WorldWideScience

Sample records for reconfigurable all-optical universal

  1. Rapidly Reconfigurable All-Optical Universal Logic Gates

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, L L; Kallman, J S; Bond, T C

    2006-06-21

    We present designs and simulations for a highly cascadable, rapidly reconfigurable, all-optical, universal logic gate. We will discuss the gate's expected performance, e.g. speed, fanout, and contrast ratio, as a function of the device layout and biasing conditions. The gate is a three terminal on-chip device that consists of: (1) the input optical port, (2) the gate selection port, and (3) the output optical port. The device can be built monolithically using a standard multiple quantum well graded index separate confinement heterostructure laser configuration. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog electrical or optical signal at the gate selection port. Specifically, the same gate can be selected to execute one of the 2 basic unary operations (NOT or COPY), or one of the 6 binary operations (OR, XOR, AND, NOR, XNOR, or NAND), or one of the many logic operations involving more than two inputs. The speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal modulation speed of a laser, which can be on the order of tens of GHz. The reprogrammable nature of the universal gate offers maximum flexibility and interchangeability for the end user since the entire application of a photonic integrated circuit built from cascaded universal logic gates can be changed simply by adjusting the gate selection port signals.

  2. Rapidly reconfigurable all-optical universal logic gate

    Science.gov (United States)

    Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  3. A reconfigurable all-optical VPN based on XGM effect of SOA in WDM PON

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Tao; Su, Yikai

    2010-12-01

    We propose and experimentally demonstrate a reconfigurable all-optical VPN scheme enabling intercommunications among different ONUs in a WDM PON. Reconfiguration is realized by dynamically setting wavelength conversion of optical VPN signal using a SOA in the OLT.

  4. The All Optical New Universal Gate Using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-06-01

    Full Text Available Since the seventies of the past century the reversible logic has originated as an unconventional form of computing. It is new relatively in the area of extensive applications in quantum computing, low power CMOS, DNA computing, digital signal processing (DSP, nanotechnology, communication, optical computing, computer graphics, bio information, etc .Here we present and configure a new TAND gate in all-optical domain and also in this paper we have explained their principle of operations and used a theoretical model to fulfil this task, finally supporting through numerical simulations. In the field of ultra-fast all-optical signal processing Terahertz Optical Asymmetric Demultiplexer (TOAD, semiconductor optical amplifier (SOA-based, has an important function. The different logical (composing of Boolean function operations can be executed by designed circuits with TAND gate in the domain of universal logic-based information processing.

  5. Universal quantum computation using all-optical hybrid encoding

    Institute of Scientific and Technical Information of China (English)

    郭奇; 程留永; 王洪福; 张寿

    2015-01-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.

  6. All-optical reconfigurable multi-logic gates based on nonlinear polarization rotation effect in a single SOA

    Institute of Scientific and Technical Information of China (English)

    Lilin Yi; Weisheng Hu; Hao He; Yi Dong; Yaohui Jin; Weiqiang Sun

    2011-01-01

    We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a singlc semiconductor optical amplifier (SOA). Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability. The operation principle is explained in detail. By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.%@@ We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a single semiconductor optical amplifier (SOA).Five logic functions, including NOT, OR, NOR, AND, and NAND, are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability.The operation principle is explained in detail.By adjusting polarization controllers, multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.

  7. Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhang Yin; Dong Jian-Ji; Lei Lei; Zhang Xin-Liang

    2012-01-01

    All-optical digital logic elementary circuits are the building blocks of many important computational operations in future high-speed all-optical networks and computing systems.Multifunctional and reconfigurable logic units are essential in this respect.Employing the demodulation properties of delay interferometers for input differential phase shift keying signals and the gain saturation effect in two parallel semiconductor optical amplifiers,a novel design of 40 Gbit/s reconfigurable all-optical dual-directional half-subtractor is proposed and demonstrated.All output logic results show that the scheme achieves over 11=dB extinction ratio,clear and wide open eye diagram,as well as low polarization dependence (< 1 dB),without using any additional input light beam.The scheme may provide a promising candidate for future ultrafast all-optical signal processing applications.

  8. Reconfigurable Mixed Mode Universal Filter

    Directory of Open Access Journals (Sweden)

    Neelofer Afzal

    2014-01-01

    Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.

  9. Universal Reconfiguration of (Hyper-)cubic Robots

    OpenAIRE

    Abel, Zachary; Kominers, Scott D.

    2008-01-01

    We study a simple reconfigurable robot model which has not been previously examined: cubic robots comprised of three-dimensional cubic modules which can slide across each other and rotate about each others' edges. We demonstrate that the cubic robot model is universal, i.e., that an n-module cubic robot can reconfigure itself into any specified n-module configuration. Additionally, we provide an algorithm that efficiently plans and executes cubic robot motion. Our results directly extend to a...

  10. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  11. University Restructuring and the Reconfiguration of Faculty Members' Work Context in a Public State University in Mexico

    Science.gov (United States)

    Montero-Hernandez, Virginia; Levin, John S.

    2013-01-01

    This study describes the effects of neo-liberal restructuring for universities upon the reconfiguration of academics' work context in a public state university in Mexico. Findings show that implementation of the federal program titled Faculty Enhancement Program during the late 1990s created a separation between traditional and new academic…

  12. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping

    2015-01-01

    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  13. A Universal Concept for Robust Solving of Shortest Path Problems in Dynamically Reconfigurable Graphs

    Directory of Open Access Journals (Sweden)

    Jean Chamberlain Chedjou

    2015-01-01

    Full Text Available This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a the graph topology (through the “incidence matrix”, (b the edge weights (with dynamic external weights’ setting capability, and (c the dynamic reconfigurability through external input(s of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.

  14. All-optical analog comparator

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Zhao, Dongliang; Zhao, Yongpeng; Wang, Yuncai

    2016-08-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical devices. In this work, we propose a new concept of an all-optical analog comparator and numerically demonstrate an implementation based on a quarter-wavelength-shifted distributed feedback laser diode (QWS DFB-LD) with multiple quantum well (MQW) structures. Our results show that the all-optical comparator is very well suited for true AO-ADCs, enabling the whole digital conversion from an analog optical signal (continuous-time signal or discrete pulse signal) to a binary representation totally in the optical domain. In particular, this all-optical analog comparator possesses a low threshold power (several mW), high extinction ratio (up to 40 dB), fast operation rate (of the order of tens of Gb/s) and a step-like transfer function.

  15. All-optical reservoir computing.

    Science.gov (United States)

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  16. All-optical analog comparator

    OpenAIRE

    Pu Li; Xiaogang Yi; Xianglian Liu; Dongliang Zhao; Yongpeng Zhao; Yuncai Wang

    2016-01-01

    An analog comparator is one of the core units in all-optical analog-to-digital conversion (AO-ADC) systems, which digitizes different amplitude levels into two levels of logical ‘1’ or ‘0’ by comparing with a defined decision threshold. Although various outstanding photonic ADC approaches have been reported, almost all of them necessitate an electrical comparator to carry out this binarization. The use of an electrical comparator is in contradiction to the aim of developing all-optical device...

  17. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  18. All-optical pressure sensor

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an all-optical pressure sensor comprising a waveguide accommodating a distributed Bragg reflector. Pressure sensing can then be provided by utilizing effective index modulation of the waveguide and detection of a wavelength shift of light reflected from the Bragg...... reflector. Sound sensing may also be provided thereby having an all-optical microphone. One embodiment of the invention relates to an optical pressure sensor comprising at least one outer membrane and a waveguide, the waveguide comprising at least one core for confining and guiding light,at least one...... distributed Bragg reflector located in said at least one core, and at least one inner deflecting element forming at least a part of the core,wherein the pressure sensor is configured such that the geometry and/or dimension of the at least one core is changed when the at least one outer membrane is submitted...

  19. All-optical photoacoustic microscopy

    Directory of Open Access Journals (Sweden)

    Sung-Liang Chen

    2015-12-01

    Full Text Available Three-dimensional photoacoustic microscopy (PAM has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM, which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.

  20. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  1. All optical regeneration using semiconductor devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Tromborg, Bjarne

    All-optical regeneration is a key functionality for implementing all-optical networks. We present a simple theory for the bit-error-rate in links employing all-optical regenerators, which elucidates the interplay between the noise and and nonlinearity of the regenerator. A novel device structure ...... is analyzed, emphasizing general aspects of active semiconductor waveguides....

  2. Semiconductor devices for all-optical regeneration

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2003-01-01

    We review different implementations of semiconductor devices for all-optical regeneration. A general model will be presented for all-optical regeneration in fiber links, taking into consideration the trade-off between non-linearity and noise. Furthermore we discuss a novel regenerator type, based...

  3. Micro-fabricated all optical pressure sensors

    DEFF Research Database (Denmark)

    Havreland, Andreas Spandet; Petersen, Søren Dahl; Østergaard, Christian

    2017-01-01

    Optical pressure sensors can operate in certain harsh application areas where the electrical pressure sensors cannot. However, the sensitivity is often not as good for the optical sensors. This work presents an all optical pressure sensor, which is fabricated by micro fabrication techniques, wher...

  4. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  5. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  6. All-optical signal processing and regeneration

    DEFF Research Database (Denmark)

    Wolfson, David

    2001-01-01

    for multi-channel operation. It is shown that the cascadability of GC-SOAs is superior at 2.5 Gbit/s compared to conventional SOAs for up to at least 16 wavelength channels, whereas the benefit is reduced at higher bit rates due to influence from relaxation oscillations in the GC-SOA. Furthermore, all......The trend in the industry today is that more and more complex functionalities are moving from the electrical domain and into the optical domain, demonstrating that all-optical networks are coming closer to realisation. In order for this progress to continue, there is a need for advanced optical...... amplifier (SOA)-based devices. The thesis starts out by giving a description of the motivations and driving forces for the current evolution of optical networks from point-to-point systems to all-otpical network topologies. The use of SOA-based devices for all-optical gating is investigated with the use...

  7. All-optical vector atomic magnetometer.

    Science.gov (United States)

    Patton, B; Zhivun, E; Hovde, D C; Budker, D

    2014-07-04

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of ∼65  fT/√[Hz] in measurement of the field magnitude and 0.5  mrad/√[Hz] in the field direction; elimination of technical noise would improve these sensitivities to 12  fT/√[Hz] and 10  μrad/√[Hz], respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron.

  8. All optical binary delta-sigma modulator

    Science.gov (United States)

    Sayeh, Mohammad R.; Siahmakoun, Azad

    2005-09-01

    This paper describes a novel A/D converter called "Binary Delta-Sigma Modulator" (BDSM) which operates only with nonnegative signal with positive feedback and binary threshold. This important modification to the conventional delta-sigma modulator makes the high-speed (>100GHz) all-optical implementation possible. It has also the capability to modify its own sampling frequency as well as its input dynamic range. This adaptive feature helps designers to optimize the system performance under highly noisy environment and also manage the power consumption of the A/D converters.

  9. Digitally encoded all-optical sensor multiplexing

    Science.gov (United States)

    Pervez, Anjum

    1992-01-01

    A digital, all-optical temperature sensor design concept based on optical sampling and digital encoding is presented. The proposed sensor generates 2M binary digital codewords of length M bits. The codewords are generated serially and, therefore, only a single output fiber line is required. A multiplexing scheme, which minimizes the power requirement per sensor array and facilitates a cost-effective digit regeneration for remote monitoring over long distance, is presented. The sensor arrays are used as building blocks to configure large scale sensor networks based on LAN topologies.

  10. All-Optical Nanomechanical Heat Engine

    Science.gov (United States)

    Dechant, Andreas; Kiesel, Nikolai; Lutz, Eric

    2015-05-01

    We propose and theoretically investigate a nanomechanical heat engine. We show how a levitated nanoparticle in an optical trap inside a cavity can be used to realize a Stirling cycle in the underdamped regime. The all-optical approach enables fast and flexible control of all thermodynamical parameters and the efficient optimization of the performance of the engine. We develop a systematic optimization procedure to determine optimal driving protocols. Further, we perform numerical simulations with realistic parameters and evaluate the maximum power and the corresponding efficiency.

  11. Reconfigurable antennas

    CERN Document Server

    Bernhard, Jennifer

    2007-01-01

    This lecture explores the emerging area of reconfigurable antennas from basic concepts that provide insight into fundamental design approaches to advanced techniques and examples that offer important new capabilities for next-generation applications. Antennas are necessary and critical components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Making antennas reconfigurable so that their behavior can adapt with changing system requirements or environmental conditions can ameliorate or eliminate these restricti

  12. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    Science.gov (United States)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  13. Towards All-optical Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote-controlled”......In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote......-controlled” in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of “light robots” in 3D to ensure...... continuous optimal light coupling on the fly. Our latest developments in this new and exciting area will be reviewed in this invited presentation....

  14. Researches on Reconfigurable Antenna in CEMLAB at UESTC

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-zhong; XIAO Shao-qiu; ZHANG Yong; YANG Xue-song; WU Wei-xia

    2006-01-01

    This paper summarizes the achievement and progress in the research on reconfigurable antenna since 2001, in Computational Electromagnetics Laboratory (CEMLAB) at University of Electronic Science and Technology of China (UESTC). Several typical reconfigurable antennas are introduced, which can realize frequency, pattern or frequency-pattern reconfigurability by electrically controlling methods. Some techniques involved in the design and analysis of reconfigurable antennas are reported. At last, the development trend of reconfigurable antenna is predicted in the conclusions.

  15. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  16. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  17. Reconfigurable Computing

    CERN Document Server

    Cardoso, Joao MP

    2011-01-01

    As the complexity of modern embedded systems increases, it becomes less practical to design monolithic processing platforms. As a result, reconfigurable computing is being adopted widely for more flexible design. Reconfigurable Computers offer the spatial parallelism and fine-grained customizability of application-specific circuits with the postfabrication programmability of software. To make the most of this unique combination of performance and flexibility, designers need to be aware of both hardware and software issues. FPGA users must think not only about the gates needed to perform a comp

  18. All-optical code routing in interconnected optical CDMA and WDM ring networks.

    Science.gov (United States)

    Deng, Yanhua; Fok, Mable P; Prucnal, Paul R; Wang, Ting

    2010-11-01

    We propose an all-optical hybrid network composed of optical code division multiple access (CDMA) rings interconnecting through a reconfigurable wavelength division multiplexing (WDM) metro area ring. This network retains the advantages of both the optical CDMA and WDM techniques, including asynchronous access and differentiated quality of service, while removing the hard limit on the number of subscribers and increasing network flexibility. The all-optical network is enabled by using nonlinear optical loop mirrors in an add/drop router (ADR) that performs code conversion, dropping, and switching asynchronously. We experimentally demonstrate the functionalities of the ADR in the proposed scheme asynchronously and obtain error-free performance. The bit-error rate measurements show acceptable power penalties for different code routes.

  19. Photonic encryption using all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and

  20. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.;

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  1. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given.......We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  2. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where fun...

  3. Ring-based All-Optical Datacenter Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Berger, Michael Stübert; Ruepp, Sarah Renée

    2015-01-01

    Ring-based generic network architecture for all-optical datacenters is proposed, offering highly scalable interconnection network with reduced cabling complexity. Simulations show improved performance compared to all-optical fat-tree datacenter architecture with 40%-99% improved connection request...

  4. Nonlinear Transient Dynamics of Photoexcited Silicon Nanoantenna for Ultrafast All-Optical Signal Processing

    CERN Document Server

    Baranov, Denis G; Milichko, Valentin A; Kudryashov, Sergey I; Krasnok, Alexander E; Belov, Pavel A

    2016-01-01

    Optically generated electron-hole plasma in high-index dielectric nanostructures was demonstrated as a means of tuning of their optical properties. However, until now an ultrafast operation regime of such plasma driven nanostructures has not been attained. Here, we perform pump-probe experiments with resonant silicon nanoparticles and report on dense optical plasma generation near the magnetic dipole resonance with ultrafast (about 2.5 ps) relaxation rate. Basing on experimental results, we develop an analytical model describing transient response of a nanocrystalline silicon nanoparticle to an intense laser pulse and show theoretically that plasma induced optical nonlinearity leads to ultrafast reconfiguration of the scattering power pattern. We demonstrate 100 fs switching to unidirectional scattering regime upon irradiation of the nanoparticle by an intense femtosecond pulse. Our work lays the foundation for developing ultracompact and ultrafast all-optical signal processing devices.

  5. An all-optical spatial light modulator for field-programmable silicon photonic circuits

    CERN Document Server

    Bruck, Roman; Lalanne, Philippe; Mills, Ben; Thomson, David J; Mashanovich, Goran Z; Reed, Graham T; Muskens, Otto L

    2016-01-01

    Reconfigurable photonic devices capable of routing the flow of light enable flexible integrated-optic circuits that are not hard-wired but can be externally controlled. Analogous to free-space spatial light modulators, we demonstrate all-optical wavefront shaping in integrated silicon-on-insulator photonic devices by modifying the spatial refractive index profile of the device employing ultraviolet pulsed laser excitation. Applying appropriate excitation patterns grants us full control over the optical transfer function of telecommunication-wavelength light travelling through the device, thus allowing us to redefine its functionalities. As a proof-of-concept, we experimentally demonstrate routing of light between the ports of a multimode interference power splitter with more than 97% total efficiency and negligible losses. Wavefront shaping in integrated photonic circuits provides a conceptually new approach toward achieving highly adaptable and field-programmable photonic circuits with applications in optica...

  6. All-optical hash code generation and verification for low latency communications.

    Science.gov (United States)

    Paquot, Yvan; Schröder, Jochen; Pelusi, Mark D; Eggleton, Benjamin J

    2013-10-07

    We introduce an all-optical, format transparent hash code generator and a hash comparator for data packets verification with low latency at high baudrate. The device is reconfigurable and able to generate hash codes based on arbitrary functions and perform the comparison directly in the optical domain. Hash codes are calculated with custom interferometric circuits implemented with a Fourier domain optical processor. A novel nonlinear scheme featuring multiple four-wave mixing processes in a single waveguide is implemented for simultaneous phase and amplitude comparison of the hash codes before and after transmission. We demonstrate the technique with single polarisation BPSK and QPSK signals up to a data rate of 80 Gb/s.

  7. All-optical gates based on photonic crystal resonators

    Science.gov (United States)

    Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain

    2016-04-01

    We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals

  8. Dynamics of an all-optical atomic spin gyroscope.

    Science.gov (United States)

    Fang, Jiancheng; Wan, Shuangai; Yuan, Heng

    2013-10-20

    We present the transfer function of an all-optical atomic spin gyroscope through a series of differential equations and validate the transfer function by experimental test. A transfer function is the basis for further control system design. We build the differential equations based on a complete set of Bloch equations describing the all-optical atomic spin gyroscope, and obtain the transfer function through application of the Laplace transformation to these differential equations. Moreover, we experimentally validate the transfer function in an all-optical Cs-Xe129 atomic spin gyroscope through a series of step responses. This transfer function is convenient for analysis of the form of control system required. Furthermore, it is available for the design of the control system specifically to improve the performance of all-optical atomic spin gyroscopes.

  9. All-optical signal processing using dynamic Brillouin gratings

    Science.gov (United States)

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  10. 100GHz Integrated All-Optical Switch Enabled by ALD

    CERN Document Server

    Moille, Gregory; Morgenroth, Laurence; Lehoucq, Gaëlle; Neuilly, François; Hu, Bowen; Decoster, Didier; de Rossi, Alfredo

    2015-01-01

    The carrier lifetime of a photonic crystal all-optical switch is optimized by controlling the surface of GaAs by Atomic Layer Deposition. We demonstrate an all optical modulation capability up to 100GHz at Telecom wavelengths, with a contrast as high as 7dB. Wavelength conversion has also been demonstrated at a repetition rate of 2.5GHz with average pump power of about 0.5mW

  11. All-optical sampling OFDM system performance analysis

    Institute of Scientific and Technical Information of China (English)

    Hang Ye; Hongwei Chen; Chao Tang; Minghua Chen; Shizhong Xie

    2011-01-01

    The performance of a novel all-optical sampling orthogonal frequency division multiplexing (OFDM) system is proposed and analyzed. Time delays and phase shifters are used to realize all optical forward/inverse discrete Fourier transform (DFT/IDFT). Different system configurations are tested and analyzed to optimize the performance, including the system capacity, modulation formats, DFT/IDFT constructions,and the width of the sample pulse. The 50- and 100-Gb/s real-time all-optical sampling (AOS) OFDM systems are investigated. All results are analyzed, and useful suggestions are offered for future high-speed applications.%@@ The performance of a novel all-optical sampling orthogonal frequency division multiplexing (OFDM) system is proposed and analyzed. Time delays and phase shifters are used to realize all optical forward/inverse discrete Fourier transform (DFT/IDFT). Different system configurations are tested and analyzed to optimize the performance, including the system capacity, modulation formats, DFT/IDFT constructions,and the width of the sample pulse. The 50-and 100-Gb/s real-time all-optical sampling (AOS) OFDM systems are investigated. All results are analyzed, and useful suggestions are offered for future high-speed applications.

  12. Reconfigurable network processing platforms

    NARCIS (Netherlands)

    Kachris, C.

    2007-01-01

    This dissertation presents our investigation on how to efficiently exploit reconfigurable hardware to design flexible, high performance, and power efficient network devices capable to adapt to varying processing requirements of network applications and traffic. The proposed reconfigurable network pr

  13. Light Robotics: Aiming towards all-optical nano-robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Bañas, Andrew

    2017-01-01

    potential of this new ‘drone-like’ light-printed, light-driven, light-actuated micro- and nanorobotics in challenging geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny tools in 3D to ensure real-time continuous light delivery...

  14. Design of an All-Optical Network Based on LCoS Technologies

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  15. A novel method of developing all optical frequency encoded Fredkin gates

    Science.gov (United States)

    Garai, Sisir Kumar

    2014-02-01

    All optical reversible logic gates have significant applications in the field of optics and optoelectronics for developing different sequential and combinational circuits of optical computing, optical signal processing and in multi-valued logic operations and quantum computing. Here the author proposes a method for developing all optical three-input-output Fredkin gate and modified Fredkin gate using frequency encoded data. For this purpose the author has exploited the properties of efficient frequency conversion and faster switching speed of semiconductor optical amplifiers. Simulation results of the three input-output Fredkin gate testifies to the feasibility of the proposed scheme. These Fredkin gates are universal logic gates, and can be used to develop different all-optical logic and data processors in communication network.

  16. Reconfigurable antenna pattern verification

    Science.gov (United States)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  17. All-optical signal processing technique for secure optical communication

    Science.gov (United States)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  18. All-optical information processing in photonic crystals

    Science.gov (United States)

    Yanik, Mehmet Fatih

    This thesis covers coherent and incoherent all-optical information processing using photonic bandgap nanostructures and microcavities. The first 3 chapters introduce all-optical bistable switching, transistor and memory elements with sub-micron scale dimensions. A strategy for large scale integration without optical isolators is also described. In chapters 4 and 5, dynamically modulated photonic crystal structures are introduced. It is shown that light pulses can be stopped and stored all-optically without requiring any coherent or resonant light-matter interaction. In chapter 6, it is shown that light pulses can be coherently time-reversed by using only index modulations and linear optics. In chapter 7, a supercomputer implementation of an object oriented finite difference time domain simulation is described to simulate photonic nanostructures with arbitrary material & geometric features.

  19. ALL OPTICAL 3-BIT SERIAL INPUT SHIFT REGISTER DESIGN

    Directory of Open Access Journals (Sweden)

    VIKRANT K SRIVASTAVA,

    2010-08-01

    Full Text Available In this Paper, we present all-optical shift Register logic with complete Boolean functionality as a representative circuit for modeling and optimization of monolithically integrated components. Proposed optical logic unit is based on nonlinear effects in semiconductor optical amplifiers (SOA. We show a strategy of optical pulse propagation in SOA based on coupled nonlinear equations describing XGM and FWM effects. These equations are first solved togenerate the pump, probe and conjugate pulses in a SOA. The pulse behavior are analyzed and applied to realize behavior of all-optical NAND gate. Next, the logic is used to implement All-Optical Flip-Flop logic, and its function is verified with the help of truth table. Finally with the help of three Flip Flop a 3-bit shift register is proposed. The full design is simple, compact, economical, thermally stable and integration capable.

  20. All-optical pseudorandom bit sequences generator based on TOADs

    Science.gov (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.

  1. All-optical Demultiplexing Using an Electroabsorption Modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    -processing such as wavelength conversion, demultiplexing, and signal regeneration using an EAM have also been experimentally demonstrated, and lately theoretical calculations of wavelength conversion and signal regeneration have been presented. These functionalities are important for constructing ultrahigh-speed all......-optical networks.Here, we present modeling results of all-optical demultiplexing from 80 to 10 Gbit/s using an EAM. Our large-signal model for the reverse-biased quantum well absorber is based on a detailed gain model, and was originally developed for studying colliding-pulse mode-locked lasers. Sweep-out of photo...

  2. All-optical network coding for DPSK signals

    DEFF Research Database (Denmark)

    An, Yi; Da Ros, Francesco; Peucheret, Christophe

    2013-01-01

    All-optical network coding for path protection is experimentally demonstrated using four-wave mixing in SOAs for10 Gbit/s NRZ-DPSK signals with error free performance. The total power penalty after two cascaded XOR stage is only 2 dB.......All-optical network coding for path protection is experimentally demonstrated using four-wave mixing in SOAs for10 Gbit/s NRZ-DPSK signals with error free performance. The total power penalty after two cascaded XOR stage is only 2 dB....

  3. A Novel All-Optical Analog-to-Digital Converter

    Institute of Scientific and Technical Information of China (English)

    Xiaobo; Hou; Afshin; Daryoush; Warren; Rosen

    2003-01-01

    An all-optical analog-to-digital converter capable of sampling at 50GS/s is described. The ADC works in the frequency domain. The RF signal is sampled by electro-optically steerable gratings and quantized by a set of detectors with scalable apertures.

  4. All-optical demultiplexing using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    In the 1990s, the electroabsorption modulator (EAM) has found a wide range of applications. Functionalities such as pulse generation and demultiplexing by electrical modulation have been demonstrated using an EAM. Recently, all-optical wavelength conversion, demultiplexing, and signal regeneration...

  5. All-optical reversible logic gates with microresonators

    Science.gov (United States)

    Sethi, Purnima; Roy, Sukhdev; Topolancik, Juraj; Vollmer, Frank

    2011-08-01

    We present designs of all-optical reversible logic gates, namely, Feynman, Toffoli, Peres and Feynman Double gates, based on switching of a near-IR (1310/1550 nm) signal by low-power control signals at 532 nm and 405 nm, in optically controlled bacteriorhodopsin protein-coated silica microcavities coupled between two tapered single-mode fibers.

  6. All-optical digital processor based on harmonic generation phenomena

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Rakovsky, Vsevolod Y.

    1990-07-01

    Digital optical processors are designed to combine ultra- parallel data procesing capabilities of optical aystems cnd high accur&cy of performed computations. The ultimate limit of the processing rate can be anticipated from all-optical parcllel erchitecturea based on networks o logic gates using materials exibiting strong electronic nonlinearities with response times less than 1O seconds1.

  7. All-optical, Three-axis Fiber Laser Magnetometer

    Science.gov (United States)

    2012-04-16

    E-1 1.  INTRODUCTION ...achieved with other magnetic field sensing technologies such as those based on flux gates and fiber optic magnetostrictive sensors. The deployed...ALL-OPTICAL, THREE-AXIS FIBER LASER MAGNETOMETER 1. INTRODUCTION This report describes the development of an undersea fiber optic magnetometer

  8. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  9. Plasmonic enhancement of ultrafast all-optical magnetization reversal

    Science.gov (United States)

    Kochergin, Vladimir; Neely, Lauren N.; Allin, Leigh J.; Kochergin, Eugene V.; Wang, Kang L.

    2011-10-01

    Ultrafast all optical magnetization switching in GdFeCo layers on the basis of Inverse Faraday Effect (IFE) was demonstrated recently and suggested as a possible path toward next generation magnetic data storage medium with much faster writing time. However, to date, the demonstrations of ultrafast all-optical magnetization switching were performed with powerful femtosecond lasers, hardly useful for practical applications in data storage and data processing. Here we show that utilization of IFE enhancement in plasmonic nanostructures enables fast all-optical magnetization switching with smaller/cheaper laser sources with longer pulse durations. Our modeling results predict significant enhancement of IFE around all major types of plasmonic nanostructures for a circularly polarized incident light. Unlike the IFE in uniform bulk materials, nonzero value of IFE is predicted in plasmonic nanostructures even with a linearly polarized excitation. Experimentally, all-optical magnetization switching at 20 times lower laser fluence and roughly 100 times lower value of laser fluence/pulse duration ratio is demonstrated in plasmonic samples to verify the model predictions. The path to achieve higher levels of enhancement experimentally is discussed.

  10. All-optical orthogonal frequency division multiplexing (OFDM) transmitter

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to an all-optical orthogonal frequency division multiplexing (OFDM) transmitter for generating an OFDM output signal. The transmitter comprises a first time-domain optical Fourier transform (OFT) assembly, the first OFT assembly is of a K-D-K configuration and comprises...

  11. Cascadable and reconfigurable photonic logic gates based on linear lightwave interference and non-linear phase erasure.

    Science.gov (United States)

    Larom, Bar; Nazarathy, Moshe; Rudnitsky, Arkady; Nevet, Amir; Zalevsky, Zeev

    2010-06-21

    Feasibility of cascading and reconfiguring a pair of linear-nonlinear all-optical logic gate structures is experimentally demonstrated using RF photonics. Progress in highly integrated O/E/O repeaters over Si/InP hybrid platforms enables large-scale reconfigurable gate arrays.

  12. Reconfigurable environmentally adaptive computing

    Science.gov (United States)

    Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)

    2008-01-01

    Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.

  13. Introduction to Reconfigurable Supercomputing

    CERN Document Server

    Lanzagorta, Marco; Rosenberg, Robert

    2010-01-01

    This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPe who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigur

  14. Reconfigurable logic design case

    Science.gov (United States)

    Ma, Shing-Fat F.; Knight, John; Plett, Calvin

    2002-07-01

    This design case identifies generalizable features of a course-grained reconfigurable FPGA, Chameleon's reconfigurable platform. An FFT is used to identify typical design practices, problems, and solutions in targeting such a platform. This paper focuses on datapath mapping, separating it into functional design and placement of reconfigurable resources. In addition to exploring the design methodology, it analyzes numerical artifacts, demonstrates efficient packing of the data path, and highlights differences from ASIC design.

  15. All-Optical Field-Induced Second-Harmonic Generation

    CERN Document Server

    Davidson, Roderick B; Ziegler, Jed I; Avanesyan, Sergey M; Lawrie, Ben J; Haglund, Richard F

    2015-01-01

    Efficient frequency modulation techniques are crucial to the development of plasmonic metasurfaces for information processing and energy conversion. Nanoscale electric-field confinement in optically pumped plasmonic structures enables stronger nonlinear susceptibilities than are attainable in bulk materials. The interaction of three distinct electric fields in (chi)^3 optical processes allows for all-optical modulation of nonlinear signals. Here we demonstrate effcient third-order second harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients within a dielectric material. We utilize an ultrafast optical pump to control the plasmonically induced electric-fields and to generate bandwidth-limited ultrafast second-harmonic pulses driven by the control pulses. The combination of plasmonic metasurfaces with all-optical control and the freedom to choose the dielectric allow multiple generalizations of this concept and geometry to other four-wave mixing process...

  16. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  17. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  18. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Science.gov (United States)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  19. All-optical logic-gates based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Zhang Chun-Ping; Guo Zong-Xia; Tian Jian-Guo; Zhang Guang-Yin; Song Qi-Wang

    2005-01-01

    Based on self-diffraction in bacteriorhodopsin (bR) film, we propose all-optical NOT, XOR, half adder and XNOR logic operations. Using the relation between diffraction light and the polarization states of recording beams, we demonstrate NOT and XNOR logic operations. Studying the relation of polarization states among the diffracting, recording and reading beams, we implement XOR logic and half adder operations with three inputs. The methods are simple and practicable.

  20. All Optical Signal-Processing Techniques Utilizing Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Refat Kibria

    2015-02-01

    Full Text Available Four Wave Mixing (FWM based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.

  1. Polarization-Independent All-Optical Regenerator for DPSK Data

    Directory of Open Access Journals (Sweden)

    Valeria Vercesi

    2014-05-01

    Full Text Available We demonstrate polarization-independent simultaneous all-optical phase-preserving amplitude regeneration and wavelength conversion of NRZ differential phase shift keying (DPSK data by four-wave mixing (FWM in a semiconductor optical amplifier (SOA. The dependence upon polarization state of the signals is eliminated by using a co-polarized dual-pump architecture. Investigation on the regenerative capability vs. pumps detuning shows significant BER threshold margin improvement over 6 nm conversion range.

  2. All-optical switching in optically induced nonlinear waveguide couplers

    Energy Technology Data Exchange (ETDEWEB)

    Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

    2014-06-30

    We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

  3. Nonlinear fiber applications for ultrafast all-optical signal processing

    Science.gov (United States)

    Kravtsov, Konstantin

    In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.

  4. Simultaneous all-optical digital comparator and dual-directional half-subtractor for two-input 40 Gbit/s DPSK signals employing SOAs

    Science.gov (United States)

    Zhang, Yin; Lei, Lei; Dong, Jianji; Zhang, Xinliang

    2012-02-01

    A module of simultaneous implementation of all-optical digital comparator and dual-directional half-subtractor is proposed. Proof-of-concept experiment is performed at 40 Gbit/s employing the four-wave mixing and cross gain modulation in three parallel semiconductor optical amplifiers. All output results with over 10 dB extinction ratios, clear and wide open eye diagrams, are obtained without using assistant/holding light beam. All-optical half-adder can also be obtained by adjusting the phase shifter of delay interferometer in the proposed module because of its inherent reconfigurability and flexibility. The module would be a promising digital logic elementary circuit in all-optical networks and computing systems.

  5. Complete all-optical processing polarization-based binary logic gates and optical processors.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  6. All-optical flip-flop and control methods thereof

    Science.gov (United States)

    Maywar, Drew; Agrawal, Govind P.

    2010-03-23

    Embodiments of the invention pertain to remote optical control of holding beam-type, optical flip-flop devices, as well as to the devices themselves. All-optical SET and RE-SET control signals operate on a cw holding beam in a remote manner to vary the power of the holding beam between threshold switching values to enable flip-flop operation. Cross-gain modulation and cross-polarization modulation processes can be used to change the power of the holding beam.

  7. All optical asynchronous binary delta-sigma modulator

    Science.gov (United States)

    Tafazoli, M.; Davoudzadeh, N.; Sayeh, M. R.

    2013-03-01

    We present the first all optical delta-sigma modulator using a bistable device and a leaky integrator. In this paper, a novel tri-coupled ring geometry is utilized, resulting in resonance which is a building block for delta-sigma modulator. In each ring, the main active element is a semiconductor optical amplifier (SOA). The experimental result of the implemented setup is in a good agreement with our presented theory. Applying optical discrete components leads to a sampling rate of 660 kS/s. The higher frequency can be reached easily by using faster bistable devices and shorter loops.

  8. Optimised Design and Analysis of All-Optical Networks

    DEFF Research Database (Denmark)

    Glenstrup, Arne John

    2002-01-01

    through various experiments and is shown to produce good results and to be able to scale up to networks of realistic sizes. A novel method, subpath wavelength grouping, for routing connections in a multigranular all-optical network where several wavelengths can be grouped and switched at band and fibre...... level is presented. The method uses an unorthodox routing strategy focusing on common subpaths rather than individual connections, and strives to minimise switch port count as well as fibre usage. It is shown to produce cheaper network designs than previous methods when fibre costs are comparatively...

  9. Realization of an all optical exciton-polariton router

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Bloch, Jacqueline, E-mail: jacqueline.bloch@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis (France); Physics Department, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  10. All-Optical Generation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Chang, Darrick E; Hendry, Euan

    2015-01-01

    Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by using nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching $10^{-5}$.

  11. All-optical photon echo on a chip

    Science.gov (United States)

    Moiseev, E. S.; Moiseev, S. A.

    2017-01-01

    We demonstrate that a photon echo can be implemented by all-optical means using an array of on-chip high-finesse ring cavities whose parameters are chirped in such a way as to support equidistant spectra of cavity modes. When launched into such a system, a classical or quantum optical signal—even a single-photon field—becomes distributed between individual cavities, giving rise to prominent coherence echo revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect enables long storage times for high-throughput broadband optical delay and quantum memory.

  12. All-Optical Reversible Hybrid New Gate using TOAD

    Directory of Open Access Journals (Sweden)

    Goutam Kumar Maity

    2014-03-01

    Full Text Available Reversible logic is emerged as a promising computing paradigm with applications in low-power CMOS, quantum computing, optical computing and nanotechnology. Optical logic gates become potential component to work at macroscopic (light pulses carry information, or quantum (single photon carries information levels with high efficiency. In this paper, we propose a novel scheme of Hybrid new gate realization in all-optical domain. Simulation results verify the functionality of the gate as well as reversibility. Approximate insertion power loss in dB is also reported for the Gaussian incident and control pulse.

  13. Light robotics: aiming towards all-optical nano-robotics

    Science.gov (United States)

    Glückstad, Jesper; Palima, Darwin; Banas, Andrew

    2017-04-01

    Light Robotics is a new field of research where ingredients from photonics, nanotechnology and biotechnology are put together in new ways to realize light-driven robotics at the smallest scales to solve major challenges primarily within the nanobio-domain but not limited hereto. Exploring the full potential of this new `drone-like' light-printed, light-driven, light-actuated micro- and nanorobotics in challenging geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny tools in 3D to ensure real-time continuous light-delivery on the fly. Our latest developments in this new and exciting research area will be reviewed.

  14. All-optical noninvasive delayed feedback control of semiconductor lasers

    CERN Document Server

    Schikora, Sylvia

    2013-01-01

    The stabilization of unstable states hidden in the dynamics of a system, in particular the control of chaos, has received much attention in the last years. Sylvia Schikora for the first time applies a well-known control method called delayed feedback control entirely in the all-optical domain. A multisection semiconductor laser receives optical feedback from an external Fabry-Perot interferometer. The control signal is a phase-tunable superposition of the laser signal and provokes the laser to operate in an otherwise unstable periodic state with a period equal to the time delay. The control is noninvasive, because the reflected signal tends to zero when the target state is reached.   The work has been awarded the Carl-Ramsauer-Prize 2012.   Contents ·         All-Optical Control Setup ·         Stable States with Resonant Fabry-Perot Feedback ·         Control of an Unstable Stationary State and of Unstable Selfpulsations ·         Controlling Chaos ·         Con...

  15. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-27

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  16. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  17. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias; 10.1007/s00340-011-4563-7

    2011-01-01

    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  18. Microscopic model for all optical switching in ferromagnets

    Science.gov (United States)

    Cornelissen, T. D.; Córdoba, R.; Koopmans, B.

    2016-04-01

    The microscopic mechanism behind the all optical switching (AOS) in ferromagnets has triggered intense scientific debate. Here, the microscopic three-temperature model is utilized to describe AOS in a perpendicularly magnetized ferromagnetic Co/Pt system. We demonstrate that AOS in such a ferromagnet can be explained with the Inverse Faraday Effect (IFE). The influence of the strength and lifetime of the IFE induced field pulse on the switching process are investigated. We found that because of strong spin-orbit coupling, the minimal lifetime of the IFE needed to obtain switching is of the order of 0.1 ps, which is shorter than previously assumed. Moreover, spatial images of the domain pattern after AOS in Co/Pt, as well as their dependence on applying an opposite magnetic field, are qualitatively reproduced.

  19. All-Optical Surface Micropatterning by Electric Field Intensity Gradient

    Directory of Open Access Journals (Sweden)

    U. Gertners

    2015-01-01

    Full Text Available In this report an all-optical photo-induced formation of surface relief gratings is shown. For the surface patterning of As2S3 and As4S1.5Se4.5 films a direct holographic recording setup with a 532 nm wavelength Nd:YAG CW laser light was used. Our investigations have shown that the light-induced mass transfer process strongly depends on the material itself and on the polarization of the light. It has been shown that an electric field intensity gradient has to be obtained to achieve a direct patterning. The evolution of a surface relief in relation to recording parameters and thickness of the sample has been investigated in detail.

  20. EIT-based MZ-MMI all-optical switch

    Science.gov (United States)

    Bahrami, A.; Rostami, A.; Nazari, F.; Abbasian, K.

    2010-11-01

    We propose a new control structure for all-optical switching in multimode inference (MMI)-based Mach-Zehnder interferometer (MZI) devices. This structure is composed of an MZI doped by three-level nanocrystals for the realization of electromagnetically induced transparency (EIT) in the lower arm. We use two different intensities of control field for two states of the proposed switch. Using a control field in both of the two switching states is necessary, where the EIT region is transparent. By changing the intensity of the control field, the refractive index of the doped region changes, which makes the phase difference between the two arms of the MZI. Hence, the switching operation takes place. Simulation results show that the extinction ratio of the device is -32dB in the worst case.

  1. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... separated. This device was fabricated and characterized by colleagues within the group, and it was shown to perform very well in terms of cross-talk between the signal and pump. Theoretical investigations as well as practical design proposals have resulted from a study of waveguide-cavity structures...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...

  2. Self-organized plasmonic metasurfaces for all-optical modulation

    Science.gov (United States)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  3. All-Optical Implementation of the Ant Colony Optimization Algorithm

    Science.gov (United States)

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-05-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

  4. All-optical generation of surface plasmons in graphene

    Science.gov (United States)

    Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E.

    2016-02-01

    Surface plasmons in graphene offer a compelling route to many useful photonic technologies. As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability, crystalline stability, large optical nonlinearities and extremely high electromagnetic field concentration. As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10-5.

  5. State-selective all-optical detection of Rydberg atoms

    CERN Document Server

    Karlewski, Florian; Grimmel, Jens; Sándor, Nóra; Fortágh, and József

    2015-01-01

    We present an all-optical protocol for detecting population in a selected Rydberg state of alkali atoms. The detection scheme is based on the interaction of an ensemble of ultracold atoms with two laser pulses: one weak probe pulse which is resonant with the transition between the ground state and the first excited state, and a pulse with high intensity which couples the first excited state to the selected Rydberg state. We show that by monitoring the absorption signal of the probe laser over time, one can deduce the initial population of the Rydberg state. Furthermore, it is shown that - for suitable experimental conditions - the dynamical absorption curve contains information on the initial coherence between the ground state and the selected Rydberg state. We present the results of a proof-of-principle measurement performed on a cold gas of $^{87}$Rb atoms. The method is expected to find application in quantum computing protocols based on Rydberg atoms.

  6. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  7. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  8. All-optical three-dimensional electron pulse compression

    CERN Document Server

    Wong, Liang Jie; Rohwer, Timm; Gedik, Nuh; Johnson, Steven G

    2014-01-01

    We propose an all-optical, three-dimensional electron pulse compression scheme in which Hermite-Gaussian optical modes are used to fashion a three-dimensional optical trap in the electron pulse's rest frame. We show that the correct choices of optical incidence angles are necessary for optimal compression. We obtain analytical expressions for the net impulse imparted by Hermite-Gaussian free-space modes of arbitrary order. Although we focus on electrons, our theory applies to any charged particle and any particle with non-zero polarizability in the Rayleigh regime. We verify our theory numerically using exact solutions to Maxwell's equations for first-order Hermite-Gaussian beams, demonstrating single-electron pulse compression factors of $>10^{2}$ in both longitudinal and transverse dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse compression, and as a means of circumventing temporal distortions in ...

  9. Reconfigurable MEMS OADM Systems

    Institute of Scientific and Technical Information of China (English)

    A. Q. Liu; J. Li; Q. X. Zhang; W. D. Zhong; C. Lu

    2003-01-01

    This paper proposes a serial reconfigurable OADM consisting of optical circulator and 2 × 2 MEMS optical switch and tunable FBG. Based on MEMS technology, the OADM is demonstrated to increase the flexibility, decrease the cost andimprove the reliability.

  10. Optically Controlled Reconfigurable Filtenna

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2016-01-01

    Full Text Available This work is regarding the development of a novel antenna called optically controlled reconfigurable filtenna, which is based on the integration of a broadband printed antenna with a bandpass reconfigurable RF filter. The filter is designed by applying defected microstrip structure (DMS technique and positioned in printed antenna feeding line in order to keep the same size of the original antenna. The filtenna bandwidth is optically reconfigurable by using two photoconductive silicon switches excited by CW laser at 808 nm. Numerical results rely on independent and switchable operational modes through the 2.4 and 5.1 GHz ISM bands, whereas measurements demonstrate two reconfigurable modes based on single-band/dual-band operation over the same frequency bands. The proposed device is validated by theoretical, numerical, and experimental results.

  11. Reconfigurable EVA Radio with Built-In Navigation Capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc. and its sub-contractor, Purdue University, propose to develop a power-efficient miniaturized reconfigurable EVA radio system with...

  12. Resource allocation in circuit-switched all-optical networks

    Science.gov (United States)

    Marquis, Douglas; Barry, Richard A.; Finn, Steven G.; Parikh, Salil A.; Swanson, Eric A.; Thomas, Robert E.

    1996-03-01

    We describe an all-optical network testbed deployed in the Boston area, and research surrounding the allocation of optical resources -- frequencies and time slots -- within the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is organized as a hierarchy consisting of local, metropolitan, and wide area nodes tea support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Of particular interest for this work is the 'B-service,' which simultaneously hops frequency and time slots on each optical terminal to allow frequency sharing within the AON. B-service provides 1.244 Gbps per optical terminal, with bandwidth for individual connections divided in increments as small as 10 Mbps. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. The packet switches provide FDDI (datacomm), T3 (telecomm), and ATM/SONET switching at backplane rates of over 3 Gbps. We show results on network applications that dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users. Bandwidth allocation granularity is proportional to B-Service slots (10-1244 Mbps), and switching times are on the order of one second. We have also studied the effects of wavelength changers upon the network capacity and blocking probabilities in wide area all-optical networks. Wavelength changers allow a change in the carrier frequency (within the network) without disturbing the data modulation. The study includes both a theoretical model of blocking probabilities based on network design parameters, and a computer simulation of blocking in networks with and

  13. All-optical observation and reconstruction of spin wave dispersion

    Science.gov (United States)

    Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji

    2017-06-01

    To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations.

  14. Terahertz-driven, all-optical electron gun

    CERN Document Server

    Huang, W Ronny; Wu, Xiaojun; Cankaya, Huseyin; Calendron, Anne-Laure; Ravi, Koustuban; Zhang, Dongfang; Nanni, Emilio A; Hong, Kyung-Han; Kärtner, Franz X

    2016-01-01

    Ultrashort electron beams with narrow energy spread, high charge, and low jitter are essential for resolving phase transitions in metals, semiconductors, and molecular crystals. These semirelativistic beams, produced by phototriggered electron guns, are also injected into accelerators for x-ray light sources. The achievable resolution of these time-resolved electron diffraction or x-ray experiments has been hindered by surface field and timing jitter limitations in conventional RF guns, which thus far are 96 fs, respectively. A gun driven by optically-generated single-cycle THz pulses provides a practical solution to enable not only GV/m surface fields but also absolute timing stability, since the pulses are generated by the same laser as the phototrigger. Here, we demonstrate an all-optical THz gun yielding peak electron energies approaching 1 keV, accelerated by 300 MV/m THz fields in a novel micron-scale waveguide structure. We also achieve quasimonoenergetic, sub-keV bunches with 32 fC of charge, which ca...

  15. All-optical photoacoustic microscopy using a MEMS scanning mirror

    Science.gov (United States)

    Chen, Sung-Liang; Xie, Zhixing; Ling, Tao; Wei, Xunbin; Guo, L. Jay; Wang, Xueding

    2013-03-01

    It has been studied that a potential marker to obtain prognostic information about bladder cancer is tumor neoangiogenesis, which can be quantified by morphometric characteristics such as microvascular density. Photoacoustic microscopy (PAM) can render sensitive three-dimensional (3D) mapping of microvasculature, providing promise to evaluate the neoangiogenesis that is closely related to the diagnosis of bladder cancer. To ensure good image quality, it is desired to acquire bladder PAM images from its inside via the urethra, like conventional cystoscope. Previously, we demonstrated all-optical PAM systems using polymer microring resonators to detect photoacoustic signals and galvanometer mirrors for laser scanning. In this work, we build a miniature PAM system using a microelectromechanical systems (MEMS) scanning mirror, demonstrating a prototype of an endoscopic PAM head capable of high imaging quality of the bladder. The system has high resolutions of 17.5 μm in lateral direction and 19 μm in the axial direction at a distance of 5.4 mm. Images of printed grids and the 3D structure of microvasculature in animal bladders ex vivo by the system are demonstrated.

  16. Description of all-optical network test bed and applications

    Science.gov (United States)

    Marquis, Douglas; Castagnozzi, Daniel M.; Hemenway, B. R.; Parikh, Salil A.; Stevens, Mark L.; Swanson, Eric A.; Thomas, Robert E.; Ozveren, C.; Kaminow, Ivan P.

    1995-12-01

    We describe an all-optical network testbed deployed in the Boston metropolitan area, and some of the experimental applications running over the network. The network was developed by a consortium of AT&T Bell Laboratories, Digital Equipment Corporation, and Massachusetts Institute of Technology under a grant from ARPA. The network is an optical WDM system organized as a hierarchy consisting of local, metropolitan, and wide area nodes that support optical broadcast and routing modes. Frequencies are shared and reused to enhance network scalability. Electronic access is provided through optical terminals that support multiple services having data rates between 10 Mbps/user and 10 Gbps/user. Novel components used to implement the network include fast-tuning 1.5 micrometers distributed Bragg reflector lasers, passive wavelength routers, and broadband optical frequency converters. An overlay control network implemented at 1.3 micrometers allows reliable out-of-band control and standardized network management of all network nodes. We have created interfaces between the AON and commercially available electronic circuit-switched and packet-switched networks. We will report on network applications that can dynamically allocate optical bandwidth between electronic packet-switches based on the offered load presented by users, without requiring interfaces between users and the AON control system. We will also describe video and telemedicine applications running over the network. We have demonstrated an audio/video codec that is directly interfaced to the optical network, and is capable of transmitting high-rate digitized video signals for broadcast or videoconferencing applications. We have also demonstrated a state-of-the-art radiological workstation that uses the AON to transport 2000 X 2000 X 16 bit images from a remote image server.

  17. Photonic encryption : modeling and functional analysis of all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple

  18. Experimental demonstration of all-optical CDMA using bipolar codes

    Science.gov (United States)

    Dennis, Tasshi

    1999-10-01

    Fiber optic networks capable of supporting a large pool of subscribers, many simultaneous users, and high data rates are receiving heightened interest as solutions to a growing communications need. The experiments reported in this study constitute the first experimental demonstration of a novel bipolar equivalent code-division multiple-access (CDMA) scheme. The sophisticated encoding increases noise tolerance, provides user security, and enables network flexibility. The scheme is based on an established bipolar radio frequency (RF) technique adapted to the unipolar optical domain. Whereas the phase of an RF signal can be readily detected, the high carrier frequency ( ~ 200 THz at 1.5 μm) of an optical wave necessitates that optical signals be detected and processed solely by intensity. Asynchronous operation makes the CDMA scheme data rate independent, while all-optical implementation avoids the bandwidth limitations imposed by electrical processing. A proof-of-principle experiment was conducted by spectrally encoding an erbium-doped superfluorescent fiber source (SFS) using a diffraction grating and an amplitude mask. The optical properties of the system were measured and the bipolar correlation of codes was verified. The practical implementation of the scheme was investigated by the design, construction, and operation of a fiber-based testbed. Correlation measurements performed with modulated signals confirmed that the scheme can recover a binary information symbol while rejecting multiple access interference. A theoretical analysis of the optical correlation process was conducted, which identified key optical parameters important to future implementations. The theory of excess noise associated with the photodetection of a thermal source was considered, followed by noise measurements of a light bulb and the erbium-doped SFS used for spectral encoding. Finally, the ability of the proposed scheme to effectively transmit data was investigated. Signal-to- noise

  19. Reconfiguring trade mark law

    DEFF Research Database (Denmark)

    Elsmore, Matthew James

    2013-01-01

    -border setting, with a particular focus on small business and consumers. The article's overall message is to call for a rethink of received wisdom suggesting that trade marks are effective trade-enabling devices. The case is made for reassessing how we think about European trade mark law.......First, this article argues that trade mark law should be approached in a supplementary way, called reconfiguration. Second, the article investigates such a reconfiguration of trade mark law by exploring the interplay of trade marks and service transactions in the Single Market, in the cross...

  20. Reconfigurable system design and verification

    CERN Document Server

    Hsiung, Pao-Ann; Huang, Chun-Hsian

    2009-01-01

    Reconfigurable systems have pervaded nearly all fields of computation and will continue to do so for the foreseeable future. Reconfigurable System Design and Verification provides a compendium of design and verification techniques for reconfigurable systems, allowing you to quickly search for a technique and determine if it is appropriate to the task at hand. It bridges the gap between the need for reconfigurable computing education and the burgeoning development of numerous different techniques in the design and verification of reconfigurable systems in various application domains. The text e

  1. Reconfiguration of Mobile Robot

    Directory of Open Access Journals (Sweden)

    Ashish K. Thakre

    2012-03-01

    Full Text Available Dynamic Partial Reconfiguration (DPR of FPGAs presents many opportunities for application design flexibility, enabling tasks to dynamically swap in and out of the FPGA without entire system interruption. In this paper, we will implement a line follower robot for the white line as well as for black line; both these modules will be programmed in VHDL. The robot will dynamically reconfigure the FPGA in the run-time while the robot senses black line after white line or vice-versa. This design includes two modules one is static and the other is partially reconfigurable regions (PRR which is a dynamic region. The controllers are the static modules used for controlling the flow of data to and from the reconfigurable modules to the external world (host environment through busmacros. Whereas white line and black line modules are designed as dynamic modules. Different hardware modules will be used such as Sensors and actuators , all these modules will be interfaced using FPGA controller. The speed of motor is controlled using pulse width modulation (PWM using VHDL

  2. Reconfigurable layout problem

    NARCIS (Netherlands)

    Meng, G.; Heragu, S.S.; Zijm, H.

    2004-01-01

    This paper addresses the reconfigurable layout problem, which differs from traditional, robust and dynamic layout problems mainly in two aspects: first, it assumes that production data are available only for the current and upcoming production period. Second, it considers queuing performance measure

  3. Reconfigurable layout problem

    NARCIS (Netherlands)

    Meng, G.; Heragu, S.S.; Heragu, S.S.; Zijm, Willem H.M.

    2004-01-01

    This paper addresses the reconfigurable layout problem, which differs from traditional, robust and dynamic layout problems mainly in two aspects: first, it assumes that production data are available only for the current and upcoming production period. Second, it considers queuing performance measure

  4. Reconfigurable photonic data networks for military aircraft

    Science.gov (United States)

    Weaver, T. L.; Seal, D. W.; Hoard, M. A.

    The authors propose a photonic switched network approach capable of supporting multi-gigabit-per-second data rate transmissions, independent of protocol, over a large number of simultaneous, independent paths. To form the heart of this network, a single chip, gallium arsenide (GaAs), all-optical crossbar switch suitable for application to fighter aircraft has been developed. This monolithic photonic crossbar requires no electrical/optical conversions; thus it provides a transparent network interface. It is capable of digital data transmission at rates from dc to at least 2 Gb/s, independently of communication protocol or format. It can connect any input to any available output without disturbing existing connections, and it is capable of broadcasting signals from one input to multiple outputs. It can reconfigure its input to output routings in less than 1.0 ns. The authors report on optical switch technology assessment, and laboratory evaluation of photonic data bus star repeaters.

  5. Bidirectional all-optical switches based on highly nonlinear optical fibers

    Science.gov (United States)

    Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi

    2017-05-01

    All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.

  6. All-optical sub-ps switching and parallel logic gates with bacteriorhodopsin (BR) protein and BR-gold nanoparticles

    Science.gov (United States)

    Roy, Sukhdev; Yadav, Chandresh

    2014-12-01

    We propose a model for the early sub-picosecond (sub-ps) transitions in the photochromic bacteriorhodopsin (BR) protein photocycle (B570 → H → I460 → J625 → B570) and present a detailed analysis of ultrafast all-optical switching for different pump-probe combinations. BR excitation with 120 fs pump pulses at 570 or 612 nm results in the switching of cw probe beams at 460 and 580 nm exhibiting reverse saturable absorption (RSA) and saturable absorption (SA) respectively. The effect of pump intensity, pump pulse width, lifetime of I460 state, thickness and concentration on switching has been studied in detail. It is shown that low intensity (MW cm-2), high contrast (100%), sub-ps all-optical switching can be achieved with BR-gold nanoparticle solutions. The validity of the proposed model is evident from the good agreement of theoretical simulations with reported experimental results. The switching characteristics have been optimized to design ultrafast all-optical parallel NOT, OR, AND and the universal NOR and NAND logic gates. High contrast, ultrafast switching at relatively lower pump intensities, compared to other organic molecules, opens up exciting prospects for ultrafast, all-optical information processing with BR and BR nano-biophotonic hybrid materials.

  7. Applications of all optical signal processing for advanced optical modulation formats

    Science.gov (United States)

    Nuccio, Scott R.

    signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. It is also worth noting that future networks may use a combination of data-rates and formats while it has been estimated that "we may start seeing the first commercial use of Terabit Ethernets by 2015". -Robert Metcalfe. To this end, the work presented in this Ph.D. dissertation is aimed at addressing the issue of optical processing for advanced optical modulation formats. All optical multiplexing and demultiplexing of Pol-MUX and phase and QAM encoded signals at the 100 Gbit/s Ethernet standard is addressed. The creation and development of an extremely large continuously tunable all-optical delay capable of handling a variety of modulation formats and data rates is presented. As optical delays are viewed as a critical element to achieve efficient and reconfigurable signal processing, the presented delay line is also utilized to enable a tunable packet buffer capable of handling data packets of varying rate, varying size, and multiple modulation formats.

  8. Reconfigurable nanomechanical photonic metamaterials.

    Science.gov (United States)

    Zheludev, Nikolay I; Plum, Eric

    2016-01-01

    The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

  9. Optically Reconfigurable Photonic Devices

    CERN Document Server

    Wang, Qian; Gholipour, Behrad; Wang, Chih-Ming; Yuan, Guanghui; Teng, Jinghua; Zheludev, Nikolay I

    2015-01-01

    Optoelectronic components with adjustable parameters, from variable-focal-length lenses to spectral filters that can change functionality upon stimulation, have enormous technological importance. Tuning of such components is conventionally achieved by either micro- or nano-mechanical actuation of their consitutive parts, stretching or application of thermal stimuli. Here we report a new dielectric metasurface platform for reconfigurable optical components that are created with light in a non-volatile and reversible fashion. Such components are written, erased and re-written as two-dimensional binary or grey-scale patterns into a nanoscale film of phase change material by inducing a refractive-index-changing phase-transition with tailored trains of femtosecond pulses. We combine germanium-antimony-tellurium-based films optimized for high-optical-contrast ovonic switching with a sub-wavelength-resolution optical writing process to demonstrate technologically relevant devices: visible-range reconfigurable bi-chr...

  10. Bandwidth Reconfigurable Metamaterial Arrays

    Directory of Open Access Journals (Sweden)

    Nathanael J. Smith

    2014-01-01

    Full Text Available Metamaterial structures provide innovative ways to manipulate electromagnetic wave responses to realize new applications. This paper presents a conformal wideband metamaterial array that achieves as much as 10 : 1 continuous bandwidth. This was done by using interelement coupling to concurrently achieve significant wave slow-down and cancel the inductance stemming from the ground plane. The corresponding equivalent circuit of the resulting array is the same as that of classic metamaterial structures. In this paper, we present a wideband Marchand-type balun with validation measurements demonstrating the metamaterial (MTM array’s bandwidth from 280 MHz to 2800 MHz. Bandwidth reconfiguration of this class of array is then demonstrated achieving a variety of band-pass or band-rejection responses within its original bandwidth. In contrast with previous bandwidth and frequency response reconfigurations, our approach does not change the aperture’s or ground plane’s geometry, nor does it introduce external filtering structures. Instead, the new responses are realized by making simple circuit changes into the balanced feed integrated with the wideband MTM array. A variety of circuit changes can be employed using MEMS switches or variable lumped loads within the feed and 5 example band-pass and band-rejection responses are presented. These demonstrate the potential of the MTM array’s reconfiguration to address a variety of responses.

  11. All-optical random number generation using highly nonlinear fibers by numerical simulation

    Science.gov (United States)

    Wang, Juanfen; Liang, Junqiang; Li, Pu; Yang, Lingzhen; Wang, Yuncai

    2014-06-01

    A new scheme of all-optical random number generation based on the nonlinear effects in highly nonlinear fibers (HNLF) is proposed. The scheme is comprised of ultra-wide band chaotic entropy source, all-optical sampler, all-optical comparator and all-optical exclusive-or (XOR), which are mainly realized by four-wave mixing (FWM) and cross-phase modulation (XPM) in highly nonlinear fibers. And we achieve 10 Gbit/s random numbers through numerically simulating all the processes. The entire operations are completed in the all-optical domain, which may overcome the bottleneck problem of electronic devices, and apply directly in high-speed all-optical communication network.

  12. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  13. Cost effective all-optical fractional OFDM receiver using an arrayed waveguide grating

    Science.gov (United States)

    Nagashima, T.; Cincotti, G.; Murakawa, T.; Shimizu, S.; Hasegawa, M.; Hattori, K.; Okuno, M.; Mino, S.; Himeno, A.; Wada, N.; Uenohara, H.; Konishi, T.

    2016-12-01

    We experimentally demonstrate the feasibility of implementing a cost effective all-optical fractional orthogonal frequency division multiplexing (AO-FrOFDM) receiver using an arrayed waveguide grating (AWG). The all-optical fractional Fourier transform at the receiver is implemented by modifying the second slab coupler from a conventional all-optical discrete Fourier transform AWG. The open eye diagrams obtained from the experimental results indicate that 12 × 10 Gbit/s DBPSK AO-FrOFDM signals were successfully demultiplexed.

  14. All-optical adder/subtractor based on tera-hertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Rajat Kumar Pal; Jitendra Nath Roy

    2009-01-01

    An all-optical adder/subtractor (A/S) unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed.Tile all-optical A/S unit with a set of all-optical full-adders and optical exclusive-ORs (XORs),can be used to perform a fast central processor unit using optical hardware components.We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform binary addition and subtraction.With computer simulation results confirming the described methods,conclusions are given.

  15. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    Science.gov (United States)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping; Li, Mo

    2015-09-01

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  16. Transparent Dynamic reconfiguration for CORBA

    NARCIS (Netherlands)

    Almeida, João Paulo A.; Wegdam, Maarten; Sinderen, van Marten; Nieuwenhuis, Lambert; Blair, G.; Schmidt, D.; Tari, Z.

    2001-01-01

    Distributed systems with high availability requirements have to support some form of dynamic reconfiguration. This means that they must provide the ability to be maintained or upgraded without being taken off-line. Building a distributed system that allows dynamic reconfiguration is very intrusive t

  17. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  18. 40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe

    2000-01-01

    All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...

  19. All-optical signal processing at 10 GHz using a photonic crystal molecule

    Energy Technology Data Exchange (ETDEWEB)

    Combrié, Sylvain; Lehoucq, Gaëlle; Junay, Alexandra; De Rossi, Alfredo, E-mail: alfredo.derossi@thalesgroup.com [Thales Research and Technology, 1 Avenue A. Fresnel, 91767 Palaiseau (France); Malaguti, Stefania; Bellanca, Gaetano; Trillo, Stefano [Department of Engineering, Università di Ferrara, v. Saragat 1, 44122 Ferrara (Italy); Ménager, Loic [Thales Systèmes Aeroportés, 2 Av. Gay Lussac, 78851 Elancourt (France); Peter Reithmaier, Johann [Institute of Nanostructure Technologies and Analytics, CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)

    2013-11-04

    We report on 10 GHz operation of an all-optical gate based on an Indium Phosphide Photonic Crystal Molecule. Wavelength conversion and all-optical mixing of microwave signals are demonstrated using the 2 mW output of a mode locked diode laser. The spectral separation of the optical pump and signal is crucial in suppressing optical cross-talk.

  20. Reconfigurable Integrated Optoelectronics

    Directory of Open Access Journals (Sweden)

    Richard Soref

    2011-01-01

    Full Text Available Integrated optics today is based upon chips of Si and InP. The future of this chip industry is probably contained in the thrust towards optoelectronic integrated circuits (OEICs and photonic integrated circuits (PICs manufactured in a high-volume foundry. We believe that reconfigurable OEICs and PICs, known as ROEICs and RPICs, constitute the ultimate embodiment of integrated photonics. This paper shows that any ROEIC-on-a-chip can be decomposed into photonic modules, some of them fixed and some of them changeable in function. Reconfiguration is provided by electrical control signals to the electro-optical building blocks. We illustrate these modules in detail and discuss 3D ROEIC chips for the highest-performance signal processing. We present examples of our module theory for RPIC optical lattice filters already constructed, and we propose new ROEICs for directed optical logic, large-scale matrix switching, and 2D beamsteering of a phased-array microwave antenna. In general, large-scale-integrated ROEICs will enable significant applications in computing, quantum computing, communications, learning, imaging, telepresence, sensing, RF/microwave photonics, information storage, cryptography, and data mining.

  1. Reconfigurable multiport EPON repeater

    Science.gov (United States)

    Oishi, Masayuki; Inohara, Ryo; Agata, Akira; Horiuchi, Yukio

    2009-11-01

    An extended reach EPON repeater is one of the solutions to effectively expand FTTH service areas. In this paper, we propose a reconfigurable multi-port EPON repeater for effective accommodation of multiple ODNs with a single OLT line card. The proposed repeater, which has multi-ports in both OLT and ODN sides, consists of TRs, BTRs with the CDR function and a reconfigurable electrical matrix switch, can accommodate multiple ODNs to a single OLT line card by controlling the connection of the matrix switch. Although conventional EPON repeaters require full OLT line cards to accommodate subscribers from the initial installation stage, the proposed repeater can dramatically reduce the number of required line cards especially when the number of subscribers is less than a half of the maximum registerable users per OLT. Numerical calculation results show that the extended reach EPON system with the proposed EPON repeater can save 17.5% of the initial installation cost compared with a conventional repeater, and can be less expensive than conventional systems up to the maximum subscribers especially when the percentage of ODNs in lightly-populated areas is higher.

  2. All-Optical Switches in Optical Time-Division Multiplexing Technology: Theory,Experience and Application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Optical time division multiplexing (OTDM) is one of thepromisinig ways for the future high-speed optical fiber communication networks. All-optical switch is, being one of the core technologies of OTDM systems and networks, crucial to realize the various signal processes including time-division demultiplexing, packet switching, all-optical regenerating and so on. This thesis mainly studies various all-optical switch technologies and their utilization in the fields of all-optical signal processings in the OTDM systems and networks. The main jobs are listed as follows.(1) A novel all-optical ultrafast demultiplexing scheme using the soliton self-trapping effect in birefringent fiber is proposed.(2) The demultiplexing performance of the Nonlinear Optical Loop Mirror(NOLM) is thoroughly analyzed and its optimization is further discussed.(3) The performance analysis and the configuration optimization of the all-optical switches based on the Semiconductor Optical Amplifier(SOA) are systematically presented. The speed limitation of the all-optical SOA switches induced by the fast gain depletion of SOA is discussed. Besides, a novel SOA switch is proposed, which adopts the asymmetric Mach-Zehnder Interferometer configuration.(4) The 8×2\\^5 Gb/s OTDM experimental transmission system along 105 km standard fiber is realized using the NOLM demultiplexer.(5) The NOLM switch is used to realize the all-optical 3R regeneration of 2\\^5 Gb/s Return-to-Zero signal.(6) The feasibility and limitation of the all-optical SOA packet switch is discussed. And a developed MZI configuration of SOA packet switch is further shown to improve the packet switching performance. Finally, an all-optical packet dropping node suitable in the networks with ring or bus configuration and an all-optical packet switching node in the ShuffleNet networks are proposed to show the feasibility of all-optical packet switching through combining the all-optical switches and the reasonable logic decisions.

  3. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    CERN Document Server

    Zhao, Yun; Mathews, Jay; Agha, Imad

    2016-01-01

    We employ the process of non-degenerate four-wave mixing Bragg scattering (FWM-BS) to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly-confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  4. All-optical switching via four-wave mixing Bragg scattering in a silicon platform

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2017-02-01

    Full Text Available We employ the process of non-degenerate four-wave mixing Bragg scattering to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.

  5. All-optical D and T flip-flops based on polarization switch of SOA

    Science.gov (United States)

    Wang, Lina; Wang, Yongjun; Wu, Chen

    2016-11-01

    The semiconductor optical amplifier (SOA) plays an important role in the development of the all-optical signal processing because of the advantages of simple structure, easy integration and strong non-linearity. Especially the nonlinear polarization rotation effect of SOA is receiving considerable interest by many researchers nowadays. The all-optical flip-flop using the properties of SOA also obtains widespread attention by researchers, as all-optical flip-flop is an important part in the field of all-optical signal processing. In this paper, a new all-optical flip-flop structure using polarization switch (PSW) based on polarization rotation effect of SOA is presented. The main work of the paper is the simulation of all-optical logic gates and optical SR latch. The logic gate setup only uses one SOA, but it can get two different logic gates through a simulation. The extinction ratio of the logic gate is about 30dB. The structure of optical SR latch utilizes the two coupled polarization rotation switch of SOA. The structure of the flip-flop is based on these two parts. To demonstrate the feasibility of the structure, we analyze two types of flip-flops, including all-optical D and T flip-flops, whose clock pulse repetition rate is 1GHz with the pulse width of 0.3ns. The quality of all-optical flip-flop in this paper is measured by the falling and rising edge time. In the simulation, the falling edge time is about 50ps, while the rising edge time is higher than the falling edge time, because the gain increases slowly to the recovery time after the decrease of the gain of SOA. The results are useful for the development of all-optical flip-flop based on SOA.

  6. An all-optical matrix multiplication scheme with non-linear material based switching system

    Institute of Scientific and Technical Information of China (English)

    Archan Kumar Das; Sourangshu Mukhopadhyay

    2005-01-01

    Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.

  7. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Energy Technology Data Exchange (ETDEWEB)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu [Wuhan National Lab for Optoelectronics, Department of Optoelectronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao Zhiyong [State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074 (China); Deng Zhuanhua, E-mail: hezhou@wri.com.cn, E-mail: weilee@mail.hust.edu.cn [School of Computer Science and Technology, Hubei University of Economics, Wuhan 430205 (China)

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  8. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  9. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    Science.gov (United States)

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  10. Optimal Reconfiguration of Tetrahedral Formations

    Science.gov (United States)

    Huntington, Geoffrey; Rao, Anil V.; Hughes, Steven P.

    2004-01-01

    The problem of minimum-fuel formation reconfiguration for the Magnetospheric Multi-Scale (MMS) mission is studied. This reconfiguration trajectory optimization problem can be posed as a nonlinear optimal control problem. In this research, this optimal control problem is solved using a spectral collocation method called the Gauss pseudospectral method. The objective of this research is to provide highly accurate minimum-fuel solutions to the MMS formation reconfiguration problem and to gain insight into the underlying structure of fuel-optimal trajectories.

  11. Reconfigurable nanowire electronics - A review

    Science.gov (United States)

    Weber, W. M.; Heinzig, A.; Trommer, J.; Martin, D.; Grube, M.; Mikolajick, T.

    2014-12-01

    Reconfigurable nanowire transistors merge the electrical properties of unipolar n- and p-type FETs into a single type of device with identic technology, geometry and composition. These four-terminal nanowire transistors employ an electric signal to dynamically program unipolar n- or p-type behavior. More than reducing the technological complexity, they open up the possibility of dynamically programming the functions of circuits at the device level, i.e. enabling a fine-grain reconfiguration of complex functions. We will review different reconfigurable concepts, analyze the transport properties and finally assess their maturity for building circuits.

  12. Reconfiguring Maternity Care?

    DEFF Research Database (Denmark)

    Johannsen, Nis

    were not obstacles which the proposed changes should overcome, but are on the contrary necessary, as it is the alliances between the particular interests and the proposed changes that motor the initiatives. The interests were not invented through the initiatives but are formed through history. Although...... at a hospital and a group of researchers which included me. Both initiatives involved numerous seemingly different interests that were held together and related to reconfiguring maternity care. None of the initiatives can unequivocally be labelled a success, as neither managed to change maternity care, at least...... not in the intended manner. It was, however, an achievement to relate the different interests for a period. In this dissertation I will elucidate the proposed changes in the initiatives as well as expound on the manner in which they were proposed. It is argued that the different interests involved in the initiatives...

  13. Repetition or Reconfiguration

    DEFF Research Database (Denmark)

    Vaarst Andersen, Kristina

    Experience, measured as seniority, is seldom sufficient to explain individual professionals’ abilities to contribute with valuable knowledge to team production. We need to pay attention to professionals’ knowledge and its fit to the project they engage in. In many industries and settings, the cog......Experience, measured as seniority, is seldom sufficient to explain individual professionals’ abilities to contribute with valuable knowledge to team production. We need to pay attention to professionals’ knowledge and its fit to the project they engage in. In many industries and settings...... and reconfiguration. The results indicate that project performance benefits form contributions from individuals holding diverse knowledge only when projects aim for high differentiation levels. This positive association is not just moderated, it may even be reversed in the case of professionals participating in low...

  14. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  15. All-optical sampling based on quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina

    2016-11-01

    In recent years, the all-optical signal processing system has become a hot research field of optical communication. This paper focused on the basic research of quantum-dot (QD) semiconductor optical amplifier (SOA) and studied its practical application to all-optical sampling. A multi-level dynamic physical model of QD-SOA is established, and its ultrafast dynamic characteristics are studied through theoretical and simulation research. For further study, an all-optical sampling scheme based on the nonlinear polarization rotation (NPR) effect of QD-SOA is also proposed. This paper analyzed the characteristics of optical switch window and investigated the influence of different control light pulses on switch performance. The presented optical sampling method has an important role in promoting the improvement of all-optical signal processing technology.

  16. High bandwidth all-optical 3×3 switch based on multimode interference structures

    Science.gov (United States)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  17. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  18. An All-optical 3R Regenerator Using Fiber-based Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Theint Theint Htike

    2015-07-01

    Full Text Available Abstract All optical 3R regeneration is a key function of the future all optical network and ultra-long-haul transmission. In this paper all-optical regenerator utilizes a Fabry-Perot F-P filter for clock recovery four wavemixing based in a 500m-long highly nonlinear fiber and optical band pass filter for retiming and reshaping. A 10Gbs RZ signal was transmitted through 1200 km with a power penalty of 1dB at a BER of 10-9 compared to the back-to-back case. All optical 3R is shown to improve the performance of input signals degraded by transmission impairments and timing jitter of 10ps is reduced.

  19. All-optical diode effect of a nonlinear photonic crystal with a defect

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-jiang; ZHOU Jin-yun; XIAO Wan-neng

    2006-01-01

    An all-optical diode behavior that uses a nonlinear one-dimensional photonic crystal (NPC) with a defect Kerr medium is numerically simulated by the use of a nonlinear finite-difference time-domain (NFDTD) method.The numerical results show that for an incident pulse with appropriate intensity and temporal width,the transmittance can be several times greater in one direction of NPC than in the opposite direction at the pulse carrier frequency. This behaves like an all-optical diode and has promising applications in some areas such as optical isolation and all-optical processing.The ways to obtain low threshold of pulse field strength to realize an all-optical diode are also analyzed in detail.

  20. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  1. All-Optical WDM Buffer System Realized by NOLM and Feedback Loop Structure

    Institute of Scientific and Technical Information of China (English)

    Seungwoo Yi; Kyeong-Mo Yoon; Yong-Gi Lee; Jinseob Eom

    2003-01-01

    We propose an all-optical WDM buffer for optical packet switching system, which consists of NOLM and feedback loop. The proposed structure provides more than 40 turn buffering and nice output of buffered data when selected by control signal.

  2. All-Optical Logic Gates and Wavelength Conversion Via the Injection-Locking of a Fabry-Perot Semiconductor Laser

    Science.gov (United States)

    2013-03-21

    Figure 18: An all-optical half- adder involving all-optical NAND, AND, XNOR, and XOR gates [44...XNOR gates, XOR gates, comparators, flip-flops, and half- adders can be achieved using multiple SMFP-LDs in a variety of configurations [47]. For...half- adder . Figure 18: An all-optical half- adder involving all-optical NAND, AND, XNOR, and XOR gates [47]. 55 The all-optical half- adder

  3. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  4. Transmission performance of all-optically labelled packets using ASK/DPSK orthogonal modulation

    DEFF Research Database (Denmark)

    Chi, Nan; Carlsson, B.; Zhang, Jianfeng

    2002-01-01

    First transmission experiment with all-optically labelled packets consisting of ASK modulated payload and orthogonally modulated DPSK label is demonstrated. The limitation of the laser linewidth and the input extinction ratio are discussed.......First transmission experiment with all-optically labelled packets consisting of ASK modulated payload and orthogonally modulated DPSK label is demonstrated. The limitation of the laser linewidth and the input extinction ratio are discussed....

  5. Optimization of all-optical EDFA-based Sagnac-interferometer switch.

    Science.gov (United States)

    Wang, Fei; Li, Chunfei

    2007-10-17

    We perform optimization of all-optical EDFA-based Sagnac - interferometer switch through an analytical model and numerical simulations by solving nonlinear Schrödinger equations. The effects of the performance of EDFA on the bit rate and the switching power are investigated for all-optical switch based on self-phase or cross-phase modulation. The simulated results show that ultra-low switching power (EDFA.

  6. Magnetic induction tomography using an all-optical ⁸⁷Rb atomic magnetometer.

    Science.gov (United States)

    Wickenbrock, Arne; Jurgilas, Sarunas; Dow, Albert; Marmugi, Luca; Renzoni, Ferruccio

    2014-11-15

    We demonstrate magnetic induction tomography (MIT) with an all-optical atomic magnetometer. Our instrument creates a conductivity map of conductive objects. Both the shape and size of the imaged samples compare very well with the actual shape and size. Given the potential of all-optical atomic magnetometers for miniaturization and extreme sensitivity, the proof-of-principle presented in this Letter opens up promising avenues in the development of instrumentation for MIT.

  7. 160 Gb/s OFDM transmission utilizing an all-optical symbol generator based on PLC

    Science.gov (United States)

    Liang, Xiaojun; Qiao, Yaojun; Li, Wei; Mei, Junyao; Qin, Yi

    2009-11-01

    We demonstrate a 160 Gb/s orthogonal frequency division multiplexing (OFDM) system using an all-optical symbol generator based on planar light circuit (PLC) technology. Excellent bit error rate (BER) is observed after long-distance transmission. The proposed symbol generator fundamentally eliminates the processing speed limits introduced by electronics and is suitable for high integration, making it physically realizable to build high-speed all-optical OFDM systems with a large number of subcarriers.

  8. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    OpenAIRE

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic lo...

  9. All-Optical Terahertz Optical Asymmetric Demultiplexer (toad) Based Binary Comparator:. a Proposal

    Science.gov (United States)

    Chattopadhyay, Tanay

    Comparator determines whether a number is greater than, equals to or less than another number. It plays a significant role in fast central processing unit in all-optical scheme. In all-optical scheme here 1-bit binary comparator is proposed and described by Terahertz Optical Asymmetric Demultiplexer (TOAD) based interferometric switch. Simulation result by Mathcad-7 is also given. Cascading technique of building up the n-bit binary comparator with this 1-bit comparator block is also proposed here.

  10. All-optical prefix tree adder with the help of terahertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Tanay Chattopadhyay; Rajat Kumar Pal; Jitendra Nath Roy

    2011-01-01

    We propose and describe an all-optical prefix tree adder with the help of a terahertz optical asymmetric demultiplexer (TOAD) using a set of optical switches. The prefix tree adder is useful in compound adder implementation. It is preferred over the ripple carry adder and the carry lookahead adder. We also describe the principle and possibilities of the all-optical prefix tree adder. The theoretical model is presented and verified through numerical simulation. The new method promises higher processing speed and accuracy. The model can be extended for studying more complex all-optical circuits of enhanced functionality in which the prefix tree adder is the basic building block.%@@ We propose and describe an all-optical prefix tree adder with the help of a terahertz optical asymmetric demultiplexer (TOAD) using a set of optical switches.The prefix tree adder is useful in compound adder implementation.It is preferred over the ripple carry adder and the carry lookahead adder.We also describe the principle and possibilities of the all-optical prefix tree adder.The theoretical model is presented and verified through numerical simulation.The new method promises higher processing speed and accuracy.The model can be extended for studying more complex all-optical circuits of enhanced functionality in which the prefix tree adder is the basic building block.

  11. Reconfigurable, Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The nature of human exploration missions to the Moon and Mars demands a frequency-agile, reconfigurable, durable digital radio delivering telemetry, ranging, voice,...

  12. Reconfigurable Parallel Data Flow Architecture

    CERN Document Server

    Naji, Hamid Reza

    2010-01-01

    This paper presents a reconfigurable parallel data flow architecture. This architecture uses the concepts of multi-agent paradigm in reconfigurable hardware systems. The utilization of this new paradigm has the potential to greatly increase the flexibility, efficiency, expandability of data flow systems and to provide an attractive alternative to the current set of disjoint approaches that are currently applied to this problem domain. The ability of methodology to implement data flow type processing with different models is presented in this paper.

  13. Towards a ^87Rb BEC apparatus with reconfigurable arbitrary optical potentials and artificial gauge fields

    Science.gov (United States)

    Niffenegger, Robert; Olson, Abraham; Chen, Yong P.

    2012-06-01

    We have constructed an all-optical ^87Rb BEC apparatus, which is currently creating condensates in a 1550nm cross beam optical dipole trap every 30s. We present experimental progress toward implementing reconfigurable arbitrary optical potentials and artificial gauge fields in our apparatus. Time-averaged, dynamically-reconfigurable, arbitrary-shaped optical potentials are generated using a dual-axis AOM controlled by a two-channel high-bandwidth arbitrary RF waveform generator. Using a blue-detuned 532nm laser, we have demonstrated various optical potential geometries such as a tilting wedge, checkerboard and elliptical barriers. Such arbitrary, reconfigurable optical potentials will be used to explore quantum phase transitions in superfluids. Our excellent optical access also allows the addition of Raman beams of various arrangements. Raman dressed states can be used to induce spin dependent artificial gauge fields for studying physics such as the spin Hall effect.

  14. Lunar Applications in Reconfigurable Computing

    Science.gov (United States)

    Somervill, Kevin

    2008-01-01

    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.

  15. The application of mechatronic design approach in a reconfigurable manufacturing environment

    CSIR Research Space (South Africa)

    Xing, B

    2010-12-01

    Full Text Available . J. Intelligent Systems Technologies and Applications, Vol. 8, Nos. 1-4, 2010 The application of mechatronic design approach in a reconfigurable manufacturing environment Bo Xing* Faculty of Engineering and the Built Environment, University...

  16. Advances in Reconfigurable Mechanisms and Robots I

    CERN Document Server

    Zoppi, Matteo; Kong, Xianwen

    2012-01-01

    Advances in Reconfigurable Mechanisms and Robots I provides a selection of key papers presented in The Second ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2012) held on 9th -11th  July 2012 in Tianjin, China. This ongoing series of conferences will be covered in this ongoing collection of books.   A total of seventy-eight papers are divided into seven parts to cover the topology, kinematics and design of reconfigurable mechanisms with the reconfiguration theory, analysis and synthesis, and present the current research and development in the field of reconfigurable mechanisms including reconfigurable parallel mechanisms. In this aspect, the recent study and development of reconfigurable robots are further presented with the analysis and design and with their control and development. The bio-inspired mechanisms and subsequent reconfiguration are explored in the challenging fields of rehabilitation and minimally invasive surgery. Advances in Reconfigurable Mechanisms and ...

  17. Light Robotics: an all-optical nano- and micro-toolbox

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Palima, Darwin

    2017-01-01

    potential of this new ‘drone-like’ light-driven micro-robotics in challenging microscopic geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny micro-robots in 3D to ensure continuous optimal light coupling on the fly. Our latest...

  18. Compensating the Electron Beam Energy Spread by the Natural Transverse Gradient of Laser Undulator in All-Optical X-ray Sources

    CERN Document Server

    Zhang, Tong; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical schemes provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this letter, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly dispersing the electron beam transversely. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  19. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  20. Frequency-time coherence for all-optical sampling without optical pulse source

    CERN Document Server

    Preussler, Stefan; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave, allowing simple integration in appropriate platforms, such as Silicon Photonics. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  1. Field trial of 160 Gb/s all-optical packet switching

    Science.gov (United States)

    Liu, Y.; Herrera, J.; Raz, O.; Tangdiongga, E.; Marti, J.; Ramos, F.; Maxwell, G.; Poustie, A.; Mulvad, H. C. H.; Hill, M. T.; de Waardt, H.; Khoe, G. D.; Koonen, A. M. J.; Dorren, H. J. S.

    2007-11-01

    We present the results of a transmission experiment, over 110 km of field installed fiber, for an all-optical 160 Gb/s packet switching system. The system uses in-band optical labels which are processed entirely in the optical domain using a narrow-band all-optical filter. The label decision information is stored by an optical flip-flop, which output controls a high-speed wavelength converter based on ultra-fast cross-phase modulation in a single semiconductor optical amplifier. The packet switched node is located in between two different fiber sections, each having a length of 54.3-km. The field installed fibers are located around the city of Eindhoven in the Netherlands. The results show how the all-optical switch can effectively route the packets based on the optical information and that such packets may be transmitted across the fiber with an acceptable penalty level.

  2. Quaternary Galois field adder based all-optical multivalued logic circuits.

    Science.gov (United States)

    Chattopadhyay, Tanay; Taraphdar, Chinmoy; Roy, Jitendra Nath

    2009-08-01

    Galois field (GF) algebraic expressions have been found to be promising choices for reversible and quantum implementation of multivalued logic. For the first time to our knowledge, we developed GF(4) adder multivalued (four valued) logic circuits in an all-optical domain. The principle and possibilities of an all-optical GF(4) adder circuit are described. The theoretical model is presented and verified through numerical simulation. The quaternary inverter, successor, clockwise cycle, and counterclockwise cycle gates are proposed with the help of the all-optical GF(4) adder circuit. In this scheme different quaternary logical states are represented by different polarized light. A terahertz optical asymmetric demultiplexer interferometric switch plays an important role in this scheme.

  3. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.

  4. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  5. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    Science.gov (United States)

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  6. Performance evaluations for dynamic wavelength routed all-optical multifiber networks

    DEFF Research Database (Denmark)

    Fenger, Christian

    2004-01-01

    This paper presents a study on dynamic wavelength routed all-optical networks by simulating traffic on all-optical networks. A performance study is carried out on dynamic all-optical networks for fixed and free routing. It is explained how multiple fibers correspond to limited wavelength conversion......, and it is explained why the presence of wavelength converters increase the complexity of optical cross connects. We find that both free routing and wavelength conversion lowers the blocking probability significantly. The new contribution is that we determine the gain in blocking probability as function of the number...... of fibers per link and the offered load. We find that multiple fibers reduce the effect of wavelength converters significantly....

  7. Frequency-time coherence for all-optical sampling without optical pulse source

    Science.gov (United States)

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-09-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  8. Wavelength Routing Algorithm of All Optical Network Based on Traffic Engineering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    General multi-protocol label switching(GMPLS) based on traffic engineering is one of the possible methods to implement all-optical network. This method implements the network with IP technique and guarantees the quality of service with traffic engineering. Based on the establishment of selecting schemes of optical path and methods of traffic calculation, the wavelength routing algorithm of all-optical network based on traffic engineering is presented by combining with prior route of shortest path and traffic engineering, the algorithm procedures are given, and the actual examples are introduced as well as the analysis on simulation calculation. This research results have certain significance for the achievement of optical switching technique of all-optical network.

  9. Security Situation Assessment of All-Optical Network Based on Evidential Reasoning Rule

    Directory of Open Access Journals (Sweden)

    Zhong-Nan Zhao

    2016-01-01

    Full Text Available It is important to determine the security situations of the all-optical network (AON, which is more vulnerable to hacker attacks and faults than other networks in some cases. A new approach of the security situation assessment to the all-optical network is developed in this paper. In the new assessment approach, the evidential reasoning (ER rule is used to integrate various evidences of the security factors including the optical faults and the special attacks in the AON. Furthermore, a new quantification method of the security situation is also proposed. A case study of an all-optical network is conducted to demonstrate the effectiveness and the practicability of the new proposed approach.

  10. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian;

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  11. Experimental study on all-optical half-adder based on semi-conductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    HAN Bing-chen; YU Jin-long; WANG Wen-rui; ZHANG Li-tai; HU Hao; YANG En-ze

    2009-01-01

    We demonstrate a novel all-optical half-adder based on two semiconductor optical amplifiers (SOAS). Two optical band-pass filters are used to select the two idlers generated by four-wave mixing (FWM) effect of the first SOA. Therefore, the AND gate and XNOR logic are realized simultaneously. The second SOA acts as a NOT gate, in which the NOR logic is achieved with the input of the logic XNOR. As a result, the output is the sum of the two input bits and the carry. In the experiment, all-optical half-addition calculation is achieved between two 10 Gb/s signals.

  12. Application of bistable optical logic gate arrays to all-optical digital parallel processing

    Science.gov (United States)

    Walker, A. C.

    1986-05-01

    Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.

  13. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi;

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  14. Efficient ultra-fast all-optical wavelength converters with Ti:PPLN waveguides

    DEFF Research Database (Denmark)

    Nouroozi, Rahman; Suche, Hubertus; Hu, Hao

    2014-01-01

    Applications of packaged and pigtailed (tunable) integrated all-optical Ti:PPLN wavelength converters (AOWC) with different modulation formats (RZ-DQPSK, 16-ary QAM) are reported. The devices take advantage of cascaded second order nonlinear interactions allowing tuning with either one or two...... in transparent all-optical networks (TAON). In addition recent progress with respect to bandwidth and efficiency of the cSHG/DFG-based wavelength converters is reported. The efficiency is increased by pump-resonant wavelength conversion and by increased interaction length in a phase controlled double-pass scheme...

  15. 160 Gb/s Silicon All-Optical Data Modulator based on Cross Phase Modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Pu, Minhao; Ji, Hua

    2012-01-01

    We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal.......We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal....

  16. All-optical tunable mirror of VCSEL using electromagnetically induced transparency

    Science.gov (United States)

    Rostami, A.; Abbasian, K.; Khodashenas, P. S.; Janabi-Sharifi, F.

    2008-11-01

    A new and efficient proposal for all-optical tunable mirror of VCSEL using electromagnetically induced transparency (EIT) is proposed. For this purpose a slab doped with quantum dots for realization of 3-level atomic system is considered. Density matrix formulation for time evaluation of the proposed structure is used. The reflection and transmission coefficients of the considered slab are calculated and time development of the related amplitude and output power and threshold current density of VCSEL laser studied. We show that some nanometer tuning can be obtained. So, the proposed idea can open a new realization method of all-optical tunable VCSEL lasers.

  17. Proposal for all-optical controllable switch using dipole induced transparency (DIT)

    Science.gov (United States)

    Eftekhari, K.; Abbasian, K.; Rostami, A.

    2010-05-01

    We propose a novel all-optical controllable switch using photonic crystal cavity. For doing this work, the dipole induced transparency phenomenon realized through interaction of light with multilevel nanocrystals is used. Multilevel nanocrystals are doped to photonic crystal rods. Using the proposed structure and applying the control field, the absorbing medium converts to transparent one and switching operation is obtained. Analytical relation for evaluation of the proposed device considering quantum optical effects is presented and studied by investigation of effects of parameters on switching characteristics. We show that high quality all-optical switching operation can be obtained.

  18. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  19. An all-optical buffer based on temporal cavity solitons operating at 10 Gb/s

    CERN Document Server

    Jang, Jae K; Schröder, Jochen; Eggleton, Benjamin J; Murdoch, Stuart G; Coen, Stéphane

    2016-01-01

    We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop. Experimentally, we are able to demonstrate the storage of 4536 bits of data, written all-optically into the fiber ring at 10 Gb/s, for 1 minute.

  20. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed.......We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  1. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  2. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  3. Laser Trimming for Adjustment of Grating Offset in Phase-Shifted Fiber Grating Coupler for All-Optical Switching Application

    Institute of Scientific and Technical Information of China (English)

    Hirohisa; Yokota; Yutaka; Sasaki

    2003-01-01

    We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.

  4. On reconfigurable tiled multi-core programming

    NARCIS (Netherlands)

    Rovers, Kenneth C.; Burgwal, van de Marcel D.; Kuper, Jan; Kokkeler, Andre B.J.; Smit, Gerard J.M.

    2009-01-01

    For a generic flexible efficient array antenna receiver platform a hierarchical reconfigurable tiled architecture has been proposed. The architecture provides a flexible reconfigurable solution, but partitioning, mapping, modelling and programming such systems remains an issue. A semantic model has

  5. Controllable all-optical stochastic logic gates and their delay storages based on the cascaded VCSELs with optical-injection

    Science.gov (United States)

    Zhong, Dongzhou; Luo, Wei; Xu, Geliang

    2016-09-01

    Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light, we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers (VCSELs) with optical-injection. Here, two logic inputs are encoded in the detuning of the injected light from a tunable CW laser. The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs. For the same logic inputs, under electro-optic modulation, we perform various digital signal processing (NOT, AND, NAND, XOR, XNOR, OR, NOR) in the all-optical domain by controlling the logic operation of the applied electric field. Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization. To quantify the reliabilities of these logic gates, we further demonstrate their success probabilities. Project supported by the National Natural Science Foundation of China (Grant No. 61475120) and the Innovative Projects in Guangdong Colleges and Universities, China (Grant Nos. 2014KTSCX134 and 2015KTSCX146).

  6. MEMS-Reconfigurable Metamaterials and Antenna Applications

    OpenAIRE

    Tomislav Debogovic; Julien Perruisseau-Carrier

    2014-01-01

    This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by micro-electro-mechanical systems (MEMS) technology. First, we show reconfigurable composite right/left handed transmission lines (CRLH-TLs) having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA). Second, we present very low loss metasurface designs with reconfigurable reflection properties, ...

  7. Network-based reconfiguration routes for a self-reconfigurable robot

    Institute of Scientific and Technical Information of China (English)

    LIU JinGuo; MA ShuGen; WANG YueChao; LI Bin

    2008-01-01

    This paper presents a network-based analysis approach for the reconfiguration problem of a self-reconfigurable robot.The self-reconfigurable modular robot named "AMOEBA-Ⅰ" has nine kinds of non-isomorphic configurations that consist of a configuration network.Each configuration of the robot is defined to be a node in the weighted and directed configuration network.The transformation from one configuration to another is represented by a directed path with nonnegative weight.Graph theory is applied in the reconfiguration analysis,where reconfiguration route,reconfigurable matrix and route matrix are defined according to the topological information of these configurations.Algorithms in graph theory have been used in enumerating the available reconfiguration routes and deciding the best reconfiguration route.Numerical analysis and experimental simulation results prove the validity of the approach proposed in this paper.And it is potentially suitable for other self-reconfigurable robots' configuration control and reconfiguration planning.

  8. Image processing using reconfigurable FPGAs

    Science.gov (United States)

    Ferguson, Lee

    1996-10-01

    The use of reconfigurable field-programmable gate arrays (FPGAs) for imaging applications show considerable promise to fill the gap that often occurs when digital signal processor chips fail to meet performance specifications. Single chip DSPs do not have the overall performance to meet the needs of many imaging applications, particularly in real-time designs. Using multiple DSPs to boost performance often presents major design challenges in maintaining data alignment and process synchronization. These challenges can impose serious cost, power consumption and board space penalties. Image processing requires manipulating massive amounts of data at high-speed. Although DSP chips can process data at high-speeds, their architectures can inhibit overall system performance in real-time imaging. The rate of operations can be increased when they are performed in dedicated hardware, such as special-purpose imaging devices and FPGAs, which provides the horsepower necessary to implement real-time image processing products successfully and cost-effectively. For many fixed applications, non-SRAM- based (antifuse or flash-based) FPGAs provide the raw speed to accomplish standard high-speed functions. However, in applications where algorithms are continuously changing and compute operations must be modified, only SRAM-based FPGAs give enough flexibility. The addition of reconfigurable FPGAs as a flexible hardware facility enables DSP chips to perform optimally. The benefits primarily stem from optimizing the hardware for the algorithms or the use of reconfigurable hardware to enhance the product architecture. And with SRAM-based FPGAs that are capable of partial dynamic reconfiguration, such as the Cache-Logic FPGAs from Atmel, continuous modification of data and logic is not only possible, it is practical as well. First we review the particular demands of image processing. Then we present various applications and discuss strategies for exploiting the capabilities of

  9. Dynamically reconfigurable bio-inspired hardware

    OpenAIRE

    Upegui Posada, Andres Emilio

    2006-01-01

    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable c...

  10. Antenna reconfiguration verification and validation

    Science.gov (United States)

    Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)

    2009-01-01

    A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.

  11. Engineered materials for all-optical helicity-dependent magnetic switching

    Science.gov (United States)

    Fullerton, Eric

    2014-03-01

    The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund

  12. All-Optical Switching Using Fabry-Perot Laser Diodes(Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P. K. A. Wai; L. Y. Chan; H. Y. Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  13. All-Optical Arithmetic and Combinatorial Logic Circuits with High-Q Bacteriorhodopsin Coated Microcavities

    CERN Document Server

    Roy, Sukhdev; Topolancik, Juraj; Vollmer, Frank

    2010-01-01

    We present designs of all-optical computing circuits, namely, half-full adder/subtractor, de-multiplexer, multiplexer, and an arithmetic unit, based on bacteriorhodopsin (BR) protein coated microcavity switch in a tree architecture. The basic all-optical switch consists of an input infrared (IR) laser beam at 1310 nm in a single mode fiber (SMF-28) switched by a control pulsed laser beam at 532 nm, which triggers the change in the resonance condition on a silica bead coated with BR between two tapered fibers. We show that fast switching of 50 us can be achieved by injecting a blue laser beam at 410 nm that helps in truncating the BR photocycle at the M intermediate state. Realization of all-optical switch with BR coated microcavity switch has been done experimentally. Based on this basic switch configuration, designs of all-optical higher computing circuits have been presented. The design requires 2n-1 switches to realize n bit computation. The proposed designs require less number of switches than terahertz o...

  14. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  15. Characterisation of a MQW electroabsorption modulator as an all-optical demultiplexer

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Romstad, Francis Pascal; Tersigni, Andrea

    2001-01-01

    A detailed experimental investigation of the all-optical switching properties of an InGaAsP MQW electroabsorption modulator has been performed. Using high pump pulse energies and high reverse bias settings, switching windows were demonstrated with extinction ratios up to 25 dB and widths down to 10...

  16. Ultra compact and fast All Optical Flip Flop design in photonic crystal platform

    Science.gov (United States)

    Abbasi, Amin; Noshad, Morteza; Ranjbar, Reza; Kheradmand, Reza

    2012-11-01

    In this work we present a heterostructure All Optical Flip-Flop configuration based on all optical switching with Kerr nonlinear photonic crystal. In this square-hexagonal structure, we propose three different schemes for the cavities in order to show the trade-off between switching time and triggering power. Loss in the system is reasonably low because of the perfect band gap matching at bending points where two lattices join. The proposed RS-Flip Flop has exceptional features, which make it one of the well optimized and most practical structures to be used in the all optical integrated circuits. The novel design has a fast switching action (on the order of a few picoseconds), and low input power (on the order of 100 mW). Furthermore, high contrast of the output signals for ON and OFF states, can help the easy detection or its coupling to the other devices. The structure is fascinatingly uncomplicated, which results in ultra small dimensions which make it suitable to be placed in an all optical integrated circuit. Besides, we provide a profound analytical view on the functioning of the system, as analyzed by the finite difference time domain (FDTD) method.

  17. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    DEFF Research Database (Denmark)

    Colman, Pierre; Hansen, Per Lunnemann; Yu, Yi

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report...

  18. A Novel All-optical Wavelength Converter Based on Self-pump Four-wave Mixing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianxiao; CHEN Zhangyuan; TAO Zhenning; WU Deming; XU Anshi; WANG Ziyu

    2002-01-01

    A novel scheme of all-optical wavelength converter(AOWC) based on dual pump four-wave mixing(DP-FWM) was demonstrated. To suppress the ASE noise of the semiconductor optical amplifier (SOA), one of the two pumps was generated interiorly from a loop laser constructed mainly by tunable optical filter and SOA. The theoretical model and some experimental results were presented.

  19. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals

    NARCIS (Netherlands)

    Euser, T.G.; Molenaar, Adriaan J.; Fleming, J.G.; Gralak, Boris; Polman, Albert; Vos, Willem L.

    2008-01-01

    We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals. The crystals are spatially homogeneously excited and probed by measuring reflectivity over an octave in frequency (including the telecommunication range) as a function of time. After 300 fs, the

  20. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...

  1. Efficient all-optical switch using a Λ atom in a cavity QED system

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Kerckhoff, Joseph

    2011-01-01

    We propose an all-optical switch constructed from a two-mode optical resonator containing a strongly coupled, three-state system. The coupling allows a weak, continuous wave laser drive to incoherently control the transmission of a much stronger, continuous wave signal laser into (and through) th...

  2. Femtosecond all-optical switching in AlGaAs waveguides using a time division interferometer

    Science.gov (United States)

    Lagasse, M. J.; Anderson, K. K.; Haus, H. A.; Fujimoto, J. G.

    1989-05-01

    All-optical switching of femtosecond pulses in AlGaAs waveguides is investigated using a novel time division interferometric technique which eliminates thermal imbalances. In addition to an instantaneous refractive index nonlinearity, free-carrier generation via two-photon absorption produces a response of several hundred picoseconds.

  3. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  4. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...... effects, as opposed to quantum well or bulk devices....

  5. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    All-optical wavelength conversion in an InGaAsP quantum well electroabsorption modulator is studied at different bit-rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and signal regeneration capability is demonstrated....

  6. Modeling of semiconductor devices for high-speed all-optical signal processing

    DEFF Research Database (Denmark)

    Bischoff, Svend; Højfeldt, Sune; Mørk, Jesper

    2001-01-01

    The all-optical signal processing performance of devices based on active semiconductor waveguides is investigated. A large signal model is used to analyse the physical mechanisms limiting the high-speed performance of both semiconductor optical amplifiers (SOAs) and electro-absorption modulators ...

  7. Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation

    Science.gov (United States)

    Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing

    2017-01-01

    In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.

  8. Terahertz electro-absorption effect enabling femtosecond all-optical switching in semiconductor quantum dots

    DEFF Research Database (Denmark)

    Hoffmann, M.C.; Monozon, B.S.; Livhits, D.

    2010-01-01

    We demonstrate an instantaneous all-optical manipulation of optical absorption in InGaAs/GaAs quantum dots (QDs) via an electro-absorption effect induced by the electric field of an incident free-space terahertz signal. A terahertz signal with the full bandwidth of 3 THz was directly encoded onto...

  9. All-Optical Signal Processing for 640 Gbit/s Applications

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen

    2008-01-01

    This thesis concerns all-optical signal processing technologies for ultra-high serial data rates up to 640 Gbit/s. Firstly, time-division add-drop multiplexing at 640 Gbit/s is demonstrated for the first time using two different fibre-based switching techniques. Secondly, a novel principle...

  10. All-optical broadcast and multicast technologies based on PPLN waveguide

    DEFF Research Database (Denmark)

    Ye, Lingyun; Wang, Ju; Hu, Hao

    2013-01-01

    All-optical 1×4 broadcast and 1×3 multicast experiments of a 40-Gb/s return-to-zero on-off keying (RZ-OOK) signal based on a periodically poled lithium niobate (PPLN) waveguide are demonstrated in this letter. Clear opened eye diagrams and error-free performance are achieved for the broadcast...

  11. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  12. Research of Asymmetric Y-Branching Total Internal Reflection All-Optical Switch

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Y-branching TIR all-optical switch have been fabricated. When the switching optical intensity is 149.9W/mm2, the extinction ratio is 18dB. A theoretical model was also proposed which provided a good fit to the experimental data.

  13. All-Optical Switching Using Fabry-Perot Laser Diodes (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai; L.; Y.; Chan; H.; Y.; Tam

    2003-01-01

    In this paper, we investigate all-optical packet switching using a multi-wavelength mutual injection-locked Fabry-Perot laser diode. We observe error-free packet-switching of a 10 Gb/s signal with an extinction ratio of 16.9.

  14. 8x40 Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Yvind, Kresten

    2004-01-01

    We experimentally demonstrate all-optical broadcasting through simultaneous 8 × 40 Gb/s wavelength conversion in the RZ format based on cross absorption modulation in an electroabsorption modulator. The original intensity-modulated information is successfully duplicated onto eight wavelengths...

  15. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    Science.gov (United States)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  16. Organizational Reconfiguration and Strategic Response

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Pedersen, Torben

    2014-01-01

    The purpose of this paper is to investigate the effect of the organizational reconfiguration of offshoring on firms’ strategies. A consequence of offshoring is the need to reintegrate the geographically relocated organizational activities into a coherent organizational architecture. In order to do...

  17. Secure computing on reconfigurable systems

    NARCIS (Netherlands)

    Fernandes Chaves, R.J.

    2007-01-01

    This thesis proposes a Secure Computing Module (SCM) for reconfigurable computing systems. SC provides a protected and reliable computational environment, where data security and protection against malicious attacks to the system is assured. SC is strongly based on encryption algorithms and on the

  18. Channel Communication and Reconfigurable Hardware

    NARCIS (Netherlands)

    Bos, M.; Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Karelse, F.

    2000-01-01

    Many applications can be structured as a set of processes or threads that communicate via channels. These threads can be executed on various platforms (e.g. general purpose CPU, DSP, FPGA, etc). In our research we apply channels as a basic communication mechanism between threads in a reconfigurable

  19. Secure computing on reconfigurable systems

    NARCIS (Netherlands)

    Fernandes Chaves, R.J.

    2007-01-01

    This thesis proposes a Secure Computing Module (SCM) for reconfigurable computing systems. SC provides a protected and reliable computational environment, where data security and protection against malicious attacks to the system is assured. SC is strongly based on encryption algorithms and on the a

  20. All-optical control of microfiber resonator by graphene's photothermal effect

    Science.gov (United States)

    Wang, Yadong; Gan, Xuetao; Zhao, Chenyang; Fang, Liang; Mao, Dong; Xu, Yiping; Zhang, Fanlu; Xi, Teli; Ren, Liyong; Zhao, Jianlin

    2016-04-01

    We demonstrate an efficient all-optical control of microfiber resonator assisted by graphene's photothermal effect. Wrapping graphene onto a microfiber resonator, the light-graphene interaction can be strongly enhanced via the resonantly circulating light, which enables a significant modulation of the resonance with a resonant wavelength shift rate of 71 pm/mW when pumped by a 1540 nm laser. The optically controlled resonator enables the implementation of low threshold optical bistability and switching with an extinction ratio exceeding 13 dB. The thin and compact structure promises a fast response speed of the control, with a rise (fall) time of 294.7 μs (212.2 μs) following the 10%-90% rule. The proposed device, with the advantages of compact structure, all-optical control, and low power acquirement, offers great potential in the miniaturization of active in-fiber photonic devices.

  1. Recovery Management in All Optical Networks Using Biologically-Inspired Complex Adaptive System

    Directory of Open Access Journals (Sweden)

    Inadyuti Dutt

    2013-01-01

    Full Text Available All-Optical Networks have the ability to display varied advantages like performance efficiency, throughput etc but their efficiency depends on their survivability as they are attack prone. These attacks can be categorised as active or passive because they try to access information within the network or alter the information in the network. The attack once detected has to be recovered by formulating back-up or alternative paths. The proposed heuristic uses biologically inspired Complex Adaptive System, inspired by Natural Immune System. The study shows that natural immune system exhibit unique behaviour of detecting foreign bodies in our body and removing them on their first occurrences. This phenomenon is being utilised in the proposed heuristic for recovery management in All-optical Network

  2. All-optical scanhead for ultrasound and photoacoustic imaging-Imaging mode switching by dichroic filtering.

    Science.gov (United States)

    Hsieh, Bao-Yu; Chen, Sung-Liang; Ling, Tao; Guo, L Jay; Li, Pai-Chi

    2014-03-01

    Ultrasound (US) and photoacoustic (PA) multimodality imaging has the advantage of combining good acoustic resolution with high optical contrast. The use of an all-optical scanhead for both imaging modalities can simplify integration of the two systems and miniaturize the imaging scanhead. Herein we propose and demonstrate an all-optical US/PA scanhead using a thin plate for optoacoustic generation in US imaging, a polymer microring resonator for acoustic detection, and a dichroic filter to switch between the two imaging modes by changing the laser wavelength. A synthetic-aperture focusing technique is used to improve the resolution and contrast. Phantom images demonstrate the feasibility of this design, and show that axial and lateral resolutions of 125 μm and 2.52°, respectively, are possible.

  3. An all-optical method of developing data communication system with error detection circuit

    Science.gov (United States)

    Mandal, Sumana; Mandal, Dhoumendra; Garai, Sisir Kumar

    2014-03-01

    The basic criterion of data communication is that received data should exactly be the replica of the transmitting data. If any error is introduced in the received data, then data transmission should be stopped immediately. In this article the authors have developed an all-optical method of data communication system with error detection mechanism that works with frequency encoded data. Basic building blocks of the proposed data communication scheme are parity generator and parity checker which are developed from all optical XOR logic gates. Simulation results testify the feasibility of the proposed scheme. These logic gates are developed exploiting nonlinear polarization rotation based frequency conversion and switching character of semiconductor optical amplifiers. The scheme with frequency encoded data, high speed of frequency conversion and polarization switching action of semiconductor optical amplifier offers secure, error free, faster data communication network.

  4. Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching

    Science.gov (United States)

    Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo

    2017-09-01

    Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W  >  1 and T  <  1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.

  5. All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs

    Science.gov (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical repetition rate multiplication of pseudorandom bit sequences (PRBS) is demonstrated with all-optical wavelength conversion and optical logic gate 'OR' based on cascaded Tera-Hertz Optical Asymmetric Demultiplexers (TOADs). Its feasibility is verified by multiplication experiments from 500 Mb/s to 4 Gb/s for 23-1 PRBS and from 1 Gb/s to 4 Gb/s for 27-1 PRBS. This scheme can be employed for rate multiplication for much longer cycle PRBS at much higher bit rate over 40 Gb/s when the time-delay, the loss and the dispersion of the optical delay line are all precisely managed. The upper limit of bit rate will be restricted by the recovery time of semiconductor optical amplifier (SOA) finally.

  6. All-Optical Signal processing using Highly Nonlinear Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2006-01-01

    The use of HNL-PCF in optical communication systems has been investigated in this thesis. The investigation has been done with respect to the future of telecommunications in an all-optical system. The PCFs used have all been used for all-optical signal processing as part of an optical component...... and the possibility of large differences between the refractive indices of the core and the cladding by using air-holes, makes PCFs suited for custom made components. By testing a HNL-PCF as a medium for supercontinuum generation at various dispersion values and at the same time using that supercontinuum...... of modulation format of the signal. The modulation format is also dependent on transmission in the optical system and dependent on the pulse source used to generate the supercontinuum. It is believed that by satisfying strict demands on the pulse sources and the fiber design, could the use of a supercontinuum...

  7. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  8. Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides

    Directory of Open Access Journals (Sweden)

    Kelvin J. A. Ooi

    2016-07-01

    Full Text Available Graphene plasmonics provides a unique and excellent platform for nonlinear all-optical switching, owing to its high nonlinear conductivity and tight optical confinement. In this paper, we show that impressive switching performance on graphene plasmonic waveguides could be obtained for both phase and extinction modulations at sub-MW/cm2 optical pump intensities. Additionally, we find that the large surface-induced nonlinearity enhancement that comes from the tight confinement effect can potentially drive the propagating plasmon pump power down to the pW range. The graphene plasmonic waveguides have highly configurable Fermi-levels through electrostatic-gating, allowing for versatility in device design and a broadband optical response. The high capabilities of nonlinear graphene plasmonics would eventually pave the way for the adoption of the graphene plasmonics platform in future all-optical nanocircuitry.

  9. Experimental study on an all-optical switching based on MF-NOLM

    Institute of Scientific and Technical Information of China (English)

    SONG Xue-peng; REN Xiao-min; ZHANG Xia; YANG Guang-qiang; HUANG Yong-qing

    2006-01-01

    In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)-nonlinear optical loop mirror(NOLM).In the experiment,a 25-meter-long MF(γ=36W-1km-1@1 550 nm) is used as a nonlinear medium of the nonlinear optical loop mirror and the input signal is generated by a 10 GHz tunable picosecond laser source,with a full-width at half-maximum (FWHM) of 2 ps and centered at 1 550 nm.With the increase of input power,a π nonlinear phase shift is obtained by a 40/60 coupler in the experiment,but the same result can not be found by a 48/52 coupler.Additionally,the switching devices can also be used as an all-optical regeneration.

  10. Study of all-optical sampling using a semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina; Wang, Fu

    2016-08-01

    All-optical sampling is an important research content of all-optical signal processing. In recent years, the application of the semiconductor optical amplifier (SOA) in optical sampling has attracted lots of attention because of its small volume and large nonlinear coefficient. We propose an optical sampling model based on nonlinear polarization rotation effect of the SOA. The proposed scheme has the advantages of high sampling speed and small input pump power, and a transfer curve with good linearity was obtained through simulation. To evaluate the performance of sampling, we analyze the linearity and efficiency of sampling pulse considering the impact of pulse width and analog signal frequency. We achieve the sampling of analog signal to high frequency pulse and exchange the positions of probe light and pump light to study another sampling.

  11. Power-penalty-free all-optical decryption using stimulated Brillouin scattering in optical fiber

    Science.gov (United States)

    Yi, L. L.; Zhang, T.; Li, Z. X.; Zhang, Y.; Dong, Y.; Hu, W. S.

    2013-04-01

    We propose to all-optically encrypt and decrypt high-speed optical signals using the stimulated Brillouin scattering (SBS) effect in optical fiber for the first time. The spectral-shaped SBS gain or loss distorts the broadband optical signal so as to realize optical encryption. A corresponding SBS loss or gain with the same spectral shape and amplitude recovers the distorted signal to implement optical decryption. We experimentally demonstrate the SBS encryption/decryption process on 10.86 Gb s-1 non-return-to-zero-on-off-keying (NRZ-OOK) data using phase-modulated Brillouin pumps to generate a spectral-shaped SBS gain/loss encryption key, and no power penalty is observed for the best decryption case. The proposed all-optical encryption/decryption method is completely compatible with existing fiber-optic communication systems.

  12. Passive all-optical polarization switch, binary logic gates, and digital processor.

    Science.gov (United States)

    Zaghloul, Y A; Zaghloul, A R M; Adibi, A

    2011-10-10

    We introduce the passive all-optical polarization switch, which modulates light with light. That switch is used to construct all the binary logic gates of two or more inputs. We discuss the design concepts and the operation of the AND, OR, NAND, and NOR gates as examples. The rest of the 16 logic gates are similarly designed. Cascading of such gates is straightforward as we show and discuss. Cascading in itself does not require a power source, but feedback at this stage of development does. The design and operation of an SR Latch is presented as one of the popular basic sequential devices used for memory cells. That completes the essential components of an all-optical polarization digital processor. The speed of such devices is well above 10 GHz for bulk implementations and is much higher for chip-size implementations. In addition, the presented devices do have the four essential characteristics previously thought unique to the microelectronic ones.

  13. All Optical Stabilization of a Soliton Frequency Comb in a Crystalline Microresonator

    CERN Document Server

    Jost, J D; Herr, T; Lecaplain, C; Brasch, V; Pfeiffer, M H P; Kippenberg, T J

    2015-01-01

    Microresonator based optical frequency combs (MFC) have demonstrated promise in extending the capabilities of optical frequency combs. Here we demonstrate all optical stabilization of a low noise temporal soliton based MFC in a crystalline resonator via a new technique to control the repetition rate. This is accomplished by thermally heating the microresonator with an additional probe laser coupled to an auxiliary optical resonator mode. The offset frequency is controlled by stabilization of the pump laser frequency to a reference optical frequency comb. We analyze the stabilization by performing an out of loop comparison and measure the overlapping Allan deviation. This all optical stabilization technique can prove useful as a low added noise actuator for self-referenced microresonator frequency combs.

  14. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-Ji; LUO Bo-Wen; ZHANG Yin; LEI Lei; HUANG De-Xiu; ZHANG Xin-Liang

    2012-01-01

    We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper, which is based on liquid crystal on silicon switching elements, and both amplitude and phase of the spectrum are programmable. By designing specific transfer functions with the optical waveform shaper, we obtain first-, second-, and third-order differentiators for periodic pulses with small average errors. We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.%We experimentally demonstrate an all-optical temporal differentiator using a high resolution optical arbitrary waveform shaper,which is based on liquid crystal on silicon switching elements,and both amplitude and phase of the spectrum are programmable.By designing specific transfer functions with the optical waveform shaper,we obtain first-,second-,and third-order differentiators for periodic pulses with small average errors.We also theoretically analyze the bandwidth limitation of optical waveform shaper on the differentiator.

  15. Light Robotics: an all-optical nano- and micro-toolbox

    OpenAIRE

    Glückstad, Jesper; Villangca, Mark Jayson; Palima, Darwin; Bañas, Andrew

    2017-01-01

    Recently we proposed the concept of so-called Light Robotics including the new and disruptive 3D fabricated micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and remote-controlled with a joystick in a volume with six-degrees-of-freedom. Exploring the full potential of this new ‘drone-like’ light-driven micro-robotics in challenging microscopic geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a ...

  16. Improved parameters metropolitan area network supported with all-optical network's technology

    Science.gov (United States)

    Gradkowska, Magdalena; Kalita, Mariusz

    2006-03-01

    The advantages of all-optical network's technics make them one of main elements of the metropolitan area networks. They enable different applications in high quality mulitimedia services and guarantee a constant and reliable access to the Internet. As the growing expansion of the Internet continues in an unpredictable direction, many new solutions are expected. The major challenge is the increasing demand for flexible, transparent and customised bandwidth services for both private and business customers.

  17. An all-optical buffer based on polarization rotation in an EAM

    Institute of Scientific and Technical Information of China (English)

    Wang Kui-Ru; Kuang Hai; Wang Yong-Jun; Yuan Jin-Hui; Yan Bin-Bin

    2013-01-01

    A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced.The photon absorption and refractive index changes are analyzed numerically.The influence of pump intensity on the phase difference between the TE and TM modes is studied.The polarization rotation effect is obtained in the EAM,and a novel all-optical fiber loop buffer is designed.

  18. A phase insensitive all-optical router based on nonlinear lenslike planar waveguides.

    Science.gov (United States)

    Mateo, Eduardo; Liñares, Jesús

    2005-05-02

    We present the design of an all-optical router based on the properties of both propagation and interaction of Gaussian beams in lenslike planar guides. Variational results of single co- and counterpropagation are derived and used to design three integrated optical devices, that is, a header extraction device, an optical bistable device and a data routing device, which perform an ultrafast, phase-insensitive and fiber compatible routing operation in the optical domain.

  19. New all-optical wavelength auto-router based on spatial solitons.

    Science.gov (United States)

    Wu, Yaw-Dong

    2004-09-06

    We propose a novel all-optical wavelength auto-router based on spatial solitons. By using the swing effect of spatial solitons in a Kerr-type nonlinear medium, the proposed nonlinear waveguide structure could function as a self-routing wavelength division multiplexer (WDM). It could be a potential key component in the applications of ultra-high-speed and ultra-high-capacity optical communications and optical data processing systems.

  20. All optical contention detection and resolution for asynchronous variable length optical packets switching

    Science.gov (United States)

    Farhat, Rim; Farhat, Amel; Menif, Mourad

    2016-04-01

    We proposed a novel 2×2 all optical packet switching router architecture supporting asynchronous, labelled and variablelength packet. A proof of concept through Matlab Simulink simulation is validated. Then we discussed the three possible scenarios to demonstrate the contention resolution technique based on deflection routing. We have showing that the contending packet is detected and forwarded according FIFO (First In First Out) strategy to another output.

  1. Coherent all-optical switching in a bistable waveguide-cavity-waveguide system

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2011-01-01

    All optical switching based on non-linear material effects is a promising technique for use in future optical communication systems. Promising advances in the field has been achieved using optical microcavities in photonic crystals to increase the optical field strength and hence reduce...... the required power of the input field [1]. In this work we consider an alternative method of switching, in which the input power is kept constant and only the phase of the input field is varied....

  2. Optical bistability in artificial composite nanoscale molecules: Towards all optical processing at the nanoscale

    CERN Document Server

    Malyshev, A V

    2010-01-01

    Optical response of artificial composite nanoscale molecules comprising a closely spaced noble metal nanoparticle and a semiconductor quantum dot have been studied theoretically. We consider a system composed of an Au particle and CdSe or CdSe/ZnSe quantum dot and predict optical bistability and hysteresis in its response, which suggests various applications, in particular, all-optical processing and optical memory.

  3. Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics

    Science.gov (United States)

    Kwon, Yeong-Dae; Armen, Michael A.; Mabuchi, Hideo

    2013-11-01

    We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

  4. Implementation of tristate logic based all optical flip-flop with nonlinear material

    Institute of Scientific and Technical Information of China (English)

    Partha Ghosh; Sourangshu Mukhopadhyay

    2005-01-01

    @@ The advantages of multivalued logic in optical parallel computation need no introduction. There are lots of proposals, already reported, where tristate, quarternary state logic operations can be performed with optics. Here we report a new approach to implement tristate logic based all optical flip-flop using optical nonlinear material. The concept and the principle of operation of this type of flip-flop are different from that of the conventional binary one.

  5. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoptical high speed networks and computing systems.

  6. All optical implementation of a time-domain ptychographic pulse reconstruction set-up

    CERN Document Server

    Spangenberg, Dirk-Mathys; Rohwer, Erich; Feurer, Thomas

    2016-01-01

    An all optical implementation of pulse reconstruction using time-domain ptychography is demonstrated showing excellent results. Setup and reconstruction are easy to implement and a number of drawbacks found in other second order techniques are removed, such as the beam splitter modifying the pulse under consideration, the time ambiguity, or the strict correspondence between time delay increment and temporal resolution. Ptychography generally performs superior to algorithms based on general projections, requires considerable less computational effort and is much less susceptible to noise.

  7. Supporting IP dense mode multicast routing protocols in WDM all-optical networks

    Science.gov (United States)

    Salvador, Marcos R.; Heemstra de Groot, Sonia; Dey, Diptish

    2000-09-01

    Recent developments in all-optical networking and wavelength division multiplexing technologies allow for the support of optical multicasting, a missing feature towards the optical Internet. In this paper we propose a protocol to construct source-rooted WDM multicast trees. The protocol works under dense mode multicasting routing IP protocols and supports network nodes with different degrees of light splitting, wavelength conversion, and add/drop capabilities.

  8. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  9. All-optical analog-to-digital conversion using optical interconnection for gray code coding

    Science.gov (United States)

    Nishitani, Takashi; Konishi, Tsuyoshi; Itoh, Kazuyoshi

    2006-09-01

    The gray code based all-optical analog-to-digital conversion (ADC) using optical interconnection is described. Recent tremendous growths of optical communications and digital signal processing have encouraged the demand of high-speed and high-resolution ADC. To pursue a high-speed and high-resolution ADC, optical approaches have attracted much attention recently. ADC generally consists of three procedures: sampling, quantization and coding. Whereas the optical sampling techniques have been proposed and realized, the optical quantization and coding techniques have investigated depending on various applications. For the application to the binary detection of a high-speed digital signal, we previously proposed an all-optical ADC which consists of optical quantization using self-frequency shifting in a fiber and optical coding using optical interconnection for general binary code. In addition, since we can easily prepare optical interconnection patterns corresponding to the various codes, this technique can be used in any coding schemes. In this paper, we demonstrate the gray code based all-optical ADC to verify its scalability. Experimental results show that the 8-levels analog signals can be successfully converted into the bitwise allocated 3-bit gray code.

  10. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-01

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  11. A Novel All-Optical Switch in a Double-Loop Sagnac Ring Coupled with a Nonlinear Ring Resonator

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Qing; LI Li; ZHAO Jia-Qun; LI Chun-Fei

    2004-01-01

    @@ We propose a novel configuration of all-optical switch based on a double-loop Sagnac ring coupled with a nonlinear ring resonator. In the case of self-phase modulation, the reducing switching threshold power down to mW is predicted, which is the improvement of earlier works on all-optical switches. The switch optimization is analysed.A way to increase the response speed of all-optical switches is suggested.

  12. Design of reconfigurable logic controllers

    CERN Document Server

    Bukowiec, Arkadiusz; Doligalski, Michał; Tkacz, Jacek

    2016-01-01

    This book presents the original concepts and modern techniques for specification, synthesis, optimisation and implementation of parallel logical control devices. It deals with essential problems of reconfigurable control systems like dependability, modularity and portability. Reconfigurable systems require a wider variety of design and verification options than the application-specific integrated circuits. The book presents a comprehensive selection of possible design techniques. The diversity of the modelling approaches covers Petri nets, state machines and activity diagrams. The preferences of the presented optimization and synthesis methods are not limited to increasing of the efficiency of resource use. One of the biggest advantages of the presented methods is the platform independence, the FPGA devices and single board computers are some of the examples of possible platforms. These issues and problems are illustrated with practical cases of complete control systems. If you expect a new look at the recon...

  13. Reconfigurable Microwave Photonic Topological Insulator

    Science.gov (United States)

    Goryachev, Maxim; Tobar, Michael E.

    2016-12-01

    Using full 3D finite-element simulation and underlining Hamiltonian models, we demonstrate reconfigurable photonic analogues of topological insulators on a regular lattice of tunable posts in a reentrant 3D lumped element-type system. The tunability allows a dynamical in situ change of media chirality and other properties via the alteration of the same parameter for all posts, and as a result, great flexibility in the choice of bulk-edge configurations. Additionally, one-way photon transport without an external magnetic field is demonstrated. The ideas are illustrated by using both full finite-element simulation as well as simplified harmonic oscillator models. Dynamical reconfigurability of the proposed systems paves the way to a class of systems that can be employed for random access, topological signal processing, and sensing.

  14. Reconfigurable Microwave Photonic Topological Insulator

    CERN Document Server

    Goryachev, Maxim

    2016-01-01

    We demonstrate reconfigurable photonic analogues of topological insulators on a regular lattice of tunable posts in a re-entrant 3D lumped element type system. The tunability allows dynamical {\\it in-situ} change of media chirality and other properties via change of a single post parameter, and as a result, great flexibility in choice of bulk/edge configurations. Additionally, one way photon transport without external magnetic field is demonstrated. The ideas are illustrated by using both full finite element simulation as well as simplified harmonic oscillator models. Reconfigurability of the proposed systems paves the wave to a new class of systems that can be employed for random access, topological signal processing and sensing.

  15. All-Optical Half-Adder Using All-Optical XOR and AND Gates for Optical Generation of "Sum" and "Carry"

    Science.gov (United States)

    Menezes, J. W. M.; Fraga, W. B.; Ferreira, A. C.; Guimarães, G. F.; Filho, A. F. G. F.; Sobrinho, C. S.; Sombra, A. S. B.

    2010-07-01

    In this article, a numerical simulation study using the symmetric planar three-core non-linear directional coupler, operating with a short light pulse (2 ps), for the implementation of an all-optical half-adder is presented. The half-adder is the key building block for many digital processing functions such as shift register, binary counter, and serial parallel data converters. Optical couplers are an important component for application in optical fiber telecommunication systems and all integrated optical circuits because of very high switching speeds (as high as the femto-second range). In this numerical simulation, the symmetric planar three-core non-linear directional coupler presents a planar symmetrical structure with three cores in a parallel equidistant arrangement, three logical inputs (CP, A, and B), and two output logic functions (C and S). The CP(ΔΦ) input is a control pulse with a phase difference ΔΦ = Δθπ (0 ≤ Δθ ≤ 2) between inputs A and B (logical inputs of the half-adder) and one amplitude discriminator circuit. The half-adder uses two output logic functions of Sum(S) and Carry(C), which can be demonstrated by using XOR and AND gates, respectively. For the half-adder, the phase [ΔΦMIN, ΔΦMAX] intervals are studied, allowing the operation of the device as a half-adder. For the selected range of CP(ΔΦBETTER), the extinction ratio was studied, the compression factors for both Sum(S) and Carry(C) outputs of the symmetric planar three-core non-linear directional coupler.

  16. Dynamic reconfiguration in sensor middleware

    OpenAIRE

    Grace, P.; Coulson, G; Blair, Gordon S.; Porter, B. (collab.); Hughes, Daniel

    2006-01-01

    Middleware solutions for sensor networks have so far mainly focused on communication abstractions, ad-hoc message routing protocols, and power conservation techniques. We argue that customisation and dynamic reconfiguration of sensor network middleware are additional important dimensions to consider. This paper describes a sensor middleware that can be customised to suit different sensor application types, and provides a reflective approach for co-ordinated network-wide dynamic reconfiguratio...

  17. Structures with Reconfigurable Circulatory Systems

    Science.gov (United States)

    2008-05-16

    crosslinked material; whereas exposure to a different wavelength of light should reverse the crosslinking reaction and reform a liquid material...terminated LDI- glycerol polymer. Structures with Reconfigurable Circulatory Systems - Clark, Beckman, Cho, Weiland, and Bielawski 3 C..,c (Glutathione...reduced) (Glutathione, oxidized) C 4 V ’ " - .- x,,, ’- %. Figure 1:3. Scheme 11: Dissolution-gelation of Cysteine terminated LDI- glycerol polymer gel

  18. Two all-optical logic gates in a single photonic interferometer

    Science.gov (United States)

    Araújo, Antônio; Oliveira, Antônio; Martins, Francisco; Coelho, Amarílio; Fraga, Wilton; Nascimento, José

    2015-11-01

    In this paper is presented the all-optical AND and OR gates with high contrast ratio in a single interferometric configuration, i.e., when two logic signals are modulated in the input of the interferometer, so we have the OR gate in the first output and the AND gate in the second output. These logic gates were obtained by numerical investigation of the Mach-Zehnder interferometer constituted of dual-core nonlinear photonic crystal fiber operating with ultrashort fundamental solitons of 100 fs. To represent the logic information, pulse amplitude modulation by amplitude shift-keying was used.

  19. All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors

    CERN Document Server

    Kapetanakis, M D; Piermarocchi, C; Wang, J; Perakis, I E

    2011-01-01

    Using density matrix equations of motion and a tight-binding band calculation, we predict all-optical switching between four metastable magnetic states of (III,Mn)As ferromagnets. This switching is initiated non-thermally within 100fs, during nonlinear coherent photoexcitation. For a single optical pulse, magnetization reversal is completed after $\\sim$100 ps and controlled by the coherent femtosecond photoexcitation. Our predicted switching comes from magnetic nonlinearities triggered by a femtosecond magnetization tilt that is sensitive to un--adiabatic light--induced spin interactions.

  20. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up......We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing...

  1. On linearity of all optical asynchronous binary delta-sigma modulator

    Science.gov (United States)

    Davoudzadeh, N.; Tafazoli, M.; Sayeh, M. R.

    2013-11-01

    Since the role of optical signal processing is rapidly increasing within the communication systems, the opportunity to convert the analog signal to digital pulses directly in the optical domain will result in a systems simplification. Following our previous work, this paper describes a simple highly linear all-optical delta-sigma modulator, using the gain modulation in optically coupled single mode ring lasers. The key building blocks are an optical leaky integrator and a switching device, leading to meet the requirements of high-speed dynamic response, input/averaged-output linearity, and functioning without external clock. Linearity of the modulator and the corresponding parameters are discussed in theory, simulation, and experiment.

  2. Mechanism of all-optical control of ferromagnetic multilayers with circularly polarized light

    CERN Document Server

    Medapalli, Rajasekhar; Kim, Dokyun; Quessab, Yassine; Monotoya, Sergio A; Kirilyuk, Andrei; Rasing, Theo; Kimel, Alexey V; Fullerton, Eric E

    2016-01-01

    Time-resolved imaging reveals that the helicity dependent all-optical switching (HD-AOS) of Co/Pt ferromagnetic multilayers proceeds by two stages. First one involves the helicity independent and stochastic nucleation of reversed magnetic domains. At the second stage circularly polarized light breaks the degeneracy between the magnetic domains and promotes the preferred direction of domain wall (DW) motion. The growth of the reversed domain from the nucleation cite, for a particular helicity, leads to full magnetic reversal. This study demonstrates a novel mechanism of HD-AOS mediated by the deterministic displacement of DWs.

  3. All-optical $\\mathcal{PT}$-symmetric amplitude to phase modulator

    CERN Document Server

    Gutiérrez, Oscar Ignacio Zaragoza; Rodríguez-Lara, B M

    2015-01-01

    We study electromagnetic field propagation through a planar three-waveguide coupler with linear gain and loss, in a configuration that is the optical analog of a quantum $\\mathcal{PT}$-symmetric system, and provide its closed-form analytic propagator. At an specific propagation length, we show that the device provides all-optical amplitude to phase modulation with a $\\pi$ modulation range, if an extra binary phase is allowed in the reference signal, as well as phase to amplitude modulation, with an amplitude modulation range that depends linearly on the gain-to-coupling ratio of the system.

  4. One single trapped and laser cooled radium ion: Towards an all-optical atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, Oscar; Wansbeek, Lotje; Willmann, Lorenz; Timmermans, Rob; Jungmann, Klaus [KVI, University of Groningen (Netherlands)

    2008-07-01

    One single trapped radium ion is an ideal candidate for an all-optical frequency standard (*clock*). This system provides a long coherence time and tractable systematics. If the ion is laser cooled to the Lamb-Dicke regime, first order Doppler shifts are eliminated. Ultra-narrow transitions in radium ions provide an excellent basis for such a high stability clock, using commercially available semiconductor lasers in the visible regime. In certain odd isotopes of radium, the nuclear electric quadrupole shift is absent. Further, the radium ion is an excellent candidate for a high sensitivity experiment to search for a time variation of the finestructure constant.

  5. All-optical chaotic MQW laser repeater for long-haul chaotic communications

    Institute of Scientific and Technical Information of China (English)

    Senlin Yan

    2005-01-01

    We present an all-optical chaotic multi-quantum-well (MQW) laser repeater system to be used in long-haul chaotic communications. Chaotic synchronization is achieved among transmitter, repeater, and receiver. Chaotic repeater communications with a sinusoidal signal of 0.2-GHz modulation frequency and a digital signal of 0.4-Gb/s bit rate are numerically simulated, respectively. Calculation results illustrate that the signals are well decoded by the chaotic repeaters. Its bandwidth and the characteristics at much high bit rate are also analyzed. Simulation shows that the repeater can improve decoding quality, especially in higher bit rate chaotic communications.

  6. All-optical encryption based on interleaved waveband switching modulation for optical network security.

    Science.gov (United States)

    Fok, Mable P; Prucnal, Paul R

    2009-05-01

    All-optical encryption for optical code-division multiple-access systems with interleaved waveband-switching modulation is experimentally demonstrated. The scheme explores dual-pump four-wave mixing in a 35 cm highly nonlinear bismuth oxide fiber to achieve XOR operation of the plaintext and the encryption key. Bit 0 and bit 1 of the encrypted data are represented by two different wavebands. Unlike on-off keying encryption methods, the encrypted data in this approach has the same intensity for both bit 0 and bit 1. Thus no plaintext or ciphertext signatures are observed.

  7. All-optical radiation reaction at 10²¹ W/cm².

    Science.gov (United States)

    Vranic, M; Martins, J L; Vieira, J; Fonseca, R A; Silva, L O

    2014-09-26

    Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all-optical configuration through the collision of a ~1 GeV laser wakefield accelerated electron bunch with a counterpropagating laser pulse. In this configuration the radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between the classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of 10²³ W/cm².

  8. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing...... experimental results, and the signal regeneration capability of the device is investigated. In particular, we demonstrate the dependence of the extinction ratio of both the converted signal and the control signal on the device length and on the power level of the control signal. We also show how the sweep...

  9. All-optical switching in an open V-type atomic system

    Science.gov (United States)

    Jafarzadeh, H.

    2017-02-01

    In this paper, the optical bistability (OB) and absorption properties of a weak probe field in an open V-type three-level atomic system have been investigated. We found that the OB threshold could be reduced via spontaneously generated coherence (SGC), coherent and incoherent pump fields, atomic injection, and exit rates. We also found that the threshold intensity of OB in an open system was less than that in the closed system. The all-optical switching due to the OB has also been discussed.

  10. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  11. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  12. Synthesis and characterization of azo-containing organometallic thin films for all optical switching applications

    Science.gov (United States)

    Gatri, R.; Fillaut, J.-L.; Mysliwiec, J.; Szukalski, A.; Bartkiewicz, S.; El-Ouazzani, H.; Guezguez, I.; Khammar, F.; Sahraoui, B.

    2012-05-01

    Novel photoresponsive materials based on azo-containing bifunctional ruthenium-acetylides have been synthesized. All optical switching based on the Optical Kerr Effect in the organometallic thin films based on ruthenium(II) acetylides containing an azobenzene moiety as a photochromic unit in the main pi-conjugated system dispersed in a poly(methyl methacrylate) matrix has been observed. The excitation beam was delivered from a picosecond laser at wavelength 532 nm while dynamics of induced sample birefringence was probed by a non-absorbed linearly polarized beam of cw He-Ne laser (632.8 nm). The influence of ruthenium part on dynamics of molecular motions has been shown.

  13. All-optical NOR gate based on injection-locking effect in a semiconductor laser

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A scheme for all-optical NOR logic gate is proposed based on injection-locking effect in a semiconductor laser. In this scheme, signal light injection into the laser will cause frequency shift of laser modes, as a result, the probe light into the laser can be switched between injection-locked and unlocked status, and its output power will be modulated. Theoretical analysis for this scheme is carried out by using a model to describe the dynamics of the injection-locked laser. By numerical simulation, the influence of laser bias current, laser length, injected signal power and signal frequency on the output performance of NOR logic gate is quantitatively analyzed.

  14. Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.

    Science.gov (United States)

    Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M

    2007-10-01

    We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.

  15. Design of All-Optical Loadable and Erasable Memory Cell by LWI and EIT Effects

    Science.gov (United States)

    Abbasian, K.; Verki, N. G.; Rostami, A.

    2011-12-01

    We have designed a loadable and erasable all optical memory unit cell by using two coupled micro-ring resonators structure. To read out stored data we have created additional phase in the upper ring by electromagnetically induced transparency (EIT) phenomenon induced by inserted Λ-type three level quantum dots in the right hand half of the upper ring. Also, for compensating the fiber loss, we have used lasing without inversion (LWI) by inserted Y-type four level QDs in the left hand half of the both rings. This optical memory unit cell can work in only one photon-scale energy.

  16. All-optical subdiffraction multilevel data encoding onto azo-polymeric thin films

    Science.gov (United States)

    Savoini, Matteo; Biagioni, Paolo; Duò, Lamberto; Finazzi, Marco

    2009-03-01

    By exploiting photo-induced reorientation in azo-polymer thin films, we demonstrate all-optical polarization-encoded information storage with a scanning near-field optical microscope. In the writing routine, 5-level bits are created by associating different bit values to different birefringence directions, induced in the polymer after illumination with linearly polarized light. The reading routine is then performed by implementing polarization-modulation techniques on the same near-field microscope, in order to measure the encoded birefringence direction.

  17. Effects on Semiconductor Optical Amplifier Gain Quality for Applications in Advanced All-optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Riyam A. Johni

    2014-04-01

    Full Text Available Semiconductor optical amplifiers are strong candidates to replace traditional erbium-doped-fibre-amplifiers in future all-optical networks by virtue of their proven functional capabilities, in addition to gain. They are also smaller, cheaper and easier to integrate than fibre amplifiers. This study summarizes the gain quality of the semiconductor optical amplifier with varying effects such as input power, bias current and wavelength and data rate. The results reported herein show high quality gain, coupled with accept ably low noise figure values.

  18. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  19. All-optical 10 Gb/s AND logic gate in a silicon microring resonator

    DEFF Research Database (Denmark)

    Xiong, Meng; Lei, Lei; Ding, Yunhong

    2013-01-01

    An all-optical AND logic gate in a single silicon microring resonator is experimentally demonstrated at 10 Gb/s with 50% RZ-OOK signals. By setting the wavelengths of two intensity-modulated input pumps on the resonances of the microring resonator, field-enhanced four-wave mixing with a total inp...... power of only 8.5 dBm takes place in the ring, resulting in the generation of an idler whose intensity follows the logic operation between the pumps. Clear and open eye diagrams with a bit-error- ratio below 10−9 are achieved....

  20. Simultaneous all-optical AND and NOR gates for NRZ differential phase-shift-keying signals

    DEFF Research Database (Denmark)

    Xu, Jing; Zhang, X.; Dong, J.

    2008-01-01

    A scheme for realizing all-optical logic AND and NOR gates simultaneously for nonreturn-to-zero differential phase-shift-keying signals is proposed and demonstrated based on a delayed interferometer and two semiconductor optical amplifiers. Experimental demonstration at 20 Gb/s verifies the logic...... integrity of this scheme. The final results are derived in the ON–OFF keying format with clear open eyes and extinction ratios over 10 dB. The proposed scheme can be expanded to realize arbitrary logic gate....

  1. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    Science.gov (United States)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  2. All-optical detection of magnetization precession in tunnel junctions under applied voltage

    Science.gov (United States)

    Sasaki, Yuta; Suzuki, Kazuya; Sugihara, Atsushi; Kamimaki, Akira; Iihama, Satoshi; Ando, Yasuo; Mizukami, Shigemi

    2017-02-01

    An all-optical time-resolved magneto-optical Kerr effect measurement of a micron-sized tunnel junction with a CoFeB electrode was performed. The femtosecond (fs) laser-induced magnetization precession was clearly observed at various magnetic field angles. The frequency f and relaxation time τ of the magnetization precession varied with the voltage applied via a MgO barrier. The precession dynamics were in accordance with Kittel’s ferromagnetic resonance mode, and the voltage-induced changes in f and τ were well explained by the voltage-induced change in the perpendicular magnetic anisotropy of -36 fJ/Vm.

  3. Patterning Effects in Ultrafast All-Optical Photonic Crystal Nanocavity Switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    All-optical switches are expected to play a key role in increasing the bandwidth of future communication networks by replacing slower electronic components for certain signal processing tasks. Previous work has demonstrated the possibility of switching a single pulse [1,2]. However, a more...... realistic investigation of the switching performance requires longer random pulse sequences, since detrimental effects may accumulate over time scales longer than one pulse duration. This has been investigated for switches based on semiconductor optical amplifiers [3], but in this work the focus...

  4. Spectral amplitude and phase measurement of ultrafast pulses using all-optical differential tomography.

    Science.gov (United States)

    Londero, Pablo; Kuzucu, Onur; Gaeta, Alexander L

    2011-05-01

    We demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions. We show how our approach can be extended to larger bandwidths in similar systems, extending tomographic reconstruction of coherent fields to nearly an octave of bandwidth while maintaining a robust, waveguide-based geometry.

  5. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  6. All-optical subcarrier labeling based on the carrier suppression of the payload

    DEFF Research Database (Denmark)

    Chi, Nan; Zhang, Jianfeng; Jeppesen, Palle

    2003-01-01

    We report on a new approach to all-optical subcarrier labeling based on sideband generation through carrier-suppression of the payload. The experimental transmission over 50-km standard fiber of a 10-Gb/s payload data multiplexed with a synchronized 1.25-Gb/s subcarrier label is carried out...... with less than 1-dB receiver power penalty, clearly demonstrating the feasibility of this sideband optical labeling scheme. The requirements to the modulation index and dc bias along with the limitation of the input extinction ratio are discussed....

  7. Improving the All-Optical Response of SOAs Using a Modulated Holding Signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Nielsen, Mads Lønstrup; Mørk, Jesper

    2004-01-01

    A method for increasing the all-optical modulation bandwidth of semiconductor optical amplifiers (SOAs) by use of a cross-gain-modulated (XGM) holding signal is suggested and analyzed. The bandwidth improvement is numerically demonstrated by studying wavelength conversion in an SOA-based Mach......-Zehnder interferometer (MZI) at 160 and 40 Gb/s. The new scheme is predicted to improve the extinction ratio and the minimum mark output power, as well as to reduce the amplitude jitter of the wavelength converted signal....

  8. Amplified feedback DFB laser for 40 Gb/s all-optical clock recovery

    Science.gov (United States)

    Chen, Cheng; Sun, Yu; Zhao, Lingjuan; Pan, Jiaoqing; Qiu, Jifang; Liang, Song; Wang, Wei; Lou, Caiyun

    2011-12-01

    A monolithic integrated amplified feedback semiconductor laser (AFL) was fabricated based on quantum well intermixing (QWI) technique. The AFL works as a self-pulsation laser. It consists of a gain-coupled multiple quantum well distribute feedback (DFB) laser diode (LD) section, a passive phase section and an amplified feedback section. The free-running repetition frequency of the AFL can be tuned from 32 GHz to 51 GHz via controlling the feedback strength. All-optical 40 Gb/s clock recovery was experimentally demonstrated using the AFL with a low timing jitter.

  9. Dual correlated pumping scheme for phase noise preservation in all-optical wavelength conversion.

    Science.gov (United States)

    Anthur, Aravind P; Watts, Regan T; Shi, Kai; Carroll, John O'; Venkitesh, Deepa; Barry, Liam P

    2013-07-01

    We study the effect of transfer of phase noise in different four wave mixing schemes using a coherent phase noise measurement technique. The nature of phase noise transfer from the pump to the generated wavelengths is shown to be independent of the type of phase noise (1 / f or white noise frequency components). We then propose a novel scheme using dual correlated pumps to prevent the increase in phase noise in the conjugate wavelengths. The proposed scheme is experimentally verified by the all-optical wavelength conversion of a DQPSK signal at 10.7 GBaud.

  10. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.

    Science.gov (United States)

    Miida, Yusuke; Matsuura, Yuji

    2013-09-23

    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  11. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...... and a high-speed optical switch. In the experiment, WDM 10-Gb/s data packets are successfully routed with 1-dB power penalty at a bit-error rate of 10(-9)....

  12. All-optical modulation in wavelength-sized epsilon-near-zero media

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We investigate the interaction of two pulses (pump and probe) scattered by a nonlinear epsilon-near-zero (ENZ) slab whose thickness is comparable with the ENZ wavelength. We show that when the probe has a narrow spectrum localized around the ENZ wavelength its transmission is dramatically affected by the intensity of the pump. Conversely, if the probe is not in the ENZ regime, its propagation is not noticeably affected by the pump. Such all-optical modulation is due to the oversensitive character of the ENZ regime and it is so efficient to even occur in a wavelength thick slab.

  13. Reconfigurable Computing for Dynamically Reprogrammable Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the need for a framework and domain architecture suitable for reconfigurable transceivers and associated component technologies. The goal of...

  14. MEMS-Reconfigurable Metamaterials and Antenna Applications

    Directory of Open Access Journals (Sweden)

    Tomislav Debogovic

    2014-01-01

    Full Text Available This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by microelectromechanical systems (MEMS technology. First, we show reconfigurable composite right-/left-handed transmission lines (CRLH-TLs having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA. Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.

  15. Reconfigurable metamaterials for terahertz wave manipulation

    Science.gov (United States)

    Hashemi, Mohammed R.; Cakmakyapan, Semih; Jarrahi, Mona

    2017-09-01

    Reconfigurable metamaterials have emerged as promising platforms for manipulating the spectral and spatial properties of terahertz waves without being limited by the characteristics of naturally existing materials. Here, we present a comprehensive overview of various types of reconfigurable metamaterials that are utilized to manipulate the intensity, phase, polarization, and propagation direction of terahertz waves. We discuss various reconfiguration mechanisms based on optical, electrical, thermal, and mechanical stimuli while using semiconductors, superconductors, phase-change materials, graphene, and electromechanical structures. The advantages and disadvantages of different reconfigurable metamaterial designs in terms of modulation efficiency, modulation bandwidth, modulation speed, and system complexity are discussed in detail.

  16. Reconfiguration of Analog Electronics for Extreme Environments

    Science.gov (United States)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Guo, Xin

    2005-01-01

    This paper argues in favor of adaptive reconfiguration as a technique to expand the operational envelope of analog electronics for extreme environments (EE). On a reconfigurable device, although component parameters change in EE, as long as devices still operate, albeit degraded, a new circuit design, suitable for new parameter values, may be mapped into the reconfigurable structure to recover the initial circuit function. Laboratory demonstrations of this technique were performed by JPL in several independent experiments in which bulk CMOS reconfgurable devices were exposed to, and degraded by, high temperatures (approx.300 C) or radiation (300kRad TID), and then recovered by adaptive reconfiguration using evolutionary search algorithms.

  17. MEMS-reconfigurable metamaterials and antenna applications

    CERN Document Server

    Debogovic, Tomislav

    2014-01-01

    This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by micro-electro-mechanical systems (MEMS) technology. First, we show reconfigurable composite right/left handed transmission lines (CRLH-TLs) having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA). Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS) antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.

  18. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  19. Nonlinear all-optical switch based on a white-light cavity

    Science.gov (United States)

    Li, Na; Xu, Jingping; Song, Ge; Zhu, Chengjie; Xie, Shuangyuan; Yang, Yaping; Zubairy, M. Suhail; Zhu, Shi-Yao

    2016-04-01

    It is well known that there is a bottleneck for nonlinear all-optical switching, namely, the switching power and the switching time cannot be lowered simultaneously. A lower switching power requires a resonator with a high quality (Q ) factor, but leads to a longer switching time. We propose to overcome this bottleneck by replacing the nonlinear cavity in such an all-optical switch by a white-light cavity. This can be done by doping three-level atoms in the ring resonator and applying incoherent pump and coherent driving fields on it. The white-light cavity possesses broadband resonance in a linear region. Therefore, for the incident pulse, a broad range of frequency components can take part in the nonlinear process, and so it requires lower power to achieve switching compared to the conventional ring resonator. On the other hand, the refractive index of a white-light cavity has negative dispersion, leading to a fast group velocity. This results in a shorter time to build up the resonant response, yielding a short switching time.

  20. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities

    Science.gov (United States)

    Yang, Xiaoyu; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2017-01-01

    In this study, nanoscale integrated all-optical XNOR, XOR, and NAND logic gates were realized based on all-optical tunable on-chip plasmon-induced transparency in plasmonic circuits. A large nonlinear enhancement was achieved with an organic composite cover layer based on the resonant excitation-enhancing nonlinearity effect, slow light effect, and field confinement effect provided by the plasmonic nanocavity mode, which ensured a low excitation power of 200 μW that is three orders of magnitude lower than the values in previous reports. A feature size below 600 nm was achieved, which is a one order of magnitude lower compared to previous reports. The contrast ratio between the output logic states "1" and "0" reached 29 dB, which is among the highest values reported to date. Our results not only provide an on-chip platform for the study of nonlinear and quantum optics but also open up the possibility for the realization of nanophotonic processing chips based on nonlinear plasmonics.

  1. All-optical link for direct comparison of distant optical clocks

    CERN Document Server

    Fujieda, Miho; Nagano, Shigeo; Yamaguchi, Atsushi; Hachisu, Hidekazu; Ido, Tetsuya

    2011-01-01

    We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the propagation through a fiber link. Transfer stabilities of $2\\times10^{-15}$ at 1 second and $4\\times10^{-18}$ at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below $2\\times10^{-15}$ at 1 second and $7\\times10^{-17}$ at 1000 seconds. The system was available for the direct comparison of two distant $^{87}$Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the repro...

  2. High speed all optical Nyquist signal generation and full-band coherent detection.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-08-21

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems.

  3. All-Optical Reversible Logic Gates with Optically Controlled Bacteriorhodopsin Protein-Coated Microresonators

    Directory of Open Access Journals (Sweden)

    Sukhdev Roy

    2012-01-01

    Full Text Available We present designs of all-optical reversible gates, namely, Feynman, Toffoli, Peres, and Feynman double gates, with optically controlled microresonators. To demonstrate the applicability, a bacteriorhodopsin protein-coated silica microcavity in contact between two tapered single-mode fibers has been used as an all-optical switch. Low-power control signals (<200 μW at 532 nm and at 405 nm control the conformational states of the protein to switch a near infrared signal laser beam at 1310 or 1550 nm. This configuration has been used as a template to design four-port tunable resonant coupler logic gates. The proposed designs are general and can be implemented in both fiber-optic and integrated-optic formats and with any other coated photosensitive material. Advantages of directed logic, high Q-factor, tunability, compactness, low-power control signals, high fan-out, and flexibility of cascading switches in 2D/3D architectures to form circuits make the designs promising for practical applications.

  4. Optical resilient packet ring (O-RPR) based on all-optical buffering techniques

    Science.gov (United States)

    Wu, Chongqing; Sheng, Xingzhi; Fu, Songnian; Wei, Bin; Li, Yajie; Liu, Aiming

    2006-01-01

    This paper reports the progress of the 863 high-technology project of China "Optical Resilient Packet Ring (O-RPR) Based on All-optical Buffering Techniques". In this ring network, for the packet through an intermediate node the conversion of O/E/O is not needed in order to overcome the bottleneck of O/E/O. In all-optical node a Dual Loop Optical Buffer (DLOB) is used to revolve the collision between the packet, which pass through the node, and add packet from local user to ring. The principle of DLOB is introduced. The bit-rate of head of optical frame is lower than the bit-rate of payload in a packet, in order to increase the efficiency of transmission link. This paper will introduce the network topology, layers and the structure of optical node. It includes an optical splitter, optical delay line as input buffer, a SOA as optical switch, which switch the packet dropping down form the ring or pass through the node, a DLOB and an electric buffer. An ARM is used for regulation of different buffers. The experiment results of a demonstrate network including 3 nodes are given.

  5. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  6. M-Burst: A Framework of SRLG Failure Localization in All-Optical Networks

    KAUST Repository

    Ali, Mohammed L.

    2012-07-27

    Fast and unambiguous failure localization for shared risk link groups (SRLGs) with multiple links is essential for building a fully survivable and functional transparent all-optical mesh network. Monitoring trails (m-trails) have been proposed as an effective approach to achieve this goal. However, each m-trail traverses through each link by constantly taking a wavelength channel, causing a significant amount of resource consumption. In this paper, a novel framework of all-optical monitoring for SRLG failure localization is proposed. We investigate the feasibility of periodically launching optical bursts along each m-trail instead of assigning it a dedicated supervisory lightpath to probe the set of fiber segments along the m-trail, aiming to achieve a graceful compromise between resource consumption and failure localization latency. This paper defines the proposed framework and highlights the relevant issues regarding its feasibility. We provide theoretical justifications of the scheme. As a proof of concept, we formulate the optimal burst scheduling problem via an integer linear program (ILP) and implement the method in networks of all possible SRLGs with up to d=3 links. A heuristic method is also proposed and implemented for multiple-link SRLG failure localization, keeping all the assumptions the same as in the ILP method. Numerical results for small networks show that the scheme is able to localize single-link and multiple-link SRLG failures unambiguously with a very small amount of failure localization latency.

  7. Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond

    Science.gov (United States)

    Becker, Jonas Nils; Görlitz, Johannes; Arend, Carsten; Markham, Matthew; Becher, Christoph

    2016-11-01

    Complete control of the state of a quantum bit (qubit) is a fundamental requirement for any quantum information processing (QIP) system. In this context, all-optical control techniques offer the advantage of a well-localized and potentially ultrafast manipulation of individual qubits in multi-qubit systems. Recently, the negatively charged silicon vacancy centre (SiV-) in diamond has emerged as a novel promising system for QIP due to its superior spectral properties and advantageous electronic structure, offering an optically accessible Λ-type level system with large orbital splittings. Here, we report on all-optical resonant as well as Raman-based coherent control of a single SiV- using ultrafast pulses as short as 1 ps, significantly faster than the centre's phonon-limited ground state coherence time of about 40 ns. These measurements prove the accessibility of a complete set of single-qubit operations relying solely on optical fields and pave the way for high-speed QIP applications using SiV- centres.

  8. Engineered materials for all-optical helicity-dependent magnetic switching

    Science.gov (United States)

    Mangin, S.; Gottwald, M.; Lambert, C.-H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; Fainman, Y.; Aeschlimann, M.; Fullerton, E. E.

    2014-03-01

    The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

  9. All optical NAND gate based on nonlinear photonic crystal ring resonator

    Directory of Open Access Journals (Sweden)

    Somaye Serajmohammadi

    2016-06-01

    Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.

  10. On-chip passive three-port circuit of all-optical ordered-route transmission

    Science.gov (United States)

    Liu, Li; Dong, Jianji; Gao, Dingshan; Zheng, Aoling; Zhang, Xinliang

    2015-05-01

    On-chip photonic circuits of different specific functions are highly desirable and becoming significant demands in all-optical communication network. Especially, the function to control the transmission directions of the optical signals in integrated circuits is a fundamental research. Previous schemes, such as on-chip optical circulators, are mostly realized by Faraday effect which suffers from material incompatibilities between semiconductors and magneto-optical materials. Achieving highly functional circuits in which light circulates in a particular direction with satisfied performances are still difficult in pure silicon photonics platform. Here, we propose and experimentally demonstrate a three-port passive device supporting optical ordered-route transmission based on silicon thermo-optic effect for the first time. By injecting strong power from only one port, the light could transmit through the three ports in a strict order (1→2, 2→3, 3→1) while be blocked in the opposite order (1→3, 3→2, 2→1). The blocking extinction ratios and operation bandwidths have been investigated in this paper. Moreover, with compact size, economic fabrication process and great extensibility, this proposed photonic integrated circuit is competitive to be applied in on-chip all-optical information processing systems, such as path priority selector.

  11. Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall crosses

    Science.gov (United States)

    El Hadri, M. S.; Pirro, P.; Lambert, C.-H.; Bergeard, N.; Petit-Watelot, S.; Hehn, M.; Malinowski, G.; Montaigne, F.; Quessab, Y.; Medapalli, R.; Fullerton, E. E.; Mangin, S.

    2016-02-01

    We present an experimental study of all-optical helicity-dependent switching (AO-HDS) of ferromagnetic Pt/Co/Pt heterostructures with perpendicular magnetic anisotropy. The sample is patterned into a Hall cross and the AO-HDS is measured via the anomalous Hall effect. This all-electrical probing of the magnetization during AO-HDS enables a statistical quantification of the switching ratio for different laser parameters, such as the threshold power to achieve AO-HDS and the exposure time needed to reach complete switching at a given laser power. We find that the AO-HDS is a cumulative process, a certain number of optical pulses is needed to obtain a full and reproducible helicity-dependent switching. The deterministic switching of the ferromagnetic Pt/Co/Pt Hall cross provides a full "opto-spintronic device," where the remanent magnetization can be all-optically and reproducibly written and erased without the need of an external magnetic field.

  12. All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N.; Schulte, Carsten H. H.; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I.; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-01

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2* , exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  13. All-optical tunable microfiber knot resonator with graphene-assisted sandwich structure.

    Science.gov (United States)

    Meng, Yinghao; Deng, Lin; Liu, Zilong; Xiao, Huifu; Guo, Xiaonan; Liao, Miaomiao; Guo, Anqi; Ying, Tonghe; Tian, Yonghui

    2017-07-24

    We demonstrate an all-optical tunable microfiber knot resonator (MFKR) by direct light-graphene interaction using external vertical incidence pump laser. The 1530 nm CW pump source is employed to irradiate the sample, which can achieve the performance modulation of MFKR including transmission loss, extinction ratio, and resonant wavelength by the saturable absorption, photo-thermal, and optical Kerr effects, respectively. Compared with the MFKR with only the bottom graphene film, the tunable ranges of transmission loss and extinction ratio are increased by 69 and 125 times, respectively, which can induce a remarkable amplitude tuning. The resonant wavelength of MFKR occurs a red-shift under the irradiation of the pump light, and the red-shift range can exceed one free spectral range (FSR), which means the resonant wavelength could be tuned in the full wavelength range of the transparent window of optical fiber. It is promising for the device to be applied as an all-optical modulator, tunable optical filter, etc.

  14. Multi-band radio over fiber system with all-optical halfwave rectification, transmission and frequency down-conversion

    DEFF Research Database (Denmark)

    Prince, Kamau; Tafur Monroy, Idelfonso

    2011-01-01

    We introduce a novel application of all-optical half-wave rectification in the transportation and delivery of multi-frequency radio-over fiber signals. System evaluation was performed of transmission over various optical fiber types and all-optical envelope detection was implemented to achieve...

  15. IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops

    DEFF Research Database (Denmark)

    Ramos, F.; Kehayas, E.; Martinez, J.M.

    2005-01-01

    The Information Society Technologies - all-optical LAbel SwApping employing optical logic Gates in NEtwork nodes (IST-LASAGNE) project aims at designing and implementing the first, modular, scalable, and truly all-optical photonic router capable of operating at 40 Gb/s. The results of the first...

  16. IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops

    DEFF Research Database (Denmark)

    Ramos, F.; Kehayas, E.; Martinez, J.M.

    2005-01-01

    The Information Society Technologies - all-optical LAbel SwApping employing optical logic Gates in NEtwork nodes (IST-LASAGNE) project aims at designing and implementing the first, modular, scalable, and truly all-optical photonic router capable of operating at 40 Gb/s. The results of the first...

  17. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  18. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    Science.gov (United States)

    Vudyasetu, Praveen K.; Camacho, Ryan M.; Howell, John C.

    2010-11-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  19. Large-scale photonic integration for advanced all-optical routing functions

    Science.gov (United States)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  20. Efficient Runtime Management of Reconfigurable Hardware Resources

    NARCIS (Netherlands)

    Marconi, T.

    2011-01-01

    Runtime reconfigurable systems built upon devices with partial reconfiguration can provide reduction in overall hardware area, power efficiency, and economic cost in addition to the performance improvements due to better customization. However, the users of such systems have to be able to afford som

  1. The Molen compiler for reconfigurable architectures

    NARCIS (Netherlands)

    Moscu Panainte, E.

    2007-01-01

    In this dissertation, we present the Molen compiler framework that targets reconfigurable architectures under the Molen Programming Paradigm. More specifically, we introduce a set of compiler optimizations that address one of the main shortcomings of the reconfigurable architectures, namely the reco

  2. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian...

  3. Reconfigurable Radio-Over-Fiber Networks [Invited

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2015-01-01

    This paper discusses reconfigurable Radio-over-Fiber networks, including activities in coherent remote access units, silicon photonics for microwave photonics and optical switching.......This paper discusses reconfigurable Radio-over-Fiber networks, including activities in coherent remote access units, silicon photonics for microwave photonics and optical switching....

  4. All-optical sampling and magnification based on XPM-induced focusing

    CERN Document Server

    Nuno, J; Guasoni, M; Finot, C; Fatome, J

    2016-01-01

    We theoretically and experimentally investigate the design of an all-optical noiseless magnification and sampling function free from any active gain medium and associated high-power continuous wave pump source. The proposed technique is based on the co-propagation of an arbitrary shaped signal together with an orthogonally polarized intense fast sinusoidal beating within a normally dispersive optical fiber. Basically, the strong nonlinear phase shift induced by the sinusoidal pump beam on the orthogonal weak signal through cross-phase modulation turns the defocusing regime into localized temporal focusing effects. This periodic focusing is then responsible for the generation of a high-repetition-rate temporal comb upon the incident signal whose amplitude is directly proportional to its initial shape. This internal redistribution of energy leads to a simultaneous sampling and magnification of the signal intensity profile. This process allows us to experimentally demonstrate a 40-GHz sampling operation as well ...

  5. Few-Photon All-Optical {\\pi} Phase modulation Based on a Double-{\\Lambda} System

    CERN Document Server

    Chen, Yen-Chun; Lo, Hsiang-Yu; Tsai, Bing-Ru; Yu, Ite A; Chen, Ying-Cheng; Chen, Yong-Fan

    2013-01-01

    We propose an efficient all-optical phase modulation based on a double-{\\Lambda} system and demonstrate a {\\pi} phase shift of a few-photon pulse induced by another few-photon pulse in cold rubidium atoms with this scheme. By changing the phases of the applied laser fields, one can control the property of the double-{\\Lambda} medium. This phase-dependent mechanism makes the double-{\\Lambda} system different form the conventional cross-Kerr-based system which only depends on the applied laser intensities. The proposed scheme provides a new route to generate strong nonlinear interactions between photons, and may have potential for applications in quantum information technologies.

  6. Photo-generated THz antennas: All-optical control of plasmonic materials

    CERN Document Server

    Georgiou, Giorgos; Mulder, Peter; Bauhuis, Gerard J; Schermer, John J; Rivas, Jaime Gómez

    2013-01-01

    Localized surface plasmon polaritons in conducting structures give rise to enhancements of electromagnetic local fields and extinction efficiencies. Resonant conducting structures are conventionally fabricated with a fixed geometry that determines their plasmonic response. Here, we challenge this conventional approach by demonstrating the photo-generation of plasmonic materials (THz plasmonic antennas) on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the definition of different plasmonic antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for an all-optical spatial and temporal control of resonances on plasmonic surfaces and the concomitant control of THz extinction and local field enhancements.

  7. All-optical switching in a continuously operated and strongly coupled atom-cavity system

    CERN Document Server

    Dutta, Sourav

    2016-01-01

    We experimentally demonstrate collective strong coupling, optical bi-stability (OB) and all-optical switching in a system consisting of ultracold 85Rb atoms, trapped in a dark magneto-optical trap (DMOT), coupled to an optical Fabry-Perot cavity. The strong coupling is established by measuring the vacuum Rabi splitting (VRS) of a weak on-axis probe beam. The dependence of VRS on the probe beam power is measured and bi-stability in the cavity transmission is observed. We demonstrate control over the transmission of the probe beam through the atom-cavity system using a free-space off-axis control beam and show that the cavity transmission can be switched on and off in micro-second timescales using micro-Watt control powers. The utility of the system as a tool for sensitive, in-situ and rapid measurements is envisaged.

  8. Modeling of semiconductor devices for high-speed all-optical signal processing

    DEFF Research Database (Denmark)

    Bischoff, Svend; Højfeldt, Sune; Mørk, Jesper

    2001-01-01

    The all-optical signal processing performance of devices based on active semiconductor waveguides is investigated. A large signal model is used to analyse the physical mechanisms limiting the high-speed performance of both semiconductor optical amplifiers (SOAs) and electro-absorption modulators...... (EAMs). Wavelength conversion and signal regeneration in EAMs is discussed at 10 and 40 Gbit/s. The finite carrier sweep-out time is shown to limit the EAM performance. Four-wave mixing (FWM) in SOAs is almost instantaneous. However, with increasing bit rates and advanced processing functionalities some...... limitations arise. These limitations are elucidated by studying bi-directional simultaneous clear and drop (de-multiplexing) for a 4x40 Gbit/s signal. The simultaneous clearing and de-multiplexing (drop) of an optical time division multiplexing signal channel for an 8x40 Gbit/s signal is investigated...

  9. Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals

    Science.gov (United States)

    Parandin, Fariborz; Karkhanehchi, Mohammad Mehdi

    2017-01-01

    Usually, photonic crystals are used in designing optical logic gates. This study focuses on the design and simulation of an all optical NOR and AND logic gates based on two dimensional photonic crystals. The simplicity of the proposed structure is a characteristic feature of this designation. Finite Difference Time Domain (FDTD) as well as Plane Wave Expansion (PWE) methods have been used for this structural analysis. The simulation results revealed an increase in the interval between "zero" and "one" logic levels. Also, the simple structure and its small size demonstrate the usefulness of this structure in optical integrated circuits. The proposed optical gates can operate with a bit rate of about 1.54 Tbit/s.

  10. Multiport InP monolithically integrated all-optical wavelength router.

    Science.gov (United States)

    Zheng, Xiu; Raz, Oded; Calabretta, Nicola; Zhao, Dan; Lu, Rongguo; Liu, Yong

    2016-08-15

    An indium phosphide-based monolithically integrated wavelength router is demonstrated in this Letter. The wavelength router has four input ports and four output ports, which integrate four wavelength converters and a 4×4 arrayed-waveguide grating router. Each wavelength converter is achieved based on cross-gain modulation and cross-phase modulation effects in a semiconductor optical amplifier. Error-free wavelength switching for a non-return-to-zero 231-1 ps eudorandom binary sequence at 40 Gb/s data rate is performed. Both 1×4 and 3×1 all-optical routing functions of this chip are demonstrated for the first time with power penalties as low as 3.2 dB.

  11. Experimental demonstration of an all-optical fiber-based Fredkin gate.

    Science.gov (United States)

    Kostinski, Natalie; Fok, Mable P; Prucnal, Paul R

    2009-09-15

    We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO(2) fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on "cool" computing.

  12. All-optical image processing and compression based on Haar wavelet transform.

    Science.gov (United States)

    Parca, Giorgia; Teixeira, Pedro; Teixeira, Antonio

    2013-04-20

    Fast data processing and compression methods based on wavelet transform are fundamental tools in the area of real-time 2D data/image analysis, enabling high definition applications and redundant data reduction. The need for information processing at high data rates motivates the efforts on exploiting the speed and the parallelism of the light for data analysis and compression. Among several schemes for optical wavelet transform implementation, the Haar transform offers simple design and fast computation, plus it can be easily implemented by optical planar interferometry. We present an all optical scheme based on an asymmetric couplers network for achieving fast image processing and compression in the optical domain. The implementation of Haar wavelet transform through a 3D passive structure is supported by theoretical formulation and simulations results. Asymmetrical coupler 3D network design and optimization are reported and Haar wavelet transform, including compression, was achieved, thus demonstrating the feasibility of our approach.

  13. All-optical switching and nonlinear optical properties of HBT in ethanol solution

    Institute of Scientific and Technical Information of China (English)

    Zheng Jia-Jin; Zhang Gui-Lan; Guo Yang-Xue; Li Xiang-Ping; Chen Wen-Ju

    2007-01-01

    This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.

  14. Silicon Nanowires for All-Optical Signal Processing in Optical Communication

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua;

    2012-01-01

    to the large mode mismatch and index mismatch. Both end-coupling and grating-coupling solution utilizing nano-structures were demonstrated with optimized coupling efficiencies, which make the silicon on-chip nanowire devices more practical for real optical communication systems.......Silicon (Si), the second most abundant element on earth, has dominated in microelectronics for many decades. It can also be used for photonic devices due to its transparency in the range of optical telecom wavelengths which will enable a platform for a monolithic integration of optics...... process. In the last four years, we investigated and demonstrated different ultra-fast all-optical nonlinear signal processing applications in silicon nanowires for optical time domain multiplexing (OTDM) systems, including wavelength conversion, signal regeneration, ultra-fast waveform sampling...

  15. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Directory of Open Access Journals (Sweden)

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  16. Real-time wavefront-shaping through scattering media by all optical feedback

    CERN Document Server

    Nixon, Micha; Small, Eran; Bromberg, Yaron; Friesem, Asher A; Silberberg, Yaron; Davidson, Nir

    2013-01-01

    Focusing light through dynamically varying heterogeneous media is a sought-after goal with important applications ranging from free-space communication to nano-surgery. The underlying challenge is to control the optical wavefront with a large number of degrees-of-freedom (DOF) at timescales shorter than the medium dynamics. Recently, many advancements have been reported following the demonstration of focusing through turbid samples by wavefront-shaping, using spatial light modulators (SLMs) having >1000 DOF. Unfortunately, SLM-based wavefront-shaping requires feedback from a detector/camera and is limited to slowly-varying samples. Here, we demonstrate a novel approach for wavefront-shaping using all-optical feedback. We show that the complex wavefront required to focus through highly scattering samples, including thin biological tissues, can be generated at sub-microsecond timescales by the process of field self-organization inside a multimode laser cavity, without requiring electronic feedback or SLMs. This...

  17. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials.

    Science.gov (United States)

    Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen

    2008-04-15

    All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.

  18. All-Optical Photorefractive Effect in Bihole-Transporting System Polymeric Composites

    Institute of Scientific and Technical Information of China (English)

    HUANG Mao-Mao; ZHOU Qi-Feng; CHEN Zhi-Jian; ZHANG Jie; WEI Qun; LIU Yi-Hong; GONG Qi-Huang; BAI Yao-Wen; CHEN Xiao-Fang; WAN Xin-Hua

    2004-01-01

    Photorefractive (PR) composites based on poly(N-vinylcarbozale) and azobenzene have been fabricated. Two beam-coupling and four-wave-mixing phenomena were observed in the absence of an external electric field or prepoling. The maximum two-beam-coupling gain coefficient and the refractive index modulation were measured to be 79 cm-1 and 2.2 × 10-4 respectively. The all-optical-PR phenomenon is explained based on the photoassisted poling of the azo dye by the synergism of the photoisomerization and the longitudinal electric field due to longitudinal intensity gradient of writing light beams. The bi-hole-transporting system provides more chargecarrier traps resulting in improvement of PR performance.

  19. All-Optical Broadband Excitation of the Motional State of Trapped Ions

    CERN Document Server

    Sheridan, Kevin; Gardner, Amy; Keller, Matthias

    2012-01-01

    We have developed a novel all-optical broadband scheme for exciting, amplifying and measuring the secular motion of ions in a radio frequency trap. Oscillation induced by yocto-Newton optical excitations have been coherently amplified to precisely control and measure the ion's secular motion. Requiring only laser line-of-sight, we have shown that the ion's oscillation amplitude can be precisely controlled. Our broadband excitation scheme generates coherent motion which is robust against variations in the secular frequency. Therefore, our scheme is ideal to excite the desired level of oscillatory motion under conditions where the secular frequency is evolving in time. Measuring the oscillation amplitude through Doppler velocimetry, we have characterized the experimental parameters and compared them with a molecular dynamics simulation which provides a complete description of the system.

  20. All-optical ultrafast switching of Si woodpile photonic band gap crystals

    CERN Document Server

    Euser, T G; Fleming, J G; Gralak, B; Polman, Albert; Vos, W L; Euser, Tijmen G.; Molenaar, Adriaan J.; Gralak, Boris; Polman, Albert; Vos, Willem L.

    2006-01-01

    We present ultrafast all-optical switching measurements of Si woodpile photonic band gap crystals at telecom frequencies. The crystals are homogeneously excited by a two-photon process. We probe the switching by measuring reflectivity over broad frequency ranges as a function of time. At short delay times, we observe that the photonic gap becomes narrower than in the unswitched case. After 1 ps, the complete gap has shifted to higher frequencies. This intricate behavior is the result of competing refractive index changes due to the electronic Kerr effect and to optically excited free carriers. The frequency shift of the band gap as a function of pump intensity agrees well with Fourier modal method calculations with no freely adjustable parameters.

  1. Prospects of Wannier functions in investigating photonic crystal all-optical devices for signal processing.

    Science.gov (United States)

    Muradoglu, M S; Baghai-Wadji, A R; Ng, T W

    2010-04-01

    Wannier functions derived from Bloch functions have been identified as an efficient means of analyzing the properties of photonic crystals in which localized functions have now opened the door for 2D and 3D structures containing defects to be investigated. In this paper, based on the Maxwell equations in diagonalized form and utilizing Bloch waves we have obtained an equivalent system of algebraic equations in eigenform. By establishing and exploiting several distinct properties of the resulting eigenpairs, we demonstrate an ability to construct Wannier functions associated with the simplest one-dimensional photonic structure. More importantly, the numerical investigation of the inner- and intra-band orthonormality conditions as well as Hilbert space partitioning features shows a capability for multi-resolution analysis that will make all-optical signal processing devices with photonic crystal structures feasible.

  2. Investigation of all-optical regeneration based on self-phase modulation in microstructured fibers

    Institute of Scientific and Technical Information of China (English)

    WEI Yan-fen; XU Yong-zhao; Zhang Xia; HUANG Yong-qing; REN Xiao-min

    2007-01-01

    All-optical regeneration based on self-phase modulation in microstructured fibers is studied. The effects of pulse peak power into the fiber,pulse width and filter parameters on the performance of the regenerator are investigated. The effects of normal dispersion and anomalous dispersion of the microstructured fiber on optical regeneration are compared. The numerical results show that optical regeneration can be achieved by using microstructured fibers with normal dispersion or anomalous dispersion,but the normal dispersion decreases the oscillatory structure in the broadened spectra and obtain a better regenerator transfer function. In order to achieve optical regeneration,the input peak power into the microstructured fiber and the filter parameters need to meet certain requirements. By optimizing those parameters,a better regeneration result can be obtained.

  3. Orientation of azobenzene molecules in polymer films induced by all-optical poling

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhong(钟晓霞); Shouyu Luo(罗售余); Xiuqin Yu(虞秀琴); Qu Li(李劬); Yingli Chen(陈英礼); Yu Sui(隋郁); Jie Yin(印杰)

    2003-01-01

    A model of the alignment of azobenzene molecules in polymer film induced by all-optical poling is proposedand verified by experiment. We found that when the writing beams of frequencies ω and 2ω are both linearlypolarized with their polarization directions parallel to each other, azobenzene molecules tend to reorientto the direction perpendicular to the writing beams polarization. At the end of the writing process, moremolecules orient to the direction perpendicular to the writing beams polarization than those which orientto the parallel direction. The alignment of molecules parallel or perpendicular to the polarization of thewriting beams is characteristic of polarity or no polarity, respectively. The alignment of molecules alongthe polarization of writing beams results in the second order nonlinearity in the polymer film. Accordingto the model, a new method to improve the optical poling efficiency is put forward.

  4. Alternative approach of conducting phase-modulated all-optical logic gates

    Science.gov (United States)

    Chakraborty, Bikash; Mukhopadhyay, Sourangshu

    2009-03-01

    It is well established that optical devices and components are more advantageous than their electronic counterparts because of inherent parallelism in optics. Basically electronics are found to be very unsuitable in high speed (above gigahertz) data processing systems whereas tremendous operational speed (in the range of terahertz) can be achieved with the help of optics. The parallelism of optics and the properties of low loss transmission make optics a powerful technology for digital computing and processing and in long-range communications. Again it is well established that logic gates are the basic building blocks of any computing or data processing system. Therefore, any optical data processor needs suitable optically run logic gates. A method of conducting phase-modulated all-optical logic gates is proposed. Here we will exploit the advantages of phase modulation not only in processing but also in encoding as well decoding also.

  5. A New All-Optical Switching Node Including Virtual Memory and Synchronizer

    Directory of Open Access Journals (Sweden)

    Selma Batti

    2010-02-01

    Full Text Available This paper presents an architecture for an all optical switching node. The architecture is suitable for optical packet and optical burst switching and provides appropriate contention resolution schemes and QoS guarantees. A concept, called virtual memory, is developed to allow controllable and reasonable periods for delaying optical traffics. Related to its implementation, several engineering issues are discussed, including the use of loopbased optical delay lines, fiber Bragg gratings, and limited number of signal amplifications. In particular, two implementations using optical flip-flop and laser neuron network based control units are analyzed. This paper also discusses the implementation and performance of an alloptical synchronizer that is able to synchronize arriving data units to be aligned on the clock signal associated with the beginning time of slots, in the node, with an acceptable error.

  6. Expanded all-optical programmable logic array based on multi-input/output canonical logic units.

    Science.gov (United States)

    Lei, Lei; Dong, Jianji; Zou, Bingrong; Wu, Zhao; Dong, Wenchan; Zhang, Xinliang

    2014-04-21

    We present an expanded all-optical programmable logic array (O-PLA) using multi-input and multi-output canonical logic units (CLUs) generation. Based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF), two-input and three-input CLUs are simultaneously achieved in five different channels with an operation speed of 40 Gb/s. Clear temporal waveforms and wide open eye diagrams are successfully observed. The effectiveness of the scheme is validated by extinction ratio and optical signal-to-noise ratio measurements. The computing capacity, defined as the total amount of logic functions achieved by the O-PLA, is discussed in detail. For a three-input O-PLA, the computing capacity of the expanded CLUs-PLA is more than two times as large as that of the standard CLUs-PLA, and this multiple will increase to more than three and a half as the idlers are individually independent.

  7. A novel noninvasive all optical technique to monitor physiology of an exercising muscle

    Science.gov (United States)

    Saxena, Vishal; Marcu, Laura; Karunasiri, Gamani

    2008-11-01

    An all optical technique based on near-infrared spectroscopy and mid-infrared imaging (MIRI) is applied as a noninvasive, in vivo tool to monitor the vascular status of skeletal muscle and the physiological changes that occur during exercise. A near-infrared spectroscopy (NIRS) technique, namely, steady state diffuse optical spectroscopy (SSDOS) along with MIRI is applied for monitoring the changes in the values of tissue oxygenation and thermometry of an exercising muscle. The NIRS measurements are performed at five discrete wavelengths in a spectral window of 650-850 nm and MIRI is performed in a spectral window of 8-12 µm. The understanding of tissue oxygenation status and the behavior of the physiological parameters derived from thermometry may provide a useful insight into muscle physiology, therapeutic response and treatment.

  8. Robustness estimation of software-synchronized all-optical sampling for fiber communication systems

    Institute of Scientific and Technical Information of China (English)

    Aiying Yang; Xiangyu Wu; Yu'nan Sun

    2009-01-01

    The robustness of the software-synchronized all-optical sampling for optical performance monitoring is estimated for 10-Gb/s fiber communication systems. It reveals that the software-synchronized algorithm is sensitive to the signal degradation caused by chromatic dispersion and nonlinearity in optical fibers. The influence of timing jitter and amplitude fluctuation of the sampling pulses is also investigated. It is found that stringent requirements are imposed on the quality of the sampling pulse and the tolerance of l-dB Q penalty is measured. Considering the practically available optical sampling pulse sources, the results indicate that the amplitude fluctuation of the sampling pulses has the dominant impacts on the software-synchronized method.

  9. Continuous all-optical deceleration and single-photon cooling of molecular beams

    CERN Document Server

    Jayich, A M; Hummon, M T; Porto, J V; Campbell, W C

    2013-01-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multi-level numerical simulations of strontium monohydride (SrH). These techniqu...

  10. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted...... switch. Differential -mode switches are shown to eliminate one contribution to the patterning effects, referred to as the linear patterning. This enables operation at bitrates far beyond the limit set by the carrier lifetime, but ultimately a saturation-induced patterning effect, nonlinear patterning...

  11. Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2011-01-01

    The performance of all-optical switches is a compromise between the achievable bandwidth of the switched signal and the energy requirement of the switching operation. In this work we consider a system consisting of a photonic crystal cavity coupled to two input and two output waveguides....... As a specific example of a switching application, we investigate the demultiplexing of an optical time division multiplexed signal. To quantify the energy-bandwidth trade-off, we introduce a figure of merit for the detection of the demultiplexed signal. In such investigations it is crucial to consider...... patterning effects, which occur on time scales that are longer than the bit period. Our analysis is based on a coupled mode theory, which allows for an extensive investigation of the influence of the system parameters on the switching dynamics. The analysis is shown to provide new insights into the ultrafast...

  12. Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch.

    Science.gov (United States)

    Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka

    2015-08-10

    We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.

  13. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2016-10-01

    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  14. Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks

    CERN Document Server

    Zhou, Fen; Cousin, Bernard; 10.1007/s11107-010-0243-5

    2010-01-01

    In sparse light splitting all-optical WDM networks, the more destinations a light-tree can accommodate, the fewer light-trees andwavelengths amulticast session will require. In this article, a Hypo-Steiner light-tree algorithm (HSLT) is proposed to construct a HSLT light-tree to include as many destinations as possible. The upper bound cost of the light-trees built by HSLT is given as N(N -1)/2, where N is the number of nodes in the network. The analytical model proves that, under the same condition, more destinations could be held in a HSLT than a Member-Only (Zhang et al., J. Lightware Technol, 18(12), 1917-1927 2000.) light-tree. Extensive simulations not only validate the proof but also show that the proposed heuristic outperforms the existing multicast routing algorithms by a large margin in terms of link stress, throughput, and efficiency ofwavelength usage.

  15. Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite

    Science.gov (United States)

    Chai, Zhen; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2017-01-01

    Ultracompact chip-integrated all-optical diode is realized experimentally in a plasmonic microstructure, consisting of a plasmonic waveguide side-coupled two asymmetric plasmonic composite nanocavities covered with a multicomponent nanocomposite layer, formed directly in a plasmonic circuit. Extremely large optical nonlinearity enhancement is obtained for the multicomponent nanocomposite cover layer, originating from resonant excitation, slow-light effect, and field enhancement effect. Nonreciprocal transmission was achieved based on the difference in the shift magnitude of the transparency window centers of two asymmetric plasmonic nanocavities induced by the signal light, itself, for the forward and backward propagation cases. An ultralow threshold incident light power of 145 μW (corresponding to a threshold intensity of 570 kW/cm2) is realized, which is reduced by seven orders of magnitude compared with previous reports. An ultrasmall feature size of 2 μm and a transmission contrast ratio of 15 dB are obtained simultaneously.

  16. Ultra-low phase noise all-optical microwave generation setup based on commercial devices

    CERN Document Server

    Didier, A; Grop, S; Dubois, B; Bigler, E; Rubiola, E; Lacroûte, C; Kersalé, Y

    2015-01-01

    In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained with such "microwave photonics" laboratory experiments \\cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.

  17. All-Optical Switching of Magnetic Tunnel Junctions with Single Subpicosecond Laser Pulses

    Science.gov (United States)

    Chen, Jun-Yang; He, Li; Wang, Jian-Ping; Li, Mo

    2017-02-01

    The magnetic tunnel junction (MTJ) is one of the most important building blocks of spintronic logic and memory components for beyond-CMOS computation and communication. Although switching of MTJs without magnetic field has been achieved by charge and spin current injection, the operation speed is limited fundamentally by the spin-precession time to many picoseconds. We report the demonstration of ultrafast all-optical switching of an MTJ using single subpicosecond infrared laser pulses. This optically switchable MTJ uses ferrimagnetic Gd(Fe,Co) as the free layer and its switching is read out by measuring its tunneling magnetoresistance with a Δ R /R ratio of 0.6%. A switching repetition rate at MHz has been demonstrated, but the fundamental upper limit should be higher than tens of GHz rate. This result represents an important step toward integrated optospintronic devices that combines spintronics and photonics technologies to enable ultrafast conversion between fundamental information carriers of electron spins and photons.

  18. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... nonlinearity of the liquid to achieve beam self-defocusing at higher light intensity. Based on the observed effects we devise a compact all-optical power limiter device with tunable characteristics. The use of commercially available PCFs in combination with liquid infiltration avoids the need for specialized...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  19. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  20. Comparison of Delay-Interferometer and Time- Lens-Based All-Optical OFDM Demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael

    2015-01-01

    In this letter, we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification...... bandpass filters, is investigated. In the latter scheme, the OFDM spectrum is magnified, allowing for simple optical bandpass filtering of the individual subcarriers with reduced ICI. Ideally, only a single unit consisting of two time lenses is needed, reducing the complexity and potentially the energy...... consumption compared with the type of O-DFT scheme relying on many active gates. The bit-error-rate is estimated down to ~10-6 by Monte Carlo bit-error counting for a 32-subcarrier OFDM input signal, showing that a performance close to the ideal O-DFT is achievable for both the reduced-complexity O...

  1. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  2. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  3. Comparison of delay-interferometer and time-lens-based all-optical OFDM demultiplexers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Galili, Michael

    2015-01-01

    In this paper we present the first detailed numerical comparison of two promising all-optical schemes to demultiplex orthogonal frequency-division multiplexing (OFDM) signals. The investigated schemes are the optical discrete Fourier transformation (O-DFT) and the optical spectral magnification (SM...... filters, is investigated. In the latter scheme the OFDM spectrum is magnified, allowing for simple optical bandpass filtering of the individual subcarriers with reduced ICI. Ideally only a single unit consisting of two time lenses is needed, reducing the complexity and potentially the energy consumption...... compared to the type of O-DFT scheme relying on many active gates. The bit-error-rate is estimated down to ∼10−6 by Monte Carlo bit-error counting for a 32-subcarrier OFDM input signal, showing that a performance close to the ideal O-DFT is achievable for both the reduced-complexity O-DFT and the SM scheme....

  4. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  5. ETSI-Standard Reconfigurable Mobile Device for Supporting the Licensed Shared Access

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2016-01-01

    Full Text Available In order for a Mobile Device (MD to support the Licensed Shared Access (LSA, the MD should be reconfigurable, meaning that the configuration of a MD must be adaptively changed in accordance with the communication standard adopted in a given LSA system. Based on the standard architecture for reconfigurable MD defined in Working Group (WG 2 of the Technical Committee (TC Reconfigurable Radio System (RRS of the European Telecommunications Standards Institute (ETSI, this paper presents a procedure to transfer control signals among the software entities of a reconfigurable MD required for implementing the LSA. This paper also presents an implementation of a reconfigurable MD prototype that realizes the proposed procedure. The modem and Radio Frequency (RF part of the prototype MD are implemented with the NVIDIA GeForce GTX Titan Graphic Processing Unit (GPU and the Universal Software Radio Peripheral (USRP N210, respectively. With a preset scenario that consists of five time slots from different signal environments, we demonstrate superb performance of the reconfigurable MD in comparison to the conventional nonreconfigurable MD in terms of the data receiving rate available in the LSA band at 2.3–2.4 GHz.

  6. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  7. All-optical switching using a new photonic crystal directional coupler

    Directory of Open Access Journals (Sweden)

    B. Vakili

    2015-07-01

    Full Text Available In this paper all-optical switching in a new photonic crystal directional coupler is performed.  The structure of the switch consists of a directional coupler and a separate path for a control signal called “control waveguide”. In contrast to the former reported structures in which the directional couplers are made by removing a row of rods entirely, the directional coupler in our optical switch is constructed by two reduced-radius line-defect waveguides separated by the control waveguide. Furthermore, in our case the background material has the nonlinear Kerr property. Therefore, in the structure of this work, no frequency overlap occurs between the control waveguide mode and the directional coupler modes. It is shown that such a condition provides a very good isolation between the control and the probe signals at the output ports. In the control waveguide, nonlinear Kerr effect causes the required refractive index change by the presence of a high power control (pump signal. Even and odd modes of the coupler are investigated by applying the distribution of the refractive index change in the nonlinear region of a super-cell so that a switching length of about 94 µm is obtained at the wavelength of 1.55 µm. Finally, all-optical switching of the 1.55 µm probe signal using a control signal at the wavelength of 1.3 µm, is simulated through the finite-difference time-domain method, where both signals are desirable in optical communication systems. A very high extinction ratio of 67 dB is achieved and the temporal characteristics of the switch are demonstrated.

  8. All-optical histology using two photon laser scanning microscopy and ablation with ultrashort pulses

    Science.gov (United States)

    Tsai, Philbert S.

    This dissertation discusses the use of ultrashort laser pulses to image and manipulate tissue for the purpose of three-dimensional histological reconstruction of extended brain structures. Two photon laser scanning microscopy (TPLSM) and ultrashort pulsed laser ablation are used to provide in situ three-dimensional imaging through thick preparations of fixed tissue. Surface regions of fixed tissue are first imaged using TPLSM. The imaged regions are then removed by ablation with amplified, ultrashort laser pulses, thereby exposing a previously underlying tissue region for imaging. This process of imaging and ablation proceeds iteratively until the desired tissue volume has been processed. First, the principles, design, and construction of a two photon laser scanning microscope are discussed, followed by a discussion of the physical mechanisms of tissue ablation with ultrashort laser pulses. The compatibility of tissue ablation using ultrashort pulses with subsequent histological analysis, particularly with fluorescent microscopy, is evaluated. Tissue ablation with ultrashort laser pulses is found to produce ablated tissue surfaces that are smooth to within a micrometer. Intrinsic fluorescence as well as immunoreactivity are found to be resilient to the ablation process. The all-optical histological technique is demonstrated on brain tissue from rats and mice, including tissue from embryonic mouse as early at E15. The ablation process is shown to preserve both macroscopic and microscopic structures within tissue. To facilitate the all-optical histological analysis of neuronal vasculature and its relative distribution to surrounding neuronal tissue, a fluorescent gel perfusion technique is developed that provides a temperature-stabilized fluorescent label of the neuronal vasculature. The use of immunohistochemistry to label specific cell populations throughout an 800 micrometer-thick tissue section is demonstrated. Additionally, the immersion of fixed tissue in high

  9. All-optical optoacoustic microscopy system based on probe beam deflection technique

    Science.gov (United States)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  10. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  11. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  12. Robust Reconfiguration of A Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Moradzadeh, Benyamin [University of Tennessee, Knoxville (UTK); Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-01-01

    In this paper, a robust reconfiguration approach based on Mixed Integer Programming (MIP) is proposed to minimize loss in distribution systems. A Depth-First Search (DFS) algorithm to enumerate possible loops provides radiality constraint. This provides a general solution to the radiality constraint for distribution system reconfiguration/expansion problems. Still, imprecision and ambiguity in net loads, i.e. load minus renewable generation, due to lack of sufficient measurements and high utilization of demand response programs and renewable resources, creates challenges for effective reconfiguration. Deterministic optimization of reconfiguration may no lead to optimal/feasible results. Two methods to address these uncertainties are introduced in this paper: one, based on a stochastic MIP (SMIP) formulation and two, based on a fuzzy MIP (FMIP) formulation. Case studies demonstrate the robustness and efficiency of the proposed reconfiguration methods.

  13. Formation reconfiguration in restricted three body problem

    Institute of Scientific and Technical Information of China (English)

    Shengping Gong; Junfeng Li; Hexi Baoyin; Yunfeng Gao

    2007-01-01

    Reconfiguration of formation flying around a halo orbit of the Sun-Earth restricted three body system is investigated with impulse maneuvers. For a short time reconfiguration, the two-impulse maneuver is investigated with both analytical and numerical methods and the BeginningEnding (BE) method is proven to be an energy-optimal one of all two-impulse (TI) reconfigurations, and the energy consumption of BE is independent of the position of the chief spacecraft, and decreases with the reconfiguration time.Then, genetic algorithm is adopted to optimize the energy consumption. The results show that the optimal energy increases with radius difference between the initial and final orbits, and decreases with the reconfiguration time.

  14. Implementing Workflow Reconfiguration in WS-BPEL

    DEFF Research Database (Denmark)

    Mazzara, Manuel; Dragoni, Nicola; Zhou, Mu

    2012-01-01

    This paper investigates the problem of dynamic reconfiguration by means of a workflow-based case study used for discussion. We state the requirements on a system implementing the workflow and its reconfiguration, and we describe the system’s design in BPMN. WS-BPEL, a language that would not natu......This paper investigates the problem of dynamic reconfiguration by means of a workflow-based case study used for discussion. We state the requirements on a system implementing the workflow and its reconfiguration, and we describe the system’s design in BPMN. WS-BPEL, a language that would...... not naturally support dynamic change, is used as a target for implementation. The WS-BPEL recovery framework is here exploited to implement the reconfiguration using principles derived from previous research in process algebra and two mappings from BPMN to WS-BPEL are presented, one automatic and only mostly...

  15. All-optical wavelength conversion by four-wave mixing in a semiconductor optical amplifier

    Science.gov (United States)

    Lee, Robert Bumju

    1997-11-01

    Wavelength division multiplexed optical communication systems will soon become an integral part of commercial optical networks. A crucial new function required in WDM networks is wavelength conversion, the spectral translation of information-laden optical carriers, which enhances wavelength routing options and greatly improves network reconfigurability. One of several techniques for implementing this function is four-wave mixing utilizing ultra-fast intraband nonlinearities in semiconductor optical amplifiers. The effects of input power, noise prefiltering and semiconductor optical amplifier length on the conversion efficiency and optical signal-to-noise ratio were examined. Systems experiments have been conducted in which several important performance characteristics of the wavelength converter were studied. A bit-error-rate performance of BER performance were studied at 2.5 Gb/s for both a single-channel conversion and a simultaneous 2-channel conversion. The crosstalk penalty induced by parasitic cross-gain modulation in 2-channel conversion is quantified. The spectral inversion which results from the conversion process is studied by time-resolved spectral analysis, and its application as a technique for dispersion compensation is demonstrated. Finally, the application of selective organometallic vapor-phase epitaxy for the formation of highly-uniform and densely-packed arrays of GaAs quantum dots is demonstrated. GaAs dots of 15-20 nm in base diameter and 8-10 nm in height terminated by slow-growth crystallographic planes were grown within dielectric-mask openings and characterized by atomic force microscopy.

  16. Transformational electronics are now reconfiguring

    Science.gov (United States)

    Rojas, Jhonathan P.; Hussain, Aftab M.; Arevalo, A.; Foulds, I. G.; Torres Sevilla, Galo A.; Nassar, Joanna M.; Hussain, Muhammad M.

    2015-05-01

    Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration.

  17. Transformational electronics are now reconfiguring

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-22

    Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. Reconfigurable L-Band Radar

    Science.gov (United States)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  19. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising......-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also...

  20. Experimental and theoretical investigation of electro-optic and all-optical implementations of wavelength converting 2R-regenerators

    DEFF Research Database (Denmark)

    Wolfson, David; Mikkelsen, Benny; Danielsen, Søren Lykke

    1998-01-01

    We investigate and compare the regenerative capability of electro-optic wavelength converters based on electrically controlled external Mach-Zehnder (MZ) modulators and all-optical wavelength converters based on all-optically controlled external MZ modulators. The latter incorporates semiconductor...... optical amplifiers (SOAs) as optically controlled phase shifters. Experiments demonstrate a 5-6 dB noise suppression capability for both the electro-optic and the all-optical implementation of the wavelength-converting regenerators. The performance can be further improved by cascading two converters...

  1. ZnO nanowire-based all-optical switch with Reset-Set flip-flop function

    Science.gov (United States)

    Mu, L. X.; Shi, W. S.; Zhang, T. P.; Zhang, H. Y.; Wang, Y.; She, G. W.; Gao, Y. H.; Wang, P. F.; Chang, J. C.; Lee, S. T.

    2011-04-01

    An all-optical switch with Reset-Set (RS) flip-flop function has been developed by attaching a derivative of spiropyran on the surface of zinc oxide (ZnO) Nanowire. Using UV/visible irradiation and the fluorescence of spiropyran-modified ZnO nanowire as inputs—set/reset and output, RS flip-flop function can be performed on a single ZnO nanowire or a nanowire array. The configuration of the current all-optical switch represents a potential for developing small-sized all-optical devices, which could be further exploited at higher level of integration.

  2. Developments of All-optical Half-adder%全光半加器的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙晓寅; 李培丽; 徐荣青

    2009-01-01

    综述了全光半加器的研究进展和现状.阐述了不同结构全光半加器的工作原理、优缺点,并展望了全光半加器未来的发展方向.%It is summarized for current all-optical half-adder.The principles of different kinds of all-optical half-adders are analyzed,and their advantages and disadvantages are also discussed.Finally,the prospects of all-optical half-adder are given.

  3. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    Science.gov (United States)

    Roy, Sukhdev; Yadav, Chandresh

    2013-12-01

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates.

  4. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    CERN Document Server

    Ho, Sze Phing; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-01-01

    We propose an all-optical Knife Edge characterization technique and we demonstrate its working principle by characterizing the sub-{\\lambda} features of a spatially modulated Terahertz source directly on the nonlinear crystal employed for the Terahertz generation.

  5. Experimental Investigation of Transmission Properties and All-Optical Label Swapping of Orthogonal IM/FSK Labeled Signals

    Institute of Scientific and Technical Information of China (English)

    Pablo; V.; Holm-Nielsen; Christophe; Peucheret; Idelfonso; Tafur; Monroy; Palle; Jeppesen

    2003-01-01

    OpticallylabeledIM/FSKsignalsaretransmittedover50kmofSMFunderdifferentcompensationschemes.All-optical label swapping based on MZ-SOA and EAM is presented. Transmission followed by label swapping shows a 2dB overall power penalty.

  6. Dynamically Reconfigurable Processor for Floating Point Arithmetic

    Directory of Open Access Journals (Sweden)

    S. Anbumani,

    2014-01-01

    Full Text Available Recently, development of embedded processors is toward miniaturization and energy saving for ecology. On the other hand, high performance arithmetic circuits are required in a lot of application in science and technology. Dynamically reconfigurable processors have been developed to meet these requests. They can change circuit configuration according to instructions in program instantly during operations.This paper describes, a dynamically reconfigurable circuit for floating-point arithmetic is proposed. The arithmetic circuit consists of two single precision floating-point arithmetic circuits. It performs double precision floating-point arithmetic by reconfiguration. Dynamic reconfiguration changes circuit construction at one clock cycle during operation without stopping circuits. It enables reconfiguration of circuits in a few nano seconds. The proposed circuit is reconfigured in two modes. In first mode it performs one double precision floating-point arithmetic or else the circuit will perform two parallel operations of single precision floating-point arithmetic. The new system design reduces implementation area by reconfiguring common parts of each operation. It also increases the processing speed with a very little number of clocks.

  7. Ultra-Fast All-Optical Self-Aware Protection Switching Based on a Bistable Laser Diode

    DEFF Research Database (Denmark)

    An, Yi; Vukovic, Dragana; Lorences Riesgo, Abel;

    2014-01-01

    We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps.......We propose a novel concept of all-optical protection switching with link failure automatic awareness based on AOWFF. The scheme is experimentally demonstrated using a single MG-Y laser diode with a record switching time ~200 ps....

  8. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    Science.gov (United States)

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second.

  9. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  10. Low threshold all-optical crossbar switch on GaAs-GaAlAs channel waveguide arrays

    Science.gov (United States)

    Jannson, Tomasz; Kostrzewski, Andrew

    1994-09-01

    During the Phase 2 project entitled 'Low Threshold All-Optical Crossbar Switch on GaAs - GaAlAs Channel Waveguide Array,' Physical Optics Corporation (POC) developed the basic principles for the fabrication of all-optical crossbar switches. Based on this development. POC fabricated a 2 x 2 GaAs/GaAlAs switch that changes the direction of incident light with minimum insertion loss and nonlinear distortion. This unique technology can be used in both analog and digital networks. The applications of this technology are widespread. Because the all-optical network does not have any speed limitations (RC time constant), POC's approach will be beneficial to SONET networks, phased array radar networks, very high speed oscilloscopes, all-optical networks, IR countermeasure systems, BER equipment, and the fast growing video conferencing network market. The novel all-optical crossbar switch developed in this program will solve interconnect problems. and will be a key component in the widely proposed all-optical 200 Gb/s SONET/ATM networks.

  11. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    Science.gov (United States)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  12. Reconfigurable radio systems network architectures and standards

    CERN Document Server

    Iacobucci, Maria Stella

    2013-01-01

    This timely book provides a standards-based view of the development, evolution, techniques and potential future scenarios for the deployment of reconfigurable radio systems.  After an introduction to radiomobile and radio systems deployed in the access network, the book describes cognitive radio concepts and capabilities, which are the basis for reconfigurable radio systems.  The self-organizing network features introduced in 3GPP standards are discussed and IEEE 802.22, the first standard based on cognitive radio, is described. Then the ETSI reconfigurable radio systems functional ar

  13. (Re)configuration based on model generation

    CERN Document Server

    Friedrich, Gerhard; Falkner, Andreas A; Haselböck, Alois; Schenner, Gottfried; Schreiner, Herwig; 10.4204/EPTCS.65.3

    2011-01-01

    Reconfiguration is an important activity for companies selling configurable products or services which have a long life time. However, identification of a set of required changes in a legacy configuration is a hard problem, since even small changes in the requirements might imply significant modifications. In this paper we show a solution based on answer set programming, which is a logic-based knowledge representation formalism well suited for a compact description of (re)configuration problems. Its applicability is demonstrated on simple abstractions of several real-world scenarios. The evaluation of our solution on a set of benchmark instances derived from commercial (re)configuration problems shows its practical applicability.

  14. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  15. Design of all-optical multi-level regenerators based on Mach-Zehnder interferometer

    Science.gov (United States)

    Kong, Xiangjian; Wu, Baojian; Zhou, Xingyu; Wan, Qingyao; Jiang, Shanglong; Wen, Feng; Qiu, Kun

    2016-12-01

    We propose a design method for all-optical multi-level regenerators by mimicking the normalized power transfer function (PTF) in the first-order approximation to the ideal step-like PTF, in which a key step is to appropriately select the amplitude and phase conditions of Mach-Zehnder-interferometer (MZI)-based regenerators. As an example, we describe the design process of the self-phase-modulation (SPM)-based MZI regenerator constructed by a section of nonlinear fiber and an optical phase shifter (OPS). It is shown that the parameter of reference power level (RPL) can be regarded as the upper limit of input power, which is useful for the measure of the multi-level regeneration performance. The number of regenerative power levels increases with the RPL parameter. For 4-level pulse amplitude modulated (4PAM) optical signals degraded by the Gaussian noises with the standard deviation of 0.02, the SPM-based MZI regenerator has an average noise reduction ratio (NRR) of 6.5 dB, better than that of 1st-order regenerator by about 5 dB.

  16. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  18. Ultracompact all-optical full-adder and half-adder based on nonlinear plasmonic nanocavities

    Directory of Open Access Journals (Sweden)

    Xie Jingya

    2017-08-01

    Full Text Available Ultracompact chip-integrated all-optical half- and full-adders are realized based on signal-light induced plasmonic-nanocavity-modes shift in a planar plasmonic microstructure covered with a nonlinear nanocomposite layer, which can be directly integrated into plasmonic circuits. Tremendous nonlinear enhancement is obtained for the nanocomposite cover layer, attributed to resonant excitation, slow light effect, as well as field enhancement effect provided by the plasmonic nanocavity. The feature size of the device is <15 μm, which is reduced by three orders of magnitude compared with previous reports. The operating threshold power is determined to be 300 μW (corresponding to a threshold intensity of 7.8 MW/cm2, which is reduced by two orders of magnitude compared with previous reports. The intensity contrast ratio between two output logic states, “1” and “0,” is larger than 27 dB, which is among the highest values reported to date. Our work is the first to experimentally realize on-chip half- and full-adders based on nonlinear plasmonic nanocavities having an ultrasmall feature size, ultralow threshold power, and high intensity contrast ratio simultaneously. This work not only provides a platform for the study of nonlinear optics, but also paves a way to realize ultrahigh-speed signal computing chips.

  19. Fast all-optical nuclear spin echo technique based on EIT

    Science.gov (United States)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

  20. Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Directory of Open Access Journals (Sweden)

    M. Komanec

    2014-09-01

    Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.

  1. Polyimide-etalon all-optical ultrasound transducer for high frequency applications

    Science.gov (United States)

    Sheaff, Clay; Ashkenazi, Shai

    2014-03-01

    We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz ). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

  2. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Takeda, Koji; Matsuo, Shinji [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Sato, Tomonari [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  3. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide.

    Science.gov (United States)

    Husko, C; Vo, T D; Corcoran, B; Li, J; Krauss, T F; Eggleton, B J

    2011-10-10

    We demonstrate an ultracompact, chip-based, all-optical exclusive-OR (XOR) logic gate via slow-light enhanced four-wave mixing (FWM) in a silicon photonic crystal waveguide (PhCWG). We achieve error-free operation (<10⁻⁹) for 40 Gbit/s differential phase-shift keying (DPSK) signals with a 2.8 dB power penalty. Slowing the light to vg = c/32 enables a FWM conversion efficiency, η, of -30 dB for a 396 μm device. The nonlinear FWM process is enhanced by 20 dB compared to a relatively fast mode of vg = c/5. The XOR operation requires ≈ 41 mW, corresponding to a switching energy of 1 pJ/bit. We compare the slow-light PhCWG device performance with experimentally demonstrated XOR DPSK logic gates in other platforms and discuss scaling the device operation to higher bit-rates. The ultracompact structure suggests the potential for device integration.

  4. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  5. Software-Synchronized All-Optical Sampling for Fiber Communication Systems

    Science.gov (United States)

    Westlund, Mathias; Sunnerud, Henrik; Karlsson, Magnus; Andrekson, Peter A.

    2005-03-01

    This paper describes a software-synchronized all-optical sampling system that presents synchronous eye diagrams and data patterns as well as calculates accurate Q values without requiring clock recovery. A synchronization algorithm is presented that calculates the offset frequency between the data bit rate and the sampling rate, and as a result, synchronous eye diagrams can be presented. The algorithm is shown to be robust toward poor signal quality and adds less than 100-fs timing drift to the eye diagrams. An extension of the software synchronization algorithm makes it possible to automatically find the pattern length of a periodic data pattern in a data signal. As a result, individual pulses can be investigated and detrimental effects present on the data signal can be identified. Noise averaging can also be applied. To measure accurate Q values without clock recovery, a high sampling rate is required in order to establish the noise statistics of the measured signal before any timing drift occurs. This paper presents a system with a 100-MHz sampling rate that measures accurate Q values at bit rates as high as 160 Gb/s. The high bandwidth of the optical sampling system also contributes to sampling more noise, which in turn results in lower Q values compared with conventional electrical sampling with a lower bandwidth. A theory that estimates the optically sampled Q values as a function of the sampling gate width is proposed and experimentally verified.

  6. Imaging and detection of early stage dental caries with an all-optical photoacoustic microscope

    Science.gov (United States)

    Hughes, D. A.; Sampathkumar, A.; Longbottom, C.; Kirk, K. J.

    2015-01-01

    Tooth decay, at its earliest stages, manifests itself as small, white, subsurface lesions in the enamel. Current methods for detection in the dental clinic are visual and tactile investigations, and bite-wing X-ray radiographs. These techniques suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease due to the small size (<100μm) of the lesion. A fine-resolution (600 nm) ultra-broadband (200 MHz) all-optical photoacoustic microscopy system was is used to image the early signs of tooth decay. Ex-vivo tooth samples exhibiting white spot lesions were scanned and were found to generate a larger (one order of magnitude) photoacoustic (PA) signal in the lesion regions compared to healthy enamel. The high contrast in the PA images potentially allows lesions to be imaged and measured at a much earlier stage than current clinical techniques allow. PA images were cross referenced with histology photographs to validate our experimental results. Our PA system provides a noncontact method for early detection of white-spot lesions with a high detection bandwidth that offers advantages over previously demonstrated ultrasound methods. The technique provides the sensing depth of an ultrasound system, but with the spatial resolution of an optical system.

  7. Electromagnetically-induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing

    CERN Document Server

    Acosta, Victor M; Santori, Charles; Budker, Dmitry; Beausoleil1, Rymond G

    2013-01-01

    We use electromagnetically-induced transparency (EIT) to probe the narrow electron-spin resonance of nitrogen-vacancy centers in diamond. Working with a multi-pass diamond chip at temperatures 6-30 K, the zero-phonon absorption line (637 nm) exhibits an optical depth of 6 and inhomogenous linewidth of ~30 GHz full-width-at-half-maximum (FWHM). Simultaneous optical excitation at two frequencies separated by the ground-state zero-field splitting (2.88 GHz), reveals EIT resonances with a contrast exceeding 6% and FWHM down to 0.4 MHz. The resonances provide an all-optical probe of external electric and magnetic fields with a projected photon-shot-noise-limited sensitivity of 0.2 V/cm/sqrt(Hz) and 0.1 nT/sqrt(Hz), respectively. Operation of a prototype diamond-EIT magnetometer measures a noise floor of less than 1 nT/sqrt(Hz) for frequencies above 10 Hz and Allan deviation of 1.3 +/- 1.1 nT for 100 s intervals. The results demonstrate the potential of diamond-EIT devices for applications ranging from quantum-opti...

  8. All-optical atom trap trace analysis for rare krypton isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Woelk, Pablo; Kohler, Markus; Sieveke, Carsten; Hebel, Simon; Sahling, Peter [Carl Friedrich von Weizsaecker Centre for Science and Peace Research, University of Hamburg (Germany); Becker, Christoph; Sengstock, Klaus [Institut fuer Laser-Physik, University of Hamburg (Germany)

    2016-07-01

    The isotope Krypton-85 is an excellent indicator for the detection of nuclear reprocessing activities. However, for the analysis of atmospheric air samples, sensitive measuring methods down to the single atom level are required because of the small concentrations. Furthermore, for a practical and effective detection of clandestine reprocessing, small sample sizes and a high sample throughput rate are desirable. Established methods using Atom Trap Trace Analysis (ATTA) allow high sensitivity but have a limited throughput of about 200 samples per year, since the vacuum chambers have to be flushed for several hours after each measurement to avoid cross contamination due to the RF-driven excitation of metastable states. Here we present an enhanced ATTA apparatus, which in contrast to the established methods, produces metastable Kr all-optically. This avoids cross contamination, therefore allowing a much higher throughput rate. The apparatus is based on a self-made VUV-lamp and a 2D-3D magneto-optical trap setup. In the 2D trap metastable krypton is produced and a beam of atoms is formed by Doppler-cooling simultaneously.

  9. Continuous all-optical deceleration and single-photon cooling of molecular beams

    Science.gov (United States)

    Jayich, A. M.; Vutha, A. C.; Hummon, M. T.; Porto, J. V.; Campbell, W. C.

    2014-02-01

    Ultracold molecular gases are promising as an avenue to rich many-body physics, quantum chemistry, quantum information, and precision measurements. This richness, which flows from the complex internal structure of molecules, makes the creation of ultracold molecular gases using traditional methods (laser plus evaporative cooling) a challenge, in particular due to the spontaneous decay of molecules into dark states. We propose a way to circumvent this key bottleneck using an all-optical method for decelerating molecules using stimulated absorption and emission with a single ultrafast laser. We further describe single-photon cooling of the decelerating molecules that exploits their high dark state pumping rates, turning the principal obstacle to molecular laser cooling into an advantage. Cooling and deceleration may be applied simultaneously and continuously to load molecules into a trap. We discuss implementation details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and atoms with the only requirement being an electric dipole transition that can be accessed with an ultrafast laser.

  10. Proposal of all-optical sensor based on nonlinear MMI coupler for multi-purpose usage

    Science.gov (United States)

    Tajaldini, M.; MatJafri, M. Z.

    2015-10-01

    In this study, we propose an all-optical sensor based on consideration the nonlinear effects on modal propagation and output intensity based on ultra-compact nonlinear multimode interference (NLMMI) coupler. The sensor can be tuned to highest sensitivity in the wavelength and refractive index ranges sufficient to detect water- soluble chemical, air pollutions, and heart operation. The results indicate high output sensitivity to input wavelength. This sensitivity guides us to propose a wave sensor both transverse and longitudinal waves such as acoustic and light wave, when an external wave interacts with input waveguide. For instance, this sensor can be implemented by long input that inserted in the land, then any wave could detected from earth. The visible changes of intensity at output facet in various surrounding layer refractive index show the high sensitivity to the refractive index of surrounding layer that is foundation of introducing a sensor. Also, the results show the high distinguished changes on modal expansion and output throat distribution in various refractive indices of surrounding layer.

  11. Manipulation of entanglement sudden death in an all-optical setup

    Science.gov (United States)

    Singh, Ashutosh; Pradyumna, Siva; Rau, A. R. P.; Sinha, Urbasi

    2017-03-01

    The unavoidable and irreversible interaction between an entangled quantum system and its environment causes decoherence of the individual qubits as well as degradation of the entanglement between them. Entanglement sudden death (ESD) is the phenomenon wherein disentanglement happens in finite time even when individual qubits decohere only asymptotically in time due to noise. Prolonging the entanglement is essential for the practical realization of entanglement-based quantum information and computation protocols. For this purpose, the local NOT operation in the computational basis on one or both qubits has been proposed. Here, we formulate an all-optical experimental set-up involving such NOT operations that can hasten, delay, or completely avert ESD, all depending on when it is applied during the process of decoherence. Analytical expressions for these are derived in terms of parameters of the initial state's density matrix, whether for pure or mixed entangled states. After a discussion of the schematics of the experiment, the problem is theoretically analyzed, and simulation results of such manipulations of ESD are presented.

  12. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    Science.gov (United States)

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  13. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Science.gov (United States)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  14. Dense all-optical WDM-SCM technology for high-speed computer interconnects

    Science.gov (United States)

    Ih, Charles S.; Tian, Rongsheng; Zhou, H. X.; Xia, Xiang-Gen

    1993-07-01

    We describe a dense and flexible all optical multi-channel communication system for high speed computer interconnects. The system can provide 10 Gb/s for each individual node with a total system capacity to 250 Gb/s using currently available technologies. The system capacity can be scaled to 1 Tb/s using optical amplifiers with a broader bandwidth and higher modulations. The system is based on the multi-beam (heterodyne) modulator (MBM) recently demonstrated in our laboratory and other current technologies in tunable laser arrays and acousto-optical tunable filter (AOTF). Each MBM automatically forms a high frequency microwave sub-carrier multiplexing (SCM) with sub-carrier frequency to tens of GHz. A MBM with sub-carriers at 17 and 21 GHz has already been demonstrated and can be scaled to higher frequencies by using a higher frequency detector. Each SCM group may consist of up to 10 one-Gb/s channels and occupies only 1 nm spectral width. Therefore we can form a conventional WDM with 25 divisions within the bandwidth of commercially available optical amplifiers.

  15. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  16. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Julien Perchoux

    2016-05-01

    Full Text Available Optical feedback interferometry (OFI sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.

  17. Value Assessment of Distribution Network Reconfiguration: A Danish Case Study

    DEFF Research Database (Denmark)

    Vaskantiras, Georgios; You, Shi

    2016-01-01

    Distribution network reconfiguration is a mechanism that can improve the distribution system performance from multiple perspectives. In the context of smart grid wherein the degrees of automation and intelligence are high, the potential value of network reconfiguration can be significant...... that although the reconfiguration is performed to achieve a single objective, the overall network performance is improved. In addition, the value achieved by reconfiguration can be very sensitive to the reconfiguration frequency and the associated cost....

  18. Reconfigurable optical assembly of nanostructures

    Science.gov (United States)

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-06-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  19. Radiation effects in reconfigurable FPGAs

    Science.gov (United States)

    Quinn, Heather

    2017-04-01

    Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.

  20. Reconfigurable cognitive transceiver for opportunistic networks

    Science.gov (United States)

    Maso, Marco; Baştuğ, Ejder; Cardoso, Leonardo S.; Debbah, Mérouane; Özdemir, Özgür

    2014-12-01

    In this work, we provide the implementation and analysis of a cognitive transceiver for opportunistic networks. We focus on a previously introduced dynamic spectrum access (DSA) - cognitive radio (CR) solution for primary-secondary coexistence in opportunistic orthogonal frequency division multiplexing (OFDM) networks, called cognitive interference alignment (CIA). The implementation is based on software-defined radio (SDR) and uses GNU Radio and the universal software radio peripheral (USRP) as the implementation toolkit. The proposed flexible transceiver architecture allows efficient on-the-fly reconfigurations of the physical layer into OFDM, CIA or a combination of both. Remarkably, its responsiveness is such that the uplink and downlink channel reciprocity from the medium perspective, inherent to time division duplex (TDD) communications, can be effectively verified and exploited. We show that CIA provides approximately 10 dB of interference isolation towards the OFDM receiver with respect to a fully random precoder. This result is obtained under suboptimal conditions, which indicates that further gains are possible with a better optimization of the system. Our findings point towards the usefulness of a practical CIA implementation, as it yields a non-negligible performance for the secondary system, while providing interference shielding to the primary receiver.

  1. Adaptive reconfigurable distributed sensor architecture

    Science.gov (United States)

    Akey, Mark L.

    1997-07-01

    The infancy of unattended ground based sensors is quickly coming to an end with the arrival of on-board GPS, networking, and multiple sensing capabilities. Unfortunately, their use is only first-order at best: GPS assists with sensor report registration; networks push sensor reports back to the warfighter and forwards control information to the sensors; multispectral sensing is a preset, pre-deployment consideration; and the scalability of large sensor networks is questionable. Current architectures provide little synergy among or within the sensors either before or after deployment, and do not map well to the tactical user's organizational structures and constraints. A new distributed sensor architecture is defined which moves well beyond single sensor, single task architectures. Advantages include: (1) automatic mapping of tactical direction to multiple sensors' tasks; (2) decentralized, distributed management of sensor resources and tasks; (3) software reconfiguration of deployed sensors; (4) network scalability and flexibility to meet the constraints of tactical deployments, and traditional combat organizations and hierarchies; and (5) adaptability to new battlefield communication paradigms such as BADD (Battlefield Analysis and Data Dissemination). The architecture is supported in two areas: a recursive, structural definition of resource configuration and management via loose associations; and a hybridization of intelligent software agents with tele- programming capabilities. The distributed sensor architecture is examined within the context of air-deployed ground sensors with acoustic, communication direction finding, and infra-red capabilities. Advantages and disadvantages of the architecture are examined. Consideration is given to extended sensor life (up to 6 months), post-deployment sensor reconfiguration, limited on- board sensor resources (processor and memory), and bandwidth. It is shown that technical tasking of the sensor suite can be automatically

  2. All-optical three-input logic minterms generation using semiconductor optical amplifier-based Sagnac interferometer

    DEFF Research Database (Denmark)

    Lei, L.; Da Ros, Francesco; Xu, Jing

    2013-01-01

    experimentally demonstrated in a Sagnac interferometer. Correct and clear temporal waveforms are successfully observed. Bit error ratios and optical signal-to-noise ratios are measured to demonstrate the effectiveness of the method. As the basic units of combinational logic operations, logic minterms...... are promising candidates to construct reconfigurable and programmable logic functions....

  3. Reconfigurable microfluidic nanoparticle trapping using dielectrophoresis for chemical detection

    Science.gov (United States)

    Salemmilani, Reza; Piorek, Brian; Moskovits, Martin; Meinhart, Carl

    2016-11-01

    We report a microfluidic particle manipulation platform based on dielectrophoresis (DEP) to capture and release nanoscale particles cyclically via reconfigurable traps. DEP is routinely used in microfluidic devices for capturing and trapping cells and particles of various sizes, however the trapping of small nanoparticles by DEP is challenging due to the inverse relationship of the DEP force with particle size. The architecture we describe uses electrically insulating silica beads of micron scale in conjunction with DEP electrodes configured to manipulate nanoscale particles for microfluidic applications such as filtration and chemical detection. Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States.

  4. China's Reconfigurable Planet Probing Robot

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2005-01-01

    Research of reconfigurable planet probing robot conducted by the Shenyang Institute of Automation of the Chinese Academy of Science (SIA-CAS) has passed appraisal of 863 Program sresearch on intelligent robots.

  5. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2011-01-01

    be effective if sufficient redundancy does not exist in the process. A measure for control reconfigurability which reveals the level of redundancy in connection with feedback control is proposed in this paper for bilinear systems. The proposed control reconfigurability measure is the extension of its gramian......The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  6. Performance Monitoring in Transparent Reconfigurable WDM Networks

    Institute of Scientific and Technical Information of China (English)

    Chun-Kit.Chan; Frank; Tong

    2003-01-01

    This paper classifies and surveys different approaches proposed for performance monitoring, in particular the optical signal-to-noise ratio (OSNR) monitoring, in transparent reconfigurable WDM networks. Some considerations for future monitoring schemes are discussed.

  7. Reconfigurable/Reprogrammable Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of reconfigurable/reprogrammable transceivers with !Y 1 Gbps transmission and reception data rates for future NASA space communications applications will...

  8. Reconfigurable materials: Algorithm for architectural origami

    Science.gov (United States)

    Paik, Jamie

    2017-01-01

    An algorithm has been developed allowing the rational design of origami-inspired materials that can be rearranged to change their properties. This might open the way to strategies for making reconfigurable robots. See Article p.347

  9. Roles and Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Dvinge, Nicolai; Schultz, Ulrik Pagh; Christensen, David Johan

    2007-01-01

    A self-reconfigurable robot is a robotic device that can change its own shape. Self-reconfigurable robots are commonly built from multiple identical modules that can manipulate each other to change the shape of the robot. The robot can also perform tasks such as locomotion without changing shape....... Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular......, self-reconfigurable robots, we have developed a declarative, role-based language that allows the programmer to associate roles and behavior to structural elements in a modular robot. Based on the role declarations, a dedicated middleware for high-level distributed communication is generated...

  10. Elements of Autonomous Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Christensen, David Johan

    In this thesis, we study several central elements of autonomous self-reconfigurable modular robots. Unlike conventional robots such robots are: i) Modular, since robots are assembled from numerous robotic modules. ii) Reconfigurable, since the modules can be combined in a variety of ways. iii) Self......-reconfigurable, since the modules themselves are able to change how they are combined. iv) Autonomous, since robots control themselves without human guidance. Such robots are attractive to study since they in theory have several desirable characteristics, such as versatility, reliability and cheapness. In practice...... robots: design, scalability, self-reconfiguration and adaptation. The first element we consider is the design of systems, modules, robots, and behaviors. We introduce a number of design principles that will guide our designs throughout the thesis. The design principles advocate simple, extendable...

  11. MEMS-Enabled Smart Reconfigurable Antennas Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A prototype wearable smart reconfigurable antenna for the Suit will be built to be used during NASA's EVA operations on lunar surface. The design is based on the...

  12. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way

  13. All-optical radiation reaction in head-on laser electron interaction

    Science.gov (United States)

    Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.

    2016-10-01

    Radiation reaction (RR) accounts for the slowdown of a charged particle that occurs when a significant fraction of its kinetic energy is emitted as radiation. Here we show that this effect could be measured in an all-optical setup using a laser wakefield accelerated electron beam colliding with an intense laser pulse. We employ full-scale 3D PIC simulations to show that one can enter a radiation reaction dominated regime with a GeV electron beam and a 30 fs laser of I = 1021W/cm2. The electrons can lose up to 40% of their initial energy, which can be used as an experimental signature in the spectra. Our results indicate that modern laser facilities provide an exciting opportunity to explore classical RR and the near-future laser facilities can be employed to study the RR beyond classical description. By using higher laser intensities (1022-1023W/cm2) , quantum effects such as Compton scattering and Breit-Wheeler pair production become relevant. We have included these quantum effects in our PIC code OSIRIS through a Monte Carlo module, and performed a detailed numerical study of the transition from classical to quantum RR dominated regime. We identified the distinct features in the electron distribution function that could serve as signatures of quantum radiation reaction, and showed that large-scale infrastructures (e.g. NIF and ELI and next generation of PW-class lasers (e. g. CoReLS, Bella-i, Texas Petawatt, Apollon 10 PW) could be employed to test the physics in these extreme scenarios.

  14. All-optical photoacoustic imaging and detection of early-stage dental caries

    Science.gov (United States)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (stage lesions. We have developed a fine-resolution (480 nm), ultra-broadband (1 GHz), all-optical photoacoustic imaging (AOPAI) system to image and detect early stages of tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  15. Efficient Traffic Engineering Strategies for Optimizing Network Throughput in WDM All-Optical Networks

    Directory of Open Access Journals (Sweden)

    Mohamed Koubàa

    2015-05-01

    Full Text Available In this paper we investigate traffic-engineering issues in Wavelength Division Multiplexing (WDM all-optical networks. In such networks, the wavelength continuity constraint along with the wavelength clash constraint, lead to poor network performances when dealing with the lightpath provisioning problem. The impact of these constraints is especially severe when traffic demands are unpredictable and characterized by random arrivals and departures. In order to alleviate the impact of these constraints, we propose to employ intentional/active rerouting. Active lightpath rerouting is to intentionally reroute already established lightpaths, during their life period, so as to achieve a better blocking performance. We here assume that due to the large geographic area an optical WDM network can cover, upgrading such a network to support the huge demand for network bandwidth can be costly. Thereby, it is extremely important for network operators to apply traffic-engineering strategies to cost-effectively optimize network throughput. Two new routing and wavelength assignment (RWA algorithms applying intentional rerouting are proposed. Both algorithms dynamically reroute some already established lightpaths from longer paths to vacant shorter ones so as to reduce the network resources consumption and hence improve the network throughput. The first algorithm, namely, Timer-Based Active Lightpath Rerouting (TB-ALR initiates the rerouting procedure every time a timer expires. The second algorithm, namely, Sequential Routing with Active Lightpath Rerouting (SeqRwALR initiates the rerouting procedure when a connection leaves and its lightpaths are released. To the best of our knowledge, our global approach has not already been investigated in the literature. Simulation results show that the proposed active rerouting algorithms yield much lower connection rejection ratios than rerouting algorithms previously presented in the literature while rerouting a small

  16. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound.

    Science.gov (United States)

    Alles, Erwin J; Colchester, Richard J; Desjardins, Adrien E

    2016-01-01

    In biomedical all-optical pulse-echo ultrasound systems, ultrasound is generated with the photoacoustic effect by illuminating an optically absorbing structure with a temporally modulated light source. Nanosecond range laser pulses are typically used, which can yield bandwidths exceeding 100 MHz. However, acoustical attenuation within tissue or nonuniformities in the detector or source power spectra result in energy loss at the affected frequencies and in a reduced overall system efficiency. In this work, a laser diode is used to generate linear and nonlinear chirp optical modulations that are extended to microsecond time scales, with bandwidths constrained to the system sensitivity. Compared to those obtained using a 2-ns pulsed laser, pulse-echo images of a phantom obtained using linear chirp excitation exhibit similar axial resolution (99 versus 92 μm, respectively) and signal-to-noise ratios (SNRs) (10.3 versus 9.6 dB). In addition, the axial point spread function (PSF) exhibits lower sidelobe levels in the case of chirp modulation. Using nonlinear (time-stretched) chirp excitations, where the nonlinearity is computed from measurements of the spectral sensitivity of the system, the power spectrum of the imaging system was flattened and its bandwidth broadened. Consequently, the PSF has a narrower axial extent and still lower sidelobe levels. Pulse-echo images acquired with time-stretched chirps as optical modulation have higher axial resolution (64 μm) than those obtained with linear chirps, at the expense of a lower SNR (6.8 dB). Using a linear or time-stretched chirp, the conversion efficiency from optical power to acoustical pressure improved by a factor of 70 or 61, respectively, compared to that obtained with pulsed excitation.

  17. Reconfiguring and Realigning the Assessment Feedback Processes for an Undergraduate Criminology Degree

    Science.gov (United States)

    Case, Stephen

    2007-01-01

    A reconfigured and realigned system of assessment feedback was implemented with undergraduates taking criminology modules at Swansea University. The reformulated system integrated explicit engagement with assessment criteria in feedback given on an electronic template form with the use of a statement bank and the offer of follow-up, feedback…

  18. Reconfiguring and Realigning the Assessment Feedback Processes for an Undergraduate Criminology Degree

    Science.gov (United States)

    Case, Stephen

    2007-01-01

    A reconfigured and realigned system of assessment feedback was implemented with undergraduates taking criminology modules at Swansea University. The reformulated system integrated explicit engagement with assessment criteria in feedback given on an electronic template form with the use of a statement bank and the offer of follow-up, feedback…

  19. An FPGA-based reconfigurable DDC algorithm

    Science.gov (United States)

    Juszczyk, B.; Kasprowicz, G.

    2016-09-01

    This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.

  20. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Christos George (The University of New Mexico, Albuquerque, NM); Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  1. A Reconfigurable Radiation Pattern Annular Slot Antenna

    OpenAIRE

    Aziz, NA; Radhi, A; Nilavalan, R

    2016-01-01

    This paper contemplate a theoretical analysis of a pattern reconfigurable antenna using annular slot antenna operating in low frequency. A shorting pin is inserted to allow the annular slot antenna to have an omnidirectional radiation pattern like a monopole antenna. The reconfigurable antenna consists of numerous metal cylinders arranged around the annular slot antenna. By controlling pin diodes associated with the metal cylinders, the antenna is capable of working up in different dire...

  2. RF MEMS reconfigurable triangular patch antenna.

    Energy Technology Data Exchange (ETDEWEB)

    Nordquist, Christopher Daniel; Christodoulou, Christos George (University of New Mexico, Albuquerque, NM); Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  3. Realization of an ultrafast all-optical Toffoli logic gate based on the phase relation between two second order nonlinear optical signals

    Science.gov (United States)

    Kazemi, Mehdi Mohammad; Mazaheri Tehrani, Alireza; Zeb Khan, Tahir; Namboodiri, Mahesh; Materny, Arnulf

    2015-12-01

    A Toffoli logic gate (CCNOT gate) is a universal reversible logic gate from which all other reversible gates can be constructed. It has a three-bit input and output. The goal of our work was to realize a Toffoli gate where all inputs and outputs are realized optically, which allows for ultrafast switching processes. We demonstrate experimentally that a Toffoli logic gate can be created based on nonlinear multi-wave interactions of light with matter. Using femtosecond laser pulses, the all-optical Toffoli gate is based on the coherence of the optical signals produced via the nonlinear optical processes. Sum frequency (SF) and second harmonic (SH) generations are combined in such a way so as to yield the complete truth table of the universal reversible logic gate.

  4. All-Optical Micro Motors Based on Moving Gratings in Photosensitive Media

    Science.gov (United States)

    Curley, M.; Sarkisov, S. S.; Fields, A.; Smith, C.; Kukhtarev, N.; Kulishov, M. B.; Adamovsky, Grigory

    2001-01-01

    An all-optical micromotor with a rotor driven by a traveling wave of surface deformation of a stator being in contact with the rotor is being studied. Instead of an ultrasonic wave produced by an electrically driven piezoelectric actuator as in ultrasonic motors, the wave is a result of a photo-induced surface deformation of a photosensitive material produced by an incident radiation. A thin piezoelectric polymer will deform more easily LiNbO3 or metal when irradiated with light. The type of photosensitive material studied are piezoelectric polymers with and without coatings for connecting electrodes. In order to be considered as a possible candidate for micromotors, the material should exhibit surface deformation produced by a laser beam of the order of 10 microns. This is compared to the deformations produced by static holographic gratings studied in photorefractive crystals of LiNbO3 using high vertical resolution surface profilometer Dektak 3 and surface interferometer WYKO. An experimental setup showing the oscillations has been developed. The setup uses a chopped beam from an Argon ion laser to produce the deformation while a probe beam is reflected by the thin film into a fiber which is then detected on an oscilloscope. A ramp voltage signal generator will drive the piezoelectric film in another experiment to determine the resonance of the film. A current is generated when light is incident upon the film and this current can be measured. The reverse process has already been demonstrated in other piezoelectric actuators. Changing voltage, polarity, and frequency of the signal can easily generate vibrations similar to those when light is incident on the film. This can be compared to the effects of laser interaction with light absorbing fluids such as solutions of 2,9,16,23-Tetrakis(phenylthio)-29H, 31 H-phthalocyanine in chlorobenzene in capillary tubes, The possibility of using a liquid with the piezoelectric film would be a novel idea for a micromotor since

  5. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads;

    2016-01-01

    four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... processing schemes for spectrally-efficient systems and networks have been achieved, including all-optical generation, detection and format conversion of spectrally-efficient signals. The spectrally-efficient signals in this paper mainly refer to efficiently multiplexed signals with a high symbol rate per Hz...

  6. 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach-Zehnder interferometer

    Science.gov (United States)

    Rendón-Salgado, I.; Gutiérrez-Castrejón, R.

    2017-09-01

    A novel architecture to implement an all-optical AND gate that relies on the use of a bulk semiconductor optical amplifier-based active Mach-Zehnder interferometer and the turbo-switch effect is presented. Its performance is analyzed in terms of relevant physical parameters and its power consumption calculated. Error-free operation at 160 Gb/s is numerically demonstrated, thus becoming the fastest AND gate of its kind. Accurate simulations using a well-tested design suite predict a 2.7 dB improvement in terms of quality factor when compared to a conventional scheme. The performance advantages of the proposed architecture remain when combined with a turbo-switched XOR gate: the resulting all-optical half-adder also operates error-free at 160 Gb/s. Our research work boosts the potential of interferometric turbo-switched photonic structures as ultra-fast all-optical processing elements.

  7. High contrast all-optical diode based on direction-dependent optical bistability within asymmetric ring cavity

    Science.gov (United States)

    Xia, Xiu-Wen; Zhang, Xin-Qin; Xu, Jing-Ping; Yang, Ya-Ping

    2016-08-01

    We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 dB. Furthermore, its application as an all-optical logic AND gate is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274242, 11474221, and 11574229), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203), and the National Key Basic Research Special Foundation of China (Grant Nos. 2011CB922203 and 2013CB632701).

  8. Controllable vacuum-induced diffraction of matter-wave superradiance using an all-optical dispersive cavity

    Science.gov (United States)

    Su, Shih-Wei; Lu, Zhen-Kai; Gou, Shih-Chuan; Liao, Wen-Te

    2016-10-01

    Cavity quantum electrodynamics (CQED) has played a central role in demonstrating the fundamental principles of the quantum world, and in particular those of atom-light interactions. Developing fast, dynamical and non-mechanical control over a CQED system is particularly desirable for controlling atomic dynamics and building future quantum networks at high speed. However conventional mirrors do not allow for such flexible and fast controls over their coupling to intracavity atoms mediated by photons. Here we theoretically investigate a novel all-optical CQED system composed of a binary Bose-Einstein condensate (BEC) sandwiched by two atomic ensembles. The highly tunable atomic dispersion of the CQED system enables the medium to act as a versatile, all-optically controlled atomic mirror that can be employed to manipulate the vacuum-induced diffraction of matter-wave superradiance. Our study illustrates a innovative all-optical element of atomtroics and sheds new light on controlling light-matter interactions.

  9. Configuration representation and reconfiguration optimization for the reconfigurable robots with independent manipulation

    Institute of Scientific and Technical Information of China (English)

    WANG MingHui; MA ShuGen; LI Bin; WANG YueChao

    2009-01-01

    Single module of the reconfigurable robots with independent manipulation can perform the actions of locomotion and manipulation. In conformity with the request for achieving autonomous operation in the unstructurized environment Instead of fixed operation in the structurized environment, these robots are applied in the complicated and dangerous environment. The existing researches on the configura-tion theory focus on the reconfigurable robots with limited locomotion and the ones with independent locomotion, not being applicable to the reconfigurable robots with independent manipulation. The vec-tor configuration is put forward, the research content of which contains the topology and locomotion direction of configuration, the posture and orientation and connection relation between modules. Mod-ule state vector and configuration state matrix are proposed for representation methodology for the swarm configuration of these reconfigurable robots, which supports transformation operation to repre-sent and trigger behavior motion of the module and reconfiguration between configurations. Optimiza-tion algorithm of assembly reconfiguration applying workload as the optimization target is presented, as well as optimization algorithm of transformation reconfiguration applying the Integration of pos-ture_orientation_workload and connection_workload. The result of optimization is the relation of state transformation between the initial configuration and the object one as the basic of reconfiguration plan and control.

  10. Reconfigurable mobile radio systems a snapshot of key aspects related to reconfigurability in wireless systems

    CERN Document Server

    Vivier, Guillaume

    2010-01-01

    Different aspects of the reconfigurability of mobile radio systems are analyzed in this book. These include services, object modeling applied to software radio, flexible spectrum management, trade-offs for building a reconfigurable terminal, an example of a pure software radio modem, adaptive MIMO techniques and analog-to-digital converters.

  11. Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide.

    Science.gov (United States)

    Corcoran, Bill; Pelusi, Mark D; Monat, Christelle; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Eggleton, Benjamin J

    2011-05-01

    We demonstrate all-optical demultiplexing of a high-bandwidth, time-division multiplexed 160 Gbit/s signal to 10 Gbit/s channels, exploiting slow light enhanced four-wave mixing in a dispersion engineered, 96 μm long planar photonic crystal waveguide. We report error-free (bit error rate<10⁻⁹) operation of all 16 demultiplexed channels, with a power penalty of 2.2-2.4 dB, highlighting the potential of these structures as a platform for ultracompact all-optical nonlinear processes.

  12. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  13. All-Optical 40 Gbit/s Regenerative Wavelength Conversion Based on Cross-Phase Modulation in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Hu, Hao; Ji, Hua

    2013-01-01

    We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration.......We successfully demonstrate all-optical regeneration of a 40 Gbit/s signal based on cross-phase modulation in a silicon nanowire. Bit-error-rate measurements show an average of 1.7dB improvement in receiver sensitivity after the regeneration....

  14. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km.......We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  15. Traffic-Based Reconfiguration for Logical Topologies in Large-Scale WDM Optical Networks

    Science.gov (United States)

    Zhang, Yongbing; Murata, Masaki; Takagi, Hideaki; Ji, Yusheng

    2005-10-01

    Wavelength-division multiplexing (WDM) technology has emerged as a promising technology for backbone networks. The optical layer based on WDM technology provides optical routing services to the upper layers such as the packet-switching layer and the time-division multiplexing (TDM) layer over the generalized multiprotocol label-switching (GMPLS) paradigm. The set of all-optical communication channels (lightpaths) in the optical layer defines the logical topology for the upper layer applications. Since the traffic demand of upper layer applications fluctuates from time to time, it is required to reconfigure the underlying logical topology in the optical layer accordingly. However, the reconfiguration for the logical topology is reluctantly disruptive to the network since some lightpaths should be torn down and some traffic has to be buffered or rerouted during the reconfiguration process. Therefore, it needs to have an efficient transition method to shift the current logical topology to the new one so as to minimize the effect of the reconfiguration on the upper layer traffic. This paper proposes several heuristic algorithms that move the current logical topology efficiently to the given target logical topology in large-scale wavelength-routed optical networks. In the proposed algorithms, the performance improvement/degradation of data transmission [transmission delay or distance between a source-destination (s-d) pair] caused by a new lightpath is considered as benefit for establishing the new lightpath. The proposed algorithms construct the new logical topology starting from a lightpath with the largest benefit to the user traffic. Simulation experiments have been performed to evaluate the proposed algorithms in comparison with existing algorithms in a National Science Foundation Network (NSFNET)-like network model with 16 nodes and 25 links. The results show that the proposed algorithms yield much better performance (shorter average packet hot distance) than

  16. Self Assembled Semiconductor Quantum Dots for Spin Based All Optical and Electronic Quantum Computing

    Science.gov (United States)

    2008-04-17

    associates 1. Carmen Stefanita 2. Ifthikar Ahmed 3. V. Avrutin 4. U Ozgur 5. T. Morisato (visiting from Japan) 6. M. Qian 7. A. Reber Graduate...Cahay, “ Monte Carlo simulation of spin transport in nanowires”, IEEE NTC Workshop on Quantum Device and Technology, Clarkson University, Pottsdam

  17. All-optical four-bit Toffoli gate with possible implementation in solids

    Science.gov (United States)

    Grigoryan, G.; Chaltykyan, V.; Gazazyan, E.; Tikhova, O.

    2013-05-01

    We examine in detail the cyclic adiabatic population transfer methods for five-level diagrams in order to construct a four-bit universal reversible logic gate. We show that under certain conditions and sequence of turning on and off the laser pulses a five-level system may be reduced to an effective Λ-diagram.

  18. Evolution of a designless nanoparticle network into reconfigurable Boolean logic

    Science.gov (United States)

    Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.

    2015-12-01

    Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.

  19. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  20. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.;

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition by interc...

  1. All-optical measurements of carrier dynamics in bulk-GaN LEDs: Beyond the ABC approximation

    Science.gov (United States)

    David, Aurelien; Young, Nathan G.; Hurni, Christophe A.; Craven, Michael D.

    2017-06-01

    An all-optical measurement of differential carrier lifetimes is performed in a specially designed single-quantum-well structure. The measurement reveals the complex carrier-dependence of radiative and non-radiative recombinations, which directly manifest wavefunction-overlap and field-screening effects. This analysis clarifies the range of applicability of the common ABC model and its limitations.

  2. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm;

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  3. An all optical system for studying temperature induced changes in polycrystalline diamond deposited on a tungsten carbide substrate

    CSIR Research Space (South Africa)

    Masina, BN

    2010-09-01

    Full Text Available stream_source_info Masina2_2010.pdf.txt stream_content_type text/plain stream_size 6283 Content-Encoding UTF-8 stream_name Masina2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 An all optical system for studying...

  4. All-Optical 2R Regeneration of a 160-Gbit/s RZOOK Serial Data Signal Using a FOPA

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao;

    2012-01-01

    All-optical 2R regeneration of a 160-Gbit/s RZ-OOK signal is demonstrated in a fiber optical parametric amplifier using a highly nonlinear fiber with the data as pump. Bit error rate bathtub curves validate the regeneration performance....

  5. Demonstration of an All-Optical 2-to-4 Level Encoder Based on an Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Yu Liang

    2009-01-01

    Full Text Available We demonstrated a novel technique for all-optical 2-to-4 level amplitude-shift keying (ASK coding based on a fiber optical parametric amplifier. A 20-Gb/s signal is realized by multiplexing two 10-Gb/s data streams.

  6. New all-optical RIN suppressing, image rejection receiver with efficient use of LO- and signal-power

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Ebskamp, F.

    1993-01-01

    An all-optical method of achieving a heterodyne signal is presented whereby the local oscillator (LO) relative intensity noise (RIN) and the image channel have been suppressed while efficient use of both LO and signal power is made. This is achieved with only one photodetector, compared to four...

  7. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Öhman, Filip; Buron, Jakob Due;

    2007-01-01

    We report on the switching of an all-optical flip-flop consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB), bidirectionally coupled to each other. Both simulation and experimental results are presented. Switching times as low as 50ps, minimal required...

  8. All-Optical Flip-Flop Based on an SOA/DFB-Laser Diode Optical Feedback Scheme

    DEFF Research Database (Denmark)

    D'Oosterlinck, W.; Buron, Jakob Due; Öhman, Filip;

    2007-01-01

    We report on the dynamic all-optical flip-flop (AOFF) operation of an optical feedback scheme consisting of a semiconductor optical amplifier (SOA) and a distributed feedback laser diode (DFB-LD), bidirectionally coupled to each other. The operation of the AOFF relies on the interplay between...

  9. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.;

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  10. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  11. High-Capacity Wireless Signal Generation and Demodulation in 75- to 110-GHz Band Employing All-Optical OFDM

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2011-01-01

    We present a radio-frequency (RF) and bit-rate scalable technique for multigigabit wireless signal generation based on all-optical orthogonal frequency-division multiplexing (OFDM) and photonic up-conversion. Coherent detection supported by digital signal processing is used for signal demodulation...

  12. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches.

    Science.gov (United States)

    Yang, Lin; Xia, Yuhao; Zhang, Fanfan; Chen, Qiaoshan; Ding, Jianfeng; Zhou, Ping; Zhang, Lei

    2015-04-01

    We demonstrate a reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches. For all optical links in its 9 routing states, the optical signal-to-noise ratios are larger than 15 dB in the wavelength range from 1525 to 1565 nm. Each optical link of the optical router can manipulate 50 wavelength-division-multiplexing channels with the data rate of 32 Gbps for each channel in the same wavelength range. Its average energy efficiency is about 16.3 fJ/bit, and its response time is about 19 μs.

  13. Polarization Reconfigurable Patch Antenna Using Microelectromechanical Systems (MEMS) Actuators

    Science.gov (United States)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2002-01-01

    The paper demonstrates a nearly square patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the polarization. Experimental results demonstrate that at a fixed frequency, the polarization can be reconfigured, from circular to linear.

  14. Reconfigurable Fault Tolerance for FPGAs

    Science.gov (United States)

    Shuler, Robert, Jr.

    2010-01-01

    The invention allows a field-programmable gate array (FPGA) or similar device to be efficiently reconfigured in whole or in part to provide higher capacity, non-redundant operation. The redundant device consists of functional units such as adders or multipliers, configuration memory for the functional units, a programmable routing method, configuration memory for the routing method, and various other features such as block RAM, I/O (random access memory, input/output) capability, dedicated carry logic, etc. The redundant device has three identical sets of functional units and routing resources and majority voters that correct errors. The configuration memory may or may not be redundant, depending on need. For example, SRAM-based FPGAs will need some type of radiation-tolerant configuration memory, or they will need triple-redundant configuration memory. Flash or anti-fuse devices will generally not need redundant configuration memory. Some means of loading and verifying the configuration memory is also required. These are all components of the pre-existing redundant FPGA. This innovation modifies the voter to accept a MODE input, which specifies whether ordinary voting is to occur, or if redundancy is to be split. Generally, additional routing resources will also be required to pass data between sections of the device created by splitting the redundancy. In redundancy mode, the voters produce an output corresponding to the two inputs that agree, in the usual fashion. In the split mode, the voters select just one input and convey this to the output, ignoring the other inputs. In a dual-redundant system (as opposed to triple-redundant), instead of a voter, there is some means to latch or gate a state update only when both inputs agree. In this case, the invention would require modification of the latch or gate so that it would operate normally in redundant mode, and would separately latch or gate the inputs in non-redundant mode.

  15. Reconfigurable Data Communications Packet-Switch Emulation Test Bed Demonstrated

    Science.gov (United States)

    Chu, Pong P.; Jones, Robert E.

    1999-01-01

    The Communications Technology Division at the NASA Lewis Research Center has an ongoing program to develop advanced switching and routing technology concepts for future satellite onboard processing systems. Through a university grant as a part of this research, the Cleveland State University is using a flexible reconfigurable data communications packet switch emulation test bed to investigate packet switching techniques. Because of the switching speed and protocol complexity, implementing a data communications network is a tremendous task. Various alternatives should be carefully studied and evaluated in the development stage so that the optimal system configuration can be obtained and implemented later. Therefore, it is desirable to predict the performance of the network before it is actually constructed. This is especially true in the case of satellite systems. In the past, theoretical analysis, software simulation, and prototyping were used to evaluate performance. However, each method has its drawback. There are basic tradeoffs among accuracy, cost, and required evaluation time. No method is completely satisfactory.

  16. All-optical quantum computing with a hybrid solid-state processing unit

    CERN Document Server

    Pei, Pei; Li, Chong

    2011-01-01

    We develop an architecture of hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have prominent advantage of the insensitivity to dissipation process due to the virtual excitation of subsystems. Moreover, the QND measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid systems can merge and be integrated into one quantum processor afterwards.

  17. Silicon Photonics for All-Optical Processing and High-Bandwidth-Density Interconnects

    Science.gov (United States)

    Ophir, Noam

    The first chapter of the thesis provides motivation for the integration of silicon photonic modules into compute systems and surveys some of the recent developments in the field. The second chapter then proceeds to detail a technical case study of silicon photonic microring-based WDM links' scalability and power efficiency for these chip I/O applications which could be developed in the intermediate future. The analysis, initiated originally for a workshop on optical and electrical board and rack level interconnects, looks into a detailed model of the optical power budget for such a link capturing both single-channel aspects as well as WDM-operation-related considerations which are unique for a microring physical characteristics. The third chapter, while continuing on the theme silicon photonic high bandwidth density links, proceeds to detail the first experimental demonstration and characterization of an on-chip spatial division multiplexing (SDM) scheme based on microrings for the multiplexing and demultiplexing functionalities. In the context of more forward looking optical network-on-chip environments, SDM-enabled WDM photonic interconnects can potentially achieve superior bandwidth densities per waveguide compared to WDM-only photonic interconnects. The microring-based implementation allows dynamic tuning of the multiplexing and demultiplexing characteristic of the system which allows operation on WDM grid as well device tuning to combat intra-channel crosstalk. The characterization focuses on the first reported power penalty measurements for on-chip silicon photonic SDM link showing minimal penalties achievable with 3 spatial modes concurrently operating on a single waveguide with 10-Gb/s data carried by each mode. The fourth, fifth, and sixth chapters shift in topic from the application of silicon photonics to communication links to the evolving use of silicon waveguides for nonlinear all-optical processing. Chapter four primarily introduces and motivates

  18. Modular reconfigurable machine tools: design, control and evaluation

    CSIR Research Space (South Africa)

    Padayachee, J

    2009-11-01

    Full Text Available -process capacity scaling. Scalable production capacity and adjustable system functionality are the key objectives of reconfigurable manufacturing. Index terms: Reconfigurable Manufacturing Systems, Modular Reconfigurable Machines, Open Architecture Control...] identify the fixed mechanical architectures and proprietary control systems found in CNC and DMT equipment as the specific drawback in effectively implementing these classes of equipment in RMS. Koren et al.[3] proposed the development of reconfigurable...

  19. Reconfigurable origami-inspired acoustic waveguides

    Science.gov (United States)

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  20. Component Based Dynamic Reconfigurable Test System

    Institute of Scientific and Technical Information of China (English)

    LAI Hong; HE Lingsong; ZHANG Dengpan

    2006-01-01

    In this paper, a novel component based framework of test system is presented for the new requirements of dynamic changes of test functions and reconfiguration of test resources. The complexity of dynamic reconfiguration arises from the scale, redirection, extensibility and interconnection of components in test system. The paper is started by discussing the component assembly based framework which provide the open platform to the deploy of components and then the script interpreter model is introduced to dynamically create the components and build the test system by analyzing XML based information of test system. A pipeline model is presented to provide the data channels and behavior reflection among the components. Finally, a dynamic reconfigurable test system is implemented on the basis of COM and applied in the remote test and control system of CNC machine.