    Hożejowska, Sylwia; Piasecka, Magdalena; Piasecki, Artur

    This paper presents the results of investigations into flow boiling heat transfer in an asymmetrically heated vertical minichannel of 1.7 mm depth. The heated element for FC-72 flowing in the minichannel was an alloy plate 0.45 mm thick, microstructured on one side, in direct contact with the flowing fluid. The computational part of the study contains approximate steady state solutions of the heat transfer problems described by Poisson.s equation and the energy equation for the heated plate and the fluid, respectively. For both equations, the boundary conditions were specified on the basis of experimental data. Temperature of the outer plate surface, measured by infrared thermography, and heat losses to ambient air were included in the calculations. For the energy equation we assumed parabolic profile of fluid velocity and the equality of temperatures and heat fluxes at the interface between the heated surface and the fluid. The void fraction was taken from a single-phase flow model. Two-dimensional temperature distributions were obtained by the Trefftz method and, due to the Robin condition at the interface between them, it was possible to calculate the heat transfer coefficient. Its values were compared to those obtained by other correlations known from literature.

  19. Trefftz method in solving Fourier-Kirchhoff equation for two-phase flow boiling in a vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2017-01-01

    Full Text Available This paper presents the results of investigations into flow boiling heat transfer in an asymmetrically heated vertical minichannel of 1.7 mm depth. The heated element for FC-72 flowing in the minichannel was an alloy plate 0.45 mm thick, microstructured on one side, in direct contact with the flowing fluid. The computational part of the study contains approximate steady state solutions of the heat transfer problems described by Poisson.s equation and the energy equation for the heated plate and the fluid, respectively. For both equations, the boundary conditions were specified on the basis of experimental data. Temperature of the outer plate surface, measured by infrared thermography, and heat losses to ambient air were included in the calculations. For the energy equation we assumed parabolic profile of fluid velocity and the equality of temperatures and heat fluxes at the interface between the heated surface and the fluid. The void fraction was taken from a single-phase flow model. Two-dimensional temperature distributions were obtained by the Trefftz method and, due to the Robin condition at the interface between them, it was possible to calculate the heat transfer coefficient. Its values were compared to those obtained by other correlations known from literature.

  20. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    Science.gov (United States)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  1. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    Science.gov (United States)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-10-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  2. Rectangular-to-circular groove waveguide junction

    Institute of Scientific and Technical Information of China (English)

    CUI; Licheng; (崔立成); YANG; Hongsheng; (杨鸿生)

    2003-01-01

    Mode matching method is used to analyze the scattering characteristics of the rectangular-to-circular groove waveguide junction. Firstly, the scattering matrix equation is obtained by matching the electromagnetic fields at the boundary of the junction. The scattering coefficients can be obtained from the equation. Secondly the scattering characteristics of the iris with rectangular window positioned in circular groove waveguide are briefly analyzed. Thirdly, the convergent problem is discussed and the numerical results are given. At last experiment is made and good agreement is found between the calculated results and the measured results.

  3. Multi-agent coordination strategy estimation method based on control domain

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    For estimation group competition and multiagent coordination strategy, this paper introduces a notion based on multiagent group. According to the control domain, it analyzes the multiagent strategy during competi tion in the macroscopic. It has been adopted in robot soccer and result enunciates that our method does not de pend on competition result. It can objectively quantitatively estimate coordination strategy.

  4. A Systematic arranging method for recloser-fuse coordination in distribution system in appearance of DG

    Directory of Open Access Journals (Sweden)

    M.Yunesi

    2016-06-01

    Full Text Available In this paper, a new and practical method is presented to investigate the effect of distributed generation (DG on recloser-fuse coordination. The main idea is evaluation of recloser-fuse coordination status in appearance of DG and also fault occurrence in each buses of the test system, and then sorting cases in coordination-hold or coordination-lost groups. After that, two steps are driven. The first one is finding the best location of DG, and the other is adjusting (changing the recloser and (or fuses setting in order to improve the overall coordination status. Faults occurrence probability are not equal and decreased as distance from substation increased. This proposed method has been implemented on the IEEE 37-node feeder, by writing the script in MATLAB and the results are presented.

  5. Experimental substantiation of methodic of 11-13 years old boxers’ coordination development

    Directory of Open Access Journals (Sweden)

    Liu Yong Qiang

    2015-06-01

    Full Text Available Purpose: experimental substantiation of methodic of junior boxers’ coordination training. Material: in the research 18 boxers of 11-13 year old age participated. In total, during 4 months 42 trainings were conducted. Total time of coordination load’s fulfillment at each training was 15-45 minutes. Results: dynamic of results in control tests was statistically confident in the tested parameters of movements. It proves effectiveness of usage the tasks with complex-coordination orientation, accented on impact on sensor-informational and motor systems of movements in junior boxers’ trainings. Conclusions: coordination training in boxing at initial stage shall include specialized varied means and methods, which would facilitate formation of motor condition and skills’ basis. Motor condition and skills are a reserve for further rising of coordination abilities’ level of junior sportsmen.

  6. TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES

    Directory of Open Access Journals (Sweden)

    M. V. Semenyaka

    2014-07-01

    Full Text Available The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.

  7. A method for topological analysis of high nuclearity coordination clusters and its application to Mn coordination compounds.

    Science.gov (United States)

    Kostakis, George E; Blatov, Vladislav A; Proserpio, Davide M

    2012-04-21

    A novel method for the topological description of high nuclearity coordination clusters (CCs) was improved and applied to all compounds containing only manganese as a metal center, the data on which are collected in the CCDC (CCDC 5.33 Nov. 2011). Using the TOPOS program package that supports this method, we identified 539 CCs with five or more Mn centers adopting 159 topologically different graphs. In the present database all the Mn CCs are collected and illustrated in such a way that can be searched by cluster topological symbol and nuclearity, compound name and Refcode. The main principles for such an analysis are described herein as well as useful applications of this method.

  8. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Jun, E-mail: dyangxiaojun@hotmail.com [Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008 (China); Institute of Applied Mathematics, Qujing Normal University, Qujing 655011 (China); Srivastava, H.M., E-mail: harimsri@math.uvic.ca [Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4 (Canada); He, Ji-Huan, E-mail: hejihuan@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Baleanu, Dumitru, E-mail: dumitru@cankaya.edu.tr [Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Cankaya University, Ankara, 06530 (Turkey); Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589 (Saudi Arabia); Institute of Space Sciences, Magurele-Bucharest (Romania)

    2013-10-15

    In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

  9. The Open Method of Coordination, a Cross-Border Mechanism for Social Practice

    Directory of Open Access Journals (Sweden)

    Tatiana-Camelia Dogaru

    2013-05-01

    Full Text Available In the light of the debate on the future of the European Union a new topic has started. This topic is represented by Europeanization process and its profound impact upon the public policy of the member states. In order to understand it, since 1990s, the EU has included “new modes of governance” in its arsenal of policy-making instruments, among others the open method of coordination. The open method of coordination is one of the instruments that attract a particular attention of scholars, being described as “primus inter pares”. The open method of coordination is a cross-border mechanism that aims to create a coherent social practice between the European Union member states. In this paper the author addresses the following query: in what extent uses Romania this mechanism for increasing coherence between its social practice and European ones? For answering have been drawn the subsequent objectives: (1 describing the instrument and the operational process of the open method of coordination, stressing the comparative perspective between community method and open method of coordination; (2 researching on historical development and main features of this tool; (3 exploring Romania‟s efforts for using the open method of coordination in social policies. From a methodological standpoint, the paper relies on comprehensive and systematic search of the literature and document analysis (among others Annual Reports, authorities‟ data, resume, obtained by using free accession to information and strategic documents.

  10. Designing Feature and Data Parallel Stochastic Coordinate Descent Method forMatrix and Tensor Factorization

    Science.gov (United States)

    2016-05-11

    AFRL-AFOSR-JP-TR-2016-0046 Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization U Kang Korea...Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386...Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Given a high-order large-scale tensor , how can we decompose it into latent factors? Can we process it on

  11. A sensitivity-based coordination method for optimization of product families

    Science.gov (United States)

    Zou, Jun; Yao, Wei-Xing; Xia, Tian-Xiang

    2016-07-01

    This article provides an introduction to a decomposition-based method for the optimization of product families with predefined platforms. To improve the efficiency of the system coordinator, a new sensitivity-based coordination method (SCM) is proposed. The key idea in SCM is that the system level coordinates share variables by using sensitivity information to make trade-offs between the product subsystems. The coordinated shared variables are determined by minimizing the performance deviation with respect to the optimal design of subproblems and constraint violation incurred by sharing. Each subproblem has a significant degree of independence and can be solved in a simultaneous way. The numerical performance of SCM is investigated, and the results suggest that the new approach is robust and leads to a substantial reduction in computational effort compared with the analytical target cascading method. Then, the proposed methodology is applied to the structural optimization of a family of automotive body side-frames.

  12. Dynamical Methods for Evaluating the Time-Dependent Unfolding of Social Coordination in Children with Autism

    Directory of Open Access Journals (Sweden)

    Paula eFitzpatrick

    2013-04-01

    Full Text Available Children with Autism Spectrum Disorder (ASD suffer from numerous impairments in social interaction that affect both their mental and bodily coordination with others. We explored here whether interpersonal motor coordination may be an important key for understanding the profound social problems of children with ASD. We employed a set of experimental techniques to evaluate not only traditional cognitive measures of social competence but also the dynamical structure of social coordination by using dynamical measures of social motor coordination and analyzing the time series records of behavior. Preliminary findings suggest that children with ASD were equivalent to typically developing children on many social performance outcome measures. However, significant relationships were found between cognitive social measures (e.g., intentionality and dynamical social motor measures. In addition, we found that more perceptually-based measures of social coordination were not associated with social motor coordination. These findings suggest that social coordination may not be a unitary construct and point to the promise of this multi-method and process-oriented approach to analyzing social coordination as an important pathway for understanding ASD-specific social deficits.

  13. The Open Method of Coordination - Effectively preventing welfare state retrenchment?

    Directory of Open Access Journals (Sweden)

    Milena Büchs

    2009-11-01

    Full Text Available This article re-examines the division between 'optimists' and 'pessimists' within the literature on the Open Method of Coordination’s (OMC effectiveness. Each of those 'camps' tends to focus on a different question. 'Optimists' are more concerned with the question of whether the OMC exerts an influence on the national level and through which mechanisms, whilst 'pessimists' concentrate on the question of whether the OMC can 'strengthen' EU social policy and therefore European welfare states. This article combines these two perspectives and argues that the OMC is indeed capable of influencing national policies through the dissemination of ideas and 'learning' as the 'optimists' stress. However, policy 'learning' at the member state level is shaped and constrained by a variety of internal and external pressures. Against the hopes of most of the OMC 'optimists', this makes the OMC largely ineffective in preventing welfare state retrenchment.

  14. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    C Erdem İmrak; Ismail Gerdemeli

    2007-06-01

    The examination of the exact solution of the governing equation of the rectangular plate is important for many reasons. This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally, an illustrative example is given and the results are compared with those reported earlier. This method is found to be easier and effective. The results show reasonable agreement with other available results, but with a simpler and practical approach.

  15. [Determination of enthalpy change of coordinating color reaction by UV-Vis absorption spectrum method].

    Science.gov (United States)

    Yang, D; An, L; Chen, L

    2001-08-01

    In this paper, a simple experimental method for the determination of enthalpy change of coordinating color reaction has been proposed and a relation formula between absorption and temperature has been deduced. Using coordinating color reaction of cobalt(II) thiocyanate in Tween-80 medium, the linear relation of this formula has been validated: r = 0.9957 and delta H = -44.7 kJ.mol-1, which is accordant with the result obtained from Van't Hoff equation.

  16. Random rectangular Graphs

    CERN Document Server

    Estrada, Ernesto

    2015-01-01

    A generalization of the random geometric graph (RGG) model is proposed by considering a set of points uniformly and independently distributed on a rectangle of unit area instead of on a unit square \\left[0,1\\right]^{2}. The topological properties, such as connectivity, average degree, average path length and clustering, of the random rectangular graphs (RRGs) generated by this model are then studied as a function of the rectangle sides lengths a and b=1/a, and the radius r used to connect the nodes. When a=1 we recover the RGG, and when a\\rightarrow\\infty the very elongated rectangle generated resembles a one-dimensional RGG. We provided computational and analytical evidence that the topological properties of the RRG differ significantly from those of the RGG. The connectivity of the RRG depends not only on the number of nodes as in the case of the RGG, but also on the side length of the rectangle. As the rectangle is more elongated the critical radius for connectivity increases following first a power-law an...

  17. A method to evaluate coordination between regional economic, social development and water resources

    Science.gov (United States)

    Zhou, S. B.; Qi, W. T.; Du, A. M.; He, H.

    2016-08-01

    Coordination between regional economic, social development and water resources is the key factor for the sustainable development of regions. Scientific evaluation of the coordination and analysis of similar reasons will improve the management level of decision-makers. The Coupling Coordination Degree model (CCD) developed on synergistic theory is now considered as a better method to evaluate coordination between systems. But, there are still some deficiencies. This paper attempts to improve the method in two aspects,: (1) introduce Full Permutation Polygon Synthesis Illustration method (FPPSI) to replace the two key steps of the present CCD model. To realize the data standardization and the comprehensive evaluation of system state, and to achieve the analysis of corresponding reasons. And (2) calculate the coupling coordination degrees of systems’ evolution speeds instead of comprehensive evaluation indexes, which will fully reflect the dynamic interaction between systems. To verify the feasibility of the method, Taihu Basin is taken as a case study. Results demonstrate that the improved CCD model is not only able to reflect the dynamic interaction between systems adequately, but also visually presents the specific reasons through geometrical illustration.

  18. Energy integral method for gravity field determination from satellite orbit coordinates

    NARCIS (Netherlands)

    Visser, P.N.A.M.; Sneeuw, N.; Gerlach, C.

    2003-01-01

    A fast iterative method for gravity field determination from low Earth satellite orbit coordinates has been developed and implemented successfully. The method is based on energy conservation and avoids problems related to orbit dynamics and initial state. In addition, the particular geometry of a re

  19. Finite element method formulation in polar coordinates for transient heat conduction problems

    Science.gov (United States)

    Duda, Piotr

    2016-04-01

    The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.

  20. A new comprehensive genetic algorithm method for optimal overcurrent relays coordination

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Farzad; Abyaneh, Hossein Askarian; Mohammadi, Reza [Department of Electrical Engineering, Amirkabir University of Technology (Iran); Al-Dabbagh, Majid [Hydro Tasmania Consulting (Australia); Torkaman, Hossein [Department of Electrical Engineering, Shahid Beheshti University (Iran)

    2008-04-15

    For optimal co-ordination of overcurrent relays, linear programming techniques such as simplex, two-phase simplex and dual simplex are used. Another way of optimal coordination program is using artificial intelligent system such as genetic algorithm (GA). In this paper, a powerful optimal coordination method based on GA is introduced. The objective function (OF) is developed to solve the problems of miscoordination and continuous or discrete time setting multiplier (TSM) or time dial setting (TDS). In other words; the novelty of the paper is the modification of the existing objective function of GA, by introducing a new parameter and adding a new term to OF, to handle miscoordination problems both for continues and discrete TSM or TDS. The method is applied to two different power system networks and from the obtained results it is revealed that the new method is efficient, accurate and flexible. (author)

  1. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  2. FALCON: A method for flexible adaptation of local coordinates of nuclei.

    Science.gov (United States)

    König, Carolin; Hansen, Mads Bøttger; Godtliebsen, Ian H; Christiansen, Ove

    2016-02-21

    We present a flexible scheme for calculating vibrational rectilinear coordinates with well-defined strict locality on a certain set of atoms. Introducing a method for Flexible Adaption of Local COordinates of Nuclei (FALCON) we show how vibrational subspaces can be "grown" in an adaptive manner. Subspace Hessian matrices are set up and used to calculate and analyze vibrational modes and frequencies. FALCON coordinates can more generally be used to construct vibrational coordinates for describing local and (semi-local) interacting modes with desired features. For instance, spatially local vibrations can be approximately described as internal motion within only a group of atoms and delocalized modes can be approximately expressed as relative motions of rigid groups of atoms. The FALCON method can support efficiency in the calculation and analysis of vibrational coordinates and energies in the context of harmonic and anharmonic calculations. The features of this method are demonstrated on a few small molecules, i.e., formylglycine, coumarin, and dimethylether as well as for the amide-I band and low-frequency modes of alanine oligomers and alpha conotoxin.

  3. Towards nonaxisymmetry; initial results using the Flux Coordinate Independent method in BOUT++

    CERN Document Server

    Shanahan, Brendan; Dudson, Ben

    2016-01-01

    Fluid simulation of stellarator edge transport is difficult due to the complexities of mesh generation; the stochastic edge and strong nonaxisymmetry inhibit the use of field aligned coordinate systems. The recent implementation of the Flux Coordinate Independent method for calculating parallel derivatives in BOUT++ has allowed for more complex geometries. Here we present initial results of nonaxisymmetric diffusion modelling as a step towards stellarator turbulence modelling. We then present initial (non-turbulent) transport modelling using the FCI method and compare the results with analytical calculations. The prospects for future stellarator transport and turbulence modelling are discussed.

  4. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence.

    Science.gov (United States)

    Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia

    2016-02-18

    Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  5. A Rapid Coordinate Transformation Method Applied in Industrial Robot Calibration Based on Characteristic Line Coincidence

    Directory of Open Access Journals (Sweden)

    Bailing Liu

    2016-02-01

    Full Text Available Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.

  6. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhao; Qiang Tian; Hai-Yan Hu

    2013-01-01

    The spinning solar sail of large scale has been well developed in recent years.Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub,a number of flexible thin tethers,sail membranes,and tip masses.A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts.The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses.The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method,and thus the deployment dynamics of the system can be well understood.

  7. Three-dimensional adaptive coordinate transformations for the Fourier modal method.

    Science.gov (United States)

    Küchenmeister, Jens

    2014-01-27

    The concepts of adaptive coordinates and adaptive spatial resolution have proved to be a valuable tool to improve the convergence characteristics of the Fourier Modal Method (FMM), especially for metallo-dielectric systems. Yet, only two-dimensional adaptive coordinates were used so far. This paper presents the first systematic construction of three-dimensional adaptive coordinate and adaptive spatial resolution transformations in the context of the FMM. For that, the construction of a three-dimensional mesh for a periodic system consisting of two layers of mutually rotated, metallic crosses is discussed. The main impact of this method is that it can be used with any classic FMM code that is able to solve the large FMM eigenproblem. Since the transformation starts and ends in a Cartesian mesh, only the transformed material tensors need to be computed and entered into an existing FMM code.

  8. Methodic of girl students’ professionally significant coordination qualities’ perfection at physical education classes

    Directory of Open Access Journals (Sweden)

    Kolumbet A.N.

    2016-08-01

    Full Text Available Purpose: implementation of new methodic of professionally significant coordination qualities’ training in higher educational establishments’ girl students at classes of physical education. Material: 204 girl students participated in the research. Results: in perfection of students’ professionally significant coordination qualities it is important to observe certain correlation of exercises in every block of methodic. When planning exercises it is necessary to observe the following correlations: exercises for orientation in space - 32%; exercises for perfection of quickness - 19%; exercises for accuracy of movements and differentiation of muscular efforts - 16%; exercises for balance - 9%. Conclusions: in trainings of professionally significant coordination qualities it is necessary to use different forms of trainings’ organization. In preparatory part it is desirable to apply frontal form; in main part - frontal and differentiated-group form.

  9. FEM buckling analysis of quasi-isotropic symmetrically laminated rectangular composite plates with a square/rectangular cutout

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, A. Lakshmi [Hindustan Aeronautics Limited, Bangalore (India); Rao, Krishnamohana [JNTUH, Hyderabad (India); Kumar, R. Vijaya [Hindustan Aeronautics Limited, Bangalor (India)

    2013-05-15

    A numerical study was conducted using the finite element method to determine the effects of square and rectangular cutouts on the buckling behavior of a 16-ply quasi-isotropic graphite/epoxy symmetrically laminated rectangular composite plate. The square/ rectangular cutouts were subjected to uniaxial compression loading. This study addresses the effects of the size of the square/rectangular cutout, orientation of the square/rectangular cutout, plate aspect ratio (a/b), and plate length/thickness ratio (a/t) on the buckling behavior of the symmetrically laminated rectangular composite plate under uniaxial compression loading. Buckling loads were computed for seven different quasi-isotropic laminate configurations [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s}, [15 .deg. /+60 .deg. /-30 .deg. /-75 .deg. ]{sub 2s}, [30 .deg. /+75 .deg. /-15 .deg. /-60 .deg. ]{sub 2s}, [45 .deg. /+90 .deg. /0 .deg. /-45 .deg. ]{sub 2s}, [60 .deg. /-75 .deg. /+15 .deg. /-30 .deg. ]{sub 2s}, [75 .deg. /-60 .deg. /+30 .deg. /-15 .deg. ]{sub 2s}, [90 .deg. /-45 .deg. /+45 .deg. / .deg. 0 .deg. ]{sub 2s}. Results showed that the magnitudes of the buckling loads decrease with increasing cutout positioned angle as well as c/b and d/b ratios for plates with a rectangular cutout. The symmetrically laminated quasi-isotropic [0 .deg. /+45 .deg. /-45 .deg. /90 .deg. ]{sub 2s} composite plate is stronger than all other symmetrically analyzed laminated quasi-isotropic composite plates. The magnitudes of the buckling loads of a rectangular composite plate with square/rectangular cutout decrease with increasing plate aspect ratio (a/b) and plate length/thickness (a/t) ratio.

  10. Experiments on Coordinate Transformation based on Least Squares and Total Least Squares Methods

    Science.gov (United States)

    Tunalioglu, Nursu; Mustafa Durdag, Utkan; Hasan Dogan, Ali; Erdogan, Bahattin; Ocalan, Taylan

    2016-04-01

    Coordinate transformation is an important problem in geodesy discipline. Variations in stochastic and functional models in transformation problem cause different estimation results. Least-squares (LS) method is generally implemented to solve this problem. LS method accepts only one epoch coordinate data group erroneous in stochastic model. However, all the data in transformation problem are erroneous. In contrast to the traditional LS method, the Total Least Squares (TLS) method takes into account the errors in all the variables in the transformation. It is so-called errors-invariables (EIV) model. In the last decades, TLS method has been implemented to solve transformation problem. In this context, it is important to determine which method is more accurate. In this study, LS and TLS methods have been implemented on different 2D and 3D geodetic networks with different simulation scenarios. The first results show that the translation parameters are affected more than rotation and scale parameters. Although TLS method considers the errors for two coordinate the estimated parameters for both methods are different from simulated values.

  11. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    Science.gov (United States)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  12. Partially implicit Runge-Kutta methods for wave-like equations in spherical-type coordinates

    CERN Document Server

    Cordero-Carrión, Isabel

    2012-01-01

    Partially implicit Runge-Kutta methods are presented in this work in order to numerically evolve in time a set of partial differential equations. These methods are designed to overcome numerical instabilities appearing during the evolution of a system of equations due to potential numerical unstable terms in the sources, such as stiff terms or the presence of factors as a result of a particular chosen system of coordinates. In this article, partially implicit Runge-Kutta methods for several convergence orders have been derived and stability properties have been analyzed. These methods are shown to be appropriated to avoid the development of numerical instabilities in the evolution in time of wave-like equations in spherical-type coordinates, in contrast to the explicit Runge-Kutta methods.

  13. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    Science.gov (United States)

    Hill, Peter; Shanahan, Brendan; Dudson, Ben

    2017-04-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.

  14. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    Science.gov (United States)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  15. Towards implementing coordinated healthy lifestyle promotion in primary care: a mixed method study

    Directory of Open Access Journals (Sweden)

    Kristin Thomas

    2015-08-01

    Full Text Available Background: Primary care is increasingly being encouraged to integrate healthy lifestyle promotion in routine care. However, implementation has been suboptimal. Coordinated care could facilitate lifestyle promotion practice but more empirical knowledge is needed about the implementation process of coordinated care initiatives. This study aimed to evaluate the implementation of a coordinated healthy lifestyle promotion initiative in a primary care setting.Methods: A mixed method, convergent, parallel design was used. Three primary care centres took part in a two-year research project. Data collection methods included individual interviews, document data and questionnaires. The General Theory of Implementation was used as a framework in the analysis to integrate the data sources.Results: Multi-disciplinary teams were implemented in the centres although the role of the teams as a resource for coordinated lifestyle promotion was not fully embedded at the centres. Embedding of the teams was challenged by differences among the staff, patients and team members on resources, commitment, social norms and roles.Conclusions: The study highlights the importance of identifying and engaging key stakeholders early in an implementation process. The findings showed how the development phase influenced the implementation and embedding processes, which add aspects to the General Theory of Implementation.

  16. Towards implementing coordinated healthy lifestyle promotion in primary care: a mixed method study

    Directory of Open Access Journals (Sweden)

    Kristin Thomas

    2015-08-01

    Full Text Available Background: Primary care is increasingly being encouraged to integrate healthy lifestyle promotion in routine care. However, implementation has been suboptimal. Coordinated care could facilitate lifestyle promotion practice but more empirical knowledge is needed about the implementation process of coordinated care initiatives. This study aimed to evaluate the implementation of a coordinated healthy lifestyle promotion initiative in a primary care setting. Methods: A mixed method, convergent, parallel design was used. Three primary care centres took part in a two-year research project. Data collection methods included individual interviews, document data and questionnaires. The General Theory of Implementation was used as a framework in the analysis to integrate the data sources. Results: Multi-disciplinary teams were implemented in the centres although the role of the teams as a resource for coordinated lifestyle promotion was not fully embedded at the centres. Embedding of the teams was challenged by differences among the staff, patients and team members on resources, commitment, social norms and roles. Conclusions: The study highlights the importance of identifying and engaging key stakeholders early in an implementation process. The findings showed how the development phase influenced the implementation and embedding processes, which add aspects to the General Theory of Implementation.

  17. Spatial pattern of Amazonian timber species using cartesian and spatial coordinates method

    Directory of Open Access Journals (Sweden)

    Tiago Monteiro Condé

    2016-06-01

    Full Text Available Geographic information system (GIS applied to forest analysis permit the recognition and analysis of spatial patterns of species in two and three dimensional. The aim of this study to demonstrate the efficiency of cartesian and spatial coordinates method (MCCE, method of correcting UTM coordinates of trees location in accordance with the location of field or Cartesian (X ,Y, combined with natural neighbor index (ANND in recognition and analysis of spatial distribution patterns of four commercial timber species in forest management in Caracaraí, Roraima State, Brazil. Simulations were performed on 9 ha, divided into 100 plots of 100 m2 each. Collected data were DBH > 10 cm, commercial and total heights, cartesian coordinates (X,Y and spatial coordinates (UTM. Random spatial patterns were observed in Eschweilera bracteosa and Manilkara huberi. The dispersed and rare spatial patterns were observed in Dinizia excelsa and Cedrelinga cateniformis. MCCE proved to be an efficient method in the recognition and analysis of spatial patterns of native species from Amazon rain forest, as forest planning becomes easier by 2D and 3D simulations.

  18. A dynamic signal coordination control method for urban arterial roads and its application

    Institute of Scientific and Technical Information of China (English)

    Guo-jiang SHEN; Yong-yao YANG

    2016-01-01

    We propose a novel dynamic traffic signal coordination method that takes account of the special traffic flow char-acteristics of urban arterial roads. The core of this method includes a control area division module and a signal coordination control module. Firstly, we analyze and model the influences of segment distance, traffic flow density, and signal cycle time on the cor-relation degree between two neighboring intersections. Then, we propose a fuzzy computing method to estimate the correlation degree based on a hierarchical structure and a method to divide the control area of urban arterial roads into subareas based on correlation degrees. Subarea coordination control arithmetic is used to calculate the public cycle time of the control subarea, up-run offset and down-run offset of the section, and the split of each intersection. An application of the method in Shaoxing City, Zhejiang Province, China shows that the method can reduce the average travel time and the average stop rate effectively.

  19. COMPARISON OF TDOA LOCATION ALGORITHMS WITH DIRECT SOLUTION METHOD

    Institute of Scientific and Technical Information of China (English)

    Li Chun; Liu Congfeng; Liao Guisheng

    2011-01-01

    For Time Difference Of Arrival (TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then calculates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.

  20. METHOD OF SOFTWARE-BASED COMPENSATION OF TECHNOLOGICAL VARIATION IN CHROMATICITY COORDINATES OF LCD PANELS

    Directory of Open Access Journals (Sweden)

    I. O. Zharinov

    2015-05-01

    Full Text Available Subject of research. The problem of software-based compensation of technological variation in chromaticity coordinates of liquid crystal panels is considered. A method of software-based compensation of technological variation in chromaticity coordinates is proposed. The method provides the color reproduction characteristics of the series-produced samples on-board indication equipment corresponding to the sample equipment, which is taken as the standard. Method. Mathematical calculation of the profile is performed for the given model of the liquid crystal panel. The coefficients that correspond to the typical values of the chromaticity coordinates for the vertices of the triangle color coverage constitute a reference mathematical model of the plate LCD panel from a specific manufacturer. At the stage of incoming inspection the sample of the liquid crystal panel, that is to be implemented within indication equipment, is mounted on the lighting test unit, where Nokia-Test control is provided by the formation of the RGB codes for display the image of a homogeneous field in the red, green, blue and white. The measurement of the (x,y-chromaticity coordinates in red, green, blue and white colors is performed using a colorimeter with the known value of absolute error. Instead of using lighting equipment, such measurements may be carried out immediately on the sample indication equipment during customizing procedure. The measured values are used to calculate individual LCD-panel profile coefficients through the use of Grassman's transformation, establishing mutual relations between the XYZ-color coordinates and RGB codes to be used for displaying the image on the liquid crystal panel. The obtained coefficients are to be set into the memory of the graphics controller together with the functional software and then used for image displaying. Main results. The efficiency of the proposed method of software-based compensation for technological variation of

  1. Application of the quadrilateral area coordinate method: a new element for laminated composite plate bending problems

    Institute of Scientific and Technical Information of China (English)

    Song Cen; Xiangrong Fu; Yuqiu Long; Hongguang Li; Zhenhan Yao

    2007-01-01

    Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node)quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore,the hybrid post-processing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.

  2. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    CERN Document Server

    Savanevych, V E; Sokovikova, N S; Bezkrovny, M M; Vavilova, I B; Ivashchenko, Yu M; Elenin, L V; Khlamov, S V; Movsesian, Ia S; Dashkova, A M; Pogorelov, A V

    2015-01-01

    We describe a new iteration method to estimate asteroid coordinates, which is based on the subpixel Gaussian model of a discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixels potential) of the CCD frame. In this model, a kind of the coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The developed method, being more flexible in adapting to any form of the object image, has a high measurement accuracy along with a low calculating complexity due to a maximum likelihood procedure, which is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for the minimisation of the quadratic form. Since 2010, the method was tested as the basis of our CoLiTec (Collection Light Technology) software, which has been installed at several observatories of the world with the ai...

  3. Efficient computation of coherent synchrotron radiation in a rectangular chamber

    Science.gov (United States)

    Warnock, Robert L.; Bizzozero, David A.

    2016-09-01

    We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.

  4. An Operator Splitting Method with FDM and FEM for the Convection—Diffusion Equation Using Boundary—fitted Coordinate System

    Institute of Scientific and Technical Information of China (English)

    Jie-MinZHAN; Yao-SongCHEN

    1996-01-01

    An operator splitting method combining finite difference method and finite element method is proposed in this paper by using boundary-fitted coordinate system.The governing equation is split into advection and diffusion equations and solved by finit difference method using boundary-fitted coordinate system and finite element method respectively.An example for which analytic solution is available is used to verified the proposed methods and the agreement is very good.Numerical results show that it is very efficient.

  5. Optimal combined overcurrent and distance relays co-ordination using a new genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Kamangar, S.S.H.; Abyaneh, H.A.; Chabanloo, R.M. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering; Razavi, F. [Tafresh Univ. (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2010-04-15

    This paper introduced a new method to optimize the coordination of overcurrent (OC) relays using genetic algorithm (GA). GA is an intelligent optimization technique that can adjust the setting of relays without being based on an initial guess or trapped in the local minimum values, which is the disadvantage of linear programming techniques, such as simplex, 2-phase simplex, and dual simplex techniques. The objective function (OF) of GA is modified by adding a new term to OF to fulfill the coordination of both OC and distance relays. Two power network systems were analyzed using the new computer program, and the results that were obtained show that the method is both efficient and accurate. Transmission and subtransmission protection systems commonly use OC and distance relays. 12 refs., 6 tabs., 5 figs.

  6. Determination of validation threshold for coordinate measuring methods using a metrological compatibility model

    Science.gov (United States)

    Gromczak, Kamila; Gąska, Adam; Kowalski, Marek; Ostrowska, Ksenia; Sładek, Jerzy; Gruza, Maciej; Gąska, Piotr

    2017-01-01

    The following paper presents a practical approach to the validation process of coordinate measuring methods at an accredited laboratory, using a statistical model of metrological compatibility. The statistical analysis of measurement results obtained using a highly accurate system was intended to determine the permissible validation threshold values. The threshold value constitutes the primary criterion for the acceptance or rejection of the validated method, and depends on both the differences between measurement results with corresponding uncertainties and the individual correlation coefficient. The article specifies and explains the types of measuring methods that were subject to validation and defines the criterion value governing their acceptance or rejection in the validation process.

  7. A hybrid grid method in an auxiliary coordinate system for irregular fluid-solid interface modelling

    Science.gov (United States)

    Qu, Yingming; Huang, Jianping; Li, Zhenchun; Li, Jinli

    2017-03-01

    Seismic wave propagation in a fluid-solid environment cannot be simulated with a single wave equation, but can be described by use of the acoustic and viscoelastic wave equations for their respective fluid and solid parts. Proper boundary conditions at the fluid-solid interface based on the relationship between pressure and stress are crucial when combining the two different wave equations. Traditional finite difference methods have had difficulties in dealing with the irregular fluid-solid interface topography. The Cartesian grids discretization leads to artificial reflections and diffractions during the conversion between acoustic wave and elastic waves. We propose a variable coordinate transformation methodology to simulate seismic waves in a fluid-solid environment. An irregular fluid-solid interface can be transformed into a horizontal interface, so that pressure and stress can be well converted. We also introduce a multiblock coordinate transformation (MCT) method which meshes each layer with curvilinear grids to transform the interface topography into a horizontal one, thereby allocating vertical sampling points adaptively. The grid size is determined adaptively based on the shape and the parameters of the target area, which reduces in size in when the layers are thin or exhibit low velocities. A Lebedev-standard staggered grid scheme is applied to the MCT method to reduce both the computational cost associated with the Lebedev grid scheme and the instability in the auxiliary coordinate system when using a standard staggered grid scheme.

  8. Two New Methods To Generate Internal Coordinates for Molecular Wave Packet Dynamics in Reduced Dimensions.

    Science.gov (United States)

    Zauleck, Julius P P; Thallmair, Sebastian; Loipersberger, Matthias; de Vivie-Riedle, Regina

    2016-12-13

    The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.

  9. Nonlinear acoustic propagation in rectangular ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.

  10. Spatially extended sound equalization in rectangular rooms

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2001-01-01

    of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound......The results of a theoretical study on global sound equalization in rectangular rooms at low frequencies are presented. The zone where sound equalization can be obtained is a continuous three-dimensional region that occupies almost the complete volume of the room. It is proved that the equalization...

  11. Spatially extended sound equalization in rectangular rooms

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2001-01-01

    The results of a theoretical study on global sound equalization in rectangular rooms at low frequencies are presented. The zone where sound equalization can be obtained is a continuous three-dimensional region that occupies almost the complete volume of the room. It is proved that the equalization...... of broadband signals can be achieved by the simulation of a traveling plane wave using FIR filters. The optimal solution has been calculated following the traditional least-squares approximation, where a modeling delay has been applied to minimize reverberation. An advantage of the method is that the sound...

  12. Optimal Trajectory Planning and Coordinated Tracking Control Method of Tethered Space Robot Based on Velocity Impulse

    Directory of Open Access Journals (Sweden)

    Panfeng Huang

    2014-09-01

    Full Text Available The tethered space robot (TSR is a new concept of space robot which consists of a robot platform, space tether and operation robot. This paper presents a multi-objective optimal trajectory planning and a coordinated tracking control scheme for TSR based on velocity impulse in the approaching phase. Both total velocity impulse and flight time are included in this optimization. The non-dominated sorting genetic algorithm is employed to obtain the optimal trajectory Pareto solution using the TSR dynamic model and optimal trajectory planning model. The coordinated tracking control scheme utilizes optimal velocity impulse. Furthermore, the PID controller is designed in order to compensate for the distance measurement errors. The PID control force is optimized and distributed to thrusters and the space tether using a simulated annealing algorithm. The attitude interferential torque of the space tether is compensated a using time-delay algorithm through reaction wheels. The simulation results show that the multi-objective optimal trajectory planning method can reveal the relationships among flight time, fuel consumption, planar view angle and velocity impulse number. This method can provide a series of optimal trajectory according to a number of special tasks. The coordinated control scheme can significantly save thruster fuel for tracking the optimal trajectory, restrain the attitude interferential torque produced by space tether and maintain the relative attitude stability of the operation robot.

  13. Influence of stimulated plasticity training method on coordination indicators of high pedagogic educational estableshments’ girl students

    Directory of Open Access Journals (Sweden)

    Kolumbet A.N.

    2015-12-01

    Full Text Available Purpose: study of stimulated plasticity training’s influence on coordination indicators of pedagogic HEEs’ girl students. Material: 264 girl students participated in the research. Experiment was being carried out during three years. Responding abilities, static and dynamic balance, orientation in space, promptness of operative thinking, volume of mechanical memorizing, distribution of attention, accuracy, quickness and of attention re-switching, accuracy of tasks’ fulfillment were assessed. Results: it was found that plasticity has different kinds and forms of manifestation. Creative motor tasks require different conditions for their realization. We determined rates of plasticity increment by its main kinds. Plasticity of body movements was achieved at high level of different muscular groups’ coordination, optimal rhythm, rational correlation of tension and relaxation. Conclusions: it was found that plasticity shall be trained in compliance with its kinds and manifestations. It requires appropriated approach to content of methodic of its perfection.

  14. The Open Method of Coordination and the New Governance Patterns in the EU

    DEFF Research Database (Denmark)

    Borras, Susana; Jacobsson, Kerstin

    2004-01-01

    The aim of this article is to establish an analytical framework for studying the impact of the open method of coordination (OMC) on three levels of political action within the EU, namely the policy, politics and polity. First, the article examines the novelties of the OMC vis-à-vis the soft law...... tradition in the EU, and looks at how the three dominant logics of co-ordination are linked to diverse modes of hte IMC. The subsequent sections focus on teh potential impact of the OMC on the policy and politics dimensions of the EU. Theoretically inspired assumptions about policy learning and partial...... delegation of power are teh driving forces behind the inquiry. The article then scrutinizes the potential constitutional dimension of the OMC. Finally, it discusses the theoretical challenges that the OMC poses for our understanding of hte EU as a polity and the concept of integration....

  15. A new method based on the subpixel Gaussian model for accurate estimation of asteroid coordinates

    Science.gov (United States)

    Savanevych, V. E.; Briukhovetskyi, O. B.; Sokovikova, N. S.; Bezkrovny, M. M.; Vavilova, I. B.; Ivashchenko, Yu. M.; Elenin, L. V.; Khlamov, S. V.; Movsesian, Ia. S.; Dashkova, A. M.; Pogorelov, A. V.

    2015-08-01

    We describe a new iteration method to estimate asteroid coordinates, based on a subpixel Gaussian model of the discrete object image. The method operates by continuous parameters (asteroid coordinates) in a discrete observational space (the set of pixel potentials) of the CCD frame. In this model, the kind of coordinate distribution of the photons hitting a pixel of the CCD frame is known a priori, while the associated parameters are determined from a real digital object image. The method that is developed, which is flexible in adapting to any form of object image, has a high measurement accuracy along with a low calculating complexity, due to the maximum-likelihood procedure that is implemented to obtain the best fit instead of a least-squares method and Levenberg-Marquardt algorithm for minimization of the quadratic form. Since 2010, the method has been tested as the basis of our Collection Light Technology (COLITEC) software, which has been installed at several observatories across the world with the aim of the automatic discovery of asteroids and comets in sets of CCD frames. As a result, four comets (C/2010 X1 (Elenin), P/2011 NO1(Elenin), C/2012 S1 (ISON) and P/2013 V3 (Nevski)) as well as more than 1500 small Solar system bodies (including five near-Earth objects (NEOs), 21 Trojan asteroids of Jupiter and one Centaur object) have been discovered. We discuss these results, which allowed us to compare the accuracy parameters of the new method and confirm its efficiency. In 2014, the COLITEC software was recommended to all members of the Gaia-FUN-SSO network for analysing observations as a tool to detect faint moving objects in frames.

  16. Photogrammetric determinaiton of coordinates and deformations analysis of the accuracy of this method

    Energy Technology Data Exchange (ETDEWEB)

    Korablev, D.P.; Fomichev, L.V.; Trunin, A.P.

    1979-01-01

    The photogrammetric method for determining coordinates and deformation, developed at the VNIMI, is based on the analytic determination of the coordinates of points of the sample from measurements of a single stereogram or photograph. The measurements are closely controlled. Calculations are done on a computer. In addition to calculating the point coordinates and various deformation values (vertical and horizontal displacements, slopes, deflections etc.), the accuracy of the results is evaluated: the standard deviation per unit mass, the rms errors of the adjusted values of photo orientation on real photographs and analytical models. The following conclusions and assumptions were obtained on the basis of these studies: 1. When finding the deformation of a flat object, if the points of the last deformation show practically no displacement in the direction normal to the flat surface, then the photos should be taken separately and processed by analytical transformational or by the parallax method, measured from stereograms with a ''time basis''. 2. Then using convergent photography, there is a significant increase in the accuracy of the coordinate determination in the direction perpendicular to the photographic reference line, while there is almost no change in accuracy along the two other axes when compared to normal photography. Optimal symmetric-convergent exposure has a convergence angle of 60 to 120 /sup 0/ and a 1.5 to 2 ratio of the photographic reference line to the average distance to the object (along a normal to the reference). The stereogram of the symmetric-convergent photography for 100% coverage of the photographs encompasses an area two to three times larger than the usual steoegram. 3. The distribution of the reference points should be considered optimal when they bound the working area of the photograph (stereogram). When photographing volumes, they bound the object in the plan and side views.

  17. Coordinator Role Mobility Method for Increasing the Life Expectancy of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jurenoks Aleksejs

    2017-05-01

    Full Text Available The general problem of wireless sensor network nodes is the low-power batteries that significantly limit the life expectancy of a network. Nowadays the technical solutions related to energy resource management are being rapidly developed and integrated into the daily lives of people. The energy resource management systems use sensor networks for receiving and processing information during the realia time. The present paper proposes using a coordinator role mobility method for controlling the routing processes for energy balancing in nodes, which provides dynamic network reconfiguration possibilities. The method is designed to operate fully in the background and can be integrated into any exiting working system.

  18. Research for Global Coordinating Method of Large Equipment Scheduling in Construction Site

    Directory of Open Access Journals (Sweden)

    Yao Ruojun

    2015-01-01

    Full Text Available Much energy is dissipated when large equipment moves slowly. Generally, equipment scheduling at construction site is supposed to minimize equipment slowdown and deadhead moving. Table methods are always adopted to optimize transfer sequence, but the feasible solution is well disappointing. For the acceptable solution relevant to task points in construction equipment scheduling, transfer table is divided into four regions. After proper augmentation and deflation, the acceptable solution evolves into global coordinating solution of construction scheduling, which contributes to minimizing slowdown and deadhead mileages. This method has been verified in practical engineering and is a significant reference on decision making of construction equipment scheduling.

  19. Computing Depth-averaged Flows Using Boundary-fitted Coordinates and Staggered Grids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A depth-averaged nonlinear k-ε model for turbulent flows in complex geometries has been developed in a boundary-fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for staggered grids to analyze flows in a 90° bend. This paper describes how to change a program in rectangular coordinate into a boundary-fitted coordinate. The results compare well with experimental data for flow in a meandering channel showing the efficiency of the model and the discrete method.

  20. A Suitable Coordinate Transformation Method for Correcting Voltage Vector in Motor Current Detection Using a Single Shunt Resistor

    Science.gov (United States)

    Tomigashi, Yoshio; Hida, Hajime; Ueyama, Kenji

    To reduce costs of inverters, a current detection method using a single shunt resistor is required for motor drive systems in home electrical appliances. In this paper, a method is proposed to correct a voltage reference vector by converting coordinates from a rotating reference frame into a fixed reference frame. Also proposed is a new coordinate transformation method that is appropriate for the correction. Authors focused on the undetectable area that exists every 60 degrees in α-β coordinates. When the α-β coordinates in an nπ/3 rotation are defined as αn-βn, the αn-axis can be defined as the central axis in an undetectable area. We propose a coordinate transformation method that converts the voltage vector in the d-q coordinates into uvw phase voltages through αn-βn coordinates then correct it. This method corrects the voltage vector by a very simple algorithm that limits the αn-βn elements. The effectiveness of the proposed method is confirmed by simulation and experiment. Currents were clearly detected by using the proposed method. This shows that the proposed method is suitable for position sensor-less drives in permanent magnet synchronous motors.

  1. Laminar flow of micropolar fluid in rectangular microchannels

    Institute of Scientific and Technical Information of China (English)

    Shangjun Ye; Keqin Zhu; Wen Wang

    2006-01-01

    Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.

  2. ISS method for coordination control of nonlinear dynamical agents under directed topology.

    Science.gov (United States)

    Wang, Xiangke; Qin, Jiahu; Yu, Changbin

    2014-10-01

    The problems of coordination of multiagent systems with second-order locally Lipschitz continuous nonlinear dynamics under directed interaction topology are investigated in this paper. A completely nonlinear input-to-state stability (ISS)-based framework, drawing on ISS methods, with the aid of results from graph theory, matrix theory, and the ISS cyclic-small-gain theorem, is proposed for the coordination problem under directed topology, which can effectively tackle the technical challenges caused by locally Lipschitz continuous dynamics. Two coordination problems, i.e., flocking with a virtual leader and containment control, are considered. For both problems, it is assumed that only a portion of the agents can obtain the information from the leader(s). For the first problem, the proposed strategy is shown effective in driving a group of nonlinear dynamical agents reach the prespecified geometric pattern under the condition that at least one agent in each strongly connected component of the information-interconnection digraph with zero in-degree has access to the state information of the virtual leader; and the strategy proposed for the second problem can guarantee the nonlinear dynamical agents moving to the convex hull spanned by the positions of multiple leaders under the condition that for each agent there exists at least one leader that has a directed path to this agent.

  3. A novel method to improve the performance of heat exchanger--Temperature fields coordination of fluids

    Institute of Scientific and Technical Information of China (English)

    GUO Zengyuan; WEI Shu; CHENG Xinguang

    2004-01-01

    The methods to enhance the heat transfer in heat exchanger may be classified into two levels: one is to improve the heat transfer coefficient; the other is to upgrade the whole arrangement of the heat exchangers. For the second level, the performance of heat exchanger can be upgraded by increasing the coordination degree between the temperature fields of cold and hot fluids. When the temperature distributions are similar to each other, the temperature difference field (TDF) is more uniform, which means that the temperature fields are more coordinated with each other. For the cross-flow heat exchanger, rearrangement of the heat exchange surface area should improve the heat transfer effectiveness, which is even equal to that of the counter-flow heat exchanger when the surface area is reassigned optimally. For the multi-stream heat exchanger, the thermal performance is also dependent on the uniformity of the TDF, and the parallel-flow arrangement may achieve higher heat exchange effectiveness than the counter-flow arrangement, which indicates that the performance of heat exchanger depends on the coordination degree of temperature fields instead of the flow arrangement.

  4. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    Science.gov (United States)

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  5. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    Science.gov (United States)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  6. Layout Method of Rectangular Wood Based Panel Parts Based on Grouping and Dimension Reducing Heuristic Rule and Genetic Algorithm%基于分组降维规则和遗传算法的人造板材矩形件优化下料方法

    Institute of Scientific and Technical Information of China (English)

    张国梁; 侯晓鹏; 苗虎; 安源; 周玉成; 姚永和

    2014-01-01

    Algorithms which were available in most literatures for whole layout of large scale rectangular parts gave solutions that resulted in frequent change of saw line and therefore dropped sawing velocity down. To solve this problem, a grouping and dimension-reducing heuristic rule which took areas of rectangular parts as priority was put forward in this paper. According to this rule,no more than three kinds of rectangular parts were considered in each layout calculation. Corresponding mathematical model was set up. Hybrid punishment function that was the combination of interior point method and exterior point one was applied to deal with constrains. Genetic algorithm ( GA) was adopted to search global optimal solution for layout. It was proved by example that the algorithm used in this paper could provide layout solution which exactly fulfilled guillotine cutting requirement and had saw line in order and therefore was useful to increase of sawing efficiency.

  7. Simulation of a free-surface and seepage face using boundary-fitted coordinate system method

    Science.gov (United States)

    Lee, Kang-Kun; Leap, Darrell I.

    1997-09-01

    The boundary-fitted coordinate (BFC) system method is applied to simulate steady groundwater seepage with a free-surface and seepage face using the finite-difference method. The BFC system method eliminates the difficulty of fitting finite-difference grids to a changeable free-surface which is not known a priori but will be obtained as part of a solution. Also, grid generation with this approach is simpler than with the finite-element method. At each iterative sweep, the changeable free-surface becomes a part of the boundary-fitted grid lines, making boundary condition implementation easy and accurate. An example problem demonstrating the simulation procedure and numerical results compares very well with the analytical solution.

  8. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Science.gov (United States)

    Higashiyama, Koji; Yoshinaga, Naotaka

    2014-03-01

    The quantum-number projected generator coordinate method (GCM) is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  9. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  10. Bound-Preserving Discontinuous Galerkin Methods for Conservative Phase Space Advection in Curvilinear Coordinates

    CERN Document Server

    Endeve, Eirik; Xing, Yulong; Mezzacappa, Anthony

    2014-01-01

    We extend the positivity-preserving method of Zhang & Shu (2010, JCP, 229, 3091-3120) to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function $f$; i.e., $f\\in[0,1]$. The combination of suitable CFL conditions and the use of the high-order limiter proposed in Zhang & Shu (2010) is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of ...

  11. DETERMINATION OF COORDINATES OF SEISMIC WAVE SOURCE BY AMPLITUDE METHOD OF PASSIVE LOCATION

    Directory of Open Access Journals (Sweden)

    Vasily D. Syten’ky

    2015-10-01

    Full Text Available The paper presents results of the mathematical synthesis of the method of passive location of a seismic wave source. The method employs measurements of regular attenuation of seismic oscillation amplitudes. If it is impossible to determine the location of a seismic event by means of direct measurements, indirect measurements are needed. A priori information for the mathematical synthesis was obtained from functional equations showing inverse proportions of measured amplitudes, arbitrary effective attenuation coefficients and corresponding coordinates. An original method was applied to process the data. The method providing for passive location of seismic waves sources has been developed; it is called the radial basic method. In the one-dimensional case, a distance is determined on the basis of seismic oscillation amplitudes measured by two seismographs that are located at a known base distance coinciding with the direction to the source of seismic waves. The distance is calculated from the receiver that is nearest to the source. If the base distance and the direct line between the seismograph and the seismic wave source do not coincide, a projection of the distance between the receivers to the given straight line is taken into account.Three seismographs were placed at mutually perpendicular base distances in a plane (i.e. the two-dimensional space. This allowed us to obtain an analytical equation for determining the direction to the seismic wave source using measured amplitudes. The value of the angle is taken into account when calculating the distance.For the seismic wave source located in the three-dimensional space, transition equations for combined coordinate systems (i.e. the Descartes (Cartesian, at the axes of which the seismographs were placed, and the spherical coordinate systems were applied, and analytical equations were obtained for determination of coordinates, such as distance/polar radius, elevation

  12. Factorization of differential expansion for non-rectangular representations

    CERN Document Server

    Morozov, A

    2016-01-01

    Factorization of the differential expansion coefficients for HOMFLY-PT polynomials of double braids, discovered in arXiv:1606.06015 in the case of rectangular representations $R$, is extended to the first non-rectangular representations $R=[2,1]$ and $R=[3,1]$. This increases chances that such factorization will take place for generic $R$, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all $R=[r,1]$. In variance with rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix $\\bar S$ -- the entries in the sectors with non-trivial multiplicities sum up and remain unseparated. Still a considerable piece of the matrix can be directly extracted and can be used as a base for new speculations and insights.

  13. Novel hybrid method: pulse CO2 laser-TIG hybrid welding by coordinated control

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Lei Zhenglong; Li Liqun; Wu Lin; Xie Cheng

    2006-01-01

    In continuous wave CO2 laser-TIG hybrid welding process, the laser energy is not fully utilized because of the absorption and defocusing by plasma in the arc space. Therefore, the optimal welding result can only be achieved in a limited energy range. In order to improve the welding performance further, a novel hybrid welding method-pulse CO2 laser-TIG arc hybrid welding by coordinated control is proposed and investigated. The experimental results indicate that, compared with continuous wave CO2 laser-TIG hybrid welding, the absorption and defocusing of laser energy by plasma are decreased further, and at the same time, the availability ratio of laser and arc energy can be increased when a coordinated frequency is controlled. As a result, the weld appearance is also improved as well as the weld depth is deepened. Furthermore, the effect of frequency and phase of pulse laser and TIG arc on the arc images and welding characteristics is also studied. However, the novel hybrid method has great potentials in the application of industrials from views of techniques and economy.

  14. An improved method for calculating self-motion coordinates for redundant manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.

    1997-04-01

    For a redundant manipulator, the objective of redundancy resolution is to follow a specified path in Cartesian space and simultaneously perform another task (for example, maximize an objective function or avoid obstacles) at every point along the path. The conventional methods have several drawbacks: a new function must be defined for each task, the extended Jacobian can be singular, closed cycles in Cartesian space may not yield closed cycles in joint space, and the objective is point-wise redundancy resolution (to determine a single point in joint space for each point in Cartesian space). The author divides the redundancy resolution problem into two parts: (1) calculate self-motion coordinates for all possible positions of a manipulator at each point along a Cartesian path and (2) determination of optimal self-motion coordinates that maximize an objective function along the path. This paper will discuss the first part of the problem. The path-wise approach overcomes all of the drawbacks of conventional redundancy resolution methods: no need to define a new function for each task, extended Jacobian cannot be singular, and closed cycles in extended Cartesian space will yield closed cycles in joint space.

  15. Algebraically explicit analytical solutions of unsteady conduction with variable thermal properties in cylindrical coordinate

    Institute of Scientific and Technical Information of China (English)

    CAI Ruixian; ZHANG Na

    2004-01-01

    The analytical solutions of unsteady heat conduction with variable thermal properties(thermal conductivity,density and specific heat are functions of temperature or coordinates)are meaningful in theory.In addition,they are very useful to the computational heat conduction to check the numerical solutions and to develop numerical schemes,grid generation methods and so forth.Such solutions in rectangular coordinates have been derived by the authors.Some other solutions for 1-D and 2-D axisymmetrical heat conduction in cylin drical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.

  16. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...

  17. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    Science.gov (United States)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  18. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    Science.gov (United States)

    Mccoy, M. J.

    1980-01-01

    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  19. Energy Level of Three-Mode Harmonic Oscillator for Coordinate Operators Satisfying Cyclic Commutative Relations Obtained by IEO Method

    Institute of Scientific and Technical Information of China (English)

    WU Hao; FAN Hong-Yi

    2008-01-01

    Eigenvalue-solution to those Hamiltonians involving non-commutative coordinates is not easily obtained. In this paper we apply the invariant eigen-operator (IEO) method to solving the energy spectrum of the three-mode harmonic oscillator in non-commutative space with the coordinate operators satisfying cyclic commutative relations, [X1, X2]=[X2, X3]=[X3, X1]=iθ, and this method seems effective and concise.

  20. Development and application of the discrete ordinate method in orthogonal curvilinear coordinates; Developpement et application de la methode des ordonnees discretes en coordonnees curvilignes orthogonales

    Energy Technology Data Exchange (ETDEWEB)

    Vaillon, R.; Lallemand, M.; Lemonnier, D. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)

    1996-12-31

    The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.

  1. A coordinate transformation method for calculating the 3D light intensity distribution in ICF hohlraum

    Science.gov (United States)

    Lin, Zhili; Li, Xiaoyan; Zhao, Kuixia; Chen, Xudong; Chen, Mingyu; Pu, Jixiong

    2016-06-01

    For an inertial confinement fusion (ICF) system, the light intensity distribution in the hohlraum is key to the initial plasma excitation and later laser-plasma interaction process. Based on the concept of coordinate transformation of spatial points and vector, we present a robust method with a detailed procedure that makes the calculation of the three dimensional (3D) light intensity distribution in hohlraum easily. The method is intuitive but powerful enough to solve the complex cases of random number of laser beams with arbitrary polarization states and incidence angles. Its application is exemplified in the Shenguang III Facility (SG-III) that verifies its effectiveness and it is useful for guiding the design of hohlraum structure parameter.

  2. Incompressible turbulent flow calculation in body-fitted coordinates using block-implicit finite difference method

    Science.gov (United States)

    Hu, Zeming; Chen, Xuechun; Wu, Yulin

    The block-implicit finite-difference method is used to calculate 3D incompressible turbulent flows in the body-fitted coordinate system. In the numerical discretization the hybrid difference scheme is used to treat Reynolds-averaged Navier-Stokes equations. The iterative solution of velocities and pressure on the flow field is obtained by solving simultaneously the Reynolds-averaged N-S equations and continuity equation for each cell. In the iterative process the Gauss-Seidel method is used to solve nonlinear algebraic equations. The turbulent flow is simulated by the k-epsilon turbulence modeling in conjunction with Reynolds equations. The turbulent flow of a curved duct with square cross sections is treated in detail.

  3. Symbolic Algorithmic Analysis of Rectangular Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin Zhang; Zhen-Hua Duan

    2009-01-01

    This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic reachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined.These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.

  4. Calculations of circular waveguide with a rectangular metal insert.

    Directory of Open Access Journals (Sweden)

    Yu. K. Sydoruk

    2010-05-01

    Full Text Available Calculated and analyzed the basic parameters of electromagnetic wave in a circular waveguide with a rectangular metal plate in the following cases: when  the circular waveguide without metal plate for a H11 wave of subcritical, critical and supercritical. For calculations was used a finite element method and Ansoft HFSS program.

  5. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2016-12-01

    Full Text Available Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS. Due to the absence of satellite signal in Global Navigation Satellite System (GNSS, various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP, which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC, is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1 and the XiDan Joy City (Floors 1 and 2, as Test-bed 2, and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  6. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    Science.gov (United States)

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  7. Large Deflections of Elastic Rectangular Plates

    Science.gov (United States)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  8. Application of multi-agent coordination methods to the design of space debris mitigation tours

    Science.gov (United States)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  9. Diabatic Mean-Field Description of Rotational Bands in Terms of the Selfconsistent Collective Coordinate Method

    CERN Document Server

    Shimizu, Y R; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi

    2000-01-01

    Diabatic description of rotational bands provides a clear-cut picture for understanding the back-bending phenomena, where the internal structure of the yrast band changes dramatically as a function of angular momentum. A microscopic framework to obtain the diabatic bands within the mean-field approximation is presented by making use of the selfconsistent collective coordinate method. Applying the framework, both the ground state rotational bands and the Stockholm bands are studied systematically for the rare-earth deformed nuclei. An overall agreement has been achieved between the calculated and observed rotational spectra. It is also shown that the inclusion of the double-stretched quadrupole-pairing interaction is crucial to obtain an overall agreement for the even-odd mass differences and the rotational spectra simultaneously.

  10. Correlation energies by the generator coordinate method: computational aspects for quadrupolar deformations

    CERN Document Server

    Bender, M; Heenen, P H

    2004-01-01

    We investigate truncation schemes to reduce the computational cost of calculating correlations by the generator coordinate method based on mean-field wave functions. As our test nuclei, we take examples for which accurate calculations are available. These include a strongly deformed nucleus, 156Sm, a nucleus with strong pairing, 120Sn, the krypton isotope chain which contains examples of soft deformations, and the lead isotope chain which includes the doubly magic 208Pb. We find that the Gaussian overlap approximation for angular momentum projection is effective and reduces the computational cost by an order of magnitude. Cost savings in the deformation degrees of freedom are harder to realize. A straightforward Gaussian overlap approximation can be applied rather reliably to angular-momentum projected states based on configuration sets having the same sign deformation (prolate or oblate), but matrix elements between prolate and oblate deformations must be treated with more care. We propose a two-dimensional ...

  11. Nano/Micro HKUST-1 Fabricated by Coordination Modulation Method at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    NA Li-yan; HUA Rui-nian; NING Gui-ling; OU Xiao-xia

    2012-01-01

    A simple and fast route for the synthesis of metal-organic framework(MOF) particles was presented.Cu3(BTC)2(HKUST-1,BTC=1,3,5-benzenetricarboxylate),one of the most well-known MOFs,was synthesized at room temperature via coordination modulation method.By adding different modulators(monocarboxylic acids) into the reaction system,the morphologies of HKUST-1 crystals were tuned from nano spheres to micro octahedrons at room temperature without any complex equipment.X-Ray diffractions and gas sorption measurements revealed highly crystalline particles with large Brunauer-Emmett-Teller(BET) surface areas(1116-1273 m2/g) and total pore volumes(0.62-0.73 cm3/g).The significantly small particle sizes and high capacity of gas sorption are considered advantageous for envisaged application in practical industrial process.

  12. GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

    Science.gov (United States)

    Peng, Wei; Dai, Wujiao; Santerre, Rock; Cai, Changsheng; Kuang, Cuilin

    2017-02-01

    Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

  13. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    Science.gov (United States)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  14. The state space finite element method for Stokes flow in rectangular cavity%矩形空腔内Stokes流的状态空间有限元法

    Institute of Scientific and Technical Information of China (English)

    孟俊苗; 邓子辰; 王艳

    2014-01-01

    Based on the Hellinger-Reissner variational principle ,the Hamilton canonical equation of the plane incompressible Stokes flow was derived from the equilibrium equations ,continuity conditions and the force boundary conditions .By the separation of variables ,the general finite element method was em-ployed in x direction and was derived by the state space control method .In addition ,the precise integra-tion method for the exponential matrix was employed in the calculation .The effectiveness of the state space finite element method is demonstrated by analyzing and comparing the simulation example in case of a single-lid driven cavity with free surface side walls .The study of this paper is to introduce the idea of the semi-analytical method into the low Reynolds number flow problems ,and lay a foundation of further study on the Stokes flow with complex boundary in the Hamiltonian system .%基于 Hellinger-Reissner二类变分原理,从平面Stokes流问题的平衡方程、连续性要求和边界条件出发,得到相应的Hamilton函数,建立Hamilton正则方程后,采用分离变量法对场变量进行离散求解:在 x方向采用有限元插值,在 y方向采用状态空间法给出控制坐标方向的解析解。计算过程中的指数矩阵均采用精细积分法求解,使得本文算法具有高效率、高精度、对步长不敏感的优点。通过对侧边自由液面边界条件的单板驱动矩形空腔Stokes流问题的求解,得到与文献相同的结果,从而验证了本文方法的有效性。本文旨在将弹性力学状态空间有限元法的思想引入到低雷诺数流体力学中,为 Hamilton体系下研究复杂边界Stokes流问题提供新的途径。

  15. Sound Radiation Characteristics of a Rectangular Duct with Flexible Walls

    Directory of Open Access Journals (Sweden)

    Praveena Raviprolu

    2016-01-01

    Full Text Available Acoustic breakout noise is predominant in flexible rectangular ducts. The study of the sound radiated from the thin flexible rectangular duct walls helps in understanding breakout noise. The current paper describes an analytical model, to predict the sound radiation characteristics like total radiated sound power level, modal radiation efficiency, and directivity of the radiated sound from the duct walls. The analytical model is developed based on an equivalent plate model of the rectangular duct. This model has considered the coupled and uncoupled behaviour of both acoustic and structural subsystems. The proposed analytical model results are validated using finite element method (FEM and boundary element method (BEM. Duct acoustic and structural modes are analysed to understand the sound radiation behaviour of a duct and its equivalence with monopole and dipole sources. The most efficient radiating modes are identified by vibration displacement of the duct walls and for these the radiation efficiencies have been calculated. The calculated modal radiation efficiencies of a duct compared to a simple rectangular plate indicate similar radiation characteristics.

  16. Small amplitude, transverse vibrations of circular plates with an eccentric rectangular perforation elastically restrained against rotation and translation on both edges

    Science.gov (United States)

    Laura, P. A. A.; Avalos, D. R.

    2008-05-01

    The Rayleigh-Ritz variational method is applied to the determination of the first four frequency coefficients for small amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with boundary conditions at the edge of the cutout.

  17. An Edge Joint Method of the Equal Size Rectangular Scraps%一种等大小矩形碎纸片拼接还原方法

    Institute of Scientific and Technical Information of China (English)

    陈玉成; 田娇

    2014-01-01

    引入边缘相似度概念,利用贪婪算法,解决中英文文件纵向切割后的碎纸片拼接还原问题。对于同时发生纵横向切割的中英文碎纸片,先利用着色反转法对碎纸片文字部分进行反转处理,再利用行聚类筛选法对碎纸片按行匹配度进行分类,最后对每一类碎纸片利用贪婪算法并辅之以人工干预,将碎纸片拼接还原。单面英文碎纸片拼接还原结果表明,该方法人工干预次数少,还原效率高、效果好。%A new conception of the edge similarity is introduced. When a file with Chinese or English font is cut into scraps in the vertical direction, the Greedy Algorithm is an efficient method to restore the file by the edge similarity. When a file is cut into many scraps in both vertical and horizontal directions, it can be recovered in this process. First, the Reversed Tinting Method ( RTM) is applied to reverse the body-size parts on the scraps. Second, all the scraps is classified into some sets by the Row Clustering and Screening( RCS) . Last, using the Greedy Algorithm and with the help of artificial interventions , the scraps in every set can be edge joined into a well orderd line. It shows that this edge joined method has the advantage of fewer times artificial interventions, more efficiency and better effect.

  18. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    Science.gov (United States)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve

  19. Analysis of junior high school students' difficulty in resolving rectangular conceptual problems

    Science.gov (United States)

    Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar

    2017-08-01

    Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.

  20. Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators

    Science.gov (United States)

    Geerts, Jonathan Simon

    Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).

  1. Path optimization by a variational reaction coordinate method. I. Development of formalism and algorithms.

    Science.gov (United States)

    Birkholz, Adam B; Schlegel, H Bernhard

    2015-12-28

    The development of algorithms to optimize reaction pathways between reactants and products is an active area of study. Existing algorithms typically describe the path as a discrete series of images (chain of states) which are moved downhill toward the path, using various reparameterization schemes, constraints, or fictitious forces to maintain a uniform description of the reaction path. The Variational Reaction Coordinate (VRC) method is a novel approach that finds the reaction path by minimizing the variational reaction energy (VRE) of Quapp and Bofill. The VRE is the line integral of the gradient norm along a path between reactants and products and minimization of VRE has been shown to yield the steepest descent reaction path. In the VRC method, we represent the reaction path by a linear expansion in a set of continuous basis functions and find the optimized path by minimizing the VRE with respect to the linear expansion coefficients. Improved convergence is obtained by applying constraints to the spacing of the basis functions and coupling the minimization of the VRE to the minimization of one or more points along the path that correspond to intermediates and transition states. The VRC method is demonstrated by optimizing the reaction path for the Müller-Brown surface and by finding a reaction path passing through 5 transition states and 4 intermediates for a 10 atom Lennard-Jones cluster.

  2. Finite volume method in 3-D curvilinear coordinates with multiblocking procedure for radiative transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, P.; Steven, M.; Issendorff, F.V.; Trimis, D. [Institute of Fluid Mechanics (LSTM), University of Erlangen-Nuremberg, Cauerstrasse 4, D 91058 Erlangen (Germany)

    2005-10-01

    The finite volume method of radiation is implemented for complex 3-D problems in order to use it for combined heat transfer problems in connection with CFD codes. The method is applied for a 3-D block structured grid in a radiatively participating medium. The method is implemented in non-orthogonal curvilinear coordinates so that it can handle irregular structure with a body-fitted structured grid. The multiblocking is performed with overlapping blocks to exchange the information between the blocks. Five test problems are considered in this work. In the first problem, present work is validated with the results of the literature. To check the accuracy of multiblocking, a single block is divided into four blocks and results are validated against the results of the single block simulated alone in the second problem. Complicated geometries are considered to show the applicability of the present procedure in the last three problems. Both radiative and non-radiative equilibrium situations are considered along with an absorbing, emitting and scattering medium. (author)

  3. Radiative transfer in rectangular enclosures - A discretized exchange factor solution

    Science.gov (United States)

    Naraghi, M. H. N.; Kassemi, M.

    1988-01-01

    The discretized exchange factor method is used to analyze radiative exchange in a rectangular enclosure. The results compare excellently with those of other methods, especially the zonal method. Since the direct exchange factors are between nodal points no integration is necessary for evaluation of these factors. It is found that the present approach provides accurate results even when a small number of nodes is used.

  4. Compression analysis of rectangular elastic layers bonded between rigid plates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang-Chuan Tsai [National Taiwan University of Science and Technology, Taipei (China). Dept. of Construction Engineering

    2005-06-01

    An elastic layer bonded between two rigid plates has higher compression stiffness than the elastic layer without bonding. While the finite element method can be applied to calculate the stiffness, the compression stiffness of bonded rectangular layers derived through a theoretical approach in this paper provides a convenient way for parametric study. Based on two kinematics assumptions, the governing equation for the mean pressure is derived from the equilibrium equations. Using the approximate shear boundary condition, the mean pressure is solved and the compression stiffness of the bonded rectangular layer is then established in an explicit single-series form. Through the solved pressure, the horizontal displacements are derived from the corresponding equilibrium equations, from which the shear stress on the bonding surface can be found. It is found that the effect of the rectangular aspect on the compression stiffness is significant only when Poisson's ratio is near 0.5. For the smaller Poisson's ratio, the compression stiffness of the rectangular layer can be approximated by the formula for the infinite-strip layer of the same shape factor. (author)

  5. Numerical simulation of small section rectangular tube in parallel welding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The welding temperature field and deformation of parallel arrangement small-section rectangular tubes is calculated by using a non-contact model. After comparing the computed results with the experimentally measured results, it shows that there exist big errors when applying this model to the numerical simulation of small-section rectangular tube's welding temperature field and deformation. Based on a simple analysis of the errors, a contact model is presented. The heat transfer and stress analysis between small-section rectangular tubes and clamping fixture are simulated by using direct constraints method, and then the laws of the temperature distribution, which coincide with experiment, are obtained. A further numerical analysis of the stress and deformation are made, it shows that a "T" shaped stress-field is formed in the vicinity of the weld. As the stress-field departs from the centroid of tubes', this leads to the small rectangular tubes not only have a longitudinal deflection, but also have a transverse bending and deformation.

  6. Research on Coordinated Robotic Motion Control Based on Fuzzy Decoupling Method in Fluidic Environments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.

  7. A microiterative intrinsic reaction coordinate method for large QM/MM systems.

    Science.gov (United States)

    Polyak, Iakov; Boulanger, Eliot; Sen, Kakali; Thiel, Walter

    2013-09-14

    Intrinsic reaction coordinate (IRC) computations are a valuable tool in theoretical studies of chemical reactions, but they can usually not be applied in their current form to handle large systems commonly described by quantum mechanics/molecular mechanics (QM/MM) methods. We report on a development that tackles this problem by using a strategy analogous to microiterative transition state optimization. In this approach, the IRC equations only govern the motion of a core region that contains at least the atoms directly involved in the reaction, while the remaining degrees of freedom are relaxed after each IRC step. This strategy can be used together with any existing IRC procedure. The present implementation covers the stabilized Euler, local quadratic approximation, and Hessian predictor-corrector algorithms for IRC calculations. As proof of principle, we perform tests at the QM level on small gas-phase systems and validate the results by comparisons with standard IRC procedures. The broad applicability of the method is demonstrated by IRC computations for two enzymatic reactions using standard QM/MM setups.

  8. The construction of EU's childcare policy through the Open Method of Coordination

    Directory of Open Access Journals (Sweden)

    Elissaveta Radulova

    2009-11-01

    Full Text Available This article elaborates analysis of the normative foundations of the European Union's policy for reconciliation of work and family life, with a specific focus on the shifts produced by the introduction of the Open Method of Coordination in the field of childcare policy. The main objective is to examine how childcare has been conceptualised for the purposes of EU public-policy making throughout the years of European integration (1951-2008 and whether the endorsement of the European Employment Strategy (EES in 1997 has made an impact on this process. Adopting a constructivist analytical framework and policy frame analysis as main research method, the paper maps out the contemporary policy problematizations related to childcare provision, and traces their presence and dynamic development at the EU level. Based on a keyword search in the database of European Union law Eur-Lex, a dataset of 83 documents (42 pieces of secondary legislation and 41 Presidency Conclusions is formed. The latter is subsequently examined through qualitative content analysis. The study reveals the normative and cognitive evolution of the policy-making process prior to and after the introduction of EES.

  9. Improving method of real-time offset tuning for arterial signal coordination using probe trajectory data

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-12-01

    Full Text Available In the environment of intelligent transportation systems, traffic condition data would have higher resolution in time and space, which is especially valuable for managing the interrupted traffic at signalized intersections. There exist a lot of algorithms for offset tuning, but few of them take the advantage of modern traffic detection methods such as probe vehicle data. This study proposes a method using probe trajectory data to optimize and adjust offsets in real time. The critical point, representing the changing vehicle dynamics, is first defined as the basis of this approach. Using the critical points related to different states of traffic conditions, such as free flow, queue formation, and dissipation, various traffic status parameters can be estimated, including actual travel speed, queue dissipation rate, and standing queue length. The offset can then be adjusted on a cycle-by-cycle basis. The performance of this approach is evaluated using a simulation network. The results show that the trajectory-based approach can reduce travel time of the coordinated traffic flow when compared with using well-defined offline offset.

  10. Effect of shell drilling stiffness on response calculations of rectangular plates and tubes of rectangular cross-section under compression.

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Jhana; Hales, Jason Dean; Corona, Edmundo

    2010-05-01

    This report considers the calculation of the quasi-static nonlinear response of rectangular flat plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateralshell finite element models. The principal objective is to assess the effect that the shell drilling stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor specifies the amount of artificial stiffness that is given to the shell element drilling Degree of freedom (rotation normal to the plane of the element). The element formulation has no stiffness for this degree of freedom, and this can lead to numerical difficulties. The results indicate that in the problems considered it is necessary to add a small amount of drilling tiffness to obtain converged results when using both implicit quasi-statics or explicit dynamics methods. The report concludes with a parametric study of the imperfection sensitivity of the calculated responses of the elastic-plastic tubes with rectangular cross-section.

  11. Team dynamics, clinical work satisfaction, and patient care coordination between primary care providers: A mixed methods study.

    Science.gov (United States)

    Song, Hummy; Ryan, Molly; Tendulkar, Shalini; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Frolkis, Joseph P; Rosenthal, Meredith B; Chien, Alyna T; Singer, Sara J

    Team-based care is essential for delivering high-quality, comprehensive, and coordinated care. Despite considerable research about the effects of team-based care on patient outcomes, few studies have examined how team dynamics relate to provider outcomes. The aim of this study was to examine relationships among team dynamics, primary care provider (PCP) clinical work satisfaction, and patient care coordination between PCPs in 18 Harvard-affiliated primary care practices participating in Harvard's Academic Innovations Collaborative. First, we administered a cross-sectional survey to all 548 PCPs (267 attending clinicians, 281 resident physicians) working at participating practices; 65% responded. We assessed the relationship of team dynamics with PCPs' clinical work satisfaction and perception of patient care coordination between PCPs, respectively, and the potential mediating effect of patient care coordination on the relationship between team dynamics and work satisfaction. In addition, we embedded a qualitative evaluation within the quantitative evaluation to achieve a convergent mixed methods design to help us better understand our findings and illuminate relationships among key variables. Better team dynamics were positively associated with clinical work satisfaction and quality of patient care coordination between PCPs. Coordination partially mediated the relationship between team dynamics and satisfaction for attending clinicians, suggesting that higher satisfaction depends, in part, on better teamwork, yielding more coordinated patient care. We found no mediating effects for resident physicians. Qualitative results suggest that sources of satisfaction from positive team dynamics for PCPs may be most relevant to attending clinicians. Improving primary care team dynamics could improve clinical work satisfaction among PCPs and patient care coordination between PCPs. In addition to improving outcomes that directly concern health care providers, efforts to

  12. an asymmetrically heated rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Strąk Kinga

    2017-01-01

    Full Text Available This paper discusses test results concerning flow boiling heat transfer in a minichannel 1.7 mm in depth, 16 mm in width and 180 mm in length. The essential part of the experimental stand was a vertically oriented rectangular minichannel, which was heated asymmetrically with a plate made of Haynes-230 alloy. Distilled water was used as the cooling fluid. Changes in the temperature on the outer side of the heated plate in the central, axially symmetric part of the channel were measured using infrared thermography. Simultaneously, the other side of the heated plate in contact with the fluid was observed through a glass pane to identify the two-phase flow patterns. The one-dimensional model used for the heat transfer analysis took into account the heat flow direction, which was perpendicular to the direction of the fluid flow in the minichannel. The study involved determining local values of the heat transfer coefficient and generating boiling curves. The data for water were compared with the findings reported for the FC-72 fluid.

  13. A Dynamic Job Shop Scheduling Method Based on Ant Colony Coordination System

    Institute of Scientific and Technical Information of China (English)

    ZHU Qiong; WU Li-hui; ZHANG Jie

    2009-01-01

    Due to the stubborn nature of dynamic job shop scheduling problem, a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment. In ant colony coordination mechanism, the dynamic .job shop is composed of several autonomous ants. These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails, by which they can make information available globally, and further more guide ants make optimal decisions. The proposed mechanism is tested by several instances and the results confirm the validity of it.

  14. Verification and Validation of a Coordinate Transformation Method in Axisymmetric Transient Magnetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ashcraft, C. Chace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Niederhaus, John Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, Allen C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-29

    We present a verification and validation analysis of a coordinate-transformation-based numerical solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and Simkin, yields an equation set perfectly suited for linear finite elements and for problems with large jumps in material conductivity near the axis. The verification analysis examines transient magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an approximate analytic solution using perturbation theory. This approach for generating a reference solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact solution is then used to demonstrate second-order convergence under spatial refinement and tem- poral refinement. For this new implementation, a significant improvement relative to previously available formulations is observed. Benefits in accuracy for computed current density and Joule heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests. The new implementation matches the accuracy of the existing formulation, with both formulations capturing the experimental burst time and action to within approximately 2%.

  15. INTERFERENCE COORDINATION METHOD BASED ON GRAPH THEORY IN TWO-TIER CELLULAR NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Shi Jurong; Zhu Qi

    2013-01-01

    This paper studies an interference coordination method by means of spectrum allocation in Long-Term Evolution (LTE) multi-cell scenario that comprises of macrocells and femtocells.The purpose is to maximize the total throughput of femtocells while ensuring the Signal-to-Interference plus Noise Ratio (SINR) of the edge macro mobile stations (mMSs) and the edge femtocell Mobile Stations (fMSs).A new spectrum allocation algorithm based on graph theory is proposed to reduce the interference.Firstly,the ratio of Resource Blocks (RBs) that mMSs occupy is obtained by genetic algorithm.Then,after considering the impact of the macro Base Stations (mBSs) and small scale fading to the fMS on different RBs,multi-interference graphs are established and the spectrum is allocated dynamically.The simulation results show that the proposed algorithm can meet the Quality of Service (QoS) requirements of the mMSs.It can strike a balance between the edge fMSs' throughput and the whole fMSs' throughput.

  16. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  17. Analysis of a cylindrical-rectangular microstrip structure with an airgap

    Science.gov (United States)

    Wong, Kin-Lu; Cheng, Yuan-Tung; Row, Jeen-Sheen

    1994-06-01

    The resonance problem of the cylindrical-rectangular microstrip structure with an airgap between the substrate layer and the ground conducting cylinder is studied by using a rigorous full-wave approach and a moment method calculation.

  18. A dual coordinate system finite difference method for forward and inverse solutions of the volume conductor problem in neurology.

    Science.gov (United States)

    Ouyang, S; Maynard, D E

    1997-03-01

    Finite difference methods for the volume conductor problem have used a single coordinate system for the mesh and made approximations of Laplace's equation. This method is simple but has two major problems. Firstly, to deal with boundary conditions properly, the normal potential gradient at the boundary must be known. However it is complicated to compute at a curved surface point. Secondly, for an inverse solution the equation on a curved boundary is difficult to reverse since more than one inner mesh node appears in the approximation equation for each surface point. The new method developed in this paper is a dual coordinate system. One system serves as a frame mesh, the other is a sub-coordinate system in which surface points become mesh points (regular nodes). The equation at each surface point is then directly reversible since only one inner point appears in the equation. The forward solution is applied to both centric and eccentric bone models and uses the conventional successive over-relaxation (SOR) method. Noise is added to this solution for input to the inverse procedure which is a direct step-in non-iterative method. Low pass filtering was effective in reducing the effects of noise. In the examples given, only one coordinate subsystem is used but, for complex shape boundaries, multiple subsystems would be necessary.

  19. Superconvergence for rectangular serendipity finite elements

    Institute of Scientific and Technical Information of China (English)

    CHEN; Chuanmiao(陈传淼)

    2003-01-01

    Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.

  20. Thermal Impedance of Rectangular Microwave Oven Linings

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao; XUFu-qiu; 等

    1996-01-01

    Amodel was preseted for calcultaing the thermal impedance of the insulation and refractory linings of rectangular microwave ovens,of which the oven cavity's dimensions are relatively small,while the linings re relatively thick.

  1. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;

    2011-01-01

    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack...... configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack...... a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field....

  2. Fluid in Rectangular Tank – Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Kotrasová Kamila

    2014-06-01

    Full Text Available Ground-supported tanks are used to store a variety of liquids. During earthquake activity the liquid exerts impulsive and convective pressures (sloshing on the walls and bottom of the rectangular tank. This paper provides theoretical background for analytical calculating of circular frequencies and hydrodynamic pressures developed during an earthquake in rectangular container. Analytical results of first natural frequency are compared with experiment.

  3. Random Young diagrams in a Rectangular Box

    DEFF Research Database (Denmark)

    Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël

    We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....

  4. Random Young diagrams in a Rectangular Box

    DEFF Research Database (Denmark)

    Beltoft, Dan; Boutillier, Cédric; Enriquez, Nathanaël

    We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape.......We exhibit the limit shape of random Young diagrams having a distribution proportional to the exponential of their area, and confined in a rectangular box. The Ornstein-Uhlenbeck bridge arises from the fluctuations around the limit shape....

  5. Complementary method to locate atomic coordinates by combined searching method of structure-sensitive indexes based on bond valence method

    Institute of Scientific and Technical Information of China (English)

    宋振; 刘小浪; 何丽珠; 夏志国; 刘泉林

    2015-01-01

    Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index (GII) and bond strain index (BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII&BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.

  6. Beyond the Community Method: Why the Open Method of Coordination Was Introduced to EU Policy-making

    Directory of Open Access Journals (Sweden)

    Armin Schäfer

    2004-09-01

    Full Text Available This paper looks at the introduction of the Open Method of Coordination (OMC to EU policy-making. This new mode of governance has been developed over the last decade and has received considerable attention in the literature. However, much of this writing fails to put the OMC into the broader context of EMU; in contrast, this paper links the Amsterdam employment title to the prior Maastricht decision to form a monetary union. It seeks to contribute to the literature on European integration in two ways: First, this paper offers three refinements to Pierson's historical institutionalist account of European integration. Second, it thus provides an alternative to functional explanations of the OMC. In brief the argument is that a conservative-liberal coalition at Maastricht created hard law in fiscal and monetary policy to constrain its successors, while the social democratic majority at Amsterdam relied on soft law to promote its goals in employment and social policy. While the former effectively limited later policy-choices, the latter largely avoids sovereignty losses for national governments. The contents of the Employment Title were determined by EMU, its form the OMC by social democratic reluctance to transfer power to the EU.

  7. Beyond the Community Method: Why the Open Method of Coordination Was Introduced to EU Policy-making

    Directory of Open Access Journals (Sweden)

    Armin Schäfer

    2004-09-01

    Full Text Available This paper looks at the introduction of the Open Method of Coordination (OMC to EU policy-making. This new mode of governance has been developed over the last decade and has received considerable attention in the literature. However, much of this writing fails to put the OMC into the broader context of EMU; in contrast, this paper links the Amsterdam employment title to the prior Maastricht decision to form a monetary union. It seeks to contribute to the literature on European integration in two ways: First, this paper offers three refinements to Pierson's historical institutionalist account of European integration. Second, it thus provides an alternative to functional explanations of the OMC. In brief the argument is that a conservative-liberal coalition at Maastricht created hard law in fiscal and monetary policy to constrain its successors, while the social democratic majority at Amsterdam relied on soft law to promote its goals in employment and social policy. While the former effectively limited later policy-choices, the latter largely avoids sovereignty losses for national governments. The contents of the Employment Title were determined by EMU, its form – the OMC – by social democratic reluctance to transfer power to the EU.

  8. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget and...

  9. The Open Methods of Coordination as Amplifier for EU Soft Law. The case of EU Youth Policy

    NARCIS (Netherlands)

    Copeland, P.; ter Haar, B.

    2015-01-01

    The legally non-binding nature of the EU’s Open Method of Coordination (OMC) has sparked a lively scholarly debate that includes, amongst other things, research about its function and effectiveness in conjunction with hard law and the integration capacity created by different governance structures (

  10. Education Policy Convergence through the Open Method of Coordination: Theoretical Reflections and Implementation in "Old" and "New" National Contexts

    Science.gov (United States)

    Alexiadou, Nafsika; Fink-Hafner, Danica; Lange, Bettina

    2010-01-01

    This article addresses two key questions about the convergence of education policies in the European Union (EU). How does the open method of coordination (OMC), a new governance instrument for the Europeanisation of education policies, change existing national education policy making and how can the OMC and national responses to it be researched?…

  11. The Open Methods of Coordination as Amplifier for EU Soft Law. The case of EU Youth Policy

    NARCIS (Netherlands)

    Copeland, P.; ter Haar, B.

    2015-01-01

    The legally non-binding nature of the EU’s Open Method of Coordination (OMC) has sparked a lively scholarly debate that includes, amongst other things, research about its function and effectiveness in conjunction with hard law and the integration capacity created by different governance structures (

  12. Radio-Frequency Characteristics of a Printed Rectangular Helix Slow-Wave Structure

    Institute of Scientific and Technical Information of China (English)

    FU Cheng-Fang; WEI Yan-Yu; WANG Wen-Xiang; GONG Yu-Bin

    2008-01-01

    A new type of printed rectangular he/ix slow-wave structure (SWS) is investigated using the field-matching method and the electromagnetic integral equations at the boundaries. The radio-frequency characteristics including the dispersion equation and the coupling impedance for transverse antisymmetric (odd) modes of this structure are analysed. The numerical results agree well with the results obtained by the EM simulation software HFSS. It is shown that the dispersion of the rectangular helix circuit is weakened, the phase velocity is reduced after filling the dielectric materials in the rectangular helix SWS. As a planar slow-wave structure, this structure has potential applications in compact TWTs.

  13. Influence author methodic teaching swimming on coordination quality of children 6–10 years old with hearing disabilities

    Directory of Open Access Journals (Sweden)

    Julia Karbunarova

    2016-06-01

    Full Text Available Purpose: to determine the influence of the author's methodic of teaching swimming on coordination skills of children with hearing disability of primary school age. Material & Methods: in 20 deaf children’s who are studies in special school of Lviv region we make experimental and control groups, and defined the level of static balance by methodic of Romberg and Bondarevskyy, preserve the active balance while walking on the increase by test «Walk on gymnastic beam» and comprehensive display of coordination skills we used test «Three somersaults forward». The survey was conducted before and after the implementation of our methods of teaching swimming. Results: revealed low level of capacity to preserve static balance and ability to preserve the active balance while walking on the increase at the beginning of research. Conclusion: the defined positive impact of the methodic of teaching swimming in deaf children of experimental group according to results of static balance.

  14. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  15. EXACT ANALYSIS OF WAVE PROPAGATION IN AN INFINITE RECTANGULAR BEAM

    Institute of Scientific and Technical Information of China (English)

    孙卫明; 杨光松; 李东旭

    2004-01-01

    The Fourier series method was extended for the exact analysis of wave propagation in an infinite rectangular beam. Initially, by solving the three-dimensional elastodynamic equations a general analytic solution was derived for wave motion within the beam. And then for the beam with stress-free boundaries, the propagation characteristics of elastic waves were presented. This accurate wave propagation model lays a solid foundation of simultaneous control of coupled waves in the beam.

  16. Longitudinal slots in dielectric-filled rectangular waveguides

    Science.gov (United States)

    Rengarajan, Sembiam R.; Steinbeck, Michael

    1993-09-01

    A rigorous analysis is conducted of a dielectric-filled rectangular waveguide, in whose broad wall a longitudinal radiating slot has been cut; the coupled integral equations for the aperture electric field of a thick wall slot are solved by the method of moments. Attention is given to numerical results for the slot characteristics over a range of dielectric permittivity values. It is noted that the shunt admittance representation is poor for higher dielectric permittivity values.

  17. Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hai-hong; GUO Cheng

    2008-01-01

    An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.

  18. Input impedance and mutual coupling of rectangular microstrip antennas

    Science.gov (United States)

    Pozar, D. M.

    1982-01-01

    A moment method solution to the problem of input impedance and mutual coupling of rectangular microstrip antenna elements is presented. The formulation uses the grounded dielectric slab Green's function to account rigorously for the presence of the substrate and surface waves. Both entire basis (EB) and piecewise sinusoidal (PWS) expansion modes are used, and their relative advantages are noted. Calculations of input impedance and mutual coupling are compared with measured data and other calculations.

  19. FEA OF RECTANGULAR CUP DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Awad D.S

    2012-08-01

    Full Text Available Deep drawing is a process for shaping flat sheets into cup shaped articles without fracture or excessive localized thinning. The complex deep drawing of thin metallic sheets is widely used during industrial material forming applications. It allows production of thin walled parts with complicated shapes such as automotive panels or structural parts. The process consists of the plastic deformation of an initial at blank subjected to the action of a rigid punch and die while constrained on the periphery by a blank holder. Conventional design processes for sheet metal forming are usually based on a empirical approach. However, due to the requirement of high precision and reliability in shaped parts, these methods are far away from a final and reliable solution. Nowadays, Finite Element Method (FEM is being gradually adopted by industry to envisage the formability properties of sheet metals. The design and control of a deep drawing process depends not only on the work piece material, but also on the condition at the tool work piece interface, the mechanics of plastic deformation and the equipment used. In this paper, rectangular cup component of EDDQ Steel and Mild Steel is simulated using HYPERMESH 11 by varying various process parameters.

  20. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  1. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    Science.gov (United States)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn

  2. End depth in steeply sloping rough rectangular channels

    Indian Academy of Sciences (India)

    Subhasish Dey

    2000-02-01

    The paper presents a theoretical model to compute the end depth of a free overfall in steeply sloping rough rectangular channels. A momentum equation based on the Boussinesq approximation is applied to obtain the equation of the end depth. The effect ofstreamline curvature at the free surface is utilized to develop the differential equation for the flow profile upstream of the free overfall of a wide rectangular channel. As direct solutions for the end depth and flow profile cannot be obtained owing to implicit forms of the developed equations, an auto-recursive search scheme is evolved to solve these equations simultaneously. A method for estimation of discharge from the known end depth and Nikuradse equivalent sand roughness is also presented. Results from the present model correspond satisfactorily with experimental observations except for some higher roughnesses.

  3. Exciton and Biexciton Binding Energies in Rectangular Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-Hui; KONG Xiao-Jun

    2005-01-01

    @@ In the effective mass approximation, using the variational technology and a method of expanding the wavefunctions of exciton in terms of the eigenfunctions of the noninteracting electron-hole system, we calculate the exciton and biexciton ground state binding energies for rectangular quantum dots (QDs). In the calculation, a three-dimensional Fourier expansion of Coulomb potential is used to remove the numerical difficulty with the 1/r singularity, and it considerably reduces the computational effort. Our results agree fairly well with the previous results. It is found that the binding energies are highly correlated to the size of QDs. The quantum confinement effect of spherical QDs about biexciton is obviously larger than that of rectangular QDs when the well width is narrower than 2.0aB.

  4. Electronic structure of rectangular HgTe quantum dots

    Science.gov (United States)

    Li, Jian; Zhang, Dong; Zhu, Jia-Ji

    2017-09-01

    We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.

  5. Transformation Method of Exterior Orientation Angular Elements Obtained via Position and Orientation System Under Gauss-Kruger Projection Coordinate System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiuxiao; ZHANG Xueping; FU Jianhong

    2010-01-01

    Data obtained via airborne position and orientation system (POS) is in WGS 84 global geocentric reference frame, while the national coordinate reference system for topographic mapping in China is generally Gauss-Kruger projection coordinate system.Therefore, data obtained via a POS must be transformed to national coordinate system. Owing to the effects of earth curvature and meridian deviation, there are some errors in the process of angle transformation from roll, pitch, and heading (φ,(I),ψ) obtained directly via a POS to the attitude angles of images (φ,ω, κ) needed in photogrammetry. On the basis of effect theories of earth curvature and meridian deviation on exterior orientation angular elements of images, a method using a compensation matrix to correct the transformation errors from attitude angles obtained via the POS to exterior orientation angular elements of images is proposed in this paper.Moreover, the rigorous formula of the compensation matrix is deduced. Two sets of actual data obtained via a POS AV 510, which are different in scale and terrain, are selected and used to perform experiments. The empirical results not only indicate that the compensation matrix proposed in this paper is correct and practical but also show that transformation accuracy of exterior orientation angular elements obtained via the POS based on compensation matrix is relevant to the selection of vertical axis (a projection of central meridian) of Gauss-Kruger projection coordinate system; the proper vertical axis should be the Gauss-Kruger projection of the central meridian of projection zone in which the survey area locates. However, the transformation accuracy of exterior orientation angular elements is irrelevant to the choice of origin of coordinate system; it is appropriate that the origin of coordinate system locates at the center point of the survey area. Moreover, transformation accuracy of exterior orientation angular elements achieved based on the compensation

  6. Lightweight design of the rectangular mirror using topology optimization

    Science.gov (United States)

    Xiang, Meng; Li, Fu

    2014-09-01

    That minimizing the mass of space optical remote sensor at the same time guaranteeing of structural rigidity and surface shape accuracy, became a new critical research topic. This paper achieves detailed design of meniscus rectangular lens body structure by taking the choice of materials, design of supporting structure and lightweight form of mirror into account. And we established lightweight concrete of the mirror under self-weight by the method of topological optimization design. For the optimization, we used a 3-D model of the rectangular mirror and calculated based on that making minimum weight of the mirror as an objective function constrained by the displacement of the mirror surface. Finally finite element analysis method was adopted to get the optimization results analyzed and compared with the traditional triangular lightweight model. Analysis results prove that: the new mirror is superior to the traditional model in surface accuracy and structural rigidity, PV value, RMS value and the lightweight rate. With enough high dynamic-static stiffness and thermal stability, this kind of mirror can meet the demand under the self-weight and the random vibration environment respectively. So this article puts forward a new idea in the lightweight design of rectangular mirror.

  7. Spectrum analysis of rectangular pulse in the atmospheric turbulence propagation

    Science.gov (United States)

    Liu, Yi; Ni, Xiaolong; Jiang, Huilin; Wang, Junran; Liu, Zhi

    2016-11-01

    Atmospheric turbulence has a great influence on the performance of the atmospheric laser communication system reducing the signal to noise ratio (SNR) and increasing the bit error rate (BER). However, there is rarely study on the effect of atmospheric turbulence on the power spectrum of the rectangular pulse. In this paper, a spectral analyzing method is used to analyze the influence of atmospheric turbulence on the signal. An experiment of laser beam propagation characteristic is carried out on a 6km horizontal atmospheric link, the wavelength is 808 nm. The signal is 100MHz rectangular pulse. The waveform of the rectangular pulse is collected by the oscilloscope, and the power spectral density of the signal is calculated and analyzed by the method of periodogram. Experimental results show that the response and noise characteristics of the laser and photoelectric detector have a great influence on the signal power spectrum distribution which can increase the noise component in the 10^6 Hz frequency range. After the atmospheric turbulence propagation, the signal power decreases in the whole frequency range. However, as the existence of atmospheric turbulence, the signal power increases in the atmospheric turbulence characteristic frequency (tens to hundreds of Hz). The noise power increases in the high frequency range (10^7 10^8 Hz).

  8. Magnetohydrodynamics and heat transfer benchmark problems for liquid-metal flow in rectangular ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, S.I. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Fusion Power Program, Technology Development Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Araseki, Hideo [Central Research Institute of the Electric Power Industry, 1646 Abiko, Abiko-shi, 270-11 (Japan)

    1995-03-01

    This paper describes four benchmark problems to validate magnetohydrodynamic and heat transfer computer codes. The problems include rectangular duct geometry with uniform and non-uniform magnetic fields, with and without surface heat flux, and various rectangular cross-sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: Russia, USA and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared. (orig.).

  9. Inverstigation on the Separated Turbulent Flow Field in Dual Rectangular Jets

    Institute of Scientific and Technical Information of China (English)

    TANFa-sheng; LIUJie-wei; 等

    2001-01-01

    In the present paper,the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier-Stokes equations,where the RNG κ-ε model and the finite volume method were used.The flow structure in dual rectangular jets and the effects of the velocity were investigated.The numerical results agree qualitatively with the experimental data.

  10. Numerical solutions of singular integral equations for planar rectangular interfacial crack in three dimensional bimaterials

    Institute of Scientific and Technical Information of China (English)

    XU Chun-hui; QIN Tai-yan; Nao-Aki Noda

    2007-01-01

    Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.

  11. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  12. ADAPTIVE RECONSTRUCTION TECHNIQUE FOR THE LOST INFORMATION OF THE RECTANGULAR IMAGE AREA

    Institute of Scientific and Technical Information of China (English)

    Shi Rong; Li Xiaofeng; Li Zaiming

    2004-01-01

    The adaptive reconstruction for the lost information of the rectangular image area is very important for the robust transmission and restoration of the image. In this paper, a new reconstruction method based on the Discrete Cosine Transform (DCT) domain has been put forward. According to the low pass character of the human visual system and the energy distribution of the DCT coefficients on the rectangular boundary, the DCT coefficients of the rectangular image area are adaptively selected and recovered. After the Inverse Discrete Cosine Transform (IDCT), the lost information of the rectangular image area can be reconstructed. The experiments have demonstrated that the subjective and objective qualities of the reconstructed images are enhanced greatly than before.

  13. High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates

    CERN Document Server

    Mignone, A

    2014-01-01

    High-order reconstruction schemes for the solution of hyperbolic conservation laws in orthogonal curvilinear coordinates are revised in the finite volume approach. The formulation employs a piecewise polynomial approximation to the zone-average values to reconstruct left and right interface states from within a computational zone to arbitrary order of accuracy by inverting a Vandermonde-like linear system of equations with spatially varying coefficients. The approach is general and can be used on uniform and non-uniform meshes although explicit expressions are derived for polynomials from second to fifth degree in cylindrical and spherical geometries with uniform grid spacing. It is shown that, in regions of large curvature, the resulting expressions differ considerably from their Cartesian counterparts and that the lack of such corrections can severely degrade the accuracy of the solution close to the coordinate origin. Limiting techniques and monotonicity constraints are revised for conventional reconstruct...

  14. On-Line Method and Apparatus for Coordinated Mobility and Manipulation of Mobile Robots

    Science.gov (United States)

    Seraji, Homayoun (Inventor)

    1996-01-01

    A simple and computationally efficient approach is disclosed for on-line coordinated control of mobile robots consisting of a manipulator arm mounted on a mobile base. The effect of base mobility on the end-effector manipulability index is discussed. The base mobility and arm manipulation degrees-of-freedom are treated equally as the joints of a kinematically redundant composite robot. The redundancy introduced by the mobile base is exploited to satisfy a set of user-defined additional tasks during the end-effector motion. A simple on-line control scheme is proposed which allows the user to assign weighting factors to individual degrees-of-mobility and degrees-of-manipulation, as well as to each task specification. The computational efficiency of the control algorithm makes it particularly suitable for real-time implementations. Four case studies are discussed in detail to demonstrate the application of the coordinated control scheme to various mobile robots.

  15. Four-Node Generalized Conforming Membrane Elements with Drilling DOFs Using Quadrilateral Area Coordinate Methods

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Chen

    2015-01-01

    Full Text Available Two 4-node generalized conforming quadrilateral membrane elements with drilling DOF, named QAC4θ and QAC4θM, were successfully developed. Two kinds of quadrilateral area coordinates are used together in the assumed displacement fields of the new elements, so that the related formulations are quite straightforward and will keep the order of the Cartesian coordinates unchangeable while the mesh is distorted. The drilling DOF is defined as the additional rigid rotation at the element nodes to avoid improper constraint. Both elements can pass the strict patch test and exhibit better performance than other similar models. In particular, they are both free of trapezoidal locking in MacNeal’s beam test and insensitive to various mesh distortions.

  16. Experimental Investigation of a Rectangular Airlift Pump

    Directory of Open Access Journals (Sweden)

    I. I. Esen

    2010-01-01

    Full Text Available Hydraulic performance of an airlift pump having a rectangular cross-section 20 mm × 80 mm was investigated through an experimental program. The pump was operated at six different submergence ratios and the liquid flow rate was measured at various flowrates of air injected. The effectiveness of the pump, defined as the ratio of the mass of liquid pumped to the mass of air injected, was determined as a function of the mass of air injected for different submergence ratios. Results obtained were compared with those for circular airlift pumps using an analytical model for circular pumps. Effectiveness of the rectangular airlift pump was observed to be comparable to that of the circular pumps. Hydraulic performance of the rectangular airlift pump investigated was then described by a set of semilogarithmic empirical equations.

  17. Double-composite rectangular truss bridge and its joint analysis

    Directory of Open Access Journals (Sweden)

    Yongjian Liu

    2015-08-01

    Full Text Available This paper describes a novel composite tubular truss bridge with concrete slab and concrete-filled rectangular chords. With concrete slab plus truss system and joints reinforced with concrete and Perfobond Leiste rib, double composite truss bridge proved to be a fairly suitable solution in negative moment area. Perfobond Leiste shear connector (PBL is widely implemented in the composite structure for its outstanding fatigue resistance. In this pilot bridge, Perfobond Leister ribs (PBR were installed in the truss girder's joints, which played double roles as shear connector and stiffener. An erection method and overall bridge structural analysis were then presented. Typical joints in the pilot bridge were selected to analyze the effect of PBR. Investigation of the effect of PBR in concrete-filled tubular joints was elaborated. Comparison has revealed that concrete-filled tubular joints with PBR have much higher constraint capability than joints without PBR. For rectangular tubular truss, the punching shear force of the concrete filled joint with PBR is approximately 43% larger than that of the joint without PBR. Fatigue performance of the joint installed with PBR was improved, which was found through analysis of the stress concentration factor of joint. The PBR installed in the joints mitigated the stress concentration factor in the chord face. Therefore, the advantages of this new type of bridge are demonstrated, including the convenience of construction using rectangular truss, innovative concept of structural design and better global and local performances.

  18. Coordination between Understanding Historic Buildings and BIM Modelling: A 3D-Output Oriented and typological Data Capture Method

    Science.gov (United States)

    Li, K.; Li, S. J.; Liu, Y.; Wang, W.; Wu, C.

    2015-08-01

    At the present, in trend of shifting the old 2D-output oriented survey to a new 3D-output oriented survey based on BIM technology, the corresponding working methods and workflow for data capture, process, representation, etc. have to be changed.Based on case study of two buildings in the Summer Palace of Beijing, and Jiayuguan Pass at the west end of the Great Wall (both World Heritage sites), this paper puts forward a "structure-and-type method" by means of typological method used in archaeology, Revit family system, and the tectonic logic of building to realize a good coordination between understanding of historic buildings and BIM modelling.

  19. Comparison of emitted color by pure Gd2O3 prepared by two different methods by CIE coordinates

    Science.gov (United States)

    Tamrakar, Raunak Kumar; Bisen, D. P.; Upadhyay, Kanchan; Sahu, Manjulata; Sahu, Ishwar Prasad; Bramhe, N.

    2015-12-01

    Monoclinic and cubic Gd2O3 phosphors were prepared by using two different methods solution combustion synthesis and solid state reaction method. The present paper deals with comparison of specific color emitted by the pure Gd2O3 phosphors prepared by combustion synthesis and solid state reaction methods. The Commission International de I'Eclairage (CIE) coordinates for combustion synthesized Gd2O3 phosphor and for the solid state synthesized Gd2O3 phosphor X = 0.207 and Y = 0.206, and X = 0.29 and Y = 0.29 respectively.

  20. Electrochemical apparatus comprising modified disposable rectangular cuvette

    Science.gov (United States)

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  1. An Improved Surface Simplification Method for Facial Expression Animation Based on Homogeneous Coordinate Transformation Matrix and Maximum Shape Operator

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2016-01-01

    Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.

  2. Lossy-Transmission-Line Analysis of Frequency Reconfigurable Rectangular-Ring Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    Bambang Setia Nugroho

    2014-01-01

    Full Text Available An analytical model for a frequency reconfigurable rectangular-ring microstrip antenna is proposed. The resonant frequencies and input impedance of the reconfigurable antenna are analyzed using a lossy-transmission-line (LTL model. By making use of Y-admittance matrices, a formulation for the input impedance is analytically derived. The structure of the frequency reconfigurable antenna consists of a rectangular-ring shaped microstrip antenna which is loaded with a rectangular patch in the middle of the rectangular-ring antenna and fed by a microstrip line. RF switches are applied to connect the load to the antenna in order to reconfigure the operating frequencies. By modeling the antenna into a multiport equivalent circuit, the total input impedance is analytically derived to predict the resonant frequencies. To verify the analysis, the model input impedance and reflection coefficient calculation have been compared with the full-wave simulation and measurement results. The proposed model shows good agreement with full-wave simulated and measured results in the range of 1–3 GHz.

  3. Teamwork methods for accountable care: relational coordination and TeamSTEPPS®.

    Science.gov (United States)

    Gittell, Jody Hoffer; Beswick, Joanne; Goldmann, Don; Wallack, Stanley S

    2015-01-01

    To deliver greater value in the accountable care context, the Institute of Medicine argues for a culture of teamwork at multiple levels--across professional and organizational siloes and with patients and their families and communities. The logic of performance improvement is that data are needed to target interventions and to assess their impact. We argue that efforts to build teamwork will benefit from teamwork measures that provide diagnostic information regarding the current state and teamwork interventions that can respond to the opportunities identified in the current state. We identify teamwork measures and teamwork interventions that are validated and that can work across multiple levels of teamwork. We propose specific ways to combine them for optimal effectiveness. We review measures of teamwork documented by Valentine, Nembhard, and Edmondson and select those that they identified as satisfying the four criteria for psychometric validation and as being unbounded and therefore able to measure teamwork across multiple levels. We then consider teamwork interventions that are widely used in the U.S. health care context, are well validated based on their association with outcomes, and are capable of working at multiple levels of teamwork. We select the top candidate in each category and propose ways to combine them for optimal effectiveness. We find relational coordination is a validated multilevel teamwork measure and TeamSTEPPS® is a validated multilevel teamwork intervention and propose specific ways for the relational coordination measure to enhance the TeamSTEPPS intervention. Health care systems and change agents seeking to respond to the challenges of accountable care can use TeamSTEPPS as a validated multilevel teamwork intervention methodology, enhanced by relational coordination as a validated multilevel teamwork measure with diagnostic capacity to pinpoint opportunities for improving teamwork along specific dimensions (e.g., shared knowledge

  4. A New Analytic Method for IEEE 802.11 Distributed Coordination Function

    Science.gov (United States)

    Hwang, Gang Uk; Chung, Min Young; Lee, Yutae

    In this paper, we consider a network of N identical IEEE 802.11 DCF (Distributed Coordination Function) terminals with RTS/CTS mechanism, each of which is assumed to be saturated. For performance analysis, we propose a simple and efficient mathematical model to derive the statistical characteristics of the network such as the inter-transmission time of packets in the network and the service time (the inter-transmission time of successful packet transmissions) of the network. Numerical results and simulations are provided to validate the accuracy of our model and to study the performance of the IEEE 802.11 DCF network.

  5. Grid-based methods for diatomic quantum scattering problems: a finite-element, discrete variable representation in prolate spheroidal coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Liang; McCurdy, C.W.; Rescigno, T.N.

    2008-11-25

    We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.

  6. Residual stresses of thin, short rectangular plates

    Science.gov (United States)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  7. BIVARIATE FRACTAL INTERPOLATION FUNCTIONS ON RECTANGULAR DOMAINS

    Institute of Scientific and Technical Information of China (English)

    Xiao-yuan Qian

    2002-01-01

    Non-tensor product bivariate fractal interpolation functions defined on gridded rectangular domains are constructed. Linear spaces consisting of these functions are introduced.The relevant Lagrange interpolation problem is discussed. A negative result about the existence of affine fractal interpolation functions defined on such domains is obtained.

  8. Spin-Up in a Rectangular Cylinder

    Science.gov (United States)

    1993-12-01

    cylinder by scaling as follows: I I IElt , and p = E’,X, 3.22 where we have scaled the radial and vertical flow to be higher order in Ekman number than the...two flow visualization systems, and the rectangular tank with prepared water. Fig- ure 4.1 is a schematic of this system, which we describe below.I I

  9. Adapted Gaussian basis sets for atoms from Li through Xe generated with the generator coordinate Hartree-Fock method

    Directory of Open Access Journals (Sweden)

    CASTRO EUSTÁQUIO V. R. DE

    2001-01-01

    Full Text Available The generator coordinate Hartree-Fock method is used to generate adapted Gaussian basis sets for the atoms from Li (Z=3 through Xe (Z=54. In this method the Griffin-Hill-Wheeler-Hartree-Fock equations are integrated through the integral discretization technique. The wave functions generated in this work are compared with the widely used Roothaan-Hartree-Fock wave functions of Clementi and Roetti (1974, and with other basis sets reported in the literature. For all atoms studied, the errors in our total energy values relatively to the numerical Hartree-Fock limits are always less than 7.426 mhartree.

  10. Quasi-real time inversion method of three-dimensional epicenter coordinate, trigger time, and magnitude based on CORS

    Science.gov (United States)

    Xiao, Dongsheng; Chang, Ming; Su, Yong; Hu, Qijun; Yu, Bing

    2016-09-01

    This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.

  11. Numerical prediction of wave impact loads on multiple rectangular beams

    DEFF Research Database (Denmark)

    Mayer, Stefan; Nielsen, Kristian Bendix; Hansen, E.A.

    2005-01-01

    corresponding to a wave impact scenario in the experimental database of Sterndorff [2002]. For the case of wave impact on a single structural element the numerical results show good agreement with measured force time histories. In the computations featuring two beams, the prediction of the shadowing effect......Wave impact on one and two structural beams with rectangular cross section is simulated with a two-dimensional finite volume method, solving the unsteady Euler equations and employing a VOF-type method for the description of the free surface. Four different test series are carried out, each...

  12. An Efficient Computation of Coherent Synchrotron Radiation in a Rectangular Chamber, Applied to Resistive Wall Heating

    CERN Document Server

    Warnock, Robert L

    2016-01-01

    We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight...

  13. [download] (1035Coordinate Descent Methods for the Penalized Semiparametric Additive Hazards Model

    Directory of Open Access Journals (Sweden)

    Anders Gorst-Rasmussen

    2012-04-01

    Full Text Available For survival data with a large number of explanatory variables, lasso penalized Cox regression is a popular regularization strategy. However, a penalized Cox model may not always provide the best fit to data and can be difficult to estimate in high dimension because of its intrinsic nonlinearity. The semiparametric additive hazards model is a flexible alternative which is a natural survival analogue of the standard linear regression model. Building on this analogy, we develop a cyclic coordinate descent algorithm for fitting the lasso and elastic net penalized additive hazards model. The algorithm requires no nonlinear optimization steps and offers excellent performance and stability. An implementation is available in the R package ahaz. We demonstrate this implementation in a small timing study and in an application to real data.

  14. 矩形槽同轴布拉格结构的模式匹配分析方法及实验验证%Mode-matching analytic method of a coaxial Bragg structure corrugated with rectangular ripples and its experimental verification

    Institute of Scientific and Technical Information of China (English)

    赖颖昕; 杨雷; 张世昌

    2013-01-01

    Based on the mode-matching method, an analytical model with full-wave coupling is presented for the coaxial Bragg structures corrugated with rectangular ripples, where the expressions of the reflectivity and transmission rate for each involved mode are derived. The validity of the analytical model is examined in terms of a reported experiment, and good agreement between the theoretical results and the experimental measurements is demonstrated. Comparative study is carried out between the present model and the published theoretical results. It is found that the approximate treatment adopted by the previous model leads to notable deviation of the transmission response curve due to the neglect of the evanescent modes excited by rectangular ripples. The analytical method presented in this paper can be expected to provide a useful approach to the characteristic investigation and engineering practice of the coaxial Bragg structures with rectangular ripples.%基于模式匹配法建立了矩形槽同轴布拉格结构的全波耦合分析模型,推导出了不同模式反射率和传输率的计算式,并采用公开报道的实验数据验证了该理论模型。在此基础上就本文理论与其他相关的理论方法进行了比较,发现以前的理论近似模型由于忽略了矩形槽中的消失模而使传输率的频率响应曲线发生偏差。本文建立的理论方法有望为矩形槽同轴布拉格结构的特性研究和工程实践提供一种理论分析手段。

  15. The developmental coordination disorder questionnaire and movement assessment battery for children as a diagnostic method in Australian children.

    Science.gov (United States)

    Civetta, Lauren R; Hillier, Susan L

    2008-01-01

    Early, accurate diagnosis of children with developmental coordination disorder is crucial to enable effective intervention. This study examined a diagnostic method in an Australian school population. In a two-step process, the Developmental Coordination Disorder Questionnaire (DCDQ) was distributed to parents of 460 children. Using the DCDQ results, children suspected of having developmental coordination disorder, and age and sex matched control children, attended a physical assessment [Movement Assessment Battery for Children (M-ABC)]. Fifty-seven children completed M-ABC assessments. The internal consistency of the DCDQ was high (alpha 0.88), but the M-ABC (alpha 0.75) failed to reach the specified cut-off. Factor analysis revealed discrepancies in the proposed subtest structures. Sensitivity and specificity using the original cut-off scores was somewhat low, cluster analysis identified alternative cut-off scores. The DCDQ is reliable and valid; however the ability of the combination of these two tests to identify children was only fair.

  16. g-Weak Contraction in Ordered Cone Rectangular Metric Spaces

    Directory of Open Access Journals (Sweden)

    S. K. Malhotra

    2013-01-01

    Full Text Available We prove some common fixed-point theorems for the ordered g-weak contractions in cone rectangular metric spaces without assuming the normality of cone. Our results generalize some recent results from cone metric and cone rectangular metric spaces into ordered cone rectangular metric spaces. Examples are provided which illustrate the results.

  17. Recovery-focused care planning and coordination in England and Wales: a cross-national mixed methods comparative case study.

    Science.gov (United States)

    Simpson, Alan; Hannigan, Ben; Coffey, Michael; Barlow, Sally; Cohen, Rachel; Jones, Aled; Všetečková, Jitka; Faulkner, Alison; Thornton, Alexandra; Cartwright, Martin

    2016-05-16

    In the UK, concerns about safety and fragmented community mental health care led to the development of the care programme approach in England and care and treatment planning in Wales. These systems require service users to have a care coordinator, written care plan and regular reviews of their care. Processes are required to be collaborative, recovery-focused and personalised but have rarely been researched. We aimed to obtain the views and experiences of stakeholders involved in community mental health care and identify factors that facilitate or act as barriers to personalised, collaborative, recovery-focused care. We conducted a cross-national comparative study employing a concurrent transformative mixed-methods approach with embedded case studies across six service provider sites in England and Wales. The study included a survey of views on recovery, empowerment and therapeutic relationships in service users (n = 448) and recovery in care coordinators (n = 201); embedded case studies involving interviews with service providers, service users and carers (n = 117) and a review of care plans (n = 33). Quantitative and qualitative data were analysed within and across sites using inferential statistics, correlations and framework method. Significant differences were found across sites for scores on therapeutic relationships. Variation within sites and participant groups was reported in experiences of care planning and understandings of recovery and personalisation. Care plans were described as administratively burdensome and were rarely consulted. Carers reported varying levels of involvement. Risk assessments were central to clinical concerns but were rarely discussed with service users. Service users valued therapeutic relationships with care coordinators and others, and saw these as central to recovery. Administrative elements of care coordination reduce opportunities for recovery-focused and personalised work. There were few common understandings

  18. Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods.

    Science.gov (United States)

    Cutti, A G; Parel, I; Raggi, M; Petracci, E; Pellegrini, A; Accardo, A P; Sacchetti, R; Porcellini, G

    2014-03-21

    Quantitative motion analysis protocols have been developed to assess the coordination between scapula and humerus. However, the application of these protocols to test whether a subject's scapula resting position or pattern of coordination is "normal", is precluded by the unavailability of reference prediction intervals and bands, respectively. The aim of this study was to present such references for the "ISEO" protocol, by using the non-parametric Bootstrap approach and two parametric Gaussian methods (based on Student's T and Normal distributions). One hundred and eleven asymptomatic subjects were divided into three groups based on their age (18-30, 31-50, and 51-70). For each group, "monolateral" prediction bands and intervals were computed for the scapulo-humeral patterns and the scapula resting orientation, respectively. A fourth group included the 36 subjects (42 ± 13 year-old) for whom the scapulo-humeral coordination was measured bilaterally, and "differential" prediction bands and intervals were computed, which describe right-to-left side differences. Bootstrap and Gaussian methods were compared using cross-validation analyses, by evaluating the coverage probability in comparison to a 90% target. Results showed a mean coverage for Bootstrap from 86% to 90%, compared to 67-70% for parametric bands and 87-88% for parametric intervals. Bootstrap prediction bands showed a distinctive change in amplitude and mean pattern related to age, with an increase toward scapula retraction, lateral rotation and posterior tilt. In conclusion, Bootstrap ensures an optimal coverage and should be preferred over parametric methods. Moreover, the stratification of "monolateral" prediction bands and intervals by age appears relevant for the correct classification of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Open Method of Co-ordination and the Analysis of Mutual Learning Processes of the European Employment Strategy

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    2005-01-01

    The purpose of this paper is to address two normative and interlinked methodological and theoretical questions concerning the Open Method of Coordination (OMC): First, what is the most appropriate approach to learning in the analyses of the processes of the European Employment Strategy (EES......)? Second, how should mutual learning processes be diffused among the Member States in order to be efficient? In answering these two questions the paper draws on a social constructivist approach to learning thereby contributing to the debate about learning in the political science literature. At the same...

  20. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); CEA, DAM, DIF, Arpajon (France); Verriere, M. [CEA, DAM, DIF, Arpajon (France); Dubray, N. [CEA, DAM, DIF, Arpajon (France); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  1. The Open Method of Coordination on health care after the Lisbon Strategy II: Towards a neoliberal framing?

    Directory of Open Access Journals (Sweden)

    Mark Flear

    2009-11-01

    Full Text Available This paper undertakes a content analysis of the discourse on the Open Method of Coordination on Health Care (OMC/HC in order to show how equity and solidarity are increasingly linked to optimisation and, as such, how neoliberalism increasingly frames health care. Some of the side-effects of this reframing for politics are highlighted: legitimating and extending European Union governance, reducing the space for oppositional formations and limited citizenship. The analysis begins by interrogating the broader context of the Lisbon Strategy II, after which the techniques of the OMC/HC and its substantive outputs are analysed.

  2. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    Science.gov (United States)

    Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.

    2016-03-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  3. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    CERN Document Server

    Regnier, D; Dubray, N; Schunck, N

    2015-01-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N $\\geq$ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  4. An efficient rectangular plate element

    Institute of Scientific and Technical Information of China (English)

    SHI; Zhongci

    2001-01-01

    [1]Shi Zhong-ci, On the accuracy of the quasi-conforming and generalize conforming finite elements, Chin. Ann. Math., 1990, 11B: 148.[2]Shi Zhong-ci, Chen Shao-chun, Huang Hong-ci, Plate elements with high accuracy, Collec. Geom. Anal. Math. Phys. (ed. Li Ta-Tsien), Singapore: World Scientific, 1997, 155—164.[3]Chen Shao-chun, Shi Zhong-ci, Double set parameter method for the construction of the element stiffness matrix, Mathematica Numerica Sinica (in Chinese), 1991, 13: 286.[4]Ciarlet, P., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.

  5. Continuum particle-vibration coupling method in coordinate-space representation for finite nuclei

    CERN Document Server

    Mizuyama, Kazuhito; Vigezzi, Enrico

    2012-01-01

    In this paper we present a new formalism to implement the nuclear particle-vibration coupling (PVC) model. The key issue is the proper treatment of the continuum, that is allowed by the coordinate space representation. Our formalism, based on the use of zero-range interactions like the Skyrme forces, is microscopic and fully self-consistent. We apply it to the case of neutron single-particle states in $^{40}$Ca, $^{208}$Pb and $^{24}$O. The first two cases are meant to illustrate the comparison with the usual (i.e., discrete) PVC model. However, we stress that the present approach allows to calculate properly the effect of PVC on resonant states. We compare our results with those from experiments in which the particle transfer in the continuum region has been attempted. The latter case, namely $^{24}$O, is chosen as an example of a weakly-bound system. Such a nucleus, being double-magic and not displaying collective low-lying vibrational excitations, is characterized by quite pure neutron single-particle stat...

  6. Examining Preservice Teacher Belief Changes in the Context of Coordinated Mathematics Methods Coursework and Classroom Experiences

    Science.gov (United States)

    Bahr, Damon; Monroe, Eula E.; Shaha, Steven H.

    2013-01-01

    The purpose of this study was to compare changes in beliefs of two groups of preservice teachers involved in two types of opportunities to immediately apply methods for teaching accompanying an elementary mathematics methods course. Students in one group applied the methods learned in class through weekly 30-minute peer-teaching sessions, while…

  7. Geometrical product specifications. Datums and coordinate systems

    Science.gov (United States)

    Glukhov, V. I.; Ivleva, I. A.; Zlatkina, O. Y.

    2017-06-01

    The work is devoted to the relevant topic such as the technical products quality improvement due to the geometrical specifications accuracy. The research purpose is to ensure the quality indicators on the basis of the systematic approach to the values normalization and geometrical specifications accuracy in the workpiece coordinate systems in the process of design. To achieve the goal two tasks are completed such as the datum features classification according to the number of linear and angular freedom degrees constraints, called the datums informativeness, and the rectangular coordinate systems identification, materialized by workpiece datums sets. The datum features informativeness characterizes the datums functional purpose to limit product workpiece linear and angular degrees of freedom. The datum features informativeness numerically coincides with the kinematic pairs classes and couplings in mechanics. The datum features informativeness identifies the coordinate system without the location redundancy. Each coordinate plane of a rectangular coordinate system has different informativeness 3 + 2 + 1. Each coordinate axis also has different informativeness 4+2+Θ (zero). It is possible to establish the associated workpiece position with three linear and three angular coordinates relative to two axes with the informativeness 4 and 2. is higher, the more informativeness of the coordinate axis or a coordinate plane is, the higher is the linear and angular coordinates accuracy, the coordinate being plotted along the coordinate axis or plane. The systematic approach to the geometrical products specifications positioning in coordinate systems is the scientific basis for a natural transition to the functional dimensions of features position - coordinating dimensions and the size of the features form - feature dimensions of two measures: linear and angular ones. The products technical quality improving is possible due to the coordinate systems introduction materialized by

  8. Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system.

    Science.gov (United States)

    Xiao, Jinbiao; Sun, Xiaohan

    2012-09-10

    A vector mode solver for bending waveguides by using a modified finite-difference (FD) method is developed in a local cylindrical coordinate system, where the perfectly matched layer absorbing boundary conditions are incorporated. Utilizing Taylor series expansion technique and continuity condition of the longitudinal field components, a standard matrix eigenvalue equation without the averaged index approximation approach for dealing with the discrete points neighboring the dielectric interfaces is obtained. Complex effective indexes and field distributions of leaky modes for a typical rib bending waveguide and a silicon wire bend are presented, and solutions accord well with those from the film mode matching method, which shows the validity and utility of the established method.

  9. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  10. ANALYTICAL SOLUTIONS TO STRESS CONCENTRATION PROBLEM IN PLATES CONTAINING RECTANGULAR HOLE UNDER BIAXIAL TENSIONS

    Institute of Scientific and Technical Information of China (English)

    Yi Yang; Jike Liu; Chengwu Cai

    2008-01-01

    The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods.For the problem with a rectangular hole,only approximate results are derived.This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions.By using the U-transformation technique and the finite element method,the analytical displacement solutions of the finite element equations are derived in the series form.Therefore,the stress concentration can then be discussed easily and conveniently.For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method.The stress concentration factors for various ratios of height to width of the hole are obtained.

  11. Rectangular Wilson Loops at Large N

    CERN Document Server

    Lohmayer, Robert

    2012-01-01

    This work is about pure Yang Mills theory in four Euclidean dimensions with gauge group SU(N). We study rectangular smeared Wilson loops on the lattice at large N and relatively close to the large-N transition point in their eigenvalue density. We show that the string tension can be extracted from these loops but obtain a shape dependence different from the prediction of effective string theory.

  12. On rectangular HOMFLY for twist knots

    CERN Document Server

    Kononov, Ya

    2016-01-01

    As a new step in the study of rectangularly-colored knot polynomials, we reformulate the prescription of arXiv:1606.06015 for twist knots in the double-column representations $R=[rr]$ in terms of skew Schur polynomials. These, however, are mysteriously shifted from the standard topological locus, what makes further generalization to arbitrary $R=[r^s]$ not quite straightforward.

  13. Rectangular Blocks vs Polygonal Walls in Archaeoseismology

    Directory of Open Access Journals (Sweden)

    Klaus-G. Hinzen

    2017-07-01

    Full Text Available Collapsed or deformed walls in ancient structures constitute important evidence in archaeoseismology, where damage is interpreted in terms of earthquake ground motion. A large variety of wall types have been developed during the millennia in different cultural backgrounds. Often walls with polygonal-shaped building blocks are regarded as more earthquake-resistant than a wall consisting of rectangular elements and, as is sometimes speculated, that the irregular wall types were intentionally developed for that purpose. We use simply structured discrete element models of four walls with different block geometries, perfect rectangular, an Inka-type structure and two polygonal designs, to test their dynamic behavior. In addition to an analytic calculation of ground motion, we use measured strong motion signals as boundary conditions for the 3D wall models with varying height to width ratios. At peak ground accelerations between 1.0 and 9.0 m/s2 and major frequencies of 0.5 to 3 Hz, numeric experiments with the horizontally applied analytic ground motions result in clear differences in the resistance of the four wall types with the rectangular block wall being most vulnerable. For more complex measured 3D motions the Inka-type wall proves more stable than the rectangular block wall; however, height to width ratio still has equally strong influence on the stability. Internal deformation of non-collapsed walls shows some correlation with the parameters of the driving motion. For simple impulsive ground motions, a peak ground displacement threshold exists between toppling and remaining upright for all four models but peak acceleration cannot be reliably back calculated.

  14. A Novel Multi-Focus Image Fusion Method Based on Stochastic Coordinate Coding and Local Density Peaks Clustering

    Directory of Open Access Journals (Sweden)

    Zhiqin Zhu

    2016-11-01

    Full Text Available The multi-focus image fusion method is used in image processing to generate all-focus images that have large depth of field (DOF based on original multi-focus images. Different approaches have been used in the spatial and transform domain to fuse multi-focus images. As one of the most popular image processing methods, dictionary-learning-based spare representation achieves great performance in multi-focus image fusion. Most of the existing dictionary-learning-based multi-focus image fusion methods directly use the whole source images for dictionary learning. However, it incurs a high error rate and high computation cost in dictionary learning process by using the whole source images. This paper proposes a novel stochastic coordinate coding-based image fusion framework integrated with local density peaks. The proposed multi-focus image fusion method consists of three steps. First, source images are split into small image patches, then the split image patches are classified into a few groups by local density peaks clustering. Next, the grouped image patches are used for sub-dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse representation. Finally, the simultaneous orthogonal matching pursuit (SOMP algorithm is used to carry out sparse representation. After the three steps, the obtained sparse coefficients are fused following the max L1-norm rule. The fused coefficients are inversely transformed to an image by using the learned dictionary. The results and analyses of comparison experiments demonstrate that fused images of the proposed method have higher qualities than existing state-of-the-art methods.

  15. Accuracy verification of a simple local three-dimensional displacement measurement method of DIC with two images coordinates

    Indian Academy of Sciences (India)

    MING-HSIANG SHIH; SHIH-HENG TUNG; HAN-WEI HSIAO; WEN-PEI SUNG

    2016-04-01

    There are two methods applied for three-dimensional digital image correlation method to measure three-dimensional displacement. One is to measure the spatial coordinates of measuring points by analyzing the images. Then, the displacement vectors of these points can be calculated using the spatial coordinates of these points obtained at different stages. The other is to calibrate the parameters for individual measuring points locally. Then, the local displacements of these points can be measured directly. This study proposes a simple local three-dimensional displacement measurement method. Without any complicated distortion correction processes, this method can be used to measure small displacement in the three-dimensional space through asimple calibration process. A laboratory experiment and field experiment are carried out to prove the accuracy of this proposed method. Laboratory test errors of one-dimensional experiment are similar to the accuracy of theXYZ table; the error in Z-direction is only 0.0025% of the object distance. The measurement error of laboratory test is about 0.0033% of the object distance for local three-dimensional displacement measurement test. Test and analysis results of field test display that in-plane displacement error is only 0.12 mm, and the out-of-plane error is 1.1 mm for 20 m 9 30 m measuring range. The out-of-plane error is only about 10 PPM of the object distance. These test and analysis results show that this proposed method can achieve very high accuracy under small displacement for both of laboratory and field tests.

  16. Convección Mixta en Cavidades Rectangulares con Entrada y Salida de Fluido Mixed Convection in Rectangular Cavities with Inlet and Outlet of Fluid

    Directory of Open Access Journals (Sweden)

    R. Brito

    2004-01-01

    Full Text Available En este trabajo se determina el campo de velocidades, de temperatura, y el número de Nusselt medio (Nu h en la superficie isotérmica vertical del interior de una cavidad rectangular semiabierta. Las ecuaciones de conservación se resuelven usando el método de elementos finitos. Los resultados numéricos mostraron que cuanto mayor el número de Reynolds o de Grashof, mayores fueron los flujos de transferencia de calor obtenidos para la superficie isotérmica caliente. Para valores bajos de Reynolds (Re, el número de Nusselt (Nu h obtenido se encontraba muy próximo a los resultados obtenidos del número de Nusselt (Nu h, para el caso de problemas de convección natural en una cavidad rectangular cerrada. Se concluye que a partir de los parámetros térmicos y geométricos estudiados, es posible mejorar el rendimiento del enfriamiento en el interior de la cavidad rectangular semiabiertaThis study determines the velocity and temperature fields as well as the average Nusselt number (Nu h on a vertical isothermic wall inside a partially open rectangular cavity. The conservation equations are solved using a finite element method. The numerical results show that the higher the Reynolds and Grashof numbers, the greater is the heat transfer on the isothermal hot wall. For low Reynolds numbers (Re, the Nusselt numbers (Nu h obtained in the present work were close to those found for natural convection in a rectangular closed cavity. From the thermal and geometric parameters studied, it is concluded that it is possible to improve the efficiency of cooling of the interior of a partially open rectangular cavity

  17. Modeling and solving the two-dimensional non-stationary problem in an elastic body with a rectangular hole

    Science.gov (United States)

    Ashirbayev, Nurgali; Ashirbayeva, Zhansaya; Sultanbek, Turlybek; Bekmoldayeva, Raina

    2016-08-01

    In this work we consider the problem of the propagation of non stationary stress waves in an elastic body with a rectangular hole in the linear formulation. The wave process is caused by applying an external dynamic load on the front boundary of the rectangular region and the lateral boundaries are free of the stress. The lower boundary of the rectangular region is rigidly fixed, and the contour of the rectangular hole is free from the stress. The problem is solved by using the difference method of the spatial characteristics. On the basis of the developed numerical methods it is obtained the computational finite - difference relations of the dynamic problems at the corner points of the rectangular hole, where the first and second derivatives of the unknown functions have a discontinuity of the first kind. We analyze the dynamic stress fields in an elastic body with a rectangular hole and we studied the concentration of dynamic stresses in the vicinity of the corner points of the rectangular opening.

  18. Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser

    Institute of Scientific and Technical Information of China (English)

    Zhao Ding; Ding Yao-Gen

    2012-01-01

    To rapidly and accurately investigate the performance of the dielectric loaded rectangular Cerenkov maser,a simplified nonlinear theory is proposed,in which the variations of wave amplitude and wave phase are determined by two coupled first-order differential equations.Through combining with the relativistic equation of motion and adopting the forward wave assumption,the evolutions of the forward wave power,the power growth rate,the axial wave number,the accumulated phase offset,and the information of the particle movement can be obtained in a single-pass calculation.For an illustrative example,this method is used to study the influences of the beam current,the gap distance between the beam and the dielectric surface,and the momentum spread on the forward wave.The variations of the saturated power and the saturation length with the working frequency for the beams with different momentum spreads have also been studied.The result shows that the beam-wave interaction is very sensitive to the electron beam state.To further verify this simplified theory,a comparison with the result produced from a rigorous method is also provided,we find that the evolution curves of the forward wave power predicted by the two methods exhibit excellent agreement.In practical applications,the developed theory can be used for the design and analysis of the rectangular Cerenkov maser.

  19. A comparison of methods for computing the sigma-coordinate pressure gradient force for flow over sloped terrain in a hybrid theta-sigma model

    Science.gov (United States)

    Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.

  20. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    CERN Document Server

    Hill, Peter; Dudson, Ben

    2016-01-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for $\

  1. Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, N.Y.; Seo, D.J. [Chosun University, Kwangju (Korea)

    2003-04-01

    This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal locations, velocity, and position of the robot and the velocity and position of the other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible. (author). 21 refs., 10 figs., 13 tabs.

  2. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; GAO MeiJuan; YAO MingHui; YAO ZhiGang

    2009-01-01

    The analysis on the chaotic dynamics of a six-dimensional nonlinear system which represents the averaged equation of a composite laminated piezoelectric rectangular plate is given for the first time. The theory of normal form and the energy-phase method are combined to investigate the higher-dimensional chaotic dynamics of the composite laminated piezoelectric rectangular plate. Firstly, the theory of normal form is used to reduce the six-dimensional averaged equation to the simpler normal form.Then, the energy-phase method is extended to analyze the global bifurcations and chaotic dynamics of a six-dimensional nonlinear system. The analysis results indicate that there exist the homoclinic bifurcation and Shilnikov type multi-pulse chaos for the composite laminated piezoelectric rectangular plate. Finally, numerical simulations are also used to investigate the nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate. The results of numerical simulations also demonstrate that there exist the chaotic motions and the multi-pulse jumping orbits of the composite laminated piezoelectric rectangular plate.

  3. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The analysis on the chaotic dynamics of a six-dimensional nonlinear system which represents the averaged equation of a composite laminated piezoelectric rectangular plate is given for the first time. The theory of normal form and the energy-phase method are combined to investigate the higher-dimen-sional chaotic dynamics of the composite laminated piezoelectric rectangular plate. Firstly,the theory of normal form is used to reduce the six-dimensional averaged equation to the simpler normal form. Then,the energy-phase method is extended to analyze the global bifurcations and chaotic dynamics of a six-dimensional nonlinear system. The analysis results indicate that there exist the homoclinic bi-furcation and Shilnikov type multi-pulse chaos for the composite laminated piezoelectric rectangular plate. Finally,numerical simulations are also used to investigate the nonlinear dynamic characteristics of the composite laminated piezoelectric rectangular plate. The results of numerical simulations also demonstrate that there exist the chaotic motions and the multi-pulse jumping orbits of the composite laminated piezoelectric rectangular plate.

  4. Optimal design for rectangular isolated footings using the real soil pressure

    Directory of Open Access Journals (Sweden)

    Arnulfo Luévanos Rojas

    2017-05-01

    Full Text Available The standard design method (classical method for reinforced concrete rectangular footings is: First, a dimension is proposed and should comply with the allowable stresses; subsequently, the effective depth is obtained from the maximum moment and is checked against the bending shear and the punching shear until, it complies with these conditions and, then, steel reinforcement is obtained, but it is not guarantee that the minimum cost will be obtained. This paper shows an optimal design for reinforced concrete rectangular footings using the new model. A numerical experimentation is presented to show the model capability to estimate the minimum cost design of the materials used for a rectangular footing that supports an axial load and moments in two directions in accordance to the building code requirements for structural concrete and commentary (ACI 318-13. Also, a comparison is made between the optimal design and current design for rectangular footings. The solutions show that the optimal design is more economical and more precise with respect to the current design, because standard design is done by trial and error. Then, the optimal design should be used to obtain the minimum cost design for reinforced concrete rectangular footings.

  5. Turbulent jets issuing from rectangular nozzle with a rectangular notch at the midspan

    Science.gov (United States)

    Fujita, Shigetaka; Harima, Takashi; Osaka, Hideo

    2012-04-01

    The turbulent flowfield of turbulent jet issuing from rectangular nozzle (Aspect Ratio=12.5) with a rectangular notch at the midspan, has been investigated experimentally. Four aspect ratios of rectangular notch (NAR: Notch Aspect Ratio) used in this experiment were 2.5, 7.5, 12.5 and 165. The Reynolds number based on the nozzle width d and the exit mean velocity Ue, was kept constant 30000 (NAR=2.5 and 7.5), 15000 (NAR=12.5) and 13000 (NAR=165), respectively. Longitudinal mean velocity and turbulent intensities were measured using an X-array Hot-Wire Probe (5 µm in diameter, 1 mm effective length) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 80 seconds. From this experiment, it was revealed that the attachment of a rectangular notch to the rectangular jet suppressed the development of the turbulent velocity scales near the jet centre in the upstream region for the cases of NAR≥7.5.

  6. Turbulent jets issuing from rectangular nozzle with a rectangular notch at the midspan

    Directory of Open Access Journals (Sweden)

    Osaka Hideo

    2012-04-01

    Full Text Available The turbulent flowfield of turbulent jet issuing from rectangular nozzle (Aspect Ratio=12.5 with a rectangular notch at the midspan, has been investigated experimentally. Four aspect ratios of rectangular notch (NAR: Notch Aspect Ratio used in this experiment were 2.5, 7.5, 12.5 and 165. The Reynolds number based on the nozzle width d and the exit mean velocity Ue, was kept constant 30000 (NAR=2.5 and 7.5, 15000 (NAR=12.5 and 13000 (NAR=165, respectively. Longitudinal mean velocity and turbulent intensities were measured using an X-array Hot-Wire Probe (5 µm in diameter, 1 mm effective length operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 80 seconds. From this experiment, it was revealed that the attachment of a rectangular notch to the rectangular jet suppressed the development of the turbulent velocity scales near the jet centre in the upstream region for the cases of NAR≥7.5.

  7. A novel method for neck coordination exercise – a pilot study on persons with chronic non-specific neck pain

    Directory of Open Access Journals (Sweden)

    Björklund Martin

    2008-12-01

    Full Text Available Abstract Background Chronic neck pain is a common problem and is often associated with changes in sensorimotor functions, such as reduced proprioceptive acuity of the neck, altered coordination of the cervical muscles, and increased postural sway. In line with these findings there are studies supporting the efficacy of exercises targeting different aspects of sensorimotor function, for example training aimed at improving proprioception and muscle coordination. To further develop this type of exercises we have designed a novel device and method for neck coordination training. The aim of the study was to investigate the clinical applicability of the method and to obtain indications of preliminary effects on sensorimotor functions, symptoms and self-rated characteristics in non-specific chronic neck pain Methods The study was designed as an uncontrolled clinical trial including fourteen subjects with chronic non-specific neck pain. A new device was designed to allow for an open skills task with adjustable difficulty. With visual feedback, subjects had to control the movement of a metal ball on a flat surface with a rim strapped on the subjects' head. Eight training sessions were performed over a four week period. Skill acquisition was measured throughout the intervention period. After intervention subjects were interviewed about their experience of the exercise and pain and sensorimotor functions, including the fast and slow components of postural sway and jerkiness-, range-, position sense-, movement time- and velocity of cervical rotation, were measured. At six-month follow up, self-rated pain, health and functioning was collected. Results The subjects improved their skill to perform the exercise and were overall positive to the method. No residual negative side-effects due to the exercise were reported. After intervention the fast component of postural sway (p = 0.019 and jerkiness of cervical rotation (p = 0.032 were reduced. The follow up

  8. A comprehensive method for break points finding based on expert system for protection coordination in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Abyaneh, Hossein Askarian; Razavi, Farzad [Department of Electrical Engineering Amirkabir University of Technology (Iran); Al-Dabbagh, Majid [Hydro Tasmania Consulting (Australia); Sedeghi, Hossein [Department of Mathematics Tarbiat Moallem University, Tehran (Iran); Kazemikargar, Hossein [Zanjan University, Zanjan (Iran)

    2007-04-15

    Interconnected power systems are multi-loop structured. In such networks, the determination of settings for all overcurrent relays can be carried out in different forms and may be quite complicated. The main problem for coordination is the determination of starting points, i.e. the location of starting relays in the procedure for settings, which is referred to as break points. In this paper, a powerful approach based on expert system is applied. The rules of the expert system include network configuration, protection systems, fault levels, etc. The method is applied to two networks with different configurations, pilot protection and other protection systems. From the obtained results, it is reviled that the new method is efficient, accurate, comprehensive and more optimal than the previously used graph theory. (author)

  9. [A study of coordinates transform iterative fitting method to extract bio-impedance model parameters bio-impedance model parameters].

    Science.gov (United States)

    Zhou, Liming; Yang, Yuxing; Yuan, Shiying

    2006-02-01

    A new algorithm, the coordinates transform iterative optimizing method based on the least square curve fitting model, is presented. This arithmetic is used for extracting the bio-impedance model parameters. It is superior to other methods, for example, its speed of the convergence is quicker, and its calculating precision is higher. The objective to extract the model parameters, such as Ri, Re, Cm and alpha, has been realized rapidly and accurately. With the aim at lowering the power consumption, decreasing the price and improving the price-to-performance ratio, a practical bio-impedance measure system with double CPUs has been built. It can be drawn from the preliminary results that the intracellular resistance Ri increased largely with an increase in working load during sitting, which reflects the ischemic change of lower limbs.

  10. Cost-Sensitive Support Vector Machine Using Randomized Dual Coordinate Descent Method for Big Class-Imbalanced Data Classification

    Directory of Open Access Journals (Sweden)

    Mingzhu Tang

    2014-01-01

    Full Text Available Cost-sensitive support vector machine is one of the most popular tools to deal with class-imbalanced problem such as fault diagnosis. However, such data appear with a huge number of examples as well as features. Aiming at class-imbalanced problem on big data, a cost-sensitive support vector machine using randomized dual coordinate descent method (CSVM-RDCD is proposed in this paper. The solution of concerned subproblem at each iteration is derived in closed form and the computational cost is decreased through the accelerating strategy and cheap computation. The four constrained conditions of CSVM-RDCD are derived. Experimental results illustrate that the proposed method increases recognition rates of positive class and reduces average misclassification costs on real big class-imbalanced data.

  11. Effect of Residual Stress on Divergence Instability of Rectangular Microplate Subjected to Nonlinear Electrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Ghader Rezazadeh

    2007-07-01

    Full Text Available In this paper, the effect of residual stress on divergence instability of a rectangular microplate subjected to a nonlinear electrostatic pressure for different geometrical properties has been presented. After deriving the governing equation and using of Step-by-Step Linearization Method (SSLM, the governing nonlinear equation has been linearized. By applying the finite difference method (FDM to a rectangular mesh, the linearized equation has been discretized. The results show, residual stresses have considerable effects on Pull-in phenomena. Tensile residual stresses increase pull-in voltage and compressive decrease it. The effect of different geometrical properties on divergence instability has also been studied.

  12. Local Buckling of Axially Compressed Rectangular Concrete-Filled Steel Tubes

    Directory of Open Access Journals (Sweden)

    Kanishchev Ruslan

    2016-01-01

    Full Text Available The article deals with the theoretical analysis of the local stability of contemporary structures such as rectangular concrete-filled steel tubes (CFST’s without imperfections. The work presents a numerical method for calculating the coefficient of critical stress by differential equation for slender walls of hollow and concrete filled closed right-angled profiles. The results of the method were compared with the modelled results of the construction elements in ABAQUS software. Based on this theoretical analysis, the direction of future research has been determined, which will focus on the impact of local stability on the cross-section of rectangular CFSTs in terms of their resistance.

  13. Method paper--distance and travel time to casualty clinics in Norway based on crowdsourced postcode coordinates: a comparison with other methods.

    Science.gov (United States)

    Raknes, Guttorm; Hunskaar, Steinar

    2014-01-01

    We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.

  14. Method paper--distance and travel time to casualty clinics in Norway based on crowdsourced postcode coordinates: a comparison with other methods.

    Directory of Open Access Journals (Sweden)

    Guttorm Raknes

    Full Text Available We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.

  15. 新FRP技术加固钢筋混凝土矩形柱改善延性的试验研究%Experimental study on ductility improvement of reinforced concrete rectangular columns retrofitted with a new fiber reinforced plastics method

    Institute of Scientific and Technical Information of China (English)

    刘涛; 冯伟; 张智梅; 欧阳煜

    2008-01-01

    Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessaryductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a newretrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, wasdeveloped aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. CarbonFRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examinethe function of this new method for improving the ductility of columns. Responses of columns were examined before andafter being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismicbehavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.

  16. 空调矩形风管带防火衬垫保温施工工艺与方法%The Process and Method of Air-Conditioning Rectangular Duct Insulation with Fireproof Liner

    Institute of Scientific and Technical Information of China (English)

    高文; 李黎; 唐强; 刘城

    2015-01-01

    The technology of air-conditioning rectangular duct insulation with fireproof liner is new installation technology,which based on the development and formation of traditional air-conditioning duct thermal insulation in order to improve the rectangular duct insulation quality and appearance quality of large public building air-conditioning system. After on the rubber plate block of precise feeding and paste, it adopts the fireproof liner and fire self-adhesive fiberglass cloth wrapped plastic corner. The XinHai Revolution Museum of air-conditioning system installation engineering successfully using the technology, Comparing with the traditional air-conditioning system installation technology, it makes the rubber sheet pasted tighter and solid, and makes the thermal duct stereo sense stronger and more beautiful,which has the advantage of higher thermal quality and better impression and long service life,it saves 10%~15%of the installation cost.%介绍了空调矩形风管带防火衬垫保温技术,是为改善大型公共建筑空调系统矩形风管保温质量和观感质量而在传统的空调系统风管保温工艺的基础上发展而形成的新型施工技术.它通过对橡塑板材进行分块精确下料、粘贴后,采用防火衬垫和防火自粘玻纤布包裹橡塑边角.结合辛亥革命博物馆空调系统安装工程,对该新型施工技术的运用方法进行了阐述,与传统空调系统风管保温技术相比,空调矩形风管保温橡塑粘贴更加严实稳固,保温质量更高,观感效果更好,保温后的风管立体感更强,外观更精美,系统使用寿命更长,施工成本节约了10%~15%.

  17. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media

    CERN Document Server

    Hao Jin Bo

    2003-01-01

    Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.

  18. 77 FR 11536 - Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM...

    Science.gov (United States)

    2012-02-27

    ... scientific peer review panel in March 2008; the peer review panel report was made available to the public for.... The final BRD, including additional analyses performed by NICEATM as recommended by the peer review... agencies to review ICCVAM test method recommendations and notify ICCVAM in writing of their findings...

  19. ABOUT THE CALCULATED METHOD OF DETERMINING THE COORDINATES OF THE CENTER OF WEIGHT OF TYPICAL VEHICLES

    Directory of Open Access Journals (Sweden)

    D. Leontiev

    2015-12-01

    Full Text Available Based on the analysis of experimental data there was provided a method for determining loading on the rear wheels when the front wheels are raised. By comparing the results of calculations and experiments, it was revealed that the calculation error does not exceed 5 %. A smaller error for the actual weighted vehicles.

  20. ABOUT THE CALCULATED METHOD OF DETERMINING THE COORDINATES OF THE CENTER OF WEIGHT OF TYPICAL VEHICLES

    OpenAIRE

    D. Leontiev

    2015-01-01

    Based on the analysis of experimental data there was provided a method for determining loading on the rear wheels when the front wheels are raised. By comparing the results of calculations and experiments, it was revealed that the calculation error does not exceed 5 %. A smaller error for the actual weighted vehicles.

  1. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    Science.gov (United States)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  2. Pole coordinates of the asteroid 511 Davida as determined via the amplitude-magnitude method

    Science.gov (United States)

    Zappala, V.; Knezevic, Z.

    1986-01-01

    The Amplitude-Magnitude method is used for the pole determination of the asteroid 511 Davida, using observations from six oppositions. The possible north poles are found to be λ1 = 92°±7°; β1 = 33°±6°, and λ2 = 303°±4°; β2 = 34°±5°, when scattering effect is not taken into account. When scattering is accounted for, solutions not significantly different from (λ1, β1) and (λ2, β2) are obtained. The moderately eccentric and inclined orbit of 511 Davida does not allow the authors to distinguish between the two pole solutions.

  3. [Coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas of China].

    Science.gov (United States)

    Wang, Yan-hui; Li, Jing-yi

    2015-05-01

    It is one of the important strategies in the new period of national poverty alleviation and development to maintain the basic balance between the ecological environment and economic development, and to promote the coordinated sustainable development of economy and ecological environment. Taking six contiguous special poverty-stricken areas as the study areas, a coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas was explored in this paper. The region' s ecological poverty index system was proposed based on the natural attribute of ecological environment, and the ecological environment quality evaluation method was built up by using AHP weighting method, followed by the design of the coupling coordination evaluation method between the ecological environment indices and the county economic poverty comprehensive indices. The coupling coordination degrees were calculated and their spatial representation differentiations were analyzed respectively at district, province, city, and county scales. Results showed that approximately half of the counties in the study areas achieved the harmoniously coordinated development. However, the ecological environmental quality and the economic development in most counties could not be synchronized, where mountains, rivers and other geographic features existed roughly as a dividing line of the coordinated development types. The phenomena of dislocation between the ecological environment and economic development in state-level poor counties were more serious than those of local poor counties.

  4. Numerical investigation of flow past a row of rectangular rods

    Directory of Open Access Journals (Sweden)

    S.Ul. Islam

    2016-09-01

    Full Text Available A numerical study of uniform flow past a row of rectangular rods with aspect ratio defined as R = width/height = 0.5 is performed using the Lattice Boltzmann method. For this study the Reynolds number (Re is fixed at 150, while spacings between the rods (g are taken in the range from 1 to 6. Depending on g, the flow is classified into four patterns: flip-flopping, nearly unsteady-inphase, modulated inphase-antiphase non-synchronized and synchronized. Sudden jumps in physical parameters were observed, attaining either maximum or minimum values, with the change in flow patterns. The mean drag coefficient (Cdmean of middle rod is higher than the second and fourth rod for flip-flopping pattern while in case of nearly unsteady-inphase the middle rod attains minimum drag coefficient. It is also found that the Strouhal number (St of first, second and fifth rod decreases as g increases while that of other two have mixed trend. The results further show that there exist secondary interaction frequencies together with primary vortex shedding frequency due to jet in the gap between rods for 1 ⩽ g ⩽ 3. For the average values of Cdmean and St, an empirical relation is also given as a function of gap spacing. This relation shows that the average values of Cdmean and St approach to those of single rectangular rod with increment in g.

  5. Deciphering the Conformational Choreography of Zinc Coordination Complexes with Standard and Novel Proton NMR Techniques Combined with DFT Methods.

    Science.gov (United States)

    Pucheta, Jose Enrique Herbert; Prim, Damien; Gillet, Jean Michel; Farjon, Jonathan

    2016-04-04

    The presence of water has been shown to deeply impact the stability and geometry of Zn complexes in solution. Evidence for tetra- and penta-coordinated species in a pyridylmethylamine-Zn(II) model complex is presented. Novel (1) H NMR tools such as T1 -filtered selective exchange spectroscopy and pure shifted gradient-encoded selective refocusing as well as classical 2D ((1) H-(1) H) exchange spectroscopy, diffusion-ordered spectroscopy and T1 ((1) H) measurements, in combination with density functional theory methods allow the full conformational dynamics of a pyridylmethylamine-Zn(II) complex to be revealed. Four conformers and two families of complexes depending on the hydration states are elucidated.

  6. A Method of Calculating the 3D Coordinates on a Micro Object in a Virtual Micro-Operation System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple method for calculating the 3D coordinates of points on a micro object in a multi-camera system is proposed. It simplifies the algorithms used in traditional computer vision system by eliminating the calculation of the CCD ( charge coupled device)camera parameters and the relative position between cameras, and using solid geometry in the calculation procedures instead of the calculation of the complex matrixes. The algorithm was used in the research of generating a virtual magnified 3D image of a micro object to be operated in a micro operation system, and the satisfactory results were obtained. The application in a virtual tele-operation system for a dexterous mechanical gripper is under test.

  7. Molecular dynamics simulation and vibrational spectroscopy of molecules (Ⅰ)——A method of internal coordinate correlation for band assignment

    Institute of Scientific and Technical Information of China (English)

    杨小震

    1995-01-01

    A method of simulation of vibrational spectra by using the "internal coordinatecorrelation" based on molecular dynamics algorithms and auto-correlation function has been developed.The in-ternal coordinates,such as bond stretching,bond angle bending,out-of-plane bending and torsion,are treatedas the dynamic variables to obtain a density spectrum or the "internal coordinate correlation" spectrum Theadvantages of this method are as follows:i)it is easier to assign vibration modes for the density spectra;ii)itsimply connects the Fourier transformed "internal coordinate correlation" function to the eigenvectors innormal coordinate analysis;iii)it is a basis for simulating IR and Raman active spectra of a large molecularsystem.

  8. MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts. Final paper

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, S.I. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Hua, T.Q. [Argonne National Lab., IL (United States); Araseki, Hideo [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-07-01

    Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. This paper describes four benchmark problems to validate magnetohydrodynamic (MHD) and heat transfer computer codes. The problems include rectangular duct geometry with uniform and nonuniform magnetic fields, with and without surface heat flux, and various rectangular cross sections. Two of the problems are based on experiments. Participants in this benchmarking activity come from three countries: The Russian Federation, The United States, and Japan. The solution methods to the problems are described. Results from the different computer codes are presented and compared.

  9. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends

    Science.gov (United States)

    Qiu, Huibin; Gao, Yang; Boott, Charlotte E.; Gould, Oliver E. C.; Harniman, Robert L.; Miles, Mervyn J.; Webb, Stephen E. D.; Winnik, Mitchell A.; Manners, Ian

    2016-05-01

    The preparation of colloidally stable, self-assembled materials with tailorable solid or hollow two-dimensional (2D) structures represents a major challenge. We describe the formation of uniform, monodisperse rectangular platelet micelles of controlled size by means of seeded-growth methods that involve the addition of blends of crystalline-coil block copolymers and the corresponding crystalline homopolymer to cylindrical micelle seeds. Sequential addition of different blends yields solid platelet block comicelles with concentric rectangular patches with distinct coronal chemistries. These complex nano-objects can be subject to spatially selective processing that allows their disassembly to form perforated platelets, such as well-defined hollow rectangular rings. The solid and hollow 2D micelles provide a tunable platform for further functionalization and potential for a variety of applications.

  10. Parametric study of rectangular coil for Eddy Current Testing of lamination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng Fei; Zeng, Zhi Wei [School of Aerospace Engineering, Xiamen University, Xiamen (China)

    2016-04-15

    Eddy current testing (ECT) is an important nondestructive testing technology for the inspection of flaws in conductive materials. However, this widely used technology is not suitable for inspecting lamination when a conventional pancake coil is used because the eddy current (EC) generated by the pancake coil is parallel to the lamination and will not be perturbed. A new method using a rectangular coil placed vertical to the work piece is proposed for lamination detection. The vertical sections of the rectangular coil induce ECs that are vertical to the lamination and can be perturbed by the lamination. A parametric study of a rectangular coil by finite element analysis was performed in order to examine the capability of generating vertical EC sent data 1221-1237.

  11. SEISMIC PROPAGATION SIMULATION IN COMPLEX MEDIA WITH NON-RECTANGULAR IRREGULAR-GRID FINITE-DIFFERENCE

    Institute of Scientific and Technical Information of China (English)

    SUN Weitao; YANG Huizhu

    2004-01-01

    This paper presents a finite-difference (FD) method with spatially non-rectangular irregular grids to simulate the elastic wave propagation. Staggered irregular grid finite difference operators with a second-order time and spatial accuracy are used to approximate the velocity-stress elastic wave equations. This method is very simple and the cost of computing time is not much. Complicated geometries like curved thin layers, cased borehole and nonplanar interfaces may be treated with nonrectangular irregular grids in a more flexible way. Unlike the multi-grid scheme, this method requires no interpolation between the fine and coarse grids and all grids are computed at the same spatial iteration. Compared with the rectangular irregular grid FD, the spurious diffractions from "staircase"interfaces can easily be eliminated without using finer grids. Dispersion and stability conditions of the proposed method can be established in a similar form as for the rectangular irregular grid scheme. The Higdon's absorbing boundary condition is adopted to eliminate boundary reflections. Numerical simulations show that this method has satisfactory stability and accuracy in simulating wave propagation near rough solid-fluid interfaces. The computation costs are less than those using a regular grid and rectangular grid FD method.

  12. Graphene-based tunable terahertz filter with rectangular ring resonator containing double narrow gaps

    Science.gov (United States)

    Su, Wei; Chen, Bingyan

    2017-09-01

    A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene nanoribbon, the coupling distance and chemical potential of graphene. In addition, by introducing narrow gaps in the rectangular ring resonators, it shows the single frequency filtering effect. Moreover, the structure also shows high sensitivity for different surrounding mediums. This work provides a novel method for designing all-optical integrated components in optical communication.

  13. Graphene-based tunable terahertz filter with rectangular ring resonator containing double narrow gaps

    Indian Academy of Sciences (India)

    WEI SU; BINGYAN CHEN

    2017-09-01

    A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene nanoribbon, the coupling distance and chemical potential of graphene. In addition, by introducing narrow gaps in the rectangular ring resonators, it shows the single frequency filtering effect. Moreover, the structure also shows high sensitivity fordifferent surrounding mediums. This work provides a novel method for designing all-optical integrated components in optical communication.

  14. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    Science.gov (United States)

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  15. An RKDG finite element method for the one-dimensional inviscid compressible gas dynamics equations in a Lagrangian coordinate

    Institute of Scientific and Technical Information of China (English)

    Zhao Guo-Zhong; Yu Xi-Jun; Zhang Rong-Pei

    2013-01-01

    In this paper,Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical flux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.

  16. Estimating the magnetization distribution within rectangular rock samples

    Science.gov (United States)

    Reis, A. L. A.; Oliveira, V. C.; Yokoyama, E.; Bruno, A. C.; Pereira, J. M. B.

    2016-08-01

    Over the last decades, scanning magnetic microscopy techniques have been increasingly used in paleomagnetism and rock magnetism. Different from standard paleomagnetic magnetometers, scanning magnetic microscopes produce high-resolution maps of the vertical component of the magnetic induction field (flux density) on a plane located over the sample. These high-resolution magnetic maps can be used for estimating the magnetization distribution within a rock sample by inversion. Previous studies have estimated the magnetization distribution within rock samples by inverting the magnetic data measured on a single plane above the sample. Here we present a new spatial domain method for inverting the magnetic induction measured on four planes around the sample in order to retrieve its internal magnetization distribution. We have presumed that the internal magnetization distribution of the sample varies along one of its axes. Our method approximates the sample geometry by an interpretation model composed of a one-dimensional array of juxtaposed rectangular prisms with uniform magnetization. The Cartesian components of the magnetization vector within each rectangular prism are the parameters to be estimated by solving a linear inverse problem. Our method automatically deals with the averaging of the measured magnetic data due to the finite size of the magnetic sensor, preventing the application of a deconvolution before the inversion. Tests with synthetic data show the performance of our method in retrieving complex magnetization distributions even in the presence of magnetization heterogeneities. Moreover, they show the advantage of inverting the magnetic data on four planes around the sample and how this new acquisition scheme improves the estimated magnetization distribution within the rock sample. We have also applied our method to invert experimentally measured magnetic data produced by a highly magnetized synthetic sample that was manufactured in the laboratory. The

  17. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide?

    Directory of Open Access Journals (Sweden)

    Ahmed Rabie

    2016-12-01

    Full Text Available Objective: To answer the question of whether the anatomical center of the subthalamic nucleus (STN, as calculated indirectly from stereotactic atlases or by direct visualization on magnetic resonance imaging (MRI, corresponds to the best functional target. Since the neighboring red nucleus (RN is well visualized on MRI, we studied the relationships of the final target to its different borders. Methods: We analyzed the data of 23 PD patients (46 targets who underwent bilateral frame-based STN deep brain stimulation (DBS procedure with microelectrode recording guidance. We calculated coordinates of the active contact on DBS electrode on postoperative MRI, which we referred to as the final “functional/optimal” target. The coordinates calculated by the atlas-based “indirect” and “direct” methods, as well as the coordinates of the different RN borders were compared to these final coordinates. Results: The mean ± SD of the final target coordinates was 11.7 ± 1.5 mm lateral (X, 2.4 ± 1.5 mm posterior (Y, and 6.1 ± 1.7 mm inferior to the mid-commissural point (Z. No significant differences were found between the “indirect” X, Z coordinates and those of the final targets. The “indirect” Y coordinate was significantly posterior to Y of the final target, with mean difference of 0.6 mm (p = 0.014. No significant differences were found between the “direct” X, Y, and Z coordinates and those of the final targets. Conclusions: The functional STN target is located in direct proximity to its anatomical center. During preoperative targeting, we recommend using the “direct” method, and taking into consideration the relationships of the final target to the mid-commissural point (MCP and the different RN borders.

  18. Nonrelativistic Compton scattering in Furry's picture: Beyond the sudden impulse approximation by means of the complex coordinate method

    Science.gov (United States)

    Froelich, P.; Weyrich, Wolf

    1984-06-01

    Basic electrodynamical and collision theory presumptions related to Compton scattering are critically reconsidered (with particular emphasis on identifying the proper transition matrix element effectively controlling the process, and on framing it within time dependent perturbation theory and scattering theory) in order to indicate the main features and the validity of the proposed method. The on-energy-shell transition matrix element governing the cross-sectional formula is obtained from Furry's two-potential formalism, which makes possible a treatment of the primary electron-photon interaction to first order while incorporating the effects of the final state Coulombic interaction to all orders. Furry's procedure, in addition to defining clearly which initial and final states should enter the transition matrix element, also brings additional insight into the nature of the so-called ``sudden impulse approximation.'' A treatment is proposed in which the decisive transition matrix element is obtained without explicit calculation of the distorted continuum solutions implied by Furry's procedure, but is instead extracted from the dispersion relations of the ``beat-frequency'' dependent generalized polarizability by means of the L2 treatment based on the complex-coordinate method. The practical advantage of the method will be its ability to incorporate correlation between the ejected electron and the electrons remaining in the ion.

  19. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    Science.gov (United States)

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models.

  20. Closed form solutions for free vibrations of rectangular Mindlin plates

    Institute of Scientific and Technical Information of China (English)

    Yufeng Xing; Bo Liu

    2009-01-01

    A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigensolutions, which are solved from the two differential equations by means of the method of separation of variables are identical with those via Kirchhoff plate theory for thin plate, and can be employed to predict frequencies for any combinations of simply supported and clamped edge conditions. The free edges can also be dealt with if the other pair of opposite edges are simply supported. Some of the solutions were not available before. The frequency parameters agree closely with the available ones through pb-2 Rayleigh-Ritz method for different aspect ratios and relative thickness of plate.

  1. A SET OF 12-PARAMETER RECTANGULAR PLATE ELEMENT WITH HIGH ACCURACY

    Institute of Scientific and Technical Information of China (English)

    ChenShaochun; LuoLaixing

    1999-01-01

    Abstract. Using the method of undetermined function, a set of 12 parameter rectangular p|atedement with doub[e set parameter and geometry symmetry is constructed. Their consistencyerror are O(h2) , one order higher than the usua[ 12 parameter rectangu|ar p[ate elements.

  2. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    Energy Technology Data Exchange (ETDEWEB)

    Hayami, Masao [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Seino, Junji [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  3. Polar coordinates matrix method and its application%极坐标系的矩阵方法及其应用

    Institute of Scientific and Technical Information of China (English)

    李文略

    2014-01-01

    用矩阵的方法表示协变、逆变极坐标系及相互转化关系和协变、逆变极坐标系与笛卡尔坐标系的转换关系,称为极坐标系的矩阵方法。利用该方法给出了质点运动学和质点动力学上常用物理量在极坐标系下的具体形式及其与在笛卡尔坐标系下具体形式的转换,并给出相应算例。%To show the conversion relationship between covariant polar coordinates and inverse polar coordinates as well as the conversion relationship between the two systems and descartes coordinates by using matrix is called polar coordinates matrix method.By using this method,obtained the specific forms in polar coordinates of frequently-used physical quantity of the particle kinematics and particle dynamics along with the conversion relationship of its specific forms in descartes coordinates,and gave the corresponding numerical example.

  4. Coupling of Dirichlet-to-Neumann boundary condition and finite difference methods in curvilinear coordinates for multiple scattering

    Science.gov (United States)

    Acosta, Sebastian; Villamizar, Vianey

    2010-08-01

    The applicability of the Dirichlet-to-Neumann technique coupled with finite difference methods is enhanced by extending it to multiple scattering from obstacles of arbitrary shape. The original boundary value problem (BVP) for the multiple scattering problem is reformulated as an interface BVP. A heterogenous medium with variable physical properties in the vicinity of the obstacles is considered. A rigorous proof of the equivalence between these two problems for smooth interfaces in two and three dimensions for any finite number of obstacles is given. The problem is written in terms of generalized curvilinear coordinates inside the computational region. Then, novel elliptic grids conforming to complex geometrical configurations of several two-dimensional obstacles are constructed and approximations of the scattered field supported by them are obtained. The numerical method developed is validated by comparing the approximate and exact far-field patterns for the scattering from two circular obstacles. In this case, for a second order finite difference scheme, a second order convergence of the numerical solution to the exact solution is easily verified.

  5. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    Science.gov (United States)

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  6. Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate

    Directory of Open Access Journals (Sweden)

    Minghui Yao

    2014-01-01

    Full Text Available This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.

  7. Integrated complex care coordination for children with medical complexity: A mixed-methods evaluation of tertiary care-community collaboration

    Directory of Open Access Journals (Sweden)

    Cohen Eyal

    2012-10-01

    Full Text Available Abstract Background Primary care medical homes may improve health outcomes for children with special healthcare needs (CSHCN, by improving care coordination. However, community-based primary care practices may be challenged to deliver comprehensive care coordination to complex subsets of CSHCN such as children with medical complexity (CMC. Linking a tertiary care center with the community may achieve cost effective and high quality care for CMC. The objective of this study was to evaluate the outcomes of community-based complex care clinics integrated with a tertiary care center. Methods A before- and after-intervention study design with mixed (quantitative/qualitative methods was utilized. Clinics at two community hospitals distant from tertiary care were staffed by local community pediatricians with the tertiary care center nurse practitioner and linked with primary care providers. Eighty-one children with underlying chronic conditions, fragility, requirement for high intensity care and/or technology assistance, and involvement of multiple providers participated. Main outcome measures included health care utilization and expenditures, parent reports of parent- and child-quality of life [QOL (SF-36®, CPCHILD©, PedsQL™], and family-centered care (MPOC-20®. Comparisons were made in equal (up to 1 year pre- and post-periods supplemented by qualitative perspectives of families and pediatricians. Results Total health care system costs decreased from median (IQR $244 (981 per patient per month (PPPM pre-enrolment to $131 (355 PPPM post-enrolment (p=.007, driven primarily by fewer inpatient days in the tertiary care center (p=.006. Parents reported decreased out of pocket expenses (p© domains [Health Standardization Section (p=.04; Comfort and Emotions (p=.03], while total CPCHILD© score decreased between baseline and 1 year (p=.003. Parents and providers reported the ability to receive care close to home as a key benefit. Conclusions Complex

  8. A spectral Finite Difference Analysis of Natural Convection in a Rectangular Equilateral Triangle Cavity

    Institute of Scientific and Technical Information of China (English)

    Yoshihiromochimaru

    2000-01-01

    A steady-state two-dimensional natural convection in a rectangular equlateral triangle cavity is analyzed numercally,using a spectral finite difference scheme,where a conformal mapping coordinate system is adopted with a unit circle for the boundary.Vorticity-stream function formulation is used in conjunction with an energy equation.Time marching algorithm in a diagonal dominant form under a Fourier series decomposition is used to give a steady-state field for a mixed(Neumann and Dirichlet) thermal boundary condition even at a Grashof number of 106.

  9. The calculation of the mass moment of inertia of a fluid in a rotating rectangular tank

    Science.gov (United States)

    1977-01-01

    This analysis calculated the mass moment of inertia of a nonviscous fluid in a slowly rotating rectangular tank. Given the dimensions of the tank in the x, y, and z coordinates, the axis of rotation, the percentage of the tank occupied by the fluid, and angle of rotation, an algorithm was written that could calculate the mass moment of inertia of the fluid. While not included in this paper, the change in the mass moment of inertia of the fluid could then be used to calculate the force exerted by the fluid on the container wall.

  10. On Bobkov's approximate de Finetti representation via approximation of permanents of complex rectangular matrices

    CERN Document Server

    Roos, Bero

    2012-01-01

    Bobkov (2005) investigated an approximate de Finetti representation for probability measures on product measurable spaces, which are symmetric under permutations of coordinates. One of the main results of that paper was an explicit approximation bound for permanents of complex rectangular matrices, which was shown by a complicated induction argument. In this paper, we indicate how to avoid the induction argument using an (asymptotic) expansion. Our approach makes it possible to give new explicit higher order approximation bounds for such permanents and in turn for the probability measures mentioned above.

  11. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  12. Anisotropy of water droplets on single rectangular posts.

    Science.gov (United States)

    Semprebon, C; Mistura, G; Orlandini, E; Bissacco, G; Segato, A; Yeomans, J M

    2009-05-19

    We report results of extensive experimental and numerical studies of the anisotropy of water drops deposited on single rectangular posts of mesoscopic size sculpted on different materials. Drops of different volume deposited on the top face of the posts assume an elongated shape along the post direction. Systematic investigations show that while the angle measured along the direction parallel to the post does not change, the one measured across them increases monotonically with the drop volume. The difference in these two angles is found to be proportional to the contact line eccentricity even for very elongated drops, regardless of the post size and material. Results obtained with the lattice Boltzmann method are consistent with these observations and indicate useful trends on the evolution of the drop shape with the system main parameters. We argue that drops deposited on single posts having a very sharp profile represent an ideal model system to investigate anisotropic wetting.

  13. Spatial impulse response of a rectangular double curved transducer

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2012-01-01

    Calculation of the pressure field from transducers having both a convex and a concave surface geometry is a complicated assignment that often is accomplished by subdividing the transducer surface into smaller flat elements of which the spatial impulse response is known. This method is often seen...... applied to curved transducers because an analytical solution is un-known. In this work a semi-analytical algorithm for the exact solution to a first order in diffraction effect of the spatial impulse response of rectangular shaped double curved transducers is presented. The algorithm and an approximation...... approximations ranging from 0.03 % to 0.8 % relative to a numerical solution for the spatial impulse response. It is shown that the presented algorithm gives consistent results with Field II for a linear flat, a linear focused, and a convex non-focused element. Best solution was found to be 0.01 % with a three...

  14. The refined theory of transversely isotropic piezoelectric rectangular beams

    Institute of Scientific and Technical Information of China (English)

    GAO; Yang; WANG; Minzhong

    2006-01-01

    The problem of deducing one-dimensional theory from two-dimensional theory for a transversely isotropic piezoelectric rectangular beam is investigated. Based on the piezoelasticity theory, the refined theory of piezoelectric beams is derived by using the general solution of transversely isotropic piezoelasticity and Lur'e method without ad hoc assumptions. Based on the refined theory of piezoelectric beams, the exact equations for the beams without transverse surface loadings are derived, which consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beams under transverse loadings are derived directly from the refined beam theory. As a special case, the governing differential equations for transversely isotropic elastic beams are obtained from the corresponding equations of piezoelectric beams. To illustrate the application of the beam theory developed, a uniformly loaded and simply supported piezoelectric beam is examined.

  15. Plasticity and rectangularity in survival curves

    Science.gov (United States)

    Weon, Byung Mook; Je, Jung Ho

    2011-09-01

    Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals.

  16. Rectangular Laser Resonators with Astigmatic Compensation

    DEFF Research Database (Denmark)

    Skettrup, Torben

    2005-01-01

    An investigation of rectangular resonators with a view to the compensation of astigmatism has been performed. In order to have beam waists placed at the same positions in the tangential and sagittal planes, pairs of equal mirrors were considered. It was found that at least two concave mirrors...... are necessary to obtain compensation. Four-concave-mirror systems are most stable close to the quadratic geometry, although the symmetric quadratic resonator itself cannot be compensated for astigmatism. Using four equal concave mirrors, compensation of astigmatism can be obtained in two arms at the same time....... Usually several stability ranges are found for four-mirror resonators with pair-wise equal mirrors, and it is possible with these systems to obtain small compensated beam waist radii suitable for frequency conversion. Relevant formulae are given and several relevant examples are shown using simulation...

  17. Physics from Angular Projection of Rectangular Grids

    CERN Document Server

    Singh, Ashmeet

    2015-01-01

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...

  18. Deflection analysis of rectangular spatial coverage truss

    Directory of Open Access Journals (Sweden)

    M.N. Kirsanov

    2015-02-01

    Full Text Available An elastic spatial statically determinate truss of regular type, simulating the rectangular in plan coverage was considered. In the plane of the base the truss has two axes of symmetry. Four support structures (spherical hinge, cylindrical hinge and two vertical rods are located at its corners. An analytic solution was found for forces in the rods of the truss. Using the Maxwell-Mohr’s formula, the dependence of the deflection of the center was discovered in the truss under the influence of the concentrated force. There are five parameters of the problem in this formula: three linear dimensions, and the numbers of hinges on its lateral sides. To determine the desired patterns by means of the computer mathematics system Maple the recursion task by two parameters was solved. It was shown that dependence of the deflection on the number of panels and height of the truss detects a minimum, allowing optimizing the size of the structure.

  19. Geometric and structural properties of a rectangular supercritical wing oscillated in pitch for measurement of unsteady transonic pressure distributions

    Science.gov (United States)

    Ricketts, R. H.; Watson, J. J.; Sandford, M. C.; Seidel, D. A.

    1983-01-01

    Wind-tunnel tests to measure unsteady aerodynamic data in the transonic region have been completed on an aspect ratio 2.0 rectangular wing with a supercritical airfoil. The geometric and structural properties of the wing are presented. (Other references contain the measured aerodynamic data.) Both measured and design airfoil coordinates are presented and compared. In addition, measured wing bending and torsional stiffness distributions and some trailing-edge flexibility influence coefficients are presented.

  20. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates

    Science.gov (United States)

    Hejranfar, Kazem; Saadat, Mohammad Hossein; Taheri, Sina

    2017-02-01

    In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine the accuracy and performance of the present solution procedure based on the WENOLBM developed, different benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a 2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions. Results of the present solution are compared with the existing numerical and experimental results which show good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.

  1. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.

    Science.gov (United States)

    Hejranfar, Kazem; Saadat, Mohammad Hossein; Taheri, Sina

    2017-02-01

    In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine the accuracy and performance of the present solution procedure based on the WENOLBM developed, different benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a 2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions. Results of the present solution are compared with the existing numerical and experimental results which show good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.

  2. Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field

    Institute of Scientific and Technical Information of China (English)

    胡宇达; 张金志

    2013-01-01

    Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid-ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para-metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.

  3. Comparison of the GUM and Monte Carlo methods on the flatness uncertainty estimation in coordinate measuring machine

    Directory of Open Access Journals (Sweden)

    Jalid Abdelilah

    2016-01-01

    Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.

  4. Governance for Learning Outcomes in European Policy-Making: Qualification Frameworks Pushed through the Open Method of Coordination

    Directory of Open Access Journals (Sweden)

    Odd Bjørn Ure

    2015-12-01

    Full Text Available The construction of European education policy builds on a widely shared goal of transparency in qualifications, upheld by the popular narrative of mobile students endowed with scholarships from the EU Erasmus programme, which  allow them  to transfer credit points between universities and across national borders. EU education policy is increasingly inscribed in National Qualification Frameworks (NQF. Their European umbrella is coined  the European Qualification Framework (EQF, which is linked to a discourse on or even shift to Learning Outcomes; functioning as  a tool for the displacement of input to output categories in education systems with a view to make qualifications more transparent. This form of governance situates Learning Outcomes as a tool for policy reform that intentionally should affect all educational and administrative levels of European education. The article shows that the multitude of governance instruments used to promote a shift to Learning Outcomes are so varied that EU education policy has no apparent need of new instruments for this purpose. The fact that Learning Outcomes are linked to EU policy instruments of the Open Method of policy-Coordination and destined for several sectors of education, increases the likelihood that they will be translated into modified learning practices. Yet, there is a danger that governance of Learning Outcomes succumbs to a pitfall of declaratorily placing Learning Outcomes in the middle of learning practices in all subsectors of education, without sufficiently proving their real novelty and regulatory functions.

  5. The National Parliamentary Arena and Methods of Open Coordination: Explaining the Frequency of OMC-related Executive-legislature Interactions

    Directory of Open Access Journals (Sweden)

    Rik de Ruiter

    2011-02-01

    Full Text Available This article tests the importance of different factors for the frequency with which information from open methods of coordination (OMCs is used in parliamentary debates. Previous research has shown that OMCs provide the executive and the legislature with information on best and worst national policy practices, enabling them to adopt different strategies. First, a national government can fame its own policies with the use of information from OMCs. Second, information from OMCs can be used by parliamentarians of opposition parties to shame the policies of the incumbent government. A study of Dutch parliamentary debates indicates that the Dutch government uses more information from OMCs to fame its own policies when OMCs have a developed infrastructure and/or a treaty base. Parliamentarians from opposition parties use more information from OMCs adopted for policy areas in which there was already EU-level activity prior to the OMC, and the government provided information on the substance of OMCs to members of national parliaments.

  6. Computer generated hologram null test of a freeform optical surface with rectangular aperture

    Science.gov (United States)

    Su, Ping; Ma, Jianshe; Tan, Qiaofeng; Kang, Guoguo; Liu, Yi; Jin, Guofan

    2012-02-01

    In null computed generated hologram (CGH) test of optical elements, fitting method is needed in null CGH design to generate continuous phase function from the ray-traced discrete phase data. The null CGH for freeform testing usually has a deformed aperture and a high order phase function, because of the aberrations introduced by freeform wavefront propagation. With traditional Zernike polynomial fitting method, selection of an orthogonal basis set and choosing number of terms are needed before fitting. Zernike polynomial fitting method is not suitable in null CGH design for freeform testing; a novel CGH design method with cubic B-spline interpolation is developed. For a freeform surface with 18×18 mm2 rectangular aperture and 630 μm peak-to-valley undulation, the null CGH with a curved rectangular aperture is designed by using the method proposed. Simulation and experimental results proved the feasibility of the novel CGH design method.

  7. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.

    Science.gov (United States)

    Yachmenev, Andrey; Yurchenko, Sergei N

    2015-07-07

    We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.

  8. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame

    Science.gov (United States)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-07-01

    We present a new numerical method to construct a rotational-vibrational Hamiltonian of a general polyatomic molecule in the Eckart frame as a power series expansion in terms of curvilinear internal coordinates. The expansion of the kinetic energy operator of an arbitrary order is obtained numerically using an automatic differentiation (AD) technique. The method is applicable to molecules of arbitrary size and structure and is flexible for choosing various types of internal coordinates. A new way of solving the Eckart-frame equations for curvilinear coordinates also based on the AD technique is presented. The resulting accuracy of the high-order expansion coefficients for the kinetic energy operator using our numerical technique is comparable to that obtained by symbolic differentiation, with the advantage of being faster and less demanding in memory. Examples for H2CO, NH3, PH3, and CH3Cl molecules demonstrate the advantages of the curvilinear internal coordinates and the Eckart molecular frame for accurate ro-vibrational calculations. Our results show that very high accuracy and quick convergence can be achieved even with moderate expansions if curvilinear coordinates are employed, which is important for applications involving large polyatomic molecules.

  9. Quantitative study of rectangular waveguide behavior in the THz.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  10. The Open Method of Co-ordination and the Analysis of Mutual Learning Processes of the European Employment Strategy

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    The purpose of this paper is solely to address two interlinked methodological and theoretical questions concerning the Open Method of Coordination (OMC), using the European Employment Strategy as a case: First, what is the most appropriate approach to learning in the analyses of the processes...

  11. EU soft law and the functioning of representative democracy: the use of methods of open co-ordination by Dutch and British parliamentarians

    NARCIS (Netherlands)

    Ruiter, de Rik

    2010-01-01

    The Open Method of Co-ordination (OMC) promises to involve a broad range of actors, including members of national parliaments. Several scholars showed that the OMC breaks this promise by affecting the national policy-making process outside of the control of national parliaments. However, this findin

  12. Finite-difference calculation of traveltimes based on rectangular grid

    Institute of Scientific and Technical Information of China (English)

    李振春; 刘玉莲; 张建磊; 马在田; 王华忠

    2004-01-01

    To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is derived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scattering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green's function method and wave equation method.

  13. Gleason's Theorem for Rectangular JBW-Triples

    Science.gov (United States)

    Edwards, C. Martin; Rüttimann, Gottfried T.

    A JBW*-triple B is said to be rectangular if there exists a W*-algebra A and a pair (p,q) of centrally equivalent elements of the complete orthomodular lattice of projections in A such that B is isomorphic to the JBW*-triple pAq. Any weak*-closed injective operator space provides an example of a rectangular JBW*-triple. The principal order ideal of the complete *-lattice of centrally equivalent pairs of projections in a W*-algebra A, generated by (p,q), forms a complete lattice that is order isomorphic to the complete lattice of weak*-closed inner ideals in B and to the complete lattice of structural projections on B. Although not itself, in general, orthomodular, possesses a complementation that allows for definitions of orthogonality, centre, and central orthogonality to be given. A less familiar notion in lattice theory, that is well-known in the theory of Jordan algebras and Jordan triple systems, is that of rigid collinearity of a pair (e2,f2) and (e2,f2) of elements of . This is defined and characterized in terms of properties of . A W*-algebra A is sometimes thought of as providing a model for a statistical physical system. In this case B, or, equivalently, pAq, may be thought of as providing a model for a fixed sub-system of that represented by A. Therefore, may be considered to represent the set consisting of a particular kind of sub-system of that represented by pAq. Central orthogonality and rigid collinearity of pairs of elements of may be regarded as representing two different types of disjointness, the former, classical disjointness, and the latter, decoherence, of the two sub-systems. It is therefore natural to consider bounded measures m on that are additive on centrally orthogonal and rigidly collinear pairs of elements. Using results of J.D.M. Wright, it is shown that, provided that neither of the two hereditary sub-W*-algebras pAp and qAq of A has a weak*-closed ideal of Type I2, such measures are precisely those that are the restrictions of

  14. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    Science.gov (United States)

    Crowgey, Benjamin Reid

    Rectangular waveguide methods are appealing for measuring isotropic and anisotropic materials because of high signal strength due to field confinement, and the ability to control the polarization of the applied electric field. As a stepping stone to developing methods for characterizing materials with fully-populated anisotropic tensor characteristics, techniques are presented in this dissertation to characterize isotropic, biaxially anisotropic, and gyromagnetic materials. Two characterization techniques are investigated for each material, and thus six different techniques are described. Additionally, a waveguide standard is introduced which may be used to validate the measurement of the permittivity and permeability of materials at microwave frequencies. The first characterization method examined is the Nicolson-Ross-Weir (NRW) technique for the extraction of isotropic parameters of a sample completely filling the cross-section of a rectangular waveguide. A second technique is proposed for the characterization of an isotropic conductor-backed sample filling the cross-section of a waveguide. If the sample is conductor-backed, and occupies the entire cross-section, a transmission measurement is not available, and thus a method must be found for providing two sufficiently different reflection measurements.The technique proposed here is to place a waveguide iris in front of the sample, exposing the sample to a spectrum of evanescent modes. By measuring the reflection coefficient with and without an iris, the necessary two data may be obtained to determine the material parameters. A mode-matching approach is used to determine the theoretical response of a sample placed behind the waveguide iris. This response is used in a root-searching algorithm to determine permittivity and permeability by comparing to measurements of the reflection coefficient. For the characterization of biaxially anisotropic materials, the first method considers an extension of the NRW technique

  15. An Identification Method of Magnetizing Inrush Current Phenomena in Distribution System

    Science.gov (United States)

    Dou, Naoki; Toyama, Atushi; Satoh, Kohki; Naitoh, Tadashi; Masaki, Kazuyuki

    In high voltage distribution systems, there are many power quality troubles due to voltage dips. Otherwise, a magnetizing inrush current causes the voltage dip. To suppress voltage dips, it is necessary to identify the magnetizing inrush current phenomena. In this paper, the authors propose a new identification method. The principles are that the saturation start/end flux is equal and the inrush current pattern exists. And to avoid a interfere with saturation area overlap; the rectangular coordinate method is adopted.

  16. Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

    Institute of Scientific and Technical Information of China (English)

    Wei-An Yao; Xiao-Fei Hu; Feng Xiao

    2011-01-01

    This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.

  17. Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

    Science.gov (United States)

    Neff, Michael; Rauhut, Guntram

    2014-02-01

    Multidimensional potential energy surfaces obtained from explicitly correlated coupled-cluster calculations and further corrections for high-order correlation contributions, scalar relativistic effects and core-correlation energy contributions were generated in a fully automated fashion for the double-minimum benchmark systems OH3(+) and NH3. The black-box generation of the potentials is based on normal coordinates, which were used in the underlying multimode expansions of the potentials and the μ-tensor within the Watson operator. Normal coordinates are not the optimal choice for describing double-minimum potentials and the question remains if they can be used for accurate calculations at all. However, their unique definition is an appealing feature, which removes remaining errors in truncated potential expansions arising from different choices of curvilinear coordinate systems. Fully automated calculations are presented, which demonstrate, that the proposed scheme allows for the determination of energy levels and tunneling splittings as a routine application.

  18. A survey of the information on co-ordination compound features which can be gained from electroanalytical methods.

    Science.gov (United States)

    Bontempelli, G; Andreuzzi-Sedea, M; Fiorani, M

    1982-12-01

    The information provided by modern electroanalytical techniques on co-ordination compounds is surveyed. The problem of the interaction between the electrode and intermediates or products is also briefly considered; it is pointed out that the electroanalytical approach can be successfully employed to provide new insight into chemical properties of metal complexes only when weakly interacting species are involved. The information obtainable is considered under the following headings: (i) mechanistic studies on metal complexes and electroanalytical evidence for their reactivity and stability; (ii) structural features of co-ordination compounds in solution; (iii) feasibility of electrochemical syntheses; and (iv) stability of intermediate oxidation states with reference to the nature of the ligands co-ordinated to the metal.

  19. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  20. Epidemic Spreading in Random Rectangular Networks

    CERN Document Server

    Estrada, Ernesto; Moreno, Yamir

    2015-01-01

    Recently, Estrada and Sheerin (Phys. Rev. E 91, 042805 (2015)) developed the random rectangular graph (RRG) model to account for the spatial distribution of nodes in a network allowing the variation of the shape of the unit square commonly used in random geometric graphs (RGGs). Here, we consider an epidemics dynamics taking place on the nodes and edges of an RRG and we derive analytically a lower bound for the epidemic threshold for a Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model on these networks. Using extensive numerical simulations of the SIS dynamics we show that the lower bound found is very tight. We conclude that the elongation of the area in which the nodes are distributed makes the network more resilient to the propagation of an epidemics due to the fact that the epidemic threshold increases with the elongation of the rectangle. On the other hand, using the "classical" RGG for modeling epidemics on non-squared cities generates a larger error due to the effects...

  1. Flow Characteristics of Rectangular Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA

    2006-01-01

    In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.

  2. Epidemic spreading in random rectangular networks

    Science.gov (United States)

    Estrada, Ernesto; Meloni, Sandro; Sheerin, Matthew; Moreno, Yamir

    2016-11-01

    The use of network theory to model disease propagation on populations introduces important elements of reality to the classical epidemiological models. The use of random geometric graphs (RGGs) is one of such network models that allows for the consideration of spatial properties on disease propagation. In certain real-world scenarios—like in the analysis of a disease propagating through plants—the shape of the plots and fields where the host of the disease is located may play a fundamental role in the propagation dynamics. Here we consider a generalization of the RGG to account for the variation of the shape of the plots or fields where the hosts of a disease are allocated. We consider a disease propagation taking place on the nodes of a random rectangular graph and we consider a lower bound for the epidemic threshold of a susceptible-infected-susceptible model or a susceptible-infected-recovered model on these networks. Using extensive numerical simulations and based on our analytical results we conclude that (ceteris paribus) the elongation of the plot or field in which the nodes are distributed makes the network more resilient to the propagation of a disease due to the fact that the epidemic threshold increases with the elongation of the rectangle. These results agree with accumulated empirical evidence and simulation results about the propagation of diseases on plants in plots or fields of the same area and different shapes.

  3. Wall and Bed Shear Force in Rectangular Open Channels

    CERN Document Server

    Tavakkol, Sasan

    2016-01-01

    A method is introduced to determine the percentage of the total shear force acting on the walls and bed in rectangular open channels. The proposed method takes both the velocity gradients and secondary currents into account. In the current method the channel cross section is divided into subsections using the bisectors along which there are no secondary flow effects, and isovels orthogonal trajectories along which there is no shear stress. Based on these subsections and assuming the equilibrium between the shear force and gravitational force, the share of the bed and wall from the mean shear force of the flow are calculated. Calculated wall and bed shear forces are in very good agreement with experimental data with an average relative error less than 5%. It is also shown that neglecting the effect of secondary currents and only assuming zero-shear division lines does not yield to acceptable results. The method also provides a possible range for wall and bed shear forces which nicely covers the experimental da...

  4. Metamaterial absorbers realized in an X-band rectangular waveguide

    Institute of Scientific and Technical Information of China (English)

    Huang Yong-Jun; Wen Guang-Jun; Li Jian; Zhong Jing-Ping; Wang Ping; Sun Yuan-Hua; O.Gordon; Zhu Wei-Ren

    2012-01-01

    In this paper,we demonstrate six types of metamaterial absorbers (MMAs) by measuring their absorptivities in an X-band (8-12 GHz) rectangular waveguide.Some of the MMAs have been demonstrated previously by using the free space measurement method,and the others are proposed firstly in this paper.The measured results show that all of the six MMAs exhibit high absorptivities above 98%,which have similar absorbing characteristics to those measured in the free space.The numerically obtained surface current densities for each MMA show that the absorbing mechanism is the same as that under the free space conditions.Such a demonstration method is superior to the conventional free space measurement method due to the small-scale test samples required,the simple measure device,and its low cost.Most importantly,the proposed method opens a way to enable MMAs to be used in microwave applications such as matched terminations.

  5. Determination of the Fundamental Frequency of Perforated Rectangular Plates: Concentrated Negative Mass Approach for the Perforation

    Directory of Open Access Journals (Sweden)

    Kiran D. Mali

    2013-01-01

    Full Text Available This paper is concerned with a vibration analysis of perforated rectangular plates with rectangular perforation pattern of circular holes. The study is particularly useful in the understanding of the vibration of sound absorbing screens, head plates, end covers, or supports for tube bundles typically including tube sheets and support plates used in the mechanical devices. An energy method is developed to obtain analytical frequencies of the perforated plates with clamped edge, support conditions. Perforated plate is considered as plate with uniformly distributed mass. Holes are considered as concentrated negative masses. The analytical procedure using the Galerkin method is adopted. The deflected surface of the plate is approximated by the cosine series which satisfies the boundary conditions. Finite element method (FEM results have been used to illustrate the validity of the analytical model. The comparisons show that the analytical model predicts natural frequencies reasonably well for holes of small size.

  6. Cochlear coordinates in regard to cochlear implantation: a clinically individually applicable 3 dimensional CT-based method.

    NARCIS (Netherlands)

    Verbist, B.M.; Joemai, R.M.; Briaire, J.J.; Teeuwisse, W.M.; Veldkamp, W.J.H.; Frijns, J.H.

    2010-01-01

    SETTING: Cochlear implant (CI)/tertiary referral center. SUBJECTS: Twenty-five patients implanted with an Advanced Bionics HiRes90K HiFocus1J CI. STUDY DESIGN/MAIN OUTCOME MEASURES: A 3-dimensional cylindrical coordinate system is introduced using the basal turn of the cochlea as the x and y planes

  7. Triple-band metamaterial absorption utilizing single rectangular hole

    Science.gov (United States)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  8. Propagation of a Rectangular Pulse in an Anomalous Dispersive Medium

    Institute of Scientific and Technical Information of China (English)

    HUANG Chao-Guang; ZHANG Yuan-Zhong

    2002-01-01

    The pulse with a rectangular envelop propagating through the caesium vapour with two gain lines used inthe Wang, Kuzmich, and Dogariu [Nature (London) 406 (2000) 277] experiment is studied. It is shown that there existsan obvious distortion for the pulse.

  9. On Short Cuts - or - Fencing in Rectangular Strips

    CERN Document Server

    Altshuler, Yaniv

    2010-01-01

    In this paper we consider an isoperimetric inequality for the "free perimeter" of a planar shape inside a rectangular domain, the free perimeter being the length of the shape boundary that does not touch the border of the domain.

  10. Nonlinear oscillations of laminated plates using an accurate four-node rectangular shear flexible material finite element

    Indian Academy of Sciences (India)

    Gajbir Singh; G Venkateswara Rao

    2000-08-01

    The objective of the present paper is to investigate the large amplitude vibratory behaviour of unsymmetrically laminated plates. For this purpose, an efficient and accurate four-node shear flexible rectangular material finite element(MFE) with six degrees offreedom per node (three displacements $(u;v;w)$ along the $x, y$ and axes, two rotations ($\\theta_x$ and $\\theta_y$) about and axes and twist $(\\theta_{xy})$) is developed. The element assumes bi-cubic polynomial distribution with sixteen generalized undetermined coefficients for the transverse displacement. The fields for section rotations $\\theta_x$ and $\\theta_y$, and in-plane displacements and are derived using moment-shear equilibrium and in-plane equilibrium equations of composite strips along the - and -axes. The displacement field so derived not only depends on the element coordinates but is a function of extensional, bending-extensional coupling, bending and transverse shear stiffness as well. The element stiffness and mass matrices are computed numerically by employing 3 × 3 Gauss-Legendre product rules. The element is found to be free of shear locking and does not exhibit any spurious modes. In orderto compute the nonlinearfrequencies, linear mode shape corresponding to the fundamental frequency is assumed as the spatial distribution and nonlinear finite element equations are reduced to a single nonlinear second-order differential equation. This equation is solved by employing the direct numerical integration method. A series of numerical examples are solved to demonstrate the efficacy of the proposed element.

  11. A computational method of touch point coordinate%一种触摸坐标计算方法

    Institute of Scientific and Technical Information of China (English)

    胡跃辉; 刘志民; 吕国强; 李小哲; 于芳芳; 丁小宇

    2015-01-01

    近年来,随着多点触摸发展的日益多元化,触摸屏的结构日趋复杂,触摸算法日渐新颖。提出了一种触摸坐标点计算的新方法,将其称为“投壶”算法,意为将满足条件的物体准确投入壶中,此时壶里的权重增加,最后将权重最大的壶视为“真实”即为有触摸点的。实验证明,此算法能够在硬件资源有限的条件下,准确的计算触摸点的坐标,尤其在多点触摸的情况下,能够有效的避免伪触摸点的出现,具备一定的抗干扰能力,具有响应速度快、计算精度高等特点,实现触摸屏的无驱安装。%In recent years, with the development of multi-touch diverse, the structure of the touch screen is more and more complex, the touch algorithm is increasingly fashionable.This paper proposes a new method of calculating the touch point, which is called “pitch pot” algorithm.It means that we will put the object which meets the condi-tions into the pot, by this time the pot’s weight is adding.At last, the heaviest pot is looked as the real pot which means it has the touch point right now .The experimental results show that , under the circumstance of limited hard-ware resources, this algorithm can accurately calculate the coordinates of the touch point, especially in the case of multi-touch.It could effectively eliminate the false touch point, has a certain anti-jamming capability fast response and high accuracy, and achieves no driver installation.

  12. 尼日利亚 UTM 坐标系测设方法探讨%Disquisitionon Method of Survey in the UTM Coordinate System of Nigeria

    Institute of Scientific and Technical Information of China (English)

    田小强

    2016-01-01

    UTMand Gauss-Kruger projection are two usual methods for spatial-plane coordinates transformation.Different from China using Gauss-Kruger projection,Nigeria national coordinate system applies UTM projection method.At Nigeria site survey work,we must realize the difference between the two projection methods,and consider the features of UTMpro-jection method to find the useful measurements at various survey precision requirements.Within that,calculation method of grid factor,coordinate transfer and projection error control are the most important points to take into account.%UTM投影及高斯-克吕格投影为最常见的两种空间-平面坐标投影方式。和国内主要采用高斯-克吕格投影不同,尼日利亚国家坐标系采用的是 UTM投影。在实际测量过程中,要认识到两种投影的区别,研究 UTM投影坐标的特征及在不同精度要求所采取的具体应对方法,其中关键环节是投影尺度比的计算,坐标转换以及投影误差的控制。

  13. Generalized regularity and regularizability of rectangular descriptor systems

    Institute of Scientific and Technical Information of China (English)

    Guangren DUAN; Yan CHEN

    2007-01-01

    The notion of generalized regularity is proposed for rectangular descriptor systems. Generalized regularizability of a rectangular descriptor system via different feedback forms is considered. Necessary and sufficient conditions for generalized regularizability are obtained, which are only dependent upon the open-loop coefficient matrices. It is also shown that under these necessary and sufficient conditions, all the generalized regularizing feedback controllers form a Zarisky open set. A numerical example demonstrates the proposed results.

  14. Evaluation of Double Perforated Baffles Installed in Rectangular Secondary Clarifiers

    OpenAIRE

    Byonghi Lee

    2017-01-01

    Double perforated baffles in rectangular secondary clarifiers were studied to determine whether they contribute to producing high-quality effluents. The Computational Fluid Dynamics (CFD) simulations indicated that bio-flocculation occurred at the front of the baffle and the longitudinal movement of the settled sludge was hampered whenever the clarifier had high inflow. Simulation results showed that the rectangular clarifier with the double perforated baffle produced an effluent with lower s...

  15. analytical bending solution of all clamped isotropic rectangular plate ...

    African Journals Online (AJOL)

    HP

    The governing differential equation was non-dimensionalised to make ... the method and earlier research works for K = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are: .... dimensional coordinates satisfied equation (6) which is .... under In plane Loading.

  16. Vibration Analysis of Composite Rectangular Plates Reinforced along Curved Lines

    Science.gov (United States)

    Honda, Shinya; Oonishi, Yoshimasa; Narita, Yoshihiro; Sasaki, Katsuhiko

    In the past few decades, composite materials composed of straight fibers and polymer matrix have gained their status as the most promising material for light-weight structures. Technical merit of the composites as tailored material also provided practical advantages in the optimum design process. Recently, it is reported that the fabrication machine has been developed to make curved fibers embedded in the matrix material. Based on such technical advancement, this paper proposes an analytical method to study vibration of composite rectangular plates reinforced along curved lines. The approach is based on the Ritz method where variable fiber direction can be accommodated. For this purpose, the fibers continuously changing their direction are formulated as the variable bending stiffness in the total potential energy. A frequency equation is derived by the Ritz minimizing process, and frequency parameters are calculated as the eigenvlaues in the eigenvalue problem. In numerical results, the accuracy of the method is presented by comparing present results with FEM results. The advantages of present plate are confirmed by comparing natural frequencies and mode shapes with those of conventional composite and isotropic plates, and the effectiveness of the new solution to the most recent problem is demonstrated.

  17. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    Science.gov (United States)

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution.

  18. Team coordination dynamics.

    Science.gov (United States)

    Gorman, Jamie C; Amazeen, Polemnia G; Cooke, Nancy J

    2010-07-01

    Team coordination consists of both the dynamics of team member interaction and the environmental dynamics to which a team is subjected. Focusing on dynamics, an approach is developed that contrasts with traditional aggregate-static concepts of team coordination as characterized by the shared mental model approach. A team coordination order parameter was developed to capture momentary fluctuations in coordination. Team coordination was observed in three-person uninhabited air vehicle teams across two experimental sessions. The dynamics of the order parameter were observed under changes of a team familiarity control parameter. Team members returned for the second session to either the same (Intact) or different (Mixed) team. 'Roadblock' perturbations, or novel changes in the task environment, were introduced in order to probe the stability of team coordination. Nonlinear dynamic methods revealed differences that a traditional approach did not: Intact and Mixed team coordination dynamics looked very different; Mixed teams were more stable than Intact teams and explored the space of solutions without the need for correction. Stability was positively correlated with the number of roadblock perturbations that were overcome successfully. The novel and non-intuitive contribution of a dynamical analysis was that Mixed teams, who did not have a long history working together, were more adaptive. Team coordination dynamics carries new implications for traditional problems such as training adaptive teams.

  19. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  20. Multi-channel quantum dragons from rectangular nanotubes with even-odd structure

    Science.gov (United States)

    Inkoom, Godfred; Novotny, Mark

    Recently, a large class of nanostructures called quantum dragons have been discovered theoretically. Quantum dragons are nanostuctures with correlated disorder but have an electron transmission probability  (E) =1 for all energies E when connected to idealized leads. Hence for a single channel, the electrical conductance for a two-probe measurement should give the quantum of conductance Go =2e2/h . The time independent Schrödinger equation for the single band tight binding model is solved exactly to obtain  (E) . We have generalized the matrix method and the mapping methods of in order to study multi-channel quantum dragons for rectangular nanotubes with even-odd structure. The studies may be relevant for experimental rectangular nanotubes, such as MgO, copper phthalocyanine or some types of graphyne.. Supported in part by NSF Grant DMR-1206233.

  1. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  2. Nonlinear Forced Vibration Analysis for Thin Rectangular Plate on Nonlinear Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Zhong Zhengqiang

    2013-02-01

    Full Text Available Nonlinear forced vibration is analyzed for thin rectangular plate with four free edges on nonlinear elastic foundation. Based on Hamilton variation principle, equations of nonlinear vibration motion for thin rectangular plate under harmonic loads on nonlinear elastic foundation are established. In the case of four free edges, viable expressions of trial functions for this specification are proposed, satisfying all boundary conditions. Then, equations are transformed to a system of nonlinear algebraic equations by using Galerkin method and are solved by using harmonic balance method. In the analysis of numerical computations, the effect on the amplitude-frequency characteristic curve due to change of the structural parameters of plate, parameters of foundation and parameters of excitation force are discussed.

  3. Complexity of trajectories in rectangular billiards

    CERN Document Server

    Baryshnikov, Yu

    1994-01-01

    To a trajectory of a billiard in a parallelogram we assign its symbolic trajectory --- the sequence of numbers of coordinate planes, to which the faces met by the trajectory are parallel. The complexity of the trajectory is the number of different words of length n occurring in it. We prove that for generic trajectories the complexity is well defined and calculate it, confirming the conjecture of Arnoux, Mauduit, Shiokawa and Tamura[AMST].

  4. Complexity of trajectories in rectangular billiards

    Science.gov (United States)

    Baryshnikov, Yu.

    1995-11-01

    To a trajectory of the billiard in a cube we assign its symbolic trajectory-the sequence of numbers of coordinate planes, to which the faces met by the trajectory are parallel. The complexity of the trajectory is the number of different words of lengthn occurring in it. We prove that for generic trajectories the complexity is well defined and calculate it, confirming the conjecture of Arnoux, Mauduit, Shiokawa and Tamura [AMST].

  5. A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Sidler, Rolf, E-mail: rsidler@gmail.com [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)

    2013-02-15

    We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.

  6. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method.

    Science.gov (United States)

    Strobusch, D; Scheurer, Ch

    2011-09-28

    A new hierarchical expansion of the kinetic energy operator in curvilinear coordinates is presented and modified vibrational self-consistent field (VSCF) equations are derived including all kinematic effects within the mean field approximation. The new concept for the kinetic energy operator is based on many-body expansions for all G matrix elements and its determinant. As a test application VSCF computations were performed on the H(2)O(2) molecule using an analytic potential (PCPSDE) and different hierarchical approximations for the kinetic energy operator. The results indicate that coordinate-dependent reduced masses account for the largest part of the kinetic energy. Neither kinematic couplings nor derivatives of the G matrix nor its determinant had significant effects on the VSCF energies. Only the zero-point value of the pseudopotential yields an offset to absolute energies which, however, is irrelevant for spectroscopic problems.

  7. How can the co-ordinate transformation method of beam matching be extended to include separately labelled collimators?

    Science.gov (United States)

    Morgan-Fletcher, S; McKenzie, A L

    1996-03-01

    The problem of matching radiation beams was tackled by Siddon in 1980 using co-ordinate transformations. Since then, the need to distinguish between individual collimators in prescriptions of treatment set-up, brought about by the widespread use of 3-D treatment planning systems and asymmetric fields, as well as a reversal of the rotation sense in the turntable co-ordinate system proposed by the International Electrotechnical Commission, have made it necessary to revisit this particular problem. This paper builds upon Siddon's general equations for the particular case of matching beams, and derives expressions for calculating treatment-unit settings which may be used in a computer program without the need to perform matrix manipulation. The expression treat the individual collimator jaws separately.

  8. The complex coordinate scattering theory and the Kohn variational method: A general formulation and application to long range potentials

    Science.gov (United States)

    Peskin, Uri; Moiseyev, Nimrod

    1992-11-01

    The complex coordinate scattering theory for the calculation of T-matrix elements, as was introduced by Engdahl, Moiseyev, and Maniv [J. Chem. Phys. 94, 1636 (1991)] and by Peskin and Moiseyev [J. Chem. Phys. 96, 2347 (1992)], is shown to satisfy the complex version of the Kohn variational principle introduced by Nuttall and Cohen [Phys. Rev. 188, 1542 (1969)]. This theory and the related S-matrix version of the Kohn variational principle, developed by Zhang, Chu, and Miller [J. Chem. Phys. 88, 6233, (1988)] are combined to formulate a generalized variational basis set approach for quantum scattering calculations. In this approach the Kohn variational procedure to optimize the linear parameters in the T matrix is followed by an optimization of the complex nonlinear parameters. This enables the application of the complex coordinate analytical continuation of the T matrix to the calculation of scattering probability amplitudes for long range potentials. Illustrating numerical applications to short and long range potentials are given.

  9. On the problem of torsion of a rectangular membrane with one-direction non-homogeneity

    Directory of Open Access Journals (Sweden)

    Torossian V.S.

    2009-09-01

    Full Text Available A Dirichlet problem for a second order elliptic equation is discussed when the domain is a rectangle. In particular, the problem of torsion of a rectangular membrane is reduced to such equation, when it is non-homogenous in one direction. A numerical example is presented. The numerical experiment is carried out trough a new method of acceleration of convergence of Fourier series.

  10. Oblique detonation waves stabilized in rectangular-cross-section bent tubes

    OpenAIRE

    2011-01-01

    Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The obliq...

  11. Non-primitive rectangular cells for tight-binding electronic structure calculations

    OpenAIRE

    Boykin, Timothy; Kharche, Neerav; Klimeck, Gerhard

    2009-01-01

    Rectangular non-primitive unit cells are computationally convenient for use in nanodevice electronic structure and transport calculations. When these cells are used for Calculations of structures with periodicity, the resulting bands are zone-folded and must be unfolded in order to identify important gaps and masses. Before the zone-unfolding method can be applied, one must first determine the allowed wavevectors for the specific non-primitive cell. Because most computationally convenient non...

  12. Non-Primitive Rectangular Cells for Tight-Binding Electronic Structure Calculations

    OpenAIRE

    Boykin, Timothy B.

    2008-01-01

    Rectangular non-primitive unit cells are computationally convenient for use in nanodevice electronic structure and transport calculations. When these cells are used for calculations of structures with periodicity, the resulting bands are zone-folded and must be unfolded in order to identify important gaps and masses. Before the zone-unfolding method can be applied, one must first determine the allowed wavevectors for the specific non-primitive cell. Because most computationally convenient ...

  13. HYDROELASTIC VIBRATIONS AND LIQUID SLOSHING SUPPRESSION IN A RECTANGULAR TANK WITH ELASTIC SPACER

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu-duo; LIANG Yong; WEN Ji-hua

    2004-01-01

    In this paper, the couple vibration of liquid and elastic spacer in a rectangular tank is investigated. Two different velocity potential functions corresponding respectively to the liquid above and below the elastic spacer are assumed. Complicated boundary conditions corresponding to two velocity potential functions and vibrations of elastic spacer are given. Using the method of energy, the equation of couple frequency is obtained. Through numerical computation the natural frequencies that change according to the location and stiffness of the spacer are shown.

  14. Transient natural convection heat and mass transfer in a rectangular enclosure - A numerical analysis

    Science.gov (United States)

    Han, Samuel S.; Schafer, Charles F.

    1988-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity with combined horizontal temperature and concentration gradients is performed by a numerical method based on the SIMPLE. Numerical results show that the average Nusselt and Sherwood numbers both decrease markedly when the solutal and thermal buoyancy forces act in the opposite directions. When the solutal and thermal buoyancy forces act in the same directions, however, the average Sherwood number increases significantly and yet the average Nusselt number decreases slightly.

  15. Numerical Study of Shock Waves Propagating in an Elbow : 1st Report, A Rectangular Elbow

    OpenAIRE

    1993-01-01

    In this paper, the shock waves propagating in a rectangular elbow were investigated numerically in order to clarify how the transmitted shock wave past the elbow is stabilized to the uniform shock and the flow field induced by the shock. The computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by means of the TVD finite difference method. The calculations were performed for three incident shock strengths and three Reynolds numbers of the flow, and ...

  16. Further results on ultraconvergence derivative recovery for odd-order rectangular finite elements

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    For rectangular finite element, we give a superconvergence method by SPR technique based on the generalization of a new ultraconvergence record and the sharp Green function estimates, by which we prove that the derivative has ultra-convergence of order O(hk+3) (k 3 being odd) and displacement has order of O(hk+4) (k 4 being even) at the locally symmetry points.

  17. CFD modeling of heat transfer in a rectangular channel with dimplepin finning

    Directory of Open Access Journals (Sweden)

    Spokoiny M. Yu.

    2013-05-01

    Full Text Available Using the CFD modeling method, the authors have investigated conjugate heat transfer in a rectangular channel with dimple-pin finning with hight of pins, depth of cavities and Reynolds number values varying in the range, characteristic for heat exchangers designed for liquid cooling of microelectronic devices, such as microprocessors. Criterion dependencies for calculation of heat transfer under these conditions have been obtained.

  18. Novel Closed-Form Solution for Analyzing Mutual Coupling Between Cylindrical Comformal Rectangular Microstrip Patch Antennas

    Institute of Scientific and Technical Information of China (English)

    何芒; 徐晓文

    2003-01-01

    Based on the integral equation formulations and the moment method, a novel closed-form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed-forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.

  19. 机器人自动钻孔系统的坐标系建立方法%Method of Building Coordinate Systems of Robotic Drilling System

    Institute of Scientific and Technical Information of China (English)

    徐晶; 曾远帆; 周炜

    2014-01-01

    A method of building the coordinate systems of robotic drilling system based on laser tracker is proposed. According to this method, the translations of the coordinate systems in the drilling system are obtained and the accuracy can meet the requirement of aircraft assembly.%介绍了基于激光跟踪仪的机器人自动钻孔系统坐标系建立方法,得到了自动钻孔系统中各个坐标系之间的空间变换关系,能够满足飞机装配的精度要求,保证了飞机的飞行性能和使用寿命。

  20. Attenuation in Rectangular Waveguides with Finite Conductivity Walls

    Directory of Open Access Journals (Sweden)

    K. C. Yeong

    2011-06-01

    Full Text Available We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in rectangular waveguides with finite conductivity walls. The wavenumbers kx and ky in the x and y directions respectively, are obtained as roots of a set of transcendental equations derived by matching the tangential component of the electric field (E and the magnetic field (H at the surface of the waveguide walls. The electrical properties of the wall material are determined by the complex permittivity ε, permeability μ, and conductivity σ. We have examined the validity of our model by carrying out measurements on the loss arising from the fundamental TE10 mode near the cutoff frequency. We also found good agreement between our results and those obtained by others including Papadopoulos’ perturbation method across a wide range of frequencies, in particular in the vicinity of cutoff. In the presence of degenerate modes however, our method gives higher losses, which we attribute to the coupling between modes as a result of dispersion.

  1. A study on the number of Hierarchical Rectangular Partitions of Order k

    CERN Document Server

    Balachandran, Shankar

    2011-01-01

    Given a rectangle $R$, a Rectangular Dissection (RD) is a subdivision of $R$ into smaller rectangles by non-intersecting vertical or horizontal segments. Rectangular dissections are also called floorplans. In this paper we study the number of rectangular dissections which can be decomposed hierarchically. A rectangular partition is said to be a Hierarchical Rectangular Dissection (HRD) of order $k$ if the rectangular dissection can be obtained by starting from a single rectangle by embedding rectangular dissections of at most $k$ basic rectangles hierarchically. When $k=2$ this is exactly the class of guillotine rectangular dissections. Ackerman et al. proved that point-free rectangular dissections are in bijective correspondence with Baxter permutations. We characterize HRD-$k$, a sub-class of point-free rectangular dissections, based on the Baxter permutations corresponding to them. We provide a recurrence relation for the distinct number of HRD-$k$ with $n$ rooms by proving that they are in bijective corre...

  2. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.

  3. Growth of Bubble layer and Onset of Flow Instability in a vertical Narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    Even numerous studies have been constantly conducted to date, however the prediction of OFI is still questionable for wide range of conditions especially for low mass flux condition in narrow rectangular channel as reported in the previous works. In addition, the understanding of subcooled flow boiling structures at OFI is not sufficient due to lack of studies with visualization. In this regards, OFI experiment for downward and upward flow boiling in a narrow rectangular channel are newly conducted while visualizing boiling structure. Image processing method is adopted to quantify bubble layer thickness, which is turned out to be important factor to understand the OFI. Experimental studies on OFI in a narrow rectangular channel having gap size of 2.35 mm was conducted not only for downward flow but also upward flow condition. Flow boiling structures are visualized using HSV method and also quantized bubble boundary layers are obtained by using image processing method. Based on observation and analysis, the merging of facing vapor layers on opposite boiling surfaces is the key phenomena triggering OFI for both upward and downward flow.

  4. The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM): a review of the ICCVAM test method evaluation process and current international collaborations with the European Centre for the Validation of Alternative Methods (ECVAM).

    Science.gov (United States)

    Stokes, William S; Schechtman, Leonard M; Hill, Richard N

    2002-12-01

    Over the last decade, national authorities in the USA and Europe have launched initiatives to validate new and improved toxicological test methods. In the USA, the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and its supporting National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) were established by the Federal Government to work with test developers and Federal agencies to facilitate the validation, review, and adoption of new scientifically sound test methods, including alternatives that can refine, reduce, and replace animal use. In Europe, the European Centre for the Validation of Alternative Methods (ECVAM) was established to conduct validation studies on alternative test methods. Despite differences in organisational structure and processes, both organisations seek to achieve the adoption and use of alternative test methods. Accordingly, both have adopted similar validation and regulatory acceptance criteria. Collaborations and processes have also evolved to facilitate the international adoption of new test methods recommended by ECVAM and ICCVAM. These collaborations involve the sharing of expertise and data for test-method workshops and independent scientific peer reviews, and the adoption of processes to expedite the consideration of test methods already reviewed by the other organisation. More recently, NICEATM and ECVAM initiated a joint international validation study on in vitro methods for assessing acute systemic toxicity. These collaborations are expected to contribute to accelerated international adoption of harmonised new test methods that will support improved public health and provide for reduced and more-humane use of laboratory animals.

  5. Effects of excitation area of longitudinal transducer on the flexural vibration characteristics of a rectangular plate in stripe mode.

    Science.gov (United States)

    He, Xiping; Yao, Jing; Zhang, Haidao; Liu, Doudou; Li, Jiaxing

    2015-04-01

    The flexural vibration characteristics of a rectangular plate in stripe mode, driven at its center by a different longitudinal vibration ultrasonic transducer (LVUT) with different excitation area are investigated. The variation in the nodal lines and corresponding resonant frequency of the rectangular plate under different excitation area are calculated by using finite element method (FEM). The results show that the resonant frequency increases with the excitation area of the LVUT increasing, and the nodal lines bend obviously when the radius r of excitation area is greater than a certain value. The experimental tests are carried out by the aid of Polytec PSV-400 Scanning laser Vibrometer, and the results agree well those of numerically calculated. It indicates that the larger excitation area of longitudinal transducer may affect the ultrasonic field radiated by the rectangular plate.

  6. 基于改进结合界面边界条件方法的矩形柱驰振数值模拟%Numerical analysis of free rotation gallop of a rectangular cylinder using improved CIBC method

    Institute of Scientific and Technical Information of China (English)

    周岱; 何涛; 刘光众

    2013-01-01

    The combined interface boundary condition (CIBC) method has been developed as a remedy for time lag inherent in the loosely-coupled partitioned algorithm,whose correction terms for interfacial velocity and traction are introduced at two sequential time steps with a coupling parameter ω that plays an important part in the stability and accuracy of the coupled fluid-structure interaction system.However the structural traction rate that appears explicitly in the traction correction is estimated based on the solution of the structural subsystem,thus this handling needs the structural traction before it is corrected.In this paper a new formulation for the CIBC method is proposed to repair the foregoing inconvenience.The structural traction rate is removed via reformulating its correction term simply.Finally our new CIBC corrections request the structural traction no more,and are tuned by the ratio ω/△t that is served as the coupling parameter.The characteristic-based split (CBS) scheme is used to solve incompressible Navier-Stokes equations from the arbitrary Lagrangian-Eulerian viewpoint while the equation of rigid-body dynamics is solved by Newmark-β method.The moving submesh approach is performed for the fluid mesh deformation.For respecting geometric conservation law,a mass source term is implanted into the CBS scheme on the moving mesh.The rotational fluid-rigid body interaction is tested to validate the proposed methodology after discussing several numerical details.The obtained results are in good agreement with the existing data and some famous features of flow phenomena are exposed successfully.%针对流固耦合问题该文提出了一种改进结合界面边界条件方法,即通过重构界面修正公式,完全消除未经修正的拖曳力,引入新的耦合参数ω/△t以考虑时间步的影响.基于任意拉格朗日-欧拉有限元方法和弱耦合算法求解流固耦合系统.采用CBS(Characteristic-Based Split)稳定化流体有限元算

  7. ON THE BENDING, VIBRATION AND STABILITY OF LAMINATED RECTANGULAR PLATES WITH TRANSVERSELY ISOTROPIC LAYERS

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 陈伟球; 徐荣桥

    2001-01-01

    A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems.For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability)problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration ( stability).Numerical examples are finally presented and the effects of some parameters are discussed.

  8. Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice

    Institute of Scientific and Technical Information of China (English)

    Yize Wang; Fengming Li; Yuesheng Wang; Kikuo Kishimoto; Wenhu Huang

    2009-01-01

    In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic-electric coupling. The gener-alized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch-Floquet the-orem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the plane-wave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectric-ity with the larger lattice constant ratios and the filling frac-tions.

  9. The current distribution on the feeding probe in an air filled rectangular microstrip antenna

    DEFF Research Database (Denmark)

    Brown, K

    1989-01-01

    The current distribution on the probe and the input impedance of the rectangular air-filled microstrip antenna are calculated using the electrical-field integral equation (EFIE) formulation. A rigorous model for the coaxial line excitation is adopted which makes the formulation valid...... for electrically thick microstrip antennas. The EFIE is solved numerically using the moment method with a piecewise linear approximation of the patch current and a polynomial approximation of the probe current. It was found by numerous calculations that operating the microstrip antenna at the resonant frequency...... of the microstrip patch gives the best results with respect to the sidelobe level and cross-polar level. To validate the calculations, the impedance of the rectangular air-filled microstrip antenna was measured for the case h=6 mm and was found to agree with the calculated impedance...

  10. Non-Prestonian behavior of rectangular shaped ceria slurry in shallow trench isolation chemical mechanical planarization.

    Science.gov (United States)

    Kim, Ye-Hwan; Jung, Yeon-Gil; Yoon, Gwang Seob; Moon, Jinok; Watanabe, Akira; Naito, Makio; Paik, Ungyu

    2012-03-01

    Rectangular ceria particles were synthesized using the flash creation method. The influence of the morphology of ceria particles and the surfactant concentration on the removal rate was systematically investigated. These ceria slurries with polymeric surfactant molecules as the passivation agents of Si3N4 film, shows an exceptional non-Prestonian behaviors. The non-Prestonian behavior can be attributed to the increase in the contact area of the ceria particles with the SiO2 film, which is dominated by the morphology of the ceria particles. Force measurements using an atomic force microscope (AFM) at different concentrations of polymeric surfactant molecules was used to identify the interactions between the polymeric molecules and the oxide film and analyze the non-Prestonian behavior of ceria slurry having rectangular abrasives.

  11. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    Science.gov (United States)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  12. Enhancement of natural ventilation in rectangular enclosure with two openings by thin fin

    Institute of Scientific and Technical Information of China (English)

    YANG Yi; DENG Qi-hong

    2005-01-01

    A numerical method was used to study the natural ventilation in a rectangular enclosure with two symmetrical openings. In order to improve the natural ventilation efficiency, a fin was introduced into the enclosure.Steady-state heat transfer by laminar natural ventilation in a partially divided rectangular enclosure was investigated by numerically solving equations of mass, momentum and energy. Streamlines and isotherms were produced and heat transfer rate were calculated. A parametric study was carried out using the following parameters: Rayleigh number (1 × 103 - 1 × 106) , dimensionless length (0 - 0.7) and position values (-0. 7 - 0. 7). It is found that the Nusselt number is an increasing function of Rayleigh number. By comparing with no-fin case, it is concluded that fin can effectively enhance the natural ventilation in the enclosure.

  13. Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

    Directory of Open Access Journals (Sweden)

    Zhong-Qi Yue

    2012-01-01

    Full Text Available This paper presents the stress and displacement fields in a functionally graded material (FGM caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy.

  14. Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization

    Science.gov (United States)

    Zhou, Chuanqiang; Gong, Xiangxiang; Qu, Yun; Han, Jie

    2016-08-01

    A modified interfacial polymerization of aniline is developed to fabricate hydrophobic and adhesive polyaniline (PANI) layer of rectangular microtubes on the glass substrate. The modified method uses pentanol as an organic medium to dissolve aniline monomer, with the water film of oxidant and surfactant on the glass substrate as water phase. The effects of some synthetic parameters (such as monomer concentration, alcohol molecular structure and surfactant type) on the morphology of PANI layer are studied for better understanding the fabrication of PANI nanostructures on the film. The alcohol molecular structure plays key role for the supermolecular assembly of PANI chains into nanostructures, while the surfactant may direct the array and deposition of these nanostructures on the glass substrate. The formation reason of PANI rectangular sub-microtubes is roughly interpreted according to our previous works. Wettability experiment indicates that the as-prepared PANI layer exhibits excellent hydrophobicity and high adhesive properties to water drop.

  15. Channels Coordination Game Model Based on Result Fairness Preference and Reciprocal Fairness Preference: A Behavior Game Forecasting and Analysis Method

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2014-01-01

    preference and they are not jealous of manufacturers’ benefit, manufacturers will be more friendly to retailers. In such case, the total utility of the channel is higher compared with that of self-interest channel, and the utility of channel members is Pareto improved. If both manufactures and retailers consider reciprocal fairness preference, the manufacturers will give a lower wholesale price to the retailers. In return, the retailers will also reduce retail prices. Therefore, the total utility of the channels will not be less than the total utility of the channel coordination, as long as the reciprocity wholesale prices meet certain conditions.

  16. The refined theory of deep rectangular beams for symmetrical deformation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on elasticity theory, various one-dimensional equations for symmetrical deformation have been deduced systematically and directly from the two-dimensional theory of deep rectangular beams by using the Papkovich-Neuber solution and the Lur’e method without ad hoc assumptions, and they construct the refined theory of beams for symmetrical deformation. It is shown that the displacements and stresses of the beam can be represented by the transverse normal strain and displacement of the mid-plane. In the case of homogeneous boundary conditions, the exact solutions for the beam are derived, and the exact equations consist of two governing differential equations: the second-order equation and the transcendental equation. In the case of non-homogeneous boundary conditions, the approximate governing differential equations and solutions for the beam under normal loadings only and shear loadings only are derived directly from the refined beam theory, respectively, and the correctness of the stress assumptions in classic extension or compression problems is revised. Meanwhile, as an example, explicit expressions of analytical solutions are obtained for beams subjected to an exponentially distributed load along the length of beams.

  17. Deformation of rectangular thin glass plate coated with magnetostrictive material

    Science.gov (United States)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  18. Constructal design for a rectangular body with nonuniform heat generation

    Science.gov (United States)

    Feng, Huijun; Chen, Lingen; Xie, Zhihui; Sun, Fengrui

    2016-08-01

    Nonuniform heat generation models with constant and variable cross-section high-conductivity channels (HCCs) are built in this paper. The minimum dimensionless peak temperature (DPT) is taken as the optimization objective. Different from the models with uniform heat generation and constant cross-section HCCs built by Bejan (1997) and Ledezma et al. (1997), the model with nonuniform heat generation and variable cross-section HCC is more practical and can help to improve the heat conduction performance of a thermal system. The results show that for the rectangular first-order assembly (RFOA) with nonuniform heat generation, there exist both the optimal shape of the RFOA and the optimal HCCs width ratio, which lead to the minimum DPT. They are different from those with uniform heat generation. When the heat is nonuniformly generated in the RFOA, the minimum DPT of the RFOA with variable cross-section HCC is reduced by 12.11% compared with that with constant cross-section HCC. Moreover, the numerical results are also verified by the analytical method.

  19. Products of rectangular random matrices: singular values and progressive scattering.

    Science.gov (United States)

    Akemann, Gernot; Ipsen, Jesper R; Kieburg, Mario

    2013-11-01

    We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.

  20. Knight’s Tours on Rectangular Chessboards Using External Squares

    Directory of Open Access Journals (Sweden)

    Grady Bullington

    2014-01-01

    Full Text Available The classic puzzle of finding a closed knight’s tour on a chessboard consists of moving a knight from square to square in such a way that it lands on every square once and returns to its starting point. The 8 × 8 chessboard can easily be extended to rectangular boards, and in 1991, A. Schwenk characterized all rectangular boards that have a closed knight’s tour. More recently, Demaio and Hippchen investigated the impossible boards and determined the fewest number of squares that must be removed from a rectangular board so that the remaining board has a closed knight’s tour. In this paper we define an extended closed knight’s tour for a rectangular chessboard as a closed knight’s tour that includes all squares of the board and possibly additional squares beyond the boundaries of the board and answer the following question: how many squares must be added to a rectangular chessboard so that the new board has a closed knight’s tour?

  1. Permittivity and permeability determination for high index specimens using partially filled shorted rectangular waveguides

    CERN Document Server

    Scott, Mark M; Bean, Jeffrey A; Allen, Kenneth W

    2016-01-01

    A method for determining the permittivity and permeability for specimens with high refractive index and variable shape is investigated. The method extracts the permeability and permittivity tensor elements from reflection measurements made with a partially-filled shorted rectangular waveguide on an electrically small specimen. Measurements are performed for two isotropic, heavily loaded coaxial magnetic composites. Supporting measurements from a stripline cavity and coaxial airline are used to validate the method. The results demonstrate the methods ability to handle frequency dispersive and high index materials.

  2. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    Science.gov (United States)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  3. FLUJO INTERNO MIXTO CON DIFUSIÓN DOBLE DE CALOR Y MASA EN UNA CAVIDAD RECTANGULAR MIXED INTERNAL FLOW WITH DOUBLE DIFFUSION OF HEAT AND MASS

    Directory of Open Access Journals (Sweden)

    Carlos H Salinas Lira

    2008-09-01

    Full Text Available El presente trabajo muestra resultados de transporte de calor y masa (Doble al interior de una cavidad rectangular ocasionado por un flujo convectivo forzado y natural (Mixto. El modelo matemático consta de las ecuaciones de Navier-Stokes para describir el flujo laminar de un fluido incompresible. Además es modelado el transporte de calor y masa a través de dos ecuaciones diferenciales lineales de segunda orden, incorporando en forma lineal los efectos de los gradientes de concentración y de temperaturas. El modelo matemático es resuelto numéricamente a través del Método de Volúmenes Finitos descrito en coordenadas curvilíneas y variables colocalizadas, representando los términos difusivos a través de diferencia central y usando un esquema potencial para los términos convectivos. Se muestran resultados originales de patrones de flujo: Isotermas, isoconcentraciones y números de Nusselt y de Sherwood en regiones características para el problema de flujo interno mixto con difusión de calor y masa.The present work shows the relationship of the transport of heat and mass (double in a rectangular cavity caused by a forced and natural convection. The mathematical model consists of the Navier-Stokes equations to describe the incompressible laminar flow. The transport of heat and mass are modelled through two second order no-linear differential equations, incorporating in linear way the effects of gradients of concentrations and temperature. The mathematical problems is solved numerically through the Finite Volumes Method, in curvilinear coordinated and co-located variables, representing the diffusion through central difference and using a potential schemes for the convection terms. Original results of flow models are shown: Isotherms, isoconcentrations and numbers of Nusselt and Sherwood in characteristic regions for the mixed internal flow problem with heat and mass are shown.

  4. A two-component NZRI metamaterial based rectangular cloak

    Science.gov (United States)

    Islam, Sikder Sunbeam; Faruque, Mohammd Rashed Iqbal; Islam, Mohammad Tariqul

    2015-10-01

    A new two-component, near zero refractive index (NZRI) metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis) wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.

  5. Rectangular superpolynomials for the figure-eight knot

    CERN Document Server

    Kononov, Ya

    2016-01-01

    We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot $4_1$ in arbitrary rectangular representation $R=[r^s]$ as a sum over all Young sub-diagrams $\\lambda$ of $R$ with extraordinary simple coefficients $D_{\\lambda^{tr}}(r)\\cdot D_\\lambda(s)$ in front of the $Z$-factors. Somewhat miraculously, these coefficients are made from quantum dimensions of symmetric representations of the groups $SL(r)$ and $SL(s)$ and restrict summation to diagrams with no more than $s$ rows and $r$ columns. They possess a natural $\\beta$-deformation to Macdonald dimensions and produces positive Laurent polynomials, which can be considered as plausible candidates for the role of the rectangular superpolynomials. Both polynomiality and positivity are non-evident properties of arising expressions, still they are true. This extends the previous suggestions for symmetric and antisymmetric representations (when $s=1$ or $r=1$ respectively) to arbitrary rectangular representations. As usual for ...

  6. Critical submergence for isolated and dual rectangular intakes

    Indian Academy of Sciences (India)

    KEREM TASTAN

    2016-04-01

    This study examined critical submergence for isolated and dual rectangular intakes. It is shown that the critical submergence for an isolated intake can be predicted by disregarding whole boundary blockages on the complete imaginary critical sink surface that is the combination of imaginary complete critical cylindrical and hemi-spherical sink surfaces. It is proposed that this theory can be applied to the rectangular intakes located in general geometrical and flow conditions (i.e., intake in still water, circulation imposed flow, non-developedcross-flow, multiple intakes, etc.) and that it does not require computation of blockages caused from flow boundaries. The concept of complete sink surface (disregarding whole boundary blockages) developed for an isolated intake was also applied to dual rectangular intakes. The agreement between available test data and theoretical results was found to be satisfactory.

  7. Errors generated with the use of rectangular collimation

    Energy Technology Data Exchange (ETDEWEB)

    Parks, E.T. (Department of Allied Health, Western Kentucky University, Bowling Green (USA))

    1991-04-01

    This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques.

  8. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    Science.gov (United States)

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  9. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  10. Subwavelength rectangular cavity partially filled with left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Tian; Chen Yan; Feng Yi-Jun

    2006-01-01

    In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.

  11. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  12. A wideband rectangular-ring textile antenna integrated with corner-notched artificial magnetic conductor (AMC) plane

    Science.gov (United States)

    Aun, N. F. M.; Soh, P. J.; Jamlos, M. F.; Lago, H.; Al-Hadi, A. A.

    2017-01-01

    This paper presents the design of a wideband artificial magnetic conductor (AMC) for operation in the Wireless Body Area Network Ultra Wideband (WBAN-UWB) mandatory channel 6. The proposed AMC is incorporated onto a rectangular-ring patch antenna for operation centered at 8 GHz with 2 GHz of bandwidth. The incorporation of the AMC improved the antenna reflection coefficient and impedance bandwidth, besides shielding the radiator against on-body detuning. The prototype is fully fabricated using textiles except for an SMA connector used for feeding. It is observed that the experimental results are in good agreement with the simulations, and bandwidth broadening is successfully achieved and validated.

  13. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; YAO ZhiGang; YAO MingHui

    2009-01-01

    The bifurcations and chaotic dynamics of a simply supported symmetric cross-ply composite lami-nated piezoelectric rectangular plate are studied for the first time, which are simultaneously forced by the transverse, in-plane excitations and the excitation loaded by piezoelectric layers. Based on the Reddy's third-order shear deformation plate theory, the nonlinear governing equations of motion for the composite laminated piezoelectric rectangular plate are derived by using the Hamilton's principle. The Galerkin's approach is used to discretize partial differential governing equations to a two-degree-of-freedom nonlinear system under combined the parametric and external excitations. The method of multiple scales is employed to obtain the four-dimensional averaged equation. Numerical method is utilized to find the periodic and chaotic responses of the composite laminated piezoelectric rectangular plate. The numerical results indicate the existence of the periodic and chaotic responses in the aver-aged equation. The influence of the transverse, in-plane and piezoelectric excitations on the bifurca-tions and chaotic behaviors of the composite laminated piezoelectric rectangular plate is investigated numerically.

  14. Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The bifurcations and chaotic dynamics of a simply supported symmetric cross-ply composite lami- nated piezoelectric rectangular plate are studied for the first time, which are simultaneously forced by the transverse, in-plane excitations and the excitation loaded by piezoelectric layers. Based on the Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the composite laminated piezoelectric rectangular plate are derived by using the Hamilton’s principle. The Galerkin’s approach is used to discretize partial differential governing equations to a two-degree- of-freedom nonlinear system under combined the parametric and external excitations. The method of multiple scales is employed to obtain the four-dimensional averaged equation. Numerical method is utilized to find the periodic and chaotic responses of the composite laminated piezoelectric rectangular plate. The numerical results indicate the existence of the periodic and chaotic responses in the aver- aged equation. The influence of the transverse, in-plane and piezoelectric excitations on the bifurca- tions and chaotic behaviors of the composite laminated piezoelectric rectangular plate is investigated numerically.

  15. Large-N string tension from rectangular Wilson loops

    CERN Document Server

    Lohmayer, Robert

    2012-01-01

    In pure SU(N) gauge theory in four dimensions, we determine the string tension at large N from smeared rectangular Wilson loops on the lattice. We learn how well loops of sizes barely on the strong-coupling side of the large-N transition in their eigenvalue distribution can be described by effective string theory.

  16. Evaluation of Double Perforated Baffles Installed in Rectangular Secondary Clarifiers

    Directory of Open Access Journals (Sweden)

    Byonghi Lee

    2017-06-01

    Full Text Available Double perforated baffles in rectangular secondary clarifiers were studied to determine whether they contribute to producing high-quality effluents. The Computational Fluid Dynamics (CFD simulations indicated that bio-flocculation occurred at the front of the baffle and the longitudinal movement of the settled sludge was hampered whenever the clarifier had high inflow. Simulation results showed that the rectangular clarifier with the double perforated baffle produced an effluent with lower suspended solid (SS concentrations than the effluent from the clarifier without the baffle. To verify the simulation results, a double perforated baffle was installed in two of the 48 rectangular clarifiers in a 300,000 m3/d-capacity wastewater treatment plant. To study the effect of the baffle on solid removal, the effluent turbidity of the clarifier with and without the double perforated baffle was measured simultaneously. Experimental data showed that the double perforated baffle played a significant role in reducing effluent turbidity. The effluent turbidity reduction ratio with the baffle decreased when the Sludge Volume Index (SVI of the Mixed Liquor Suspended Solids (MLSS was below 100 mL/g. The overall average reduction ratio was 24.3% for SVI < 100 mL/g and 45.1% for SVI > 100 mL/g. The results of this study suggest that double perforated baffles must be installed in secondary rectangular clarifiers to produce high-quality effluent regardless of the operational conditions.

  17. Relationship between room shape and acoustics of rectangular concert halls

    DEFF Research Database (Denmark)

    Klosak, Andrzej K.; Gade, Anders Christian

    2008-01-01

    Extensive acoustics computer simulations have been made using Odeon computer simulation software. In 24 rectangular rooms representing "shoe-box" type concert halls with volumes of 8 000 m3, 12 000 m3 and 16 000 m3 from 300 to 850 measurements positions have been analysed. Only room averaged...

  18. Free vibrations of rectangular orthotropic shallow shells with varying thickness

    Science.gov (United States)

    Budak, V. D.; Grigorenko, A. Ya.; Puzyrev, S. V.

    2007-06-01

    The paper proposes a numerical-analytic approach to studying the free vibrations of orthotropic shallow shells with double curvature and rectangular planform. The approach is based on the spline-approximation of unknown functions. Calculations are carried out for different types of boundary conditions. The influence of the mid-surface curvature and variable thickness on the behavior of dynamic characteristics is studied

  19. Three-dimensional analysis of a thick FGM rectangular plate in thermal environment

    Institute of Scientific and Technical Information of China (English)

    陈伟球; 边祖光; 丁皓江

    2003-01-01

    The thermal behavior of a thick transversely isotropic FGM rectangular plate was investigated within the scope of three-dimensional elasticity. Noticing many FGMs may have temperature-dependent properties, the material constants were further considered as functions of temperature. A solution method based on state-space formulations with a laminate approximate model was proposed. For a thin plate, the method was clarified by comparison with the thin plate theory. The influences of material inhomogeneity and temperature-dependent characteristics were finally discussed through numerical examples.

  20. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  1. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    2010-01-01

    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  2. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  3. Outcomes mapping: a method for dental schools to coordinate learning and assessment based on desired characteristics of a graduate.

    Science.gov (United States)

    Schneider, Galen B; Cunningham-Ford, Marsha A; Johnsen, David C; Eckert, Mary Lynn; Mulder, Michael

    2014-09-01

    This project, utilizing a seldom-used approach to dental education, was designed to define the desired characteristics of a graduating dental student; convert those characteristics to educational outcomes; and use those outcomes to map a dental school's learning and assessment programs, based on outcomes rather than courses and disciplines. A detailed rubric of the outcomes expected of a graduating dental student from this school was developed, building on Commission on Dental Accreditation (CODA) standards and the school's competencies. The presence of each characteristic in the rubric was mapped within and across courses and disciplines. To assess implementation of the rubric, members of two faculty committees and all fourth-year students were asked to use it to rate 1) the importance of each characteristic, 2) the extent to which the school teaches and assesses each, and 3) the extent to which each counts toward overall assessment of competence. All thirty-three faculty members (100 percent) on the committees participated, as did forty-six of the fifty-five students (84 percent). The groups gave high scores to the importance of each characteristic, especially for knowledge and technical competence (then separate categories but merged in the final rubric) and for self-assessment, as well as the extent to which they are being taught and assessed. Respondents most commonly named critical thinking as the area that should be emphasized more. Mapping the curriculum and creating its related database allow the faculty and administration to more systematically coordinate learning and assessment than was possible with a course-based approach.

  4. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  5. Effects due to the anisotropic stretching of the surface-fitting grid on the traveltime computation for irregular surface by the coordinate transforming method%贴体网格各向异性对坐标变换法求解起伏地表下地震初至波走时的影响

    Institute of Scientific and Technical Information of China (English)

    兰海强; 张智; 徐涛; 白志明

    2012-01-01

    笛卡尔坐标系中的经典程函方程在静校正、叠前偏移、走时反演、地震定位、层析成像等很多地球物理工作中都有应用,然而用其计算起伏地表的地震波走时却比较困难.本文通过把曲线坐标系中的矩形网格映射到笛卡尔坐标系的贴体网格,推导出曲线坐标中的程函方程,而后,用Lax-Friedrichs快速扫描算法求解曲线坐标系的程函方程.研究表明本文方法能有效处理地表起伏的情况,得到准确稳定的计算结果.由于地表起伏,导致与之拟合的贴体网格在空间上的展布呈各向异性,且这种各向异性的强弱对坐标变换法求解地震初至波的走时具有重要影响.本文研究表明,随着贴体网格的各向异性增强,用坐标变换法求解地表起伏区域的走时计算误差增大,且计算效率降低,这在实际应用具有指导意义.%The classical eikonal equation is commonly used in Cartesian coordinate system for problems that involve static correction, prestack migration, earthquake location and seismic tomography, but is less effective for calculating travel times in an earth model that has an irregular surface. We have presented a topography-dependent eikonal equation in a curvilinear coordinate system that makes use of the surface-fitting grid and map a rectangular grid onto a curved grid. Then, we utilized the efficient Lax-Friedrichs sweeping scheme to approximate the viscosity solutions of the eikonal equation in the curvilinear coordinate system. In this paper, we investigate the impacts due to the anisotropic stretching of the surface-fitting grid on the traveltime computation by using the topography-dependent eikonal equation, which has a significant meaning in the direction of our method in geophysical application.

  6. Quantifying linguistic coordination

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Tylén, Kristian

    ). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities......Language has been defined as a social coordination device (Clark 1996) enabling innovative modalities of joint action. However, the exact coordinative dynamics over time and their effects are still insufficiently investigated and quantified. Relying on the data produced in a collective decision...

  7. Coordination Capacity

    CERN Document Server

    Cuff, Paul; Cover, Thomas

    2009-01-01

    We develop elements of a theory of cooperation and coordination in networks. Rather than considering a communication network as a means of distributing information, or of reconstructing random processes at remote nodes, we ask what dependence can be established among the nodes given the communication constraints. Specifically, in a network with communication rates between the nodes, we ask what is the set of all achievable joint distributions p(x1, ..., xm) of actions at the nodes on the network. Several networks are solved, including arbitrarily large cascade networks. Distributed cooperation can be the solution to many problems such as distributed games, distributed control, and establishing mutual information bounds on the influence of one part of a physical system on another.

  8. Biomechanical evaluation of immediate stability with rectangular versus cylindrical interbody cages in stabilization of the lumbar spine

    Directory of Open Access Journals (Sweden)

    Webb John K

    2002-10-01

    Full Text Available Abstract Background Recent cadaver studies show stability against axial rotation with a cylindrical cage is marginally superior to a rectangular cage. The purpose of this biomechanical study in cadaver spine was to evaluate the stability of a new rectangular titanium cage design, which has teeth similar to the threads of cylindrical cages to engage the endplates. Methods Ten motion segments (five L2-3, five L4-5 were tested. From each cadaver spine, one motion segment was fixed with a pair of cylindrical cages (BAK, Sulzer Medica and the other with paired rectangular cages (Rotafix, Corin Spinal. Each specimen was tested in an unconstrained state, after cage introduction and after additional posterior translaminar screw fixation. The range of motion (ROM in flexion-extension, lateral bending, and rotation was tested in a materials testing machine, with +/- 5 Nm cyclical load over 10 sec per cycle; data from the third cycle was captured for analysis. Results ROM in all directions was significantly reduced (p Conclusions There was no significant difference in immediate stability in any direction between the threaded cylindrical cage and the new design of the rectangular cage with endplate teeth.

  9. 全站仪坐标法在直线定线中的应用%Total station coordinate method in the application of the linear alignment

    Institute of Scientific and Technical Information of China (English)

    刘艳杰; 张信栓

    2015-01-01

    针对实际施工测量中存在的问题,对全站仪坐标法直线定线的具体实施过程进行了详细介绍,指出该方法在实际的工程施工定线中有较好的应用优势,能够解决施工中直线定线的难题。%In this paper,according to some problems in factual construction measurement,the process for the implementation of the total station coordinate method has made the detailed introduction,point out the method in actual engineering construction has very good application advanta-ges of alignment,alignment problem can be solved during the construction of the straight line.

  10. Solving Einstein's Equations With Dual Coordinate Frames

    CERN Document Server

    Scheel, M A; Lindblom, L; Pfeiffer, H P; Rinne, O; Teukolsky, S A; Kidder, Lawrence E.; Lindblom, Lee; Pfeiffer, Harald P.; Rinne, Oliver; Scheel, Mark A.; Teukolsky, Saul A.

    2006-01-01

    A method is introduced for solving Einstein's equations using two distinct coordinate systems. The coordinate basis vectors associated with one system are used to project out components of the metric and other fields, in analogy with the way fields are projected onto an orthonormal tetrad basis. These field components are then determined as functions of a second independent coordinate system. The transformation to the second coordinate system can be thought of as a mapping from the original ``inertial'' coordinate system to the computational domain. This dual-coordinate method is used to perform stable numerical evolutions of a black-hole spacetime using the generalized harmonic form of Einstein's equations in coordinates that rotate with respect to the inertial frame at infinity; such evolutions are found to be generically unstable using a single rotating coordinate frame. The dual-coordinate method is also used here to evolve binary black-hole spacetimes for several orbits. The great flexibility of this met...

  11. Resonance in a superstrate-loaded cylindrical-rectangular microstrip structure

    Science.gov (United States)

    Wong, Kin-Lu; Cheng, Yuan-Tung; Row, Jeen-Sheen

    1993-05-01

    The complex resonant frequencies of the cylindrical-rectangular microstrip structure loaded with a dielectric superstrate layer is studied by using a rigorous full-wave analysis and the numerical results are obtained by using the Galerkin's moment method calculation. The numerical convergence for the selected sinusoidal basis functions with and without the edge singularity condition is also discussed. Numerical results for the dependence of the real and imaginary parts of the complex resonant frequencies on the superstrate permittivity and thickness are calculated and analyzed, which are also compared with those obtained for the planar microstrip structure.

  12. A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Cai-xia

    2008-01-01

    This paper deals with a new nonconforming anisotropic rectangular finite element approximation for the planar elasticity problem with pure displacement boundary condition. By use of the special properties of this element,and by introducing the complementary space and a series of novel techniques,the optimal error estimates of the energy norm and the L2-norm are obtained. The restrictions of regularity assumption and quasi-uniform assumption or the inverse assumption on the meshes required in the conventional finite element methods analysis are to be got rid of and the applicable scope of the nonconforming finite elements is extended.

  13. Elastoplastic numerical analysis of layered soil foundation under the rectangular shallow footing subjected to vertical load

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Finite and infinite coupled element method was used to analyze the strength and deformation in layered soil foundation which was under the rectangular shallow footing subjected to vertical loads. In the numerical analysis, the footing was assumed to be elastic; the soil was assumed to be elastoplastic and the Drucker-Prager constitutive model was applied to describe its mechanic behavior. Corresponding program was employed to compute six kinds of layered soil foundations constituted by different soil layers. The conclusions which are useful in the theory and practice were made according to the analysis of the computation results.

  14. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    Science.gov (United States)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  15. A Rectangular Split Ring Double Negative Metamaterial having Simultaneous Negative Permittivity and Permeability

    Directory of Open Access Journals (Sweden)

    Muhammad Waqas

    2014-06-01

    Full Text Available The scope of this paper is to design and simulate a novel structure having simultaneous negative permittivity and permeability so called double negative metamaterial or left handed material. The DNG structure consists of five rectangular split ring resonators on one side of dielectric medium and a couple of wires on other side. The complex permittivity, permeability and refractive index are determined from simulated Scattering parameters using direct retrieval method. Simulations of DNG structure are carried out using CST MWS. MATLAB is used for verification of negative values of structure's parameter.

  16. Coordination of Conditional Poisson Samples

    Directory of Open Access Journals (Sweden)

    Grafström Anton

    2015-12-01

    Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.

  17. A new method for the derivation of exact vibration-rotational kinetic energy operator in internal coordinates

    Institute of Scientific and Technical Information of China (English)

    陈光巨; 刘若庄

    1997-01-01

    An efficient angular momentum method is presented and used to derive analytic expressions for the vibration-rotational kinetic energy operator of polyatomic molecules.The vibration-rotational kinetic energy operator is expressed in terms of the total angular momentum operator J,the angular momentum operator J and the momentum operator p conjugate to Z in the molecule-fixed frame Not only the method of derivation is simpler than that in the previous work,but also the expressions ot the kinetic energy operators arc more compact.Particularly,the operator is easily applied to different vibrational or rovibrational problems of the polyatomic molecules by variations of matrix elements Gn of a mass-dependent constant symmetric matrix

  18. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  19. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  20. Study of a two-dimension transient heat propagation in cylindrical coordinates by means of two finite difference methods

    Science.gov (United States)

    Dumencu, A.; Horbaniuc, B.; Dumitraşcu, G.

    2016-08-01

    The analytical approach of unsteady conduction heat transfer under actual conditions represent a very difficult (if not insurmountable) problem due to the issues related to finding analytical solutions for the conduction heat transfer equation. Various techniques have been developed in order to overcome these difficulties, among which the alternate directions method and the decomposition method. Both of them are particularly suited for two-dimension heat propagation. The paper deals with both techniques in order to verify whether the results provided are in good accordance. The studied case consists of a long hollow cylinder, and considers that the time-dependent temperature field varies both in the radial and the axial directions. The implicit technique is used in both methods and involves the simultaneous solving of a set of equations for all of the nodes for each time step successively for each of the two directions. Gauss elimination is used to obtain the solution of the set, representing the nodal temperatures. After using the two techniques the results show a very good agreement, and since the decomposition is easier to use in terms of computer code and running time, this technique seems to be more recommendable.

  1. Differential expansion and rectangular HOMFLY for the figure eight knot

    Directory of Open Access Journals (Sweden)

    A. Morozov

    2016-10-01

    Full Text Available Differential expansion (DE for a Wilson loop average in representation R is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of 3d Chern–Simons theory. Especially simple is the relation between the DE for the trefoil 31 and for the figure eight knot 41. Since arbitrary colored HOMFLY for the trefoil are known from the Rosso–Jones formula, it is therefore enough to find their DE in order to make a conjecture for the figure eight. We fulfill this program for all rectangular representation R=[rs], i.e. make a plausible conjecture for the rectangularly colored HOMFLY of the figure eight knot, which generalizes the old result for totally symmetric and antisymmetric representations.

  2. Performance of NBPE in Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-02-01

    Full Text Available In this paper we use a rectangular microstrip patch antenna with fed patch contains four notches of equal Length and width (L×W and having one parasitic patch, to achieve dual band operation of proposed microstrip patch antenna, is analyzed using circuit theory concept. The theoretical and simulated results of proposed antenna are compared. The return loss of NBPE using rectangular microstrip patch antenna decreased and bandwidth at dual operating frequency 1.44 GHz & 1.80 GHz are increased at a substrate height of 1.6 mm. This paper shows the decreased in return loss & improves in Gain as well as bandwidth using NBPE. These structures are simulated using IE3D version 12.29 Zeland software incorporation.

  3. Differential expansion and rectangular HOMFLY for the figure eight knot

    CERN Document Server

    Morozov, A

    2016-01-01

    Differential expansion (DE) for a Wilson loop average in representation $R$ is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of $3d$ Chern-Simons theory. Especially simple is the relation between the DE for the trefoil $3_1$ and for the figure eight knot $4_1$. Since arbitrary colored HOMFLY for the trefoil are known from the Rosso-Jones formula, it is therefore enough to find their DE in order to make a conjecture for the figure eight. We fulfil this program for all rectangular representation $R=[r^s]$, i.e. make a plausible conjecture for the rectangularly colored HOMFLY of the figure eight knot, which generalizes the old result for totally symmetric and antisymmetric representations.

  4. Differential expansion and rectangular HOMFLY for the figure eight knot

    Science.gov (United States)

    Morozov, A.

    2016-10-01

    Differential expansion (DE) for a Wilson loop average in representation R is built to respect degenerations of representations for small groups. At the same time it behaves nicely under some changes of the loop, e.g. of some knots in the case of 3d Chern-Simons theory. Especially simple is the relation between the DE for the trefoil 31 and for the figure eight knot 41. Since arbitrary colored HOMFLY for the trefoil are known from the Rosso-Jones formula, it is therefore enough to find their DE in order to make a conjecture for the figure eight. We fulfill this program for all rectangular representation R = [rs ], i.e. make a plausible conjecture for the rectangularly colored HOMFLY of the figure eight knot, which generalizes the old result for totally symmetric and antisymmetric representations.

  5. Sound equalization in a large region of a rectangular enclosure

    DEFF Research Database (Denmark)

    Sarris, John C.; Jacobsen, Finn; Cambourakis, Georg E.

    2004-01-01

    The work presented by Santillán [J. Acoust. Soc. Am. 110, 1989–1997 (2001)] about equalization at low frequencies in rectangular enclosures is extended, and topics that remained unaddressed in the original study are treated in this paper. A modification is introduced to the original cost function...... the dependence of the limits of the zone of equalization on factors such as the damping constant of the modes of the enclosure, the number of sources, and the driving frequency. ©2004 Acoustical Society of America.......The work presented by Santillán [J. Acoust. Soc. Am. 110, 1989–1997 (2001)] about equalization at low frequencies in rectangular enclosures is extended, and topics that remained unaddressed in the original study are treated in this paper. A modification is introduced to the original cost function...

  6. Characterizing octagonal and rectangular fibers for MAROON-X

    CERN Document Server

    Sutherland, Adam P; Miller, Katrina R; Seifahrt, Andreas; Bean, Jacob L

    2016-01-01

    We report on the scrambling performance and focal-ratio-degradation (FRD) of various octagonal and rectangular fibers considered for MAROON-X. Our measurements demonstrate the detrimental effect of thin claddings on the FRD of octagonal and rectangular fibers and that stress induced at the connectors can further increase the FRD. We find that fibers with a thick, round cladding show low FRD. We further demonstrate that the scrambling behavior of non-circular fibers is often complex and introduce a new metric to fully capture non-linear scrambling performance, leading to much lower scrambling gain values than are typically reported in the literature (<1000 compared to 10,000 or more). We find that scrambling gain measurements for small-core, non-circular fibers are often speckle dominated if the fiber is not agitated.

  7. A Novel Dual-Band Circularly Polarized Rectangular Slot Antenna

    Directory of Open Access Journals (Sweden)

    Biao Li

    2016-01-01

    Full Text Available A coplanar waveguide fed dual-band circularly polarized rectangular slot antenna is presented. The proposed antenna consists of a rectangular metal frame acting as a ground and an S-shaped monopole as a radiator. The spatial distribution of the surface current density is employed to demonstrate that the circular polarization is generated by the S-shaped monopole which controls the path of the surface currents. An antenna prototype, having overall dimension 37 × 37 × 1 mm3, has been fabricated on FR4 substrate with dielectric constant 4.4. The proposed antenna achieves 10 dB return loss bandwidths and 3 dB axial ratio (AR in the frequency bands 2.39–2.81 GHz and 5.42–5.92 GHz, respectively. Both these characteristics are suitable for WLAN and WiMAX applications.

  8. Free vibration analysis of rectangular plates with central cutout

    Directory of Open Access Journals (Sweden)

    Kanak Kalita

    2016-12-01

    Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

  9. Boiling heat transfer in horizontal and inclined rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.M.; Mobarak, A.; Hilal, M.; Mohareb, M.R. (Cairo Univ. (Egypt))

    1987-05-01

    The present experimental investigation is concerned with boiling heat transfer of water inside both horizontal and inclined rectangular channels under a relatively low heat flux. These configurations simulate the absorber channel of line-focus solar concentrations under boiling conditions. The experimental facility includes electrically heated aluminum rectangular channels with aspect ratios of 2.67 and 0.37. The experimental results of the two-phase Nusselt number for the two aspect ratios and for the inclination angles 0, 15, 30, and 45 deg were correlated in terms of a ratio of the two-phase to the liquid-phase Reynolds number for the forced-convection vaporization region. The proposed correlations agree well with previous investigations. In the present work, classifications of the various flow patterns were made by direct observation through a glass window at the end of the test section.

  10. Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

    Science.gov (United States)

    Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1977-01-01

    Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

  11. SIMPLE MODEL FOR THE INPUT IMPEDANCE OF RECTANGULAR MICROSTRIP ANTENNA

    Directory of Open Access Journals (Sweden)

    Celal YILDIZ

    1998-03-01

    Full Text Available A very simple model for the input impedance of a coax-fed rectangular microstrip patch antenna is presented. It is based on the cavity model and the equivalent resonant circuits. The theoretical input impedance results obtained from this model are in good agreement with the experimental results available in the literature. This model is well suited for computer-aided design (CAD.

  12. A projectile for a rectangular barreled rail gun

    OpenAIRE

    Juanche, Francisco M.

    1999-01-01

    The Physics Department at the Naval Postgraduate School is developing a concept to overcome the problems that keep present rail guns from being practical weapons. The rails must be replaced often if the rail gun operation is to be continuous. Replacing the rails in present rail gun configurations is time consuming. The Physics Department's design concept uses a rectangular barrel as part of the solution to the problem of replacing the rails. The projectile will require flat surfaces to mainta...

  13. Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Rui Li

    2012-07-01

    In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.

  14. CAOS CUÁNTICO EN UN BILLAR RECTANGULAR

    Directory of Open Access Journals (Sweden)

    Edgar González

    2008-09-01

    Full Text Available Numeric study of the rectangular billiards is approached from the context of the causal quantum theory.The conditions that make possible the existence of quantum chaos are verified, identifying irregularbehavior through criteria such Lyapunov exponents and power spectra. Quantum potential is determinedas well as Wigner and Ferry-Zhou potentials, analyzing the role they play in the expressions of quantumchaos and its correspondence in the classic limit.

  15. Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    Energy Technology Data Exchange (ETDEWEB)

    B. Hendrickson; T.G. Kolda

    1998-09-01

    A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.

  16. Coordinate-Space Solver for Superfluid Many-Fermion Systems with Shifted Conjugate Orthogonal Conjugate Gradient Method

    CERN Document Server

    Jin, Shi; Roche, Kenneth; Wlazłowski, Gabriel

    2016-01-01

    Self-consistent approaches to superfluid many-fermion systems in 3-dimensions (and subsequent time-dependent approaches) require a large number of diagonalizations of very large dimension hermitian matrices, which results in enormous computational costs. We present an approach based on the shifted conjugate-orthogonal conjugate-gradient (COCG) method for the evaluation of the Green's function, from which we subsequently extract various densities (particle number, spin, current, kinetic energy, etc.) of a nuclear system needed in self-consistent approaches. The approach eschews the construction of the quasiparticle wavefunctions and their corresponding quasiparticle energies, which are never explicitly needed in any density functional approaches. As benchmarks we present calculations for nuclei with axial symmetry, including the ground state of spherical (magic or semi-magic) and axially deformed nuclei, the saddle-point in the $^{240}$Pu constrained fission path, and a vortex in the neutron star crust.

  17. Mechanical Behavior of Rectangular Steel-Reinforced ECC/Concrete Composite Column under Eccentric Compression

    Institute of Scientific and Technical Information of China (English)

    潘金龙; 鲁冰; 顾大伟; 夏正昊; 夏天阳

    2015-01-01

    In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite (ECC) is introduced to partially substitute concrete in the edge zone of reinforced concrete columns and form reinforced ECC/concrete composite columns. Firstly, based on the assumption of plane remaining plane and the simplified constitutive models, the calculation method of the load-carrying capacity of reinforced ECC/concrete columns is proposed. The stress and strain distribu-tions and crack propagation of the composite columns in different states of eccentric compressive loading are ana-lyzed. Then, nonlinear finite element analysis is conducted to study the mechanical performance of reinforced ECC/concrete composite columns with rectangular cross section. It is found that the simulation results are in good agreement with the theoretical results, indicating that the proposed method for calculating the load-carrying capacity of concrete/ECC composite columns is valid. Finally, based on the proposed method, the effects of ECC thickness, com-pressive strength of concrete and longitudinal reinforcement ratio on the mechanical performance of reinforced ECC/concrete composite columns are analyzed. Calculation results indicate that increasing the thickness of ECC layer or longitudinal reinforcement ratio can effectively increase the ultimate load-carrying capacity of the composite column with both small and large eccentricity, but increasing the strength of concrete can only increase the ultimate load-carrying capacity of the composite column with small eccentricity.

  18. High-T{sub c} superconducting rectangular microstrip patch covered with a dielectric layer

    Energy Technology Data Exchange (ETDEWEB)

    Bedra, Sami, E-mail: s_bedra@yahoo.fr [Department of Industrial Engineering, University of Khenchela, 40004 Khenchela (Algeria); Fortaki, Tarek [Electronics Department, University of Batna, 05000 Batna (Algeria)

    2016-05-15

    Highlights: • We model a microstrip antenna with a dielectric cover and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics • The accuracy of the method is checked by comparing our results with published data • The superconducting patch affects the resonant characteristics of the antenna • Patch on substrate–superstrate configuration is more advantageous than the one on single layer. - Abstract: This paper presents a full-wave method to calculate the resonant characteristics of rectangular microstrip antenna with and without dielectric cover, to explain the difference of performance with temperature between superconducting and normal conducting antenna. Especially the characteristics of high temperature superconducting (HTS) antenna were almost ideal around the critical temperature (T{sub c}). The dyadic Green's functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The computed results are found to be in good agreement with results obtained using other methods. Also, the effects of the superstrate on the resonant frequency and bandwidth of rectangular microstrip patch in a substrate–superstrate configuration are investigated. This type of configuration can be used for wider bandwidth by proper selection of superstrate thickness and its dielectric constants.

  19. Energy shaping for coordinating internally actuated vehicles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper considers the stable coordination problem of two vehicles equipping with internal moving mass actuators.The coordinating and stabilizing control are derived by energy shaping. The proposed method is physically motivated and avoids cancelation or domination of nonlinearities.

  20. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.

    Science.gov (United States)

    Dutta, Debashis

    2016-02-01

    In this article, we analyze the effect of channel sidewalls on the broadening of analyte bands resulting from Joule heating during their electrokinetic migration through a rectangular conduit. A method-of-moments formulation has been used to numerically evaluate the Taylor-Aris dispersivity of sample zones under these conditions for thin electrical double layers applicable to a majority of microfluidic assays. Our analysis shows that the larger surface area to volume ratio around the side regions of a rectangular channel causes these corners to stay cooler than the rest of the conduit. While such a thermal profile does not modify the electroosmotic flow in the system for a fixed temperature at the channel walls, it reduces the electrophoretic transport rate by about 10% for small temperature differentials across the channel cross-section (effect of these thermal gradients on the hydrodynamic dispersion of analyte bands is more significant however, increasing such band broadening by nearly an order of magnitude in large aspect ratio designs. Our analyses further show that the trends noted above are magnified when a fixed heat transfer coefficient is assumed at the channel walls, in which case, the temperature along this boundary is no longer constant. The non-isothermal channel walls combined with the temperature dependence of zeta potential and other material properties in this situation leads to a non-uniform electroosmotic slip velocity in the system modifying both fluid and analyte transport rates. Again, while the resulting solute flow profile reduces the migration velocity of sample zones only to a moderate extent, it is found to increase the hydrodynamic dispersion of analyte bands by several orders of magnitude in large aspect ratio rectangular channels.