WorldWideScience

Sample records for rechargeable storage batteries

  1. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  2. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  3. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  4. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  5. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    International Nuclear Information System (INIS)

    Liu, Hua Kun

    2013-01-01

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells

  6. Progress in aqueous rechargeable batteries

    OpenAIRE

    Jilei Liu; Chaohe Xu; Zhen Chen; Shibing Ni; Ze Xiang Shen

    2018-01-01

    Over the past decades, a series of aqueous rechargeable batteries (ARBs) were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+) batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. B...

  7. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  8. High-performance aqueous rechargeable batteries based on zinc ...

    Indian Academy of Sciences (India)

    Administrator

    and environment-friendly energy storage system. Battery is the most versatile ... safe but limited in energy density.2 Therefore, new aque- ous rechargeable battery ... The working electrodes were prepared by coating slur- ries of active material ...

  9. Vesicle-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stanish, I.; Singh, A. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375 (United States); Lowy, D.A. [Nova Research, Inc., 1900 Elkin St., Alexandria, VA 22308 (United States); Hung, C.W. [Department of Chemical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2005-05-02

    Vesicle-based rechargeable batteries can be fabricated by mounting polymerized vesicles filled with ferrocyanide or ferricyanide to a conductive surface. The potential can be adjusted by changing the concentration ratio of hydroquinone and benzoquinone bound to the vesicle membranes. These batteries show promise as a means of supplying portable power for future autonomous nanosystems. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  11. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Fan, Rong-Fei; Chen, Xiao-Qian

    2013-01-01

    Highlights: • The scope of this paper is to apply solar energy to achieve the high-altitude long-endurance flight. • The equivalence of gravitational potential and rechargeable battery is discussed. • Four kinds of factors have been discussed to compare the two method of energy storage. • This work can provide some governing principles for the application of solar-powered aircraft. - Abstract: Applying solar energy is one of the most promising methods to achieve the aim of High-altitude Long-endurance (HALE) flight, and solar-powered aircraft is usually taken by the research groups to develop HALE aircraft. However, the crucial factor which constrains the solar-powered aircraft to achieve the aim of HALE is the problem how to fulfill the power requirement under weight constraint of rechargeable batteries. Motivated by the birds store energy from thermal by gaining height, the method of energy stored by gravitational potential for solar-powered aircraft have attracted great attentions in recent years. In order to make the method of energy stored in gravitational potential more practical in solar-powered aircraft, the equivalence of gravitational potential and rechargeable battery for aircraft on energy storage has been analyzed, and four kinds of factors are discussed in this paper: the duration of solar irradiation, the charging rate, the energy density of rechargeable battery and the initial altitude of aircraft. This work can provide some governing principles for the solar-powered aircraft to achieve the unlimited endurance flight, and the endurance performance of solar-powered aircraft may be greatly improved by the application of energy storage using gravitational potential

  12. Rechargeable electronic textile battery

    NARCIS (Netherlands)

    Bhattacharya, R.; Kok, M.M. de; Zhou, J.

    2009-01-01

    We present a simple fabrication process that produces polymeric charge storage devices directly onto a textile surface. By using a coating of poly-(3,4-ethylenedioxythiophene):poly(styrene sulphonic acid) (PEDOT) as a solid electrolytic layer deposited between two woven silver coated polyamide

  13. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  14. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  15. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  16. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. A rechargeable solid-state proton battery with an intercalating cathode and an anode containing a hydrogen-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K.; Lakshmi, N.; Chandra, S. [Banaras Hindu Univ., Varanasi (India). Dept. of Physics

    1998-11-01

    Rechargeable proton batteries have been fabricated with the configuration Zn+ZnSO{sub 4} x 7H{sub 2}O//solid-state proton conductor//C+electrolyte+intercalating PbO{sub 2}+V{sub 2}O{sub 5}. The solid-state proton conductor is phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O) or a H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O+Al{sub 2}(SO{sub 4}){sub 2} x 16H{sub 2}O composite. The maximum cell voltage is {proportional_to}1.8 V at full charge. The cell can run for more than 300 h at low current drain (2.5 {mu}A cm{sup -2}). Further, the cell can withstand 20 to 30 cycles. The addition of a metal hydride in the anode side enhances the rechargeability and the addition of a small amount of Al{sub 2}(SO{sub 4}){sub 3} x 16H{sub 2}O in the H{sub 3}PW{sub 12}O{sub 40} x nH{sub 2}O electrolyte improves the performance of the battery. (orig.)

  19. A rechargeable solid-state proton battery with an intercalating cathode and an anode containing a hydrogen-storage material

    Science.gov (United States)

    Pandey, Kamlesh; Lakshmi, N.; Chandra, S.

    Rechargeable proton batteries have been fabricated with the configuration Zn+ZnSO 4·7H 2O//solid-state proton conductor//C+electrolyte+intercalating PbO 2+V 2O 5. The solid-state proton conductor is phosphotungstic acid (H 3PW 12O 40· nH 2O) or a H 3PW 12O 40· nH 2O+Al 2(SO 4) 3·16H 2O composite. The maximum cell voltage is ˜1.8 V at full charge. The cell can run for more than 300 h at low current drain (2.5 μA cm -2). Further, the cell can withstand 20 to 30 cycles. The addition of a metal hydride in the anode side enhances the rechargeability and the addition of a small amount of Al 2(SO 4) 3·16H 2O in the H 3PW 12O 40· nH 2O electrolyte improves the performance of the battery.

  20. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  1. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2010-01-01

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode

  2. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  4. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  5. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.; Das, S. K.; Archer, L. A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a

  6. Issue and challenges facing rechargeable thin film lithium batteries

    International Nuclear Information System (INIS)

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-01-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development

  7. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  8. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  9. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  10. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  11. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  12. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  13. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  14. Electroactive materials for rechargeable batteries

    Science.gov (United States)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  15. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  16. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  17. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  18. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  19. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  20. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  1. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  2. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  3. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  4. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  5. A study on the Development of Zr-Ti-Mn-V-Ni hydrogen Storage Alloy for Ni-MH Rechargeable Battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Myung; Jung, Jae Han; Lee, Sang Min; Lee, Jae Young [Department of Meterial Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-12-15

    The Zr-based AB{sub 5} type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized AB{sub 5} type hydrogen storage alloys. In this work, we tried to develop the Zr-based AB type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability (author). 21 refs., 2 tabs., 13 figs.

  6. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  7. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  8. Room temperature rechargeable polymer electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. [EIC Labs., Inc., Norwood, MA (United States); Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-03-01

    Polyacrylonitrile (PAN)- and poly(vinyl chloride) (PVC)-based Li{sup +}-conductive thin-film electrolytes have been found to be suitable in rechargeable Li and Li-ion cells. Li/Li{sub x}Mn{sub 2}O{sub y} and carbon/LiNiO{sub 2} cells fabricated with these electrolytes have demonstrated rate capabilities greater than the C-rate and more than 375 full depth cycles. Two-cell carbon/LiNiO{sub 2} bipolar batteries could be discharged at pulse currents as high as 50 mA/cm{sup 2}. (orig.)

  9. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reaction chemistry in rechargeable Li-O2 batteries.

    Science.gov (United States)

    Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk

    2017-05-22

    The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.

  11. The Rechargeability of Silicon-Air Batteries

    Science.gov (United States)

    2012-06-01

    an Si-air electrochemical cell a source of water for other applications. Metal-air batteries, silicon-air, electrochemistry , rechargeable batteries UU...be based on constant amount of water in the IL.  The electrochemistry has to be based on more robust reference electrode. Some use of ferrocence...MgO  -569.4  -601.7  3942  6859  Zn  Zn + 1/2O2 ZnO   -320.8  -350.7  1363  9677  Si  Si + O2 SiO2  -856.5  -910.9  8470  21090  7 electrode. RTIL

  12. The Li-ion rechargeable battery: a perspective.

    Science.gov (United States)

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  13. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  14. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  15. Advances in electrode materials for Li-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui [China Academy of Space Technology (CAST), Beijing (China); Mao, Chengyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jianlin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chen, Ruiyong [Korea Inst. of Science and Technology (KIST), Saarbrucken (Germany); Saarland Univ., Saarbrucken (Germany)

    2017-07-05

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and new tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.

  16. A rechargeable hydrogen battery based on Ru catalysis.

    Science.gov (United States)

    Hsu, Shih-Fan; Rommel, Susanne; Eversfield, Philipp; Muller, Keven; Klemm, Elias; Thiel, Werner R; Plietker, Bernd

    2014-07-01

    Apart from energy generation, the storage and liberation of energy are among the major problems in establishing a sustainable energy supply chain. Herein we report the development of a rechargeable H2 battery which is based on the principle of the Ru-catalyzed hydrogenation of CO2 to formic acid (charging process) and the Ru-catalyzed decomposition of formic acid to CO2 and H2 (discharging process). Both processes are driven by the same catalyst at elevated temperature either under pressure (charging process) or pressure-free conditions (discharging process). Up to five charging-discharging cycles were performed without decrease of storage capacity. The resulting CO2/H2 mixture is free of CO and can be employed directly in fuel-cell technology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and...

  18. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  19. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  20. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  1. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  2. Recent progress in rechargeable alkali metalâair batteries

    OpenAIRE

    Xin Zhang; Xin-Gai Wang; Zhaojun Xie; Zhen Zhou

    2016-01-01

    Rechargeable alkali metalâair batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metalâair batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metalâair batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this ...

  3. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.

    Science.gov (United States)

    Lee, Sechan; Kwon, Giyun; Ku, Kyojin; Yoon, Kyungho; Jung, Sung-Kyun; Lim, Hee-Dae; Kang, Kisuk

    2018-03-27

    Organic rechargeable batteries, which use organics as electrodes, are excellent candidates for next-generation energy storage systems because they offer design flexibility due to the rich chemistry of organics while being eco-friendly and potentially cost efficient. However, their widespread usage is limited by intrinsic problems such as poor electronic conductivity, easy dissolution into liquid electrolytes, and low volumetric energy density. New types of organic electrode materials with various redox centers or molecular structures have been developed over the past few decades. Moreover, research aimed at enhancing electrochemical properties via chemical tuning has been at the forefront of organic rechargeable batteries research in recent years, leading to significant progress in their performance. Here, an overview of the current developments of organic rechargeable batteries is presented, with a brief history of research in this field. Various strategies for improving organic electrode materials are discussed with respect to tuning intrinsic properties of organics using molecular modification and optimizing their properties at the electrode level. A comprehensive understanding of the progress in organic electrode materials is provided along with the fundamental science governing their performance in rechargeable batteries thus a guide is presented to the optimal design strategies to improve the electrochemical performance for next-generation battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Recycling of batteries after storage

    International Nuclear Information System (INIS)

    Posthumus, W.

    1997-06-01

    An overview is given of the types and composition of batteries and their waste processing techniques that are operational or under development. Attention is paid to the demands of the waste processing techniques with respect to the quality of the collected batteries. Finally the storage of batteries is discussed. 18 refs

  5. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  6. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  7. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  8. Rechargeable sodium all-solid-state battery

    International Nuclear Information System (INIS)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B.

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  9. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  10. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  11. High-performance aqueous rechargeable batteries based on zinc ...

    Indian Academy of Sciences (India)

    A new aqueous Zn–NiCo2O4 rechargeable battery system with a high voltage, consisting of NiCo2O4 as cathode and metal Zn as anode, is proposed for the first time. It is cheap and environmental friendly, and its energy density is about 202.8 Wh kg–1. The system still maintains excellent capacity retention of about 85% ...

  12. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.

    Science.gov (United States)

    Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D

    2018-02-20

    The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides

  13. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  14. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  15. Comparison of rechargeable versus battery-operated insulin pumps: temperature fluctuations.

    Science.gov (United States)

    Vereshchetin, Paul; McCann, Thomas W; Ojha, Navdeep; Venugopalan, Ramakrishna; Levy, Brian L

    2016-01-01

    The role of continuous subcutaneous insulin infusion (insulin pumps) has become increasingly important in diabetes management, and many different types of these systems are currently available. This exploratory study focused on the reported heating issues that lithium-ion battery-powered pumps may have during charging compared with battery-operated pumps. It was found that pump temperature increased by 6.4°C during a long charging cycle of a lithiumion battery-operated pump under ambient temperatures. In an environmental-chamber kept at 35°C, the pump temperature increased by 4.4°C, which indicates that the pump temperature was above that of the recommended safety limit for insulin storage of 37°C. When designing new pumps, and when using currently available rechargeable pumps in warmer climates, the implications of these temperature increases should be taken into consideration. Future studies should also further examine insulin quality after charging.

  16. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  17. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  18. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  20. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  1. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-performance rechargeable batteries with fast solid-state ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2017-06-27

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  3. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  4. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 2 ↔ 2Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Highly rechargeable lithium-CO{sub 2} batteries with a boron- and nitrogen-codoped holey-graphene cathode

    Energy Technology Data Exchange (ETDEWEB)

    Qie, Long; Xu, Jiantie; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH (United States); Lin, Yi [National Institute of Aerospace, Hampton, VA (United States); Connell, John W. [Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA (United States)

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO{sub 2} (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li{sub 2}CO{sub 3}, making the battery less rechargeable. To make the Li-CO{sub 2} batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO{sub 2} reduction and evolution reactions and investigate the electrochemical behavior of Li-CO{sub 2} batteries. Here, we demonstrate a rechargeable Li-CO{sub 2} battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO{sub 2} reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO{sub 2} batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g{sup -1}. Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode.

    Science.gov (United States)

    Qie, Long; Lin, Yi; Connell, John W; Xu, Jiantie; Dai, Liming

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO 2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li 2 CO 3 , making the battery less rechargeable. To make the Li-CO 2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO 2 reduction and evolution reactions and investigate the electrochemical behavior of Li-CO 2 batteries. Here, we demonstrate a rechargeable Li-CO 2 battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO 2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO 2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g -1 . Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  8. Nickel hydroxide positive electrode for alkaline rechargeable battery

    Science.gov (United States)

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  9. Nickel hydroxide positive electrode for alkaline rechargeable battery

    Science.gov (United States)

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  10. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.

    Science.gov (United States)

    Malkhandi, Souradip; Yang, Bo; Manohar, Aswin K; Prakash, G K Surya; Narayanan, S R

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  11. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  12. Rechargeable Aluminum-Ion Batteries Based on an Open-Tunnel Framework.

    Science.gov (United States)

    Kaveevivitchai, Watchareeya; Huq, Ashfia; Wang, Shaofei; Park, Min Je; Manthiram, Arumugam

    2017-09-01

    Rechargeable batteries based on an abundant metal such as aluminum with a three-electron transfer per atom are promising for large-scale electrochemical energy storage. Aluminum can be handled in air, thus offering superior safety, easy fabrication, and low cost. However, the development of Al-ion batteries has been challenging due to the difficulties in identifying suitable cathode materials. This study presents the use of a highly open framework Mo 2.5 +  y VO 9 +  z as a cathode for Al-ion batteries. The open-tunnel oxide allows a facile diffusion of the guest species and provides sufficient redox centers to help redistribute the charge within the local host lattice during the multivalent-ion insertion, thus leading to good rate capability with a specific capacity among the highest reported in the literature for Al-based batteries. This study also presents the use of Mo 2.5 +  y VO 9 +  z as a model host to develop a novel ultrafast technique for chemical insertion of Al ions into host structures. The microwave-assisted method employing diethylene glycol and aluminum diacetate (Al(OH)(C 2 H 3 O 2 ) 2 ) can be performed in air in as little as 30 min, which is far superior to the traditional chemical insertion techniques involving moisture-sensitive organometallic reagents. The Al-inserted Al x Mo 2.5 +  y VO 9 +  z obtained by the microwave-assisted chemical insertion can be used in Al-based rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  14. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  15. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.

    Science.gov (United States)

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong

    2014-12-01

    The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phase transition and hysteresis in a rechargeable lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Gaberscek, Miran; Jamnik, Janko [Kemijski Institut Ljubljana Slovenija (Slovenia). L10 Lab. for Materials Electrochemistry

    2007-07-01

    We develop a model which describes the evolution of a phase transition that occurs in some part of a rechargeable lithium battery during the process of charging/discharging. The model is capable to simulate hysteretic behavior of the voltage - charge characteristics. During discharging of the battery, the interstitial lattice sites of a small crystalline host system are filled up with lithium atoms and these are released again during charging. We show within the context of a sharp interface model that two mechanical phenomena go along with a phase transition that appears in the host system during supply and removal of lithium. At first the lithium atoms need more space than it is available by the interstitial lattice sites, which leads to a maximal relative change of the crystal volume of about 6%. Furthermore there is an interface between two adjacent phases that has very large curvature of the order of magnitude 100 m, which evoke here a discontinuity of the normal component of the stress. In order to simulate the dynamics of the phase transitions and in particular the observed hysteresis we establish a new initial and boundary value problem for a nonlinear PDE system that can be reduced in some limiting case to an ODE system. (orig.)

  18. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  19. Enabling Privacy in Vehicle-to-Grid Interactions for Battery Recharging

    Directory of Open Access Journals (Sweden)

    Cristina Rottondi

    2014-04-01

    Full Text Available The diffusion of Electric Vehicles (EV fostered by the evolution of the power system towards the new concept of Smart Grid introduces several technological challenges related to the synergy among electricity-propelled vehicle fleets and the energy grid ecosystem. EVs promise to reduce carbon emissions by exploiting Renewable Energy Sources (RESes for battery recharge, and could potentially serve as storage bank to flatten the fluctuations of power generation caused by the intermittent nature of RESes by relying on a load aggregator, which intelligently schedules the battery charge/discharge of a fleet of vehicles according to the users’ requests and grid’s needs. However, the introduction of such vehicle-to-grid (V2G infrastructure rises also privacy concerns: plugging the vehicles in the recharging infrastructures may expose private information regarding the user’s locations and travelling habits. Therefore, this paper proposes a privacy-preserving V2G infrastructure which does not disclose to the aggregator the current battery charge level, the amount of refilled energy, nor the time periods in which the vehicles are actually plugged in. The communication protocol relies on the Shamir Secret Sharing threshold cryptosystem. We evaluate the security properties of our solution and compare its performance to the optimal scheduling achievable by means of an Integer Linear Program (ILP aimed at maximizing the ratio of the amount of charged/discharged energy to/from the EV’s batteries to the grid power availability/request. This way, we quantify the reduction in the effectiveness of the scheduling strategy due to the preservation of data privacy.

  20. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  1. Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.

    Science.gov (United States)

    Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-06-07

    Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rechargeable MnO/sub 2/ battery systems

    International Nuclear Information System (INIS)

    Wroblowa, H.S.

    1987-01-01

    Sixty years after Volta used for the first time (1800) zinc as an electrode, Leclanche patented a MnO/sub 2/NH/sub 4/Cl/Zn cell with a zinc rod negative, which was then shortly replaced by the amalgamated zinc can. Although the original patents for wet and dry alkaline systems were filed already towards the end of 19th and during the first two decades of the 20th century, the first alkaline commercial battery (Herbert's crown cell), appeared only in the early fifties. Since then the introduction of large area zinc electrodes and voluminous work leading to the development of positive electrodes with highest possible reactivity, i.e., capable of releasing a maximum charge at a maximum voltage difference between terminals over longest periods of time, coupled with growing demands of the electronic industries led to the emergence of a several billion dollar primary cell market of which alkaline MnO/sub 2//Zn cells are capturing a rapidly increasing share and are expected to fully dominate the dry cell market. Their better performance/cost ratio compensates for a cost higher than that of their Leclanche type counterparts. The prospects of better utilization of this more expensive system, problems of energy wste4 and of waste disposal of the ever increasing numbers of throw-away batteries, prompted numerous attempts to produce a rechargeable MnO/sub 2//Zn system capable not only of high reactivity, i.e., high power drains, but also applicable for several commercial uses

  3. A novel parameter for evaluation on power performance of Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Xing; Tang, Xin-Cun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Luo, Zhuo; Song, Xia-Wei; Liu, Hong-Tao [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2010-04-15

    In the work, two novel conceptions of ''capacity quality'' (CQ) and ''capacity quality coefficient'' ({lambda}) were defined to evaluate cycling power capabilities of Ni-MH rechargeable batteries when considering the effect of the kinetic limitation. For convenient comparison, the capacity quality coefficient ({lambda}) and the efficiency of charge/discharge ({eta}) were in parallel applied to characterize cycling capabilities based on the data from BYD H-3/4AAA800 Ni-MH batteries at 1C-3.5C. The results show that there is an obvious difference between {lambda} and {eta} which served as evaluation indexes for rechargeable batteries, and that the secondary battery with good capacity quality also has a good cycling capability and rate capability, especially at high rate. The introduced capacity quality not only subtly covered kinetic information of the rechargeable batteries but also factually reflected stability of the electrode materials. (author)

  4. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  5. Understanding and Overcoming the Challenges Posed by Electrode/Electrolyte Interfaces in Rechargeable Magnesium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Fuminori, E-mail: fuminori.mizuno@tema.toyota.com; Singh, Nikhilendra; Arthur, Timothy S.; Fanson, Paul T. [Toyota Research Institute of North America, Ann Arbor, MI (United States); Ramanathan, Mayandi [Department of Chemical and Biological Engineering, Center for Electrochemical Science and Engineering, Illinois Institute of Technology, Chicago, IL (United States); Department of Chemical Engineering, University of Washington, Seattle, WA (United States); Benmayza, Aadil; Prakash, Jai [Department of Chemical and Biological Engineering, Center for Electrochemical Science and Engineering, Illinois Institute of Technology, Chicago, IL (United States); Liu, Yi-Sheng; Glans, Per-Anders; Guo, Jinghua [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2014-11-11

    Magnesium (Mg) battery technologies have attracted attention as a high energy-density storage system due to the following advantages: (1) potentially high energy-density derived from a divalent nature, (2) low-cost due to the use of an earth-abundant metal, and (3) intrinsic safety aspect attributed to non-dendritic growth of Mg. However, these notable advantages are downplayed by undesirable battery reactions and related phenomena. As a result, there are only a few working rechargeable Mg battery systems. One of the root causes for undesirable behavior is the sluggish diffusion of Mg{sup 2+} inside a host lattice. Another root cause is the interfacial reaction at the electrode/electrolyte boundary. For the cathode/electrolyte interface, Mg{sup 2+} in the electrolyte needs a solvation–desolvation process prior to diffusion inside the cathode. Apart from the solid electrolyte interface (SEI) formed on the cathode, the divalent nature of Mg should cause kinetically slower solvation–desolvation processes than that of Li-ion systems. This would result in a high charge-transfer resistance and a larger overpotential. On the contrary, for the anode/electrolyte interface, the Mg deposition and dissolution process depends on the electrolyte nature and its compatibility with Mg metal. Also, the Mg metal/electrolyte interface tends to change over time, and with operating conditions, suggesting the presence of interfacial phenomena on the Mg metal. Hence, the solvation–desolvation process of Mg has to be considered with a possible SEI. Here, we focus on the anode/electrolyte interface in a Mg battery, and discuss the next steps to improve the battery performance.

  6. Electronic network modeling of rechargeable batteries: II: The NiCd system

    NARCIS (Netherlands)

    Notten, P.H.L.; Kruijt, W.S.; Bergveld, H.J.

    1998-01-01

    Based on the concept of a defined sealed rechargeable NiCd battery, the mathematics of the various electrochemical and physical processes occurring inside the battery are described. Subsequently, these sets of mathematical equations are clustered and converted into an electronic network model.

  7. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  8. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  9. Batteries for energy storage. Examples, strategies, solutions

    International Nuclear Information System (INIS)

    Fahlbusch, Eckhard

    2015-01-01

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security. [de

  10. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  11. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  12. Gradient porous electrode architectures for rechargeable metal-air batteries

    Science.gov (United States)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  13. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Olivine-type cathode for rechargeable batteries: Role of chelating agents

    International Nuclear Information System (INIS)

    Kandhasamy, Sathiyaraj; Singh, Pritam; Thurgate, Stephen; Ionescu, Mihail; Appadoo, Dominique; Minakshi, Manickam

    2012-01-01

    Highlights: ► Olivine powder was synthesized by sol–gel method using a range of chelating agents. ► Role of chelating agents in olivine cathode was investigated for battery application. ► Battery was fabricated with olivine cathode, Zn anode and aqueous electrolyte. ► Synergetic effect of additives (CA + TEA + PVP) led to improved storage capacity. - Abstract: Olivine (LiCo 1/3 Mn 1/3 Ni 1/3 PO 4 ) powders were synthesized at 550–600 °C for 6 h in air by a sol–gel method using multiple chelating agents and used as a cathode material for rechargeable batteries. Range of chelating agents like a weak organic acid (citric acid – CA), emulsifier (triethanolamine – TEA) and non-ionic surfactant (polyvinylpyrrolidone – PVP) in sol–gel wet chemical synthesis were used. The dependence of the physicochemical properties of the olivine powders such as particle size, morphology, structural bonding and crystallinity on the chelating agent was extensively investigated. Among the chelating agents used, unique cycling behavior (75 mAh/g after 25 cycles) is observed for the PVP assisted olivine. This is due to volumetric change in trapped organic layer for first few cycles. The trapped organic species in the electrode–electrolyte interface enhances the rate of lithium ion diffusion with better capacity retention. In contrast, CA and TEA showed a gradual capacity fade of 30 and 38 mAh/g respectively after multiple cycles. The combination of all the three mixed chelating agents showed an excellent electrochemical behavior of 100 mAh/g after multiple cycles and the synergistic effect of these agents are discussed.

  15. Use of rechargeable nickel-cadmium batteries for portable radiation monitors

    International Nuclear Information System (INIS)

    Zaman, M.Q.

    1987-08-01

    An effort was taken to assess the chargers available at the local market and the use of rechargeable batteries in the portable radiation monitors. This report is a very brief description of the study and observations. In order to have fair and justified conclusions regarding the use of Ni-Cd battery in portable instruments, many criterions have to be considered which takes very long observations under some specified conditions. This report is a combination of previous experimental results by scientists, data supplied by the manufacturers and short time observations in Seibersdorf Laboratory. The report has three parts (a) comparison of the ordinary battery with the rechargeables (b) selection of a suitable charger and (c) probability of application of the Ni-Cd battery in portable dosimeters

  16. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di; Hiralal, Pritesh; Wang, Haolan; Emrah Unalan, Husnu; Rouvala, Markku; Alexandrou, Ioannis; Andrew, Piers; Ryhä nen, Tapani; Amaratunga, Gehan A.J.

    2013-01-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable

  17. Verifying the Rechargeability of Li-CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.

    Science.gov (United States)

    Zhang, Zhang; Wang, Xin-Gai; Zhang, Xu; Xie, Zhaojun; Chen, Ya-Nan; Ma, Lipo; Peng, Zhangquan; Zhou, Zhen

    2018-02-01

    Li-CO 2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO 2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g -1 , as the air cathode for Li-CO 2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g -1 with low overpotentials at the current density of 100 mA g -1 . Particularly, the Ni-NG cathodes allow to observe the appearance/disappearance of agglomerated Li 2 CO 3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO 2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li-CO 2 batteries. Also, first-principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO 2 , which could guide to design more advantageous catalysts for rechargeable Li-CO 2 batteries.

  18. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Yajima

    2013-10-01

    Full Text Available Multivalent cation rechargeable batteries are expected to perform well as high-capacity storage devices. Rechargeable magnesium batteries have an advantage in terms of resource utilization and safety. Here, we report on sulfur-doped vanadium pentoxide (S-V2O5 as a potential material for the cathodes of such a battery; S-V2O5 showed a specific capacity of 300 mAh·g−1. S-V2O5 was prepared by a method using a low-temperature plasma generated by carbon felt and a 2.45 GHz microwave generator. This study investigates the ability of S-V2O5 to achieve high capacity when added to metal oxide. The highest recorded capacity (420 mAh·g−1 was reached with MnO2 added to composite SMn-V2O5, which has a higher proportion of included sulfur than found in S-V2O5. Results from transmission electron microscopy, energy-dispersive X-ray spectroscopy, Micro-Raman spectroscopy, and X-ray photoelectron spectroscopy show that the bulk of the SMn-V2O5 was the orthorhombic V2O5 structure; the surface was a xerogel-like V2O5 and a solid solution of MnO2 and sulfur.

  19. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    Science.gov (United States)

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  20. Investigation of low-cost oligoanthraquinones for alkaline, aqueous rechargeable batteries with cell potential up to 1.13 V

    Science.gov (United States)

    Dražević, Emil; Andersen, Anders Søndergaard; Wedege, Kristina; Henriksen, Martin Lahn; Hinge, Mogens; Bentien, Anders

    2018-03-01

    The transition to renewable energy sources has created need for stationary, low-cost electrical energy storage. A possible technology to address both cost and environmental concerns are batteries based on organic materials. The use of oligoanthraquinones as a replacement for metal hydrides or cadmium in nickel hydroxide rechargeable batteries is investigated in detail regarding polymer composition, electrochemical reversibility and electroactive species cost. Two different oligoanthraquinones are paired with a nickel hydroxide cathode and demonstrate cycling stability dependent on parameters such as supporting electrolyte strength, C-rate, and anode swelling. The energy efficiencies are up to 75% and the cell potential up to 1.13 V. Simple functionalization of the basic structure increases the cell potential by 100 mV.

  1. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  2. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    An increase in number of distributed generation (DG) units in power system allows the possibility of setting-up and operating micro-grids. In addition to a number of technical advantages, micro-grid operation can also reduce running costs by optimally scheduling the generation and/or storage...... systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  3. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    Science.gov (United States)

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  4. Oxidized graphene as an electrode material for rechargeable metal-ion batteries – a DFT point of view

    International Nuclear Information System (INIS)

    Dobrota, Ana S.; Pašti, Igor A.; Skorodumova, Natalia V.

    2015-01-01

    Graphical abstract: - Abstract: In line with a growing interest in the use of graphene-based materials for energy storage applications and active research in the field of rechargeable metal-ion batteries we have performed a DFT based computational study of alkali metal atoms (Li, Na and K) interaction with an oxidized graphene. The presence of oxygen surface groups (epoxy and hydroxyl) alters the chemisorption properties of graphene. In particular, we observe that the epoxy groups are redox active and enhance the alkali metal adsorption energies by a factor of 2 or more. When an alkali metal atom interacts with hydroxyl-graphene the formation of metal-hydroxide is observed. In addition to a potential boost of metal ion storage capability, oxygen functional groups also prevent the precipitation of the metal phase. By simulating lithiation/de-lithiation process on epoxy-graphenes, it was concluded that the oxidized graphene can undergo structural changes during battery operation. Our results suggest that the content and the type of oxygen surface groups should be carefully tailored to maximize the performance of metal-ion batteries. This is mainly related to the control of the oxidation level in order to provide enough active centers for metal ion storage while preserving sufficient electrical conductivity

  5. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  6. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery

    Science.gov (United States)

    Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk

    2017-02-01

    The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.

  7. Optimal recharge and driving strategies for a battery-powered electric vehicle

    Directory of Open Access Journals (Sweden)

    Lee W. R.

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  8. The state-of-the-art and prospects for the development of rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Skundin, Aleksandr M; Efimov, Oleg N; Yarmolenko, Ol'ga V

    2002-01-01

    The state-of-the-art of investigations into the development and perfection of the most promising class of chemical power sources, namely, rechargeable lithium batteries, is considered. The main problems of designing the batteries with a metallic lithium electrode are formulated and the use of alternative negative electrodes is substantiated. Special attention is paid to the studies dealing with the principles of the performance of lithium-ion batteries as well as the key directions for the perfection of these devices, which mainly concern the elaboration of new materials for lithium-ion batteries. A separate section is devoted to the consideration of polymeric electrolytes for lithium and lithium-ion batteries. The bibliography includes 390 references.

  9. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.

    Science.gov (United States)

    Zhu, L M; Lei, A W; Cao, Y L; Ai, X P; Yang, H X

    2013-01-21

    An all-organic rechargeable battery is realized by use of polyparaphenylene as both cathode- and anode-active material. This new battery can operate at a high voltage of 3.0 V with fairly high capacity, offering a renewable and cheaper alternative to conventional batteries.

  10. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  11. Energy efficiency and capacity retention of Ni–MH batteries for storage applications

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu, Ying; Davis, Zenda; Tatarchuk, Bruce J.

    2013-01-01

    Highlights: ► Ni–MH battery energy efficiency was evaluated at full and partial state-of-charge. ► State-of-charge and state-of-recharge were studied by voltage changes and capacity measurement. ► Capacity retention of the NiMH-B2 battery was 70% after fully charge and 1519 h of storage. ► The inefficient charge process started at ca. 90% of rated capacity when charged at ⩽0.2 C rate. ► Battery durability and low self-discharge strategies are analyzed and discussed for energy storage needs. - Abstract: The Ni–MH batteries were tested for battery energy storage characteristics, including the effects of battery charge or discharge at different rates. The battery energy efficiency and capacity retention were evaluated through measuring the charge/discharge capacities and energies during full and partial state-of-charge (SoC) operations. Energy efficiency results were obtained at various charge input levels and different charge and discharge rates. The inefficient charging process started to take place at ca. 90% state-of-recharge (SoR) when charged at no more than 0.2 C rate. For the NiMH-B2 battery after an approximately full charge (∼100% SoC at 120% SoR and a 0.2 C charge/discharge rate), the capacity retention was obtained as 83% after 360 h of storage, and 70% after 1519 h of storage. The energy efficiency was decreased from 74.0% to 50% after 1519 h of storage time. The Coulomb efficiency was initially 83.34%, and was reduced to 57.95% after 1519 h of storage. The battery has relatively higher energy efficiency at approximately 50% SoC. The energy efficiency was calculated to be more than 92% when the NiMH-C3 battery was charged to 30–70% SoC then discharged to 0% SoC at a 0.2 C charge/discharge rate. In consideration of energy efficiency, charge acceptance, capacity retention rate, and power output needs, as well as Nelson’s analysis on HEV power requirements, the Ni–MH battery is appropriate to work at ca. 50 ± 10% SoC with an

  12. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P; Scheifele, W; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  13. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.

    Science.gov (United States)

    Dong, Xiaoli; Yu, Hongchuan; Ma, Yuanyuan; Bao, Junwei Lucas; Truhlar, Donald G; Wang, Yonggang; Xia, Yongyao

    2017-02-21

    Rechargeable batteries with organic electrodes are preferred to those with transition-metal-containing electrodes for their environmental friendliness, and resource availability, but all such batteries reported to date are based on organic electrolytes, which raise concerns of safety and performance. Here an aqueous-electrolyte all-organic rechargeable battery is reported, with a maximum operating voltage of 2.1 V, in which polytriphenylamine (PTPAn) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-derived polyimide (PNTCDA) serve as cathode and anode material, respectively. A key feature of the design is use of a "water-in-salt" electrolyte to bind "free" water; this impedes the side reaction of water oxidation, thereby enabling excellent reversibility in aqueous solution. The battery can deliver a maximum energy density of 52.8 Wh kg -1 , which is close to most of the all-organic batteries with organic electrolytes. The battery exhibits a supercapacitor-like high power of 32 000 W kg -1 and a long cycle life (700 cycles with capacity retention of 85 %), due to the kinetics not being limited by ion diffusion at either electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  15. A rechargeable Li-CO{sub 2} battery with a gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Guo, Ziyang; Yang, Bingchang; Liu, Yao; Wang, Yonggang; Xia, Yongyao [Dept. of Chemistry and Shanghai Key Lab. of Molecular Catalysis and Innovative Materials, Inst. of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan Univ. (China)

    2017-07-24

    The utilization of CO{sub 2} in Li-CO{sub 2} batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles' heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO{sub 2} battery with a carbon nanotube-based gas electrode. The discharge product of Li{sub 2}CO{sub 3} formed in the GPE-based Li-CO{sub 2} battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO{sub 2} battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g{sup -1}) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO{sub 2} batteries. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  17. Battery energy storage market feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  18. Battery energy storage market feasibility study

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  19. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  20. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  1. Investigation of different anode materials for aluminium rechargeable batteries

    Science.gov (United States)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  2. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives.

    Science.gov (United States)

    Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Rodriguez-Martínez, Lide M; Armand, Michel

    2018-02-14

    Lithium metal (Li°) - based rechargeable batteries (LMBs), such as Li° anode vs. intercalation and/or conversion type cathode batteries, lithium-sulphur (Li-S), and lithium-oxygen (O2)/air (Li-O2/air) are becoming increasingly important for electrifying the modern transportation system, enabling sustainable mobility in the near future. Though some rechargeable LMBs batteries (e.g., Li°/LiFePO4 batteries from Bolloré Bluecar®, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is still hampered due to the existence of a number of formidable challenges, including lithium dendrite growth, electrolyte instability towards high voltage intercalation type cathode, poor electronic and ionic conductivities of sulphur (S8) and O2, as well as their corresponding reduction products (e.g., Li2S and Li2O), dissolution and shuttling of polysulphide (PS) intermediates etc. This ultimately results in short cycle life, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. Among other mitigating strategies, the use of electrolyte additives is considered as one of the most economical, and effective approach for circumventing these dilemmas. Set out to offer an in-depth insight into the rapidly growing research on the account of electrolyte additives for rechargeable LMBs, this review presents an overview of the various functional additives, that are being applied in Li-anode/intercalation cathode-based, Li-S and Li-O2 batteries. This review is believed to assess the status quo of the research and thereby arouse new thoughts and opportunities, opening new avenues for the practical realization of these appealing devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang

    2017-08-29

    Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.

  4. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  5. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries

    International Nuclear Information System (INIS)

    Wei, Xia; Desai, Divyaraj; Yadav, Gautam G.; Turney, Damon E.; Couzis, Alexander; Banerjee, Sanjoy

    2016-01-01

    Electrochemical behavior of Ag, Bi, Cu, Fe, Ni and Sn substrates on zinc deposition was evaluated over battery cycling by cyclic voltammetry and electrochemical impedance spectroscopy. The effect of Bi, Cu, Ni, and Sn substrates on zinc electrodeposition during battery cycling was investigated using scanning electron microscopy and X-ray diffraction. The corrosion behavior of each metal in 9 M KOH and the corrosion rates of zinc plated on each substrate were analyzed by Tafel extrapolation method from the potentiodynamic polarization curves and electrochemical impedance spectroscopy. Although the charge-transfer resistance (R_c_t) of zinc electrodeposition is lowest on Sn, Sn eventually corrodes on cycling in alkaline media. Use of Ni as a substrate causes zinc to deteriorate on account of rapid hydrogen evolution. Bi and Cu substrates are more suitable for use as current collectors in zinc-anode alkaline rechargeable batteries because of their low corrosion rate and compact zinc deposition over battery cycling.

  6. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  7. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    Science.gov (United States)

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  9. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  10. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  11. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.

    Science.gov (United States)

    Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E

    2017-12-22

    Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  13. Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries.

    Science.gov (United States)

    Tian, Bingbing; Tang, Wei; Su, Chenliang; Li, Ying

    2018-01-10

    Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V 2 O 5 ·0.6H 2 O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V 2 O 5 , the hydrated vanadium pentoxide (V 2 O 5 ·0.6H 2 O) exhibits the ability of accommodating larger alkali metal ions of K + because of the enlarged layer space by hosting structural H 2 O molecules in the interlayer. By intercalation of H 2 O into the V 2 O 5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g -1 and a discharge capacity of ∼103.5 mA h g -1 even after 500 discharge/charge cycles at a current density of 50 mA g -1 , which is much higher than that of the V 2 O 5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V 2 O 5 ·0.6H 2 O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V 2 O 5 ·0.6H 2 O is a promising cathode candidate for KIBs.

  14. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries.

    Science.gov (United States)

    Liu, Jilei; Chen, Zhen; Chen, Shi; Zhang, Bowei; Wang, Jin; Wang, Huanhuan; Tian, Bingbing; Chen, Minghua; Fan, Xiaofeng; Huang, Yizhong; Sum, Tze Chien; Lin, Jianyi; Shen, Ze Xiang

    2017-07-25

    One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na + storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na 2 H 8 [MnV 13 O 38 ] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an "electron/Na-ion sponge", with 11 electrons/Na + acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na 2 H 8 [MnV 13 O 38 ] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV 13 O 38 ] 20- , is formed with slightly expanded size (ca. 7.5%) upon Na + insertion compared to the original [MnV 13 O 38 ] 9- . This "ion sponge" feature ensures the good cycling stability. Consequently, benefiting from the combinations of "electron/ion sponge" with diverse Na + diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na 2 H 8 [MnV 13 O 38 ]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.

  15. A Project Assessment of Stabilizing System of WT Generation using Rechargeable Battery

    Science.gov (United States)

    Kojima, Yasuhiro; Takano, Tomihiro; Tanikawa, Ryoichi; Takagi, Tetsuro; Hirooka, Koutaro; Kumagai, Sadatoshi

    The expansion of the renewable energy introduction is examined as measures for controlling global warming. Wind power generation is expected as effective power resource, but the negative impact from the difficulty of an unstable output is concerned. In recent years, WT generation with contract of cut-of with shorting adjusting power and with rechargeable battery for stabilizing control are examined, but the introduction has not been accelerated yet because there is an influence in WT generation entrepreneur's business. In this paper, we make a brief summary of relation between the fluctuation of wind power generation and stability of electric power operation, and two types of approach; cut-off contract and stabilization using rechargeable battery. For the stabilization using battery, there are two methods, one is reduction control and the other is constant control. We propose a new control method for constant control based on profit optimization considering WT generation forecast and its risk of deviation. We also propose the estimation method for the .limitation of battery installation. Simulation results show the efficiency of our proposed methods.

  16. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  17. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  18. Redox Flow Batteries, Hydrogen and Distributed Storage.

    Science.gov (United States)

    Dennison, C R; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka; Toghill, Kathryn E; Girault, Hubert H

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enhance the energy storage capacity of these systems, we have developed a unique dual-circuit architecture which enables two levels of energy storage; first in the conventional electrolyte, and then through the formation of hydrogen. Moreover, we have begun a pilot-scale demonstration project to investigate the scalability and technical readiness of this approach. This combination of conventional energy storage and hydrogen production is well aligned with the current trajectory of modern energy and mobility infrastructure. The combination of these two means of energy storage enables the possibility of an energy economy dominated by renewable resources.

  19. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries.

    Science.gov (United States)

    Shinde, Sambhaji S; Lee, Chi Ho; Yu, Jin-Young; Kim, Dong-Hyung; Lee, Sang Uck; Lee, Jung-Ho

    2018-01-23

    The future of electrochemical energy storage spotlights on the designed formation of highly efficient and robust bifunctional oxygen electrocatalysts that facilitate advanced rechargeable metal-air batteries. We introduce a scalable facile strategy for the construction of a hierarchical three-dimensional sulfur-modulated holey C 2 N aerogels (S-C 2 NA) as bifunctional catalysts for Zn-air and Li-O 2 batteries. The S-C 2 NA exhibited ultrahigh surface area (∼1943 m 2 g -1 ) and superb electrocatalytic activities with lowest reversible oxygen electrode index ∼0.65 V, outperforms the highly active bifunctional and commercial (Pt/C and RuO 2 ) catalysts. Density functional theory and experimental results reveal that the favorable electronic structure and atomic coordination of holey C-N skeleton enable the reversible oxygen reactions. The resulting Zn-air batteries with liquid electrolytes and the solid-state batteries with S-C 2 NA air cathodes exhibit superb energy densities (958 and 862 Wh kg -1 ), low charge-discharge polarizations, excellent reversibility, and ultralong cycling lives (750 and 460 h) than the commercial Pt/C+RuO 2 catalysts, respectively. Notably, Li-O 2 batteries with S-C 2 NA demonstrated an outstanding specific capacity of ∼648.7 mA h g -1 and reversible charge-discharge potentials over 200 cycles, illustrating great potential for commercial next-generation rechargeable power sources of flexible electronics.

  20. Designing Next Generation Rechargeable Battery Materials from First-Principles

    Science.gov (United States)

    Kim, Soo

    Technology has advanced rapidly, especially in the twenty-first century, influencing our day-to-day life on unprecedented levels. Most such advances in technology are closely linked to, and often driven by, the discovery and design of new materials. It follows that the discovery of new materials can not only improve existing technologies but also lead to revolutionary ones. In particular, there is a growing need to develop new energy materials that are reliable, clean, and affordable for emerging applications such as portable electronics, electric vehicles, and power grid systems. Many researchers have been actively searching for more cost-effective and clean electrode materials for lithium-ion batteries (LIBs) during the last few decades. These new electrode materials are also required to achieve higher electrochemical performance, compared to the already commercialized electrodes. Unfortunately, discovering the next sustainable energy materials based on a traditional 'trial-and-error' method via experiment would be extremely slow and difficult. In the last two decades, computational compilations of battery material properties such as voltage, diffusivity, and phase stability against irreversible phase transformation(s) using first-principles density functional theory (DFT) calculations have helped researchers to understand the underlying mechanism in many oxide materials that are used as LIB electrodes. Here, we have examined the (001) and (111) surface structures of LiMn2O4 (LMO) spinel cathode materials using DFT calculations within the generalized gradient approximation (GGA) + U approach. Our theoretical results explain the observation of a wide spectrum of polyhedral shapes between (001)- and (111)-dominated LMO particles in experiments, which can be described by the narrow range of surface energies and their sensitivity to synthesis conditions. We further show that single-layer graphene coatings help suppress manganese dissolution in LMO by chemically

  1. Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Hung, Ivan; Gan, Zhehong [Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States); Hu, Yan-Yan, E-mail: hu@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2016-10-15

    Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.

  2. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  3. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  4. Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells

    KAUST Repository

    Missimer, Thomas M. M.

    2014-06-25

    Wadi channel recharge to the underlying alluvial aquifer is naturally limited by the flashy nature of flood events, evapotranspiration losses of water from the vadose zone, and aquifer heterogeneity, particularly low vertical hydraulic conductivity. Anthropogenic lowering of the water table in many wadi aquifers has also reduced the potential recharge by increasing the thickness of the vadose zone, causing interflow water loss from surface emergence and evaporation. A method to enhance recharge is to slow the flow within wadi channels by placement of dam structures, thereby ponding water and increasing the vertical head gradient to create a more rapid rate of infiltration and percolation. Effectiveness of wadi dams to enhance aquifer recharge reduces over time due to mud deposition within the reservoir caused by storm events. Up to 80 % of the water in old wadi reservoirs is lost to free-surface evaporation before infiltration and recharge can occur. One method to maintain or increase the rate of recharge is to convey clean water by gravity flow from the reservoir down-gradient to artificially recharge the aquifer using existing wells. This type of system is a low-cost and low-energy recharge method which could greatly enhance groundwater storage in wadi aquifers. Modeling results show that existing wells could store up to 1,000 m3/day under gravity-feed conditions and up to 3,900 m3/day with the shut-in of the well to produce a pressurized system. © 2014 Springer-Verlag Berlin Heidelberg.

  5. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  6. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    Science.gov (United States)

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and

  7. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, S.; Koch, V.R.; Owens, B.B.; Smyrl, W.H.; (JPL, Pasadena, CA; Covalent Associates, Inc., Woburn, MA; Minnesota, University, Minneapolis)

    1990-01-01

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  9. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    Science.gov (United States)

    Subbarao, S.; Koch, V. R.; Owens, B. B.; Smyrl, W. H.

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  10. Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Saha, Partha; Datta, Moni Kanchan; Manivannan, Ayyakkannu

    2018-04-17

    The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.

  11. Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture

    Science.gov (United States)

    Kumta, Prashant N.; Saha, Partha; Datta, Moni Kanchan; Manivannan, Ayyakkannu

    2018-04-17

    The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.

  12. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    Science.gov (United States)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  13. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  14. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A manganese-hydrogen battery with potential for grid-scale energy storage

    Science.gov (United States)

    Chen, Wei; Li, Guodong; Pei, Allen; Li, Yuzhang; Liao, Lei; Wang, Hongxia; Wan, Jiayu; Liang, Zheng; Chen, Guangxu; Zhang, Hao; Wang, Jiangyan; Cui, Yi

    2018-05-01

    Batteries including lithium-ion, lead-acid, redox-flow and liquid-metal batteries show promise for grid-scale storage, but they are still far from meeting the grid's storage needs such as low cost, long cycle life, reliable safety and reasonable energy density for cost and footprint reduction. Here, we report a rechargeable manganese-hydrogen battery, where the cathode is cycled between soluble Mn2+ and solid MnO2 with a two-electron reaction, and the anode is cycled between H2 gas and H2O through well-known catalytic reactions of hydrogen evolution and oxidation. This battery chemistry exhibits a discharge voltage of 1.3 V, a rate capability of 100 mA cm-2 (36 s of discharge) and a lifetime of more than 10,000 cycles without decay. We achieve a gravimetric energy density of 139 Wh kg-1 (volumetric energy density of 210 Wh l-1), with the theoretical gravimetric energy density of 174 Wh kg-1 (volumetric energy density of 263 Wh l-1) in a 4 M MnSO4 electrolyte. The manganese-hydrogen battery involves low-cost abundant materials and has the potential to be scaled up for large-scale energy storage.

  17. Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Zhu

    2017-11-01

    Full Text Available Novel carbon materials, carbon nanotubes (CNTs and porous graphene (PG, were exploited and used as conductive additives to improve the rate performance of LiMn2O4 cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous battery (ReHAB. Thanks to the long-range conductivity and stable conductive network provided by CNTs, the rate and cycling performances of LiMn2O4 cathode in ReHAB are highly improved—up to about 100 mAh·g−1 capacity is observed at 10 C (1 C = 120 mAh·g−1. Except for CNTs, porous graphene (PG with a high surface area, an abundant porous structure, and an excellent electrical conductivity facilitates the transportation of Li ions and electrons, which can also obviously enhance the rate capability of the ReHAB. This is important because the ReHAB could be charged/discharged in a few minutes, and this leads to potential application of the ReHAB in automobile industry.

  18. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  19. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  20. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl3/EMIMCl Electrolyte

    Directory of Open Access Journals (Sweden)

    Linda Ager-Wick Ellingsen

    2018-06-01

    Full Text Available Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl3/EMIMCl (1-ethyl-3-methylimidazolium chloride room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a “silver bullet” for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.

  1. Economic models for battery energy storage

    International Nuclear Information System (INIS)

    Reckrodt, R.C.; Anderson, M.D.; Kluczny, R.M.

    1990-01-01

    While the technology required to produce viable Battery Energy Storage System exists, the economic feasibility (cost vs. benefits) of building these systems requires justification. First, a generalized decision diagram was developed to ensure that all of the economic factors were considered and properly related for the customer-side-of-the meter. Next, two economic models that had consistently given differing results were compared. One was the McKinney model developed at UM-Rolla in 1987; the second was the SYSPLAN model developed by Battelle. Differences were resolved on a point by point basis with reference to the current economic environment. The economic model was upgraded to include the best of both models based on the resolution of these differences. The upgrades were implemented as modifications to the original SYSPLAN (1986 version) to preserve user friendliness. In this paper four specific cases are evaluated and compared. The results are as predicted, since comparison was made with two known models

  2. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenhua H.; Zhu Ying [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States); Tatarchuk, Bruce J., E-mail: brucet@eng.auburn.edu [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States)

    2011-08-15

    Highlights: {yields} Pb-acid battery is reexamined in electrode structure and capacitance enhancement. {yields} Pb-acid batteries were tested through the electrochemical impedance at loads. {yields} Electrode behaviors are evaluated by simulation using an equivalent circuit model. {yields} A defective and a failed Pb-acid battery was used in non-destructive analysis. {yields} Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the

  3. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu Ying; Tatarchuk, Bruce J.

    2011-01-01

    Highlights: → Pb-acid battery is reexamined in electrode structure and capacitance enhancement. → Pb-acid batteries were tested through the electrochemical impedance at loads. → Electrode behaviors are evaluated by simulation using an equivalent circuit model. → A defective and a failed Pb-acid battery was used in non-destructive analysis. → Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the improved electrode

  4. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  5. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  6. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  7. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  8. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  9. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  10. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  11. Long life, low cost, rechargeable AgZn battery for non-military applications

    Science.gov (United States)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  12. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.

    Science.gov (United States)

    Wu, Xianyong; Qi, Yitong; Hong, Jessica J; Li, Zhifei; Hernandez, Alexandre S; Ji, Xiulei

    2017-10-09

    Aqueous rechargeable batteries are promising solutions for large-scale energy storage. Such batteries have the merit of low cost, innate safety, and environmental friendliness. To date, most known aqueous ion batteries employ metal cation charge carriers. Here, we report the first "rocking-chair" NH 4 -ion battery of the full-cell configuration by employing an ammonium Prussian white analogue, (NH 4 ) 1.47 Ni[Fe(CN) 6 ] 0.88 , as the cathode, an organic solid, 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), as the anode, and 1.0 m aqueous (NH 4 ) 2 SO 4 as the electrolyte. This novel aqueous ammonium-ion battery demonstrates encouraging electrochemical performance: an average operation voltage of ca. 1.0 V, an attractive energy density of ca. 43 Wh kg -1 based on both electrodes' active mass, and excellent cycle life over 1000 cycles with 67 % capacity retention. Importantly, the topochemistry results of NH 4 + in these electrodes point to a new paradigm of NH 4 + -based energy storage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Jo, Mi Ru; Nam, Ki Min; Lee, Youngmin; Song, Kyeongse; Park, Joon T; Kang, Yong-Mook

    2011-11-07

    Phosphidated-Li(4)Ti(5)O(12) shows high capacity with a significantly enhanced kinetics opening new possibilities for ultra-fast charge/discharge of lithium rechargeable batteries. The in vitro cytotoxicity test proves its fabulous cell viability, indicating that the toxicity problem of nanoparticles can be also solved by phosphidation. This journal is © The Royal Society of Chemistry 2011

  14. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Science.gov (United States)

    2011-09-16

    ... currently approved for installation in transport-category airplanes. Large, high-capacity, rechargeable... electrolytes. The electrolyte can serve as a source of fuel for an external fire if the cell container is..., are established to ensure the availability of electrical power from the batteries when needed...

  15. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Abruña, Héctor D.

    2011-01-01

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering

  16. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  17. An automatic device for charging a storage battery

    Energy Technology Data Exchange (ETDEWEB)

    Pasyukov, A A

    1984-01-01

    The purpose of the invention is to increase the service life of storage batteries (AB) through ensuring automatic protection of the device from overloads with short circuits (KZ) and from incorrect switching polarity of the storage batteries. The device contains a transformer, a rectifier, a smoothing capacitor, a trigger capacitor, a charge current control transistor, a controllable transistor, a shielding transistor, two resistors, a diode, a resistor and a voltage divider, another resistor, a reference voltage stabilitron, a resistor and another diode and the storage battery.

  18. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  19. Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems

    Science.gov (United States)

    Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh

    2016-04-01

    Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.

  20. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    Science.gov (United States)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  1. Sonic and microwaves assisted redox reactions of the hydrolysates of protein for the preparation of rechargeable battery

    International Nuclear Information System (INIS)

    Hussain, Z.; Khatak, K.; Sardar, A.

    2016-01-01

    Long recharging time is one of the serious limitations of batteries. One of the best solutions for quick redox reactions via the use of microwave and sound-assisted reversible redox reaction is presented in this work. A wireless charged prototype battery based on the redox reactions of hydrolyzed waste protein was designed. The effect of experimental conditions like time of charging, nature of media and strength of the acid on the voltage of this prototype battery was investigated. The experimental data was explained on the basis of the previous work on protein peptides and amino acids by various workers. (author)

  2. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  3. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.

    Science.gov (United States)

    Luo, Zhiqiang; Liu, Luojia; Zhao, Qing; Li, Fujun; Chen, Jun

    2017-10-02

    Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6-tetraphthalimido-1,4-benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g -1 ) over 100 cycles at 0.2 C. The extended π-conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g -1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next-generation organic electrode materials with relevance to lithium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  5. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  6. Battery energy storage market feasibility study - Expanded report

    International Nuclear Information System (INIS)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy's Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1)

  7. Battery energy storage market feasibility study -- Expanded report

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, S. [Frost and Sullivan, Mountain View, CA (United States); Akhil, A. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  8. Optimal recharging strategy for battery-switch stations for electric vehicles in France

    International Nuclear Information System (INIS)

    Armstrong, M.; El Hajj Moussa, C.; Adnot, J.; Galli, A.; Riviere, P.

    2013-01-01

    Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010

  9. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2018-01-01

    Full Text Available Aluminum (Al metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries (RABs using Al metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase (SEI layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V2O5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency (CE. This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.

  10. Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.

    Science.gov (United States)

    Xiao, Ying; Hwang, Jang-Yeon; Sun, Yang-Kook

    2017-11-15

    Numerous materials have been considered as promising electrode materials for rechargeable batteries; however, developing efficient materials to achieving good cycling performance and high volumetric energy capacity simultaneously remains a great challenge. Considering the appealing properties of iron sulfides, which include low cost, high theoretical capacity, and favorable electrochemical conversion mechanism, in this work, we demonstrate the feasibility of carbon-free microscale Fe 1-x S as high-efficiency anode materials for rechargeable batteries by designing hierarchical intertexture architecture. The as-prepared intertexture Fe 1-x S microspheres constructed from nanoscale units take advantage of both the long cycle life of nanoscale units and the high tap density (1.13 g cm -3 ) of the micro-intertexture Fe 1-x S. As a result, high capacities of 1089.2 mA h g -1 (1230.8 mA h cm -3 ) and 624.7 mA h g -1 (705.9 mA h cm -3 ) were obtained after 100 cycles at 1 A g -1 in Li-ion and Na-ion batteries, respectively, demonstrating one of the best performances for iron sulfide-based electrodes. Even after deep cycling at 20 A g -1 , satisfactory capacities could be retained. Related results promote the practical application of metal sulfides as high-capacity electrodes with high rate capability for next-generation rechargeable batteries.

  11. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    Science.gov (United States)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this

  12. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  13. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun; Nie, Anmin; Gan, Liyong; Zhang, Qingyun; Schwingenschlö gl, Udo

    2015-01-01

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion

  14. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  15. Optimal scheduling for distribution network with redox flow battery storage

    International Nuclear Information System (INIS)

    Hosseina, Majid; Bathaee, Seyed Mohammad Taghi

    2016-01-01

    Highlights: • A novel method for optimal scheduling of storages in radial network is presented. • Peak shaving and load leveling are the main objectives. • Vanadium redox flow battery is considered as the energy storage unit. • Real data is used for simulation. - Abstract: There are many advantages to utilize storages in electric power system. Peak shaving, load leveling, load frequency control, integration of renewable, energy trading and spinning reserve are the most important of them. Batteries, especially redox flow batteries, are one of the appropriate storages for utilization in distribution network. This paper presents a novel, heuristic and practical method for optimal scheduling in distribution network with flow battery storage. This heuristic method is more suitable for scheduling and operation of distribution networks which require installation of storages. Peak shaving and load leveling is considered as the main objective in this paper. Several indices are presented in this paper for determine the place of storages and also scheduling for optimal use of energy in them. Simulations of this paper are based on real information of distribution network substation that located in Semnan, Iran.

  16. Interlayer-Spacing-Regulated VOPO4 Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries.

    Science.gov (United States)

    Zhou, Limin; Liu, Qi; Zhang, Zihe; Zhang, Kai; Xiong, Fangyu; Tan, Shuangshuang; An, Qinyou; Kang, Yong-Mook; Zhou, Zhen; Mai, Liqiang

    2018-06-25

    Owing to the low-cost, safety, dendrite-free formation, and two-electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next-generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg 2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO 4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl + ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g -1 at 50 mA g -1 , excellent rate capability, and good cycling stability (192 mAh g -1 at 100 mA g -1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl + migration energy barrier compared with Mg 2+ . This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  18. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries.

    Science.gov (United States)

    Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang

    2017-10-01

    Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  20. Design and Performance Evaluation of a Wind-Hydrogen Autonomous System Associated to a Rechargeable Battery

    Science.gov (United States)

    Yu, Guang; Okada, Nobuhiro

    A sailing-type wind farm which can move freely on oceans has been proposed in Japan since 2003. In this system the wind power is turned into hydrogen using an electrolyzer and then transported to end users. Since the sailing-type wind farm is a stand-alone system and the wind is intermittent, the efficiency of hydrogen production is quite low when the electrolyzer power is below a certain value. Additionally, the electrolyzer is inevitably shutdown frequently for lack of power. The frequent electrolyzer start-up actions can also decrease the efficiency of hydrogen production and shorten the electrolyzer's lifetime. In this paper, we applied a rechargeable battery and a proper control algorithm to the system to guarantee the hydrogen production efficiency and reduce the electrolyzer's start-up times. A simulation model of the whole system was developed and wind data was used to test the validity of the method. The simulation results showed that the proposed method can effectively improve the hydrogen productivity and reduce the start-up times.

  1. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  2. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  3. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  4. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  5. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  6. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

    1999-08-11

    The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

  7. REopt Lite Web Tool Evaluates Photovoltaics and Battery Storage

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-08

    Building on the success of the REopt renewable energy integration and optimization platform, NREL has developed a free, publicly available web version of REopt called REopt Lite. REopt Lite evaluates the economics of grid-connected photovoltaics (PV) and battery storage at a site. It allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy. This web tool also estimates the amount of time a PV and storage system can sustain the site's critical load during a grid outage.

  8. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  9. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  10. Intercalation of Mg-ions in layered V2O5 cathode materials for rechargeable Mg-ion batteries

    DEFF Research Database (Denmark)

    Sørensen, Daniel Risskov; Johannesen, Pætur; Christensen, Christian Kolle

    The development of functioning rechargeable Mg-ion batteries is still in its early stage, and a coarse screening of suitable cathode materials is still on-going. Within the intercalation-type cathodes, layered crystalline materials are of high interest as they are known to perform well in Li-ion...... intercalation batteries and are also increasingly being explored for Na-ion batteries. Here, we present an investigation of the layered material orthorhombic V2O5, which is a classical candidate for an ion-intercalation material having a high theoretical capacity1. We present discharge-curves for the insertion...... discharge. This indicates that the degradation is highly associated with formation of ion-blocking layers on the anode....

  11. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    Science.gov (United States)

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  12. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  13. Cost-Benefit Analysis of a Novel DC Fast-Charging Station with a Local Battery Storage for EVs

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    and decrease the connection fees. Finally, an economic evaluation is done to evaluate the feasibility and the cost-benefit analysis (CBA) of the DCFCSs. The proposed approach considers various technical and economic issues, such as cost of installation, connection fees and life cycle cost of the batteries....... The proposed cost-benefit analysis can be used to verify the effectiveness and applicability of DCFCS in large scale....... models by increasing the size of the batteries. To satisfy EV load demand of the new EV models in urban areas the public DC Fast-Charging Station (DCFCS) is indispensable to recharge EVs rapidly. The introduction of the Battery Energy Storage within the DCFCSs is considered in this paper an alternative...

  14. Rechargeable Battery Auto-Cycler Requiring Lower Power and Dissipating Reduced Waste Heat

    Science.gov (United States)

    Hanson, Thomas David (Inventor)

    2018-01-01

    A battery charger system includes a power supply and a switch connected to the power supply wherein the switch has a first switch half and a second switch half. First and second batteries are selectively connected to the power supply via the switch. The first and second switch halves are moved between a plurality of operational positions to fully charge the first battery, discharge the first battery into the second battery, discharge the second battery into the first battery, and fully charge the second battery.

  15. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Yasukawa, Eiki; Mori, Shoichiro

    1999-11-01

    To develop organic electrolytes for 4 V lithium metal rechargeable batteries, LiN(SO{sub 2}CF{sub 3}){sub 2} electrolytes with five-, six-, and seven-membered cyclic ether solvents were characterized. Among these examined electrolytes, LiN(SO{sub 2}CF{sub 3}){sub 2}/tetrahydropyran (THP) electrolyte was found to possess the most advantages, such as high cycling efficiency, good oxidation stability, and high boiling point. Furthermore, lithium cycling efficiency and conductivity were improved by mixing 50% ethylene carbonate (EC) in 1 mol/dm{sup 3} LiN(SO{sub 2}CF{sub 3}){sub 2}/THP electrolyte. By using LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} solute as an alternative to LiN(SO{sub 2}CF{sub 3}){sub 2} in EC + THP (1:1) electrolyte, corrosion of the aluminum current collector was inhibited and therefore, excellent cycling performance of a Li/LiMn{sub 2}O{sub 4} coin cell was realized. It was also found that lithium cycling efficiency increased with decreasing deposition current density or increasing dissolution current density. Especially at deposition/dissolution current densities of 0.2/0.6 mA/cm{sup 2}, the observed lithium cycling efficiency in 1 mol/dm{sup 3} LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}/EC + THP (1:1) electrolyte was above 99%. Thermal tests further disclosed that this mixed electrolyte has good thermal stability even in the presence of lithium metal or cathode materials.

  16. Nickel hydrogen battery cell storage matrix test

    Science.gov (United States)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  17. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    Directory of Open Access Journals (Sweden)

    Alan W. Rempel

    2013-01-01

    Full Text Available Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recently, phase-change materials. While broadly similar, these substances absorb and release heat in unique patterns characteristic of their mineralogies, densities, fluidities, emissivities, and latent heats of fusion. Current architectural practice, however, shows little awareness of these differences and the resulting potential to match materials to desired thermal performance. This investigation explores that potential, illustrating the correspondence between physical parameters and thermal storage-and-release patterns in direct-, indirect-, and isolated-gain passive solar configurations. Focusing on heating applications, results demonstrate the superiority of water walls for daytime warmth, the tunability of granite and concrete for evening warmth, and the exceptional ability of phase-change materials to sustain near-constant heat delivery throughout the night.

  18. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan

    2017-12-11

    In this work, a microwave approach is developed to rapidly synthesize ultralong zinc pyrovanadate (Zn3V2O7(OH)2·2H2O, ZVO) nanowires with a porous crystal framework. It is shown that our synthesis strategy can easily be extended to fabricate other metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 mA h g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, the Zn//ZVO cells show good cycling stability up to 300 cycles. The estimated energy density of this Zn cell is ≈214Wh kg−1, which is much higher than commercial lead–acid batteries. Significant insight into the Zn-storage mechanism in the pyrovanadate cathodes is presented using multiple analytical methods. In addition, it is shown that our prototype device can power a 1.5 V temperature sensor for at least 24 h.

  19. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...

  20. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...

  1. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  2. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  3. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  4. Profitability Analysis of Residential Wind Turbines with Battery Energy Storage

    Science.gov (United States)

    She, Ying; Erdem, Ergin; Shi, Jing

    Residential wind turbines are often accompanied by an energy storage system for the off-the-grid users, instead of the on-the-grid users, to reduce the risk of black-out. In this paper, we argue that residential wind turbines with battery energy storage could actually be beneficial to the on-the-grid users as well in terms of monetary gain from differential pricing for buying electricity from the grid and the ability to sell electricity back to the grid. We develop a mixed-integer linear programming model to maximize the profit of a residential wind turbine system while meeting the daily household electricity consumption. A case study is designed to investigate the effects of differential pricing schemes and sell-back schemes on the economic output of a 2-kW wind turbine with lithium battery storage. Overall, based on the current settings in California, a residential wind turbine with battery storage carries more economical benefits than the wind turbine alone.

  5. Structural and electrochemical study of positive electrode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Jiang, Meng

    The research presented in this dissertation focuses on a combined study of the electrochemistry and the structure of positive electrode materials for Li ion batteries. Li ion batteries are one of the most advanced energy storage systems and have been the subject of numerous scientific studies in recent decades. They have been widely used for various mobile devices such as cell phones, laptop computers and power tools. They are also promising candidates as power sources for automotive applications. Although intensive research has been done to improve the performance of Li ion batteries, there are still many remaining challenges to overcome so that they can be used in a wider range of applications. In particular, cheaper and safer electrodes are required with much higher reversible capacity. The series of layered nickel manganese oxides [NixLi 1/3-2x/3Mn2/3- x/3]O2 (0 reversible in the following cycles. A combined X-ray diffraction, solid state nuclear magnetic resonance and X-ray absorption spectroscopy study is performed to investigate the effect of synthetic methods on the structure, to probe the structural change of the materials during cycling and to understand the electrochemical reaction mechanism. The conversion compounds are also investigated because of their high capacities. Since the various compounds have different voltage windows, they can have potential applications as both cathodes and anodes. Solid state nuclear magnetic resonance is used to study the change in the local environment of the structure during the cycling process. Two systems are included in this work, including iron fluorides and Cu-containing materials. A comparison study has been performed on FeF3 and FeF2. Different discharge reaction mechanisms are clarified for each compound, and possible phase transitions are proposed as well. As for the Cu-containing systems, three compounds were chosen with different anions: CuS, CuO and CuF2. The reaction mechanisms are studied by 63Cu, 7Li and

  6. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries

    Science.gov (United States)

    Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang

    2018-06-01

    Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.

  7. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries

    Science.gov (United States)

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-01-01

    Abstract Lithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future. PMID:29051856

  8. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Baofei [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Huang, Jinhua [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Feng, Zhenxing [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Zeng, Li [Applied Physics Program, Department of Materials Science and Engineering and Department of Physics and Astronomy, Northwestern University, Evanston IL 60208 USA; He, Meinan [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Zhang, Lu [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Vaughey, John T. [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Bedzyk, Michael J. [Applied Physics Program, Department of Materials Science and Engineering and Department of Physics and Astronomy, Northwestern University, Evanston IL 60208 USA; Fenter, Paul [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Zhang, Zhengcheng [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Burrell, Anthony K. [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Liao, Chen [Joint Center for Energy Storage Research, Chemical Science and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-05-09

    Two anthraquinone-based polymers aiming at improving the capacity and voltage of magnesium ion batteries, were synthesized and characterized. The excellent battery cycling performance was demonstrated with the electrolyte consisting of magnesium bis(hexamethyldisilazide) and magnesium chloride.

  9. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  10. Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.

    2018-01-01

    , and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical......This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear $d$ – $q$ reference frame voltage...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...

  11. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    Science.gov (United States)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The

  12. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    Science.gov (United States)

    Stuart, Jessica F.

    performance of nanoscopic anodic materials in addition to the previously developed macroscopic system, as well as the exploration of a high-energy capacity TiB 2/VB2 composite anode. However, the greatest challenge to this room temperature VB2 primary battery is to develop a means to electrochemically recharge the anodic material (how to reinsert the eleven electrons per molecule that are removed during the battery's discharge). Rechargeable batteries, such as the new molten air battery presented in this thesis, offer a high intrinsic capacity mode for energy storage and overcome problems such as the need for higher energy capacity, cost-effective batteries for a range of electronic, transportation, and large-scale power storage devices. Molten air batteries presented and discussed in this work are viable systems that provide a means to electrochemically recharge the VB2-air battery and deliver large-scale energy storage due to their scalability, location flexibility, construction from readily available resources, and offer increased energy storage capacity for the electric grid. One example is the VB2 molten air battery, which discharges according to: VB 2 + 11/4 O2 → 1/ 2 V2O5 + B2O3 (1). Previously, our group has shown that carbon dioxide can be captured from atmospheric air concentrations at solar efficiencies as high as 50%, and that carbon dioxide emissions associated with the production of several commodities can be electrochemically avoided in by the Solar Thermal Electrochemical Process (STEP). Utilizing this process, the carbon molten air battery relies on carbon dioxide directly from the air: Charging: CO2 (g) → C (solid) + O2 (g) (2) Discharging: C (solid) + O2 (g) → CO2 (g) (3). More specifically, in a molten carbonate electrolyte containing added oxide, such as lithium carbonate with lithium oxide, the four-electron charging reaction, Equation 2, approaches 100% faradic efficiency and can be described as the following two equations: O2- (dissolved) + CO2

  13. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the

  14. Energy Storage: Batteries and Fuel Cells for Exploration

    Science.gov (United States)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  15. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    Science.gov (United States)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  16. Electrochemical synthesis, in situ spectroelectrochemistry of conducting indole-titanium dioxide and zinc oxide polymer nanocomposites for rechargeable batteries

    International Nuclear Information System (INIS)

    Parvin, Mohammad Hadi; Pirnia, Mahsa; Arjomandi, Jalal

    2015-01-01

    Highlights: • Two novel hybrid materials-based conducting PIn rechargeable batteries were developed. • The charge-discharging behavior of PIn-nanocomposite batteries were studied. • The characterization of samples has been done by in situ spectroelectrochemical method. • PIn-TiO 2 and ZnO nanocomposites were synthesized electrochemically on Au and ITO. • The PIn-TiO 2 and ZnO nanocomposites resistances were less than PIn. - Abstract: Electrochemical synthesis, in situ spectroelectrochemistry of conducting polyindole (PIn), polyindole-TiO 2 (PIn-TiO 2 ) and polyindole-ZnO (PIn-ZnO) nanocomposites were investigated. The PIn and polymer nanocomposites were tested electrochemically for rechargeable batteries. The films were characterized by means of CVs, in situ UV-visible, FT-IR spectroscopies, in situ resistivity measurements, energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The charge-discharging behavior of a Zn/1 M ZnSO 4 /PIn cell with a capacity of around 90 Ah Kg −1 and on open circuit potential of around 1.45 V was compared with Zn/1 M ZnSO 4 /PIn-nanocomposite. The potential differences of redox couples (ΔE) for nanocomposites films show very good reversibility. A positive shift of potential was observed for polymer nanocomposites during redox scan. A significant variability was observed for in situ conductivity of the PIn and polymer nanocomposites. During in situ UV-visible and FT-IR measurements, intermediate spectroscopic behavior and positive shifts of wavelengths were observed for PIn and polymer nanocomposites. The SEM, TEM and EDX of nanocomposite films show the presence of nano particle in PIn.

  17. Progress in electrolytes for rechargeable Li-based batteries and beyond

    OpenAIRE

    Qi Li; Juner Chen; Lei Fan; Xueqian Kong; Yingying Lu

    2016-01-01

    Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode) are the limiting factors in terms of overall capacity inside a battery. However, more and ...

  18. Phase I Advanced Battery Materials For Rechargeable Advanced Space-Rated Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy (up to 200 Wh/kg),...

  19. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  20. Ruthenium based redox flow battery for solar energy storage

    International Nuclear Information System (INIS)

    Chakrabarti, Mohammed Harun; Roberts, Edward Pelham Lindfield; Bae, Chulheung; Saleem, Muhammad

    2011-01-01

    Research highlights: → Undivided redox flow battery employing porous graphite felt electrodes was used. → Ruthenium acetylacetonate dissolved in acetonitrile was the electrolyte. → Charge/discharge conditions were determined for both 0.02 M and 0.1 M electrolytes. → Optimum power output of 0.180 W was also determined for 0.1 M electrolyte. → 55% voltage efficiency was obtained when battery was full of electrolytes. -- Abstract: The technical performance for the operation of a stand alone redox flow battery system for solar energy storage is presented. An undivided reactor configuration has been employed along with porous graphite felt electrodes and ruthenium acetylacetonate as electrolyte in acetonitrile solvent. Limiting current densities are determined for concentrations of 0.02 M and 0.1 M ruthenium acetylacetonate. Based on these, operating conditions for 0.02 M ruthenium acetylacetonate are determined as charging current density of 7 mA/cm 2 , charge electrolyte superficial velocity of 0.0072 cm/s (through the porous electrodes), discharge current density of 2 mA/cm 2 and discharge electrolyte superficial velocity of 0.0045 cm/s. An optimum power output of 35 mW is also obtained upon discharge at 2.1 mA/cm 2 . With an increase in the concentration of ruthenium species from 0.02 M to 0.1 M, the current densities and power output are higher by a factor of five approximately (at same superficial velocities) due to higher mass transport phenomenon. Moreover at 0.02 M concentration the voltage efficiency is better for battery full of electrolytes prior to charging (52.1%) in comparison to an empty battery (40.5%) due to better mass transport phenomenon. Voltage efficiencies are higher as expected at concentrations of 0.1 M ruthenium acetylacetonate (55% when battery is full of electrolytes and 48% when empty) showing that the all-ruthenium redox flow battery has some promise for future applications in solar energy storage. Some improvements for the

  1. Battery Aging, Battery Charging and the Kinetic Battery Model : A First Exploration

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.; Bertrand, Nathalie; Bortolussi, Luca

    2017-01-01

    Rechargeable batteries are omnipresent and will be used more and more, for instance for wearables devices, electric vehicles or domestic energy storage. However, batteries can deliver power only for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to

  2. Autonomous wind/solar power systems with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Protogeropoulos, C I

    1993-12-31

    The performance of an autonomous hybrid renewable energy system consisting of combined photovoltaic/wind power generation with battery storage is under evaluation in this thesis. Detailed mathematical analysis of the renewable components and the battery was necessary in order to establish the theoretical background for accurate simulation results. Model validation was achieved through experimentation. The lack of a sizing method to combine both hybrid system total cost and long-term reliability level was the result of an extended literature survey. The new achievements which are described in this research work refer to: - simplified modelling for the performance of amorphous-silicon photovoltaic panels for all solar irradiance levels. -development of a new current-voltage expression with respect to wind speed for wind turbine performance simulation. -establishment of the battery storage state of voltage, SOV, simulation algorithm for long-term dynamic operational conditions. The proposed methodology takes into account 8 distinct cases covering steady state and transient effects and can be used for autonomous system reliability calculations. -techno-economic evaluation of the size of the hybrid system components by considering both reliability and economic criteria as design parameters. Two sizing scenarios for the renewable components are examined : the average year method and the ``worst renewable`` month method. (Author)

  3. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  4. Effect of Nickel Coated Multi-Walled Carbon Nanotubes on Electrochemical Performance of Lithium-Sulfur Rechargeable Batteries.

    Science.gov (United States)

    Wu, Xiao; Yao, Shanshan; Hou, Jinli; Jing, Maoxiang; Qian, Xinye; Shen, Xiangqian; Xiang, Jun; Xi, Xiaoming

    2017-04-01

    Conventional lithium-sulfur batteries suffer from severe capacity fade, which is induced by low electron conductivity and high dissolution of intermediated polysulfides. Recent studies have shown the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and improved the performance for lithium sulfur batteries. In this work, we present the nickel coated multi-walled carbon nanotubes (Ni-MWNTs) as additive materials for elemental sulfur positive electrodes for lithium-sulfur rechargeable batteries. Compared with MWNTs, the obtained Ni-MWNTs/sulfur composite cathode demonstrate a reversible specific capacity approaching 545 mAh after 200 cycles at a rate of 0.5C as well as improved cycling stability and excellent rate capacity. The improved electrochemical performance can be attributed to the fact the MWNTs shows a vital role on polysulfides adsorption and nickel has a catalytic effect on the redox reactions during charge–discharge process. Meanwhile, the Ni-MWNTs is a good electric conductor for sulfur cathode.

  5. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  6. A comparative study of two approaches to analyse groundwater recharge, travel times and nitrate storage distribution at a regional scale

    Science.gov (United States)

    Turkeltaub, T.; Ascott, M.; Gooddy, D.; Jia, X.; Shao, M.; Binley, A. M.

    2017-12-01

    Understanding deep percolation, travel time processes and nitrate storage in the unsaturated zone at a regional scale is crucial for sustainable management of many groundwater systems. Recently, global hydrological models have been developed to quantify the water balance at such scales and beyond. However, the coarse spatial resolution of the global hydrological models can be a limiting factor when analysing regional processes. This study compares simulations of water flow and nitrate storage based on regional and global scale approaches. The first approach was applied over the Loess Plateau of China (LPC) to investigate the water fluxes and nitrate storage and travel time to the LPC groundwater system. Using raster maps of climate variables, land use data and soil parameters enabled us to determine fluxes by employing Richards' equation and the advection - dispersion equation. These calculations were conducted for each cell on the raster map in a multiple 1-D column approach. In the second approach, vadose zone travel times and nitrate storage were estimated by coupling groundwater recharge (PCR-GLOBWB) and nitrate leaching (IMAGE) models with estimates of water table depth and unsaturated zone porosity. The simulation results of the two methods indicate similar spatial groundwater recharge, nitrate storage and travel time distribution. Intensive recharge rates are located mainly at the south central and south west parts of the aquifer's outcrops. Particularly low recharge rates were simulated in the top central area of the outcrops. However, there are significant discrepancies between the simulated absolute recharge values, which might be related to the coarse scale that is used in the PCR-GLOBWB model, leading to smoothing of the recharge estimations. Both models indicated large nitrate inventories in the south central and south west parts of the aquifer's outcrops and the shortest travel times in the vadose zone are in the south central and east parts of the

  7. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  8. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  9. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    International Nuclear Information System (INIS)

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  10. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  11. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    Science.gov (United States)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  12. Nano-Engineered Materials for Rapid Rechargeable Space Rated Advanced Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy, energy density...

  13. Performance and cost of materials for lithium-based rechargeable automotive batteries

    Science.gov (United States)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  14. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Lei, Yongjiu; Liang, Hanfeng; Zhao, Chao; Alshareef, Husam N.

    2017-01-01

    metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 m

  15. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  16. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Lu, Ang-Yu; Wahyudi, Wandi; Li, Lain-Jong

    2016-01-01

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy

  17. Nano-Engineered Materials for Rapid Rechargeable Space Rated Advanced Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy, energy density...

  18. Challenges and issues facing lithium metal for solid-state rechargeable batteries

    Science.gov (United States)

    Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.

    2017-06-01

    The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.

  19. Performance of Sony's Alloy Based Li-Ion Battery

    National Research Council Canada - National Science Library

    Foster, Donald; Wolfenstine, Jeff; Read, Jeffrey; Allen, Jan L

    2008-01-01

    Cells from the new Nexelion battery from Sony Corporation were tested for capacity, low temperature performance, high power capability, high temperature storage, rapid recharge and cycle life on deep discharge...

  20. Nanomaterials: Science and applications in the lithium–sulfur battery

    KAUST Repository

    Ma, Lin; Hendrickson, Kenville E.; Wei, Shuya; Archer, Lynden A.

    2015-01-01

    of electricity from intermittent sources. Among the various electrochemical energy storage options under consideration, rechargeable lithium-sulfur (Li-S) batteries remain the most promising platform for reversibly storing large amounts of electrical energy

  1. Optimal bidding strategy of battery storage in power markets considering performance based regulation and battery cycle life

    DEFF Research Database (Denmark)

    He, Guannan; Chen, Qixin; Kang, Chongqing

    2016-01-01

    to reduce the complexity of the model. This novel bidding model would help investor-owned battery storages better decide their bidding and operational schedules and investors to estimate the battery storage’s economic viability. The validity of the proposed model is proven by case study results....

  2. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    Science.gov (United States)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  3. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion.

    Science.gov (United States)

    Parker, Joseph F; Chervin, Christopher N; Pala, Irina R; Machler, Meinrad; Burz, Michael F; Long, Jeffrey W; Rolison, Debra R

    2017-04-28

    The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel-zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel-zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DOD Zn ) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DOD Zn at lithium-ion-commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles. Copyright © 2017, American Association for the Advancement of Science.

  4. Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells

    KAUST Repository

    Missimer, Thomas M. M.; Missimer, Thomas M. M.; Guo, Weixing; Maliva, Robert G.; Rosas, Jorge; Jadoon, Khan

    2014-01-01

    . Anthropogenic lowering of the water table in many wadi aquifers has also reduced the potential recharge by increasing the thickness of the vadose zone, causing interflow water loss from surface emergence and evaporation. A method to enhance recharge is to slow

  5. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  6. Investigation of spinel-related and orthorhombic LiMNO2 cathodes for rechargeable lithium batteries

    CSIR Research Space (South Africa)

    Gummow, RJ

    1994-05-01

    Full Text Available ~ and with carbon at 600~ have been evaluated in rechargeable lithium cells. The cathodes which initially have a composition close to LiMnO2 contain structures related to the lithiated-spinel phase Li2\\[Mn2104 and/or orthorhombic Li... the cathode structure to yield an "over-discharged" state which is possible, for example, with a Lix\\[Mn2104 spinel cathode. 7 Lix\\[Mn2\\]O4 operates at approximately 4 V vs. lithium over the range 0 < x -< 1 and has a...

  7. Electrochemical energy storage. Vol. 1. Fundamentals, aqueous storage batteries. Elektrochemische Energiespeicher. Bd. 1. Grundlagen, waessrige Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F; Euler, K J

    1984-01-01

    Vol. 1 is a synthesis of electrochemical, battery-technical and energy industry aspects. The role of energy storage systems in the energy industry, e.g. in connection with a hydrogen technology, is discussed along with the thermodynamic, kinetic, materials-technical and process engineering fundamentals. ''Classic'' and new systems are described in full detail for the first time. Cyclisation and technical/economic criteria of selection are discussed. (orig./GG).

  8. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.

    2015-01-01

    of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...... electricity market for a whole year are used for validating the results....

  9. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  10. Vanadyl phosphates as high energy density cathode materials for rechargeable sodium battery

    Science.gov (United States)

    Zhang, Ruigang; Mizuno, Fuminori; Ling, Chen; Whittingham, Stanley M.; Zhang, Ruibo; Chen, Zehua

    2017-08-01

    A positive electrode comprising .epsilon.-VOPO.sub.4 and/or Na.sub.x(.epsilon.-VOPO.sub.4) wherein x is a value from 0.1 to 1.0 as an active ingredient, wherein the electrode is capable of insertion and release of sodium ions and a reversible sodium battery containing the positive electrode are provided.

  11. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.

    Science.gov (United States)

    Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook

    2018-03-24

    The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    Science.gov (United States)

    Crompton, Kyle R.

    There are inherent safety risks associated with inactive lithium ion batteries leading to greater restrictions and regulations on shipping and storage. Maintaining all cells of a lithium ion battery at near zero voltage with an applied fixed resistive load is one promising approach which can lessen (and potentially eliminate) the risk of a lithium ion battery entering thermal runaway when in an inactive state. However, in a conventional lithium ion cell, a near zero cell voltage can be damaging if the anode electrochemical potential increases to greater than the potential where dissolution of the standard copper current collector occurs (i.e. 3.1 V vs. Li/Li+ at room temperature). Past approaches to yield lithium ion cells that are resilient to a near zero volt state of charge involve use of secondary active materials or alternative current collectors which have anticipated tradeoffs in terms of cell performance and cost. In the the present dissertation work the approach of managing the amount of reversible lithium in a cell during construction to prevent the anode potential from increasing to greater than 3.1 V vs. Li/Li+ during near zero volt storage is introduced. Anode pre-lithiation was used in LiCoO 2/MCMB pouch cells to appropriately manage the amount of reversible lithium so that there is excess reversible lithium compared to the cathodes intercalation capacity (reversible lithium excess cell or RLE cell). RLE LiCoO 2/MCMB cells maintained 99% of their original capacity after three, 3-day and three, 7-day storage periods at near zero volts under fixed load. A LiCoO2/MCMB pouch cell fabricated with a pre-lithiated anode also maintained its original discharge performance after three, 3-day storage periods under fixed load at 45°C. The strong recharge performance after near zero volt storage is attributed to the anode potential remaining below the copper dissolution potential during near zero volt storage as informed by reference electrode measurements. Pulse

  13. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  14. Role of LiNO3 in rechargeable lithium/sulfur battery

    International Nuclear Information System (INIS)

    Zhang, Sheng S.

    2012-01-01

    Highlights: ► Effect of LiNO 3 on the Li anode and cathode of Li/S battery is studied, respectively. ► LiNO 3 participates in the formation of a stable passivation film on the Li anode surface. ► LiNO 3 may be reduced irreversibly on the cathode, affecting Li/S battery performance. ► Discharge mechanism of Li/S battery is explained from the viewpoint of phase transition. - Abstract: In this work we study the effect of LiNO 3 on the Li anode and sulfur cathode, respectively, of Li/S battery by using a Li/Li symmetric cell and a liquid Li/Li 2 S 9 cell. On the Li anode, LiNO 3 participates in the formation of a stable passivation film, and the resulting passivation film grows infinitely with the consumption of LiNO 3 . The passivation film formed with LiNO 3 is known to effectively suppress the redox shuttle of the dissolved lithium polysulfides on Li anode. On the cathode, LiNO 3 undergoes a large and irreversible reduction starting at 1.6 V in the first discharge, and the irreversible reduction disappears in the subsequent cycles. Moreover, the insoluble reduction products of LiNO 3 on the cathode adversely affect the redox reversibility of sulfur cathode. These results indicate that both the Li anode and sulfur cathode consume LiNO 3 , and that the best benefit of LiNO 3 to Li/S battery occurs at the potentials higher than 1.6 V. By limiting the irreversible reduction of LiNO 3 on the cathode, we have shown that the Li/S cell with a 0.2 m LiNO 3 as the co-salt can provide a stable capacity of ∼500 mAh g −1 .

  15. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  16. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  17. New Insights of Graphite Anode Stability in Rechargeable Batteries: Li-Ion Coordination Structures Prevail over Solid Electrolyte Interphases

    KAUST Repository

    Ming, Jun

    2018-01-04

    Graphite anodes are not stable in most noncarbonate solvents (e.g., ether, sulfoxide, sulfone) upon Li ion intercalation, known as an urgent issue in present Li ions and next-generation Li–S and Li–O2 batteries for storage of Li ions within the anode for safety features. The solid electrolyte interphase (SEI) is commonly believed to be decisive for stabilizing the graphite anode. However, here we find that the solvation structure of the Li ions, determined by the electrolyte composition including lithium salts, solvents, and additives, plays a more dominant role than SEI in graphite anode stability. The Li ion intercalation desired for battery operation competes with the undesired Li+–solvent co-insertion, leading to graphite exfoliation. The increase in organic lithium salt LiN(SO2CF3)2 concentration or, more effectively, the addition of LiNO3 lowers the interaction strength between Li+ and solvents, suppressing the graphite exfoliation caused by Li+–solvent co-insertion. Our findings refresh the knowledge of the well-known SEI for graphite stability in metal ion batteries and also provide new guidelines for electrolyte systems to achieve reliable and safe Li–S full batteries.

  18. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  19. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Energy Technology Data Exchange (ETDEWEB)

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  20. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  1. Electrochemical properties of carbon nanocoils and hollow graphite fibers as anodes for rechargeable lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liyong; Liu, Zhanjun; Guo, Quangui; Wang, Guizhen; Yang, Jinhua; Li, Peng; Wang, Xianglei; Liu, Lang

    2016-01-01

    Carbon nanocoils (CNCs) have been used as anode materials for preparation of lithium ion batteries. As pure carbon material without any chemical modification, the graphitized CNCs anode exhibited larger capacities with good Coulombic efficiency, a higher rate capability, and better reversibility than the hollow graphite fibers (HGFs) anode. The excellent performance of the CNCs was possibly ascribed to the special structure and the high degree of graphitization. As a result, the CNCs anode exhibited high reversible capacity of 385.5 mA h g"−"1 at 50 mA g"−"1, 104.7% reversible capacity retention after 105 cycles, and superior reversible capability of 177.4 mA h g"−"1 at 1 A g"−"1 after 100 cycles. This result indicated that CNCs could be an attractive choice as anode material for high-energy density and high-power lithium-ion batteries.

  2. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    Science.gov (United States)

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  3. Effects of Projected Future Climate Change on Groundwater Recharge and Storage for Two Coastal Aquifers in Guanacaste Province, Costa Rica

    Science.gov (United States)

    Kolb, C.

    2017-12-01

    Climate change is expected to pose a significant threat to water resources in the future. Guanacaste Province, located in northwestern Costa Rica, has a unique climate that is influenced by the Pacific Ocean and Caribbean Sea, as well as the Central Cordillera mountain range. Although the region experiences a marked rainy season between May and November, the hot, dry summers often stress water resources. Climate change projections suggest increased temperatures and reduced precipitation for the region, which will further stress water supplies. This study focuses on the effects of climate change on groundwater resources for two coastal aquifers, Potrero and Brasilito. The UZF model package coupled with the finite difference groundwater flow model MODFLOW were used to evaluate the effect of climate change on groundwater recharge and storage. A potential evapotranspiration model was used to estimate groundwater infiltration rates used in the MODFLOW model. Climate change projections for temperature, precipitation, and sea level rise were used to develop climate scenarios, which were compared to historical data. Preliminary results indicate that climate change could reduce future recharge, especially during the dry season. Additionally, the coastal aquifers are at increased risk of reduced storage and increased salinization due to the reductions in groundwater recharge and sea level rise. Climate change could also affect groundwater quality in the region, disrupting the ecosystem and impairing a primary source of drinking water.

  4. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.

    Science.gov (United States)

    Guo, Gen-Cai; Wang, Da; Wei, Xiao-Lin; Zhang, Qi; Liu, Hao; Lau, Woon-Ming; Liu, Li-Min

    2015-12-17

    There is a great desire to develop the high-efficient anodes materials for Li batteries, which require not only large capacity but also high stability and mobility. In this work, the phosphorene/graphene heterostructure (P/G) was carefully explored based on first-principles calculations. The binding energy of Li on the pristine phosphorene is relatively weak (within 1.9 eV), whereas the phosphorene/graphene heterostructure (P/G) can greatly improve the binding energy (2.6 eV) without affecting the high mobility of Li within the layers. The electronic structures show that the large Li adsorption energy and fast diffusion ability of the P/G origin from the interfacial synergy effect. Interestingly, the P/G also displays ultrahigh stiffness (Cac = 350 N/m, Czz = 464 N/m), which can effectively avoid the distortion of the pristine phosphorene after the insertion of lithium. Thus, P/G can greatly enhance the cycle life of the battery. Owing to the high capacity, good conductivity, excellent Li mobility, and ultrahigh stiffness, P/G is a very promising anode material in Li-ion batteries (LIBs).

  5. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60°C to 60°C, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  6. Hierarchical Cr_2O_3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries

    International Nuclear Information System (INIS)

    Gan, Yongqing; Lai, Yanqing; Zhang, Zhian; Chen, Wei; Du, Ke; Li, Jie

    2016-01-01

    The development of catalyst materials is the most significant issue that hinders the practical applications of Li-O_2 batteries. Herein we show the design and synthesis of the hierarchical chromic oxide-octahedral porous carbon (Cr_2O_3@OPC) composites catalyst with octahedral shape that derived from Cr-based metal-organic frameworks (MIL-101(Cr)) precursor. When applied as cathode catalysts in rechargeable Li-O_2 batteries, the electrode with Cr_2O_3@OPC composites catalyst exhibits a low charge and discharge over-potential, high discharge capacity and excellent cycling stability. What's more, the electrode with Cr_2O_3@OPC composite shows a discharge capacity up to ∼4800 mAh g_(_c_a_t_a_l_y_s_t _+ _c_a_r_b_o_n_)"−"1 at a current density of 0.1 mA cm"−"2, and exhibits a very stable discharge voltage plateau of 2.7 V and a charge voltage plateau of ∼3.9 V. With the addition of Cr_2O_3@OPC composite, the Li-O_2 batteries can obtain good cycle performance over 50 cycles at a fixed capacity of 800 mAh g_(_c_a_t_a_l_y_s_t _+ _c_a_r_b_o_n_)"−"1. These results indicating that the Cr_2O_3@OPC composite derived from MIL-101(Cr) would be a promising catalyst for Li-O_2 batteries. - Highlights: • The Cr_2O_3@C composites were prepared by the pyrolysis of Cr-MIL-101. • The Cr_2O_3@C composites possess octahedral shape consisted of Cr_2O_3@C nanoparticle. • The Cr_2O_3@C composites have mesoporous structure with large specific area. • The Cr_2O_3@C composites have an excellent intrinsic electrocatalytic activity. • The Cr_2O_3@C electrode exhibits great cycling performance.

  7. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  8. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge.

    Science.gov (United States)

    Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo

    2014-01-01

    Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  9. A Fully-Integrated Wireless System for Intracranial Direct Cortical Stimulation, Real-Time Electrocorticography Data Trasmission and Smart Cage for Wireless Battery Recharge

    Directory of Open Access Journals (Sweden)

    Marco ePiangerelli

    2014-08-01

    Full Text Available Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface(BCI applications .Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG recording and cortical stimulation (CS. The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device,named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and , developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123. The inductively recharging cage is made of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solve the problems and shortcomings caused by the presence of cables leaving the skull,providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS: 402-405 MHz. ECOGW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  10. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    Science.gov (United States)

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  11. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  12. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective.

    Science.gov (United States)

    Chen, Biao; Meng, Yuhuan; Sha, Junwei; Zhong, Cheng; Hu, Wenbin; Zhao, Naiqin

    2017-12-21

    The rapidly increasing severity of the energy crisis and environmental degradation are stimulating the rapid development of photocatalysts and rechargeable lithium/sodium ion batteries. In particular, MoS 2 /TiO 2 based nanocomposites show great potential and have been widely studied in the areas of both photocatalysis and rechargeable lithium/sodium ion batteries due to their superior combination properties. In addition to the low-cost, abundance, and high chemical stability of both MoS 2 and TiO 2 , MoS 2 /TiO 2 composites also show complementary advantages. These include the strong optical absorption of TiO 2 vs. the high catalytic activity of MoS 2 , which is promising for photocatalysis; and excellent safety and superior structural stability of TiO 2 vs. the high theoretic specific capacity and unique layered structure of MoS 2 , thus, these composites are exciting as anode materials. In this review, we first summarize the recent progress in MoS 2 /TiO 2 -based nanomaterials for applications in photocatalysis and rechargeable batteries. We highlight the synthesis, structure and mechanism of MoS 2 /TiO 2 -based nanomaterials. Then, advancements and strategies for improving the performance of these composites in photocatalytic degradation, hydrogen evolution, CO 2 reduction, LIBs and SIBs are critically discussed. Finally, perspectives on existing challenges and probable opportunities for future exploration of MoS 2 /TiO 2 -based composites towards photocatalysis and rechargeable batteries are presented. We believe the present review would provide enriched information for a deeper understanding of MoS 2 /TiO 2 composites and open avenues for the rational design of MoS 2 /TiO 2 based composites for energy and environment-related applications.

  13. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    Science.gov (United States)

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  14. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  15. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  16. Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery

    Science.gov (United States)

    Wang, Fei; Yang, Jun; NuLi, Yanna; Wang, Jiulin

    2011-05-01

    Hedgehog-like LiCoPO4 with hierarchical microstructures is first synthesized via a simple solvothermal process in water-benzyl alcohol mixed solvent at 200 °C. Morphology and crystalline structure of the samples are characterized by scanning electron microscope, transmission electron microscopy and X-ray diffraction. The hedgehog-like LiCoPO4 microstructures in the size of about 5-8 μm are composed of large numbers of nanorods in diameter of ca. 40 nm and length of ca. 1 μm, which are coated with a carbon layer of ca. 8 nm in thickness by in situ carbonization of glucose during the solvothermal reaction. As a 5 V positive electrode material for rechargeable lithium battery, the hedgehog-like LiCoPO4 delivers an initial discharge capacity of 136 mAh g-1 at 0.1 C rate and retains its 91% after 50 cycles, showing much better electrochemical performances than sub-micrometer LiCoPO4 synthesized by conventional high-temperature solid-state reaction.

  17. Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery.

    Science.gov (United States)

    Liang, Chaowei; Fang, Dong; Cao, Yunhe; Li, Guangzhong; Luo, Zhiping; Zhou, Qunhua; Xiong, Chuanxi; Xu, Weilin

    2015-02-01

    Precursors of ammonium vanadium bronze (NH4V4O10) nanowires assembled on a conductive substrate were prepared by a hydrothermal method. After calcination at 360°C, the NH4V4O10 precursor transformed to vanadium pentoxide (V2O5) nanowires, which presented a high initial capacity of 135.0mA h g(-1) at a current density of 50mA g(-1) in 5M LiNO3 aqueous solution; while the specific capacity faded quickly over 50 cycles. By coating the surface of V2O5 nanowires with water-insoluble polypyrrole (PPy), the formed nanocomposite electrode exhibited a specific discharge capacity of 89.9mA h g(-1) at 50mA g(-1) (after 100 cycles). A V2O5@PPy //LiMn2O4 rechargeable lithium battery exhibited an initial discharge capacity of 95.2mA h g(-1); and after 100 cycles, a specific discharge capacity of 81.5mA h g(-1) could retain at 100mA g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    Science.gov (United States)

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  19. Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.

    Science.gov (United States)

    Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung

    2017-04-12

    The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.

  20. Study on the influence of storage life expectancy of the Valve Regulated Lead-Acid - VRLA battery; Estudo sobre a influencia da estocagem na expectativa de vida util da bateria chumbo-acida regulada por valvula - VRLA

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A. Pinhel [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)], Email: pinhel@furnas.com.br; Rosolem, Maria de F.N.C.; Santos, G.R. dos; Frare, P.T.; Arioli, V.T.; Beck, R.F. [Telecomunicacoes do CPqD, Campinas, SP (Brazil)], Emails: mfatima@cpqd.com.br, glauco@cpqd.com.br, pfrare@cpqd.com.br, varioli@cpqd.com.br, raul@cpqd.com; Soares, L.A., Email: luiz.las@gmail.com

    2009-07-01

    When valve regulated lead-acid (VRLA) batteries are acquired and are not placed in operation immediately and remain stored in open circuit, they can loose autonomy and life. In these cases the current practice recommends, that the batteries receive quarterly recharges, which is often unfeasible. Given this scenario, Furnas by the CPqD, decided to verify the real impact of stockpiling in the expectancy of VRLAs battery life to establish the veracity of practice adopted or establish new procedures. The influences of time, the temperature of the local storage and application of charges are evaluated. It was also studied the application of techniques for measuring the internal resistance battery (conductance and impedance) for degradation monitoring and identification of the need for application of charges. As final products, it was developed novel diagnostic techniques that allow more accurate monitoring of the storage process.

  1. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Bijani, S.; Gabas, M.; Martinez, L.; Ramos-Barrado, J.R.; Morales, J.; Sanchez, L.

    2007-01-01

    Uniform films of Cu 2 O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu 2 O + 2e - + 2Li + ↔ 2Cu + Li 2 O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu 2 O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg -1

  2. Role of Bismuth in the Electrokinetics of Silicon Photocathodes for Solar Rechargeable Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Flox, Cristina; Murcia-López, Sebastián; Carretero, Nina M; Ros, Carles; Morante, Juan R; Andreu, Teresa

    2018-01-10

    The ability of crystalline silicon to photoassist the V 3+ /V 2+ cathodic reaction under simulated solar irradiation, combined with the effect of bismuth have led to important electrochemical improvements. Besides the photovoltage supplied by the photovoltaics, additional decrease in the onset potentials, high reversibility of the V 3+ /V 2+ redox pair, and improvement in the electrokinetics were attained thanks to the addition of bismuth. In fact, Bi 0 deposition has shown to slightly decrease the photocurrent, but the significant enhancement in the charge transfer, reflected in the overall electrochemical performance clearly justifies its use as additive in a photoassisted system for maximizing the efficiency of solar charge to battery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  4. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  5. Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Yongjin Jeong

    2016-12-01

    Full Text Available Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO2 gas, and the Brunauer-Emmett-Teller (BET specific area increased to about 982.4 m2·g−1. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g−1 and good cycle performance (510 mAh·g−1 after 30 cycles due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

  6. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries

    Science.gov (United States)

    Narayanan, S. R.; Surampudi, S.; Attia, A. I.; Bankston, C. P.

    1991-01-01

    The overcharge condition in secondary lithium batteries employing redox additives for overcharge protection, has been theoretically analyzed in terms of a finite linear diffusion model. The analysis leads to expressions relating the steady-state overcharge current density and cell voltage to the concentration, diffusion coefficient, standard reduction potential of the redox couple, and interelectrode distance. The model permits the estimation of the maximum permissible overcharge rate for any chosen set of system conditions. Digital simulation of the overcharge experiment leads to numerical representation of the potential transients, and estimate of the influence of diffusion coefficient and interelectrode distance on the transient attainment of the steady state during overcharge. The model has been experimentally verified using 1,1-prime-dimethyl ferrocene as a redox additive. The analysis of the experimental results in terms of the theory allows the calculation of the diffusion coefficient and the formal potential of the redox couple. The model and the theoretical results may be exploited in the design and optimization of overcharge protection by the redox additive approach.

  7. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  8. Low temperature sulfur and sodium metal battery for grid-scale energy storage application

    Science.gov (United States)

    Liu, Gao; Wang, Dongdong

    2018-03-27

    A re-chargeable battery comprising a non-dendrite forming sodium (Na)/potassium (K) liquid metal alloy anode, a sulfur and polyacrylonitrile (PAN) conductive polymer composite cathode, a polyethyleneoxide (PEO) solid electrolyte, a solid electrolyte interface (SEI) formed on the PEO solid electrolyte; and a cell housing, wherein the anode, cathode, and electrolyte are assembled into the cell housing with the PEO solid electrolyte disposed between the cathode and anode.

  9. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  10. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery

    International Nuclear Information System (INIS)

    Zhang, S.S.; Ervin, M.H.; Xu, K.; Jow, T.R.

    2004-01-01

    We studied microporous poly(acrylonitrile-methyl methacrylate), AMMA, membrane as the separator of Li/LiMn 2 O 4 cell. The porous AMMA membrane was prepared by the phase inversion method with N,N-dimethylformamide (DMF) as the solvent and water as the non-solvent. We observed that morphology of the resulting membrane was strongly affected by the concentration of polymer solution: low concentration produced finger-like pores with dense skin on two surfaces of the membrane, while high concentration yielded open voids with dense layer on the other surface of the membrane. Regardless of their morphology, both membranes could be rapidly wetted by the liquid electrolyte (1.0 m LiBF 4 dissolved in 1:3 wt.% mixture of ethylene carbonate (EC) and γ-butyrolactone (GBL)), and could be swollen at elevated temperatures, which resulted in the formation of a microporous gel electrolyte (MGE). It was shown that the resulting MGE not only had high ionic conductivity and but also had good compatibility with metal lithium even at 60 deg. C. Cyclic voltammetric test showed that the MGE had an electrochemical window of 4.9 V versus Li + /Li. At room temperature, the Li/MGE/LiMn 2 O 4 cell showed excellent cycliability with a specific capacity of 121-125 mA h g -1 LiMn 2 O 4 . It was shown that even at 60 deg. C good mechanical strength of the MGE remained. Therefore, the MGE is suitable for the application of battery separator at elevated temperatures

  11. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  12. IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard

  13. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  14. Multielectron-Transfer-based Rechargeable Energy Storage of Two-Dimensional Coordination Frameworks with Non-Innocent Ligands.

    Science.gov (United States)

    Wada, Keisuke; Sakaushi, Ken; Sasaki, Sono; Nishihara, Hiroshi

    2018-04-19

    The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal-organic framework (MOF) analogues consisting of two-dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF-based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density-functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Full open-framework batteries for stationary energy storage

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D.; Liu, Nian; Nelson, Johanna; McDowell, Matthew T.; Huggins, Robert A.; Toney, Michael F.; Cui, Yi

    2014-01-01

    New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.

  16. Full open-framework batteries for stationary energy storage.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Liu, Nian; Nelson, Johanna; McDowell, Matthew T; Huggins, Robert A; Toney, Michael F; Cui, Yi

    2014-01-01

    New types of energy storage are needed in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. We have recently introduced a family of cathodes involving the reversible insertion of cations into materials with the Prussian Blue open-framework crystal structure. Here we report a newly developed manganese hexacyanomanganate open-framework anode that has the same crystal structure. By combining it with the previously reported copper hexacyanoferrate cathode we demonstrate a safe, fast, inexpensive, long-cycle life aqueous electrolyte battery, which involves the insertion of sodium ions. This high rate, high efficiency cell shows a 96.7% round trip energy efficiency when cycled at a 5C rate and an 84.2% energy efficiency at a 50C rate. There is no measurable capacity loss after 1,000 deep-discharge cycles. Bulk quantities of the electrode materials can be produced by a room temperature chemical synthesis from earth-abundant precursors.

  17. Life-cycle energy analyses of electric vehicle storage batteries

    Science.gov (United States)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  18. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Ye, Ke; Shao, Shuangxi; Wang, Xin; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue

    2017-01-01

    Highlights: • The mico-sheet Mg-OMS-1 is synthesized by a simple hydrothermal method. • The mechanism of Mg 2+ insertion/deinsertion from Mg-OMS-1 is explored. • The electrode exhibits a good electrochemical performance in MgCl 2 electrolyte. - Abstract: Aqueous magnesium-ion batteries have shown the desired properties of high safety characteristics, similar electrochemical properties to lithium and low cost for energy storage applications. The micro-sheet morphology of todorokite-type magnesium manganese oxide molecular sieve (Mg-OMS-1) material, which applies as a novel cathode material for magnesium-ion battery, is obtained by the simple hydrothermal method. The structure and morphology of the particles are confirmed by X-ray power diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma, scanning and transmission electron microscopy. The electrochemical performance of Mg-OMS-1 is researched by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge measurement. Mg-OMS-1 shows a good battery behavior for Mg 2+ insertion and deinsertion in the aqueous electrolyte. When discharging at 10 mA g −1 in 0.2 mol dm −3 MgCl 2 aqueous electrolyte, the initial discharge capacity reaches 300 mAh g −1 . The specific capacity retention rate is 83.7% after cycling 300 times at 100 mA g −1 in 0.5 mol dm −3 MgCl 2 electrolyte with a columbic efficiency of nearly 100%.

  19. Storage of a lithium-ion secondary battery under micro-gravity conditions

    Science.gov (United States)

    Sone, Yoshitsugu; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji; Takahashi, Keiji; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Kawaguchi, Jun'ichiro

    'HAYABUSA' is a Japanese inter-planetary spacecraft built for the exploration of an asteroid named 'ITOKAWA.' The spacecraft is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery was maintained at ca. 65% during storage, in case it is required for a loss of attitude control. The capacity of the battery was measured during flight operations. Along with the operation in orbit, a ground-test battery was discharged, and both results showed a good agreement. This result confirmed that the performance of the lithium-ion secondary battery stored under micro-gravity conditions is predictable using a ground-test battery.

  20. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems

    OpenAIRE

    Dulout , Jérémy; Anvari-Moghaddam , Amjad ,; Luna , Adriana; Jammes , Bruno; Alonso , Corinne; Guerrero , Josep ,

    2017-01-01

    International audience; This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also dis...

  1. Polyaniline silver nanoparticle coffee waste extracted porous graphene oxide nanocomposite structures as novel electrode material for rechargeable batteries

    Science.gov (United States)

    Sundriyal, Poonam; Bhattacharya, Shantanu

    2017-03-01

    The exploration of new and advanced electrode materials are required in electronic and electrical devices for power storage applications. Also, there has been a continuous endeavour to formulate strategies for extraction of high performance electrode materials from naturally obtained waste products. In this work, we have developed an in situ hybrid nanocomposite from coffee waste extracted porous graphene oxide (CEPG), polyaniline (PANI) and silver nanoparticles (Ag) and have found this novel composite to serve as an efficient electrode material for batteries. The successful interaction among the three phases of the nano-composite i.e. CEPG-PANI-Ag have been thoroughly understood through RAMAN, Fourier transform infrared and x-ray diffraction spectroscopy, morphological studies through field emission scanning electron microscope and transmission electron microscope. Thermo-gravimetric analysis of the nano-composite demonstrates higher thermal stability up-to a temperature of 495 °C. Further BET studies through nitrogen adsorption-desorption isotherms confirm the presence of micro/meso and macro-pores in the nanocomposite sample. The cyclic-voltammetry (CV) analysis performed on CEPG-PANI-Ag nanocomposite exhibits a purely faradic behaviour using nickel foam as a current collector thus suggests the prepared nanocomposite as a battery electrode material. The nanocomposite reports a maximum specific capacity of 1428 C g-1 and excellent cyclic stability up-to 5000 cycles.

  2. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage

    Science.gov (United States)

    Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming

    2018-06-01

    Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.

  3. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  4. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  5. Assessment of needs and research roadmaps for rechargeable energy storage system (RESS) onboard electric drive buses

    Science.gov (United States)

    2010-12-01

    In support of the Federal Transit Administration (FTA) Electric Drive Strategic Plan (EDSP), this report assesses state-of-art advances in lithium-ion batteries, ultracapacitors, and related power management and control technologies for the rechargea...

  6. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte

    Science.gov (United States)

    Wu, Xianwen; Li, Yehua; Xiang, Yanhong; Liu, Zhixiong; He, Zeqiang; Wu, Xianming; Li, Youji; Xiong, Lizhi; Li, Chuanchang; Chen, Jian

    2016-12-01

    There is a broad application prospect for smart grid about aqueous rechargeable sodium-ion battery. In order to improve its electrochemical performance, a hybrid cationic aqueous-based rechargeable battery system based on the nanostructural Na0.44MnO2 and metallic zinc foil as the positive and negative electrodes respectively is built up. Nano rod-like Na0.44MnO2 is synthesized by sol-gel method followed by calcination at 850 °C for 9 h, and various characterization techniques including the X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to investigate the structure and morphology of the as-prepared material. The cyclic voltammetry, galvanostatic charge-discharge and self-discharge measurements are performed at the same time. The results show that the battery delivers a very high initial discharge capacity of 186.2 mAh g-1 at 0.2 C-rate in the range of 0.5-2.0 V, and it exhibits a discharge capacity of 113.3 mAh g-1 at high current density of 4 C-rate, indicative of excellent rate capability.

  7. The joint center for energy storage research: A new paradigm for battery research and development

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA and University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607 (United States)

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  8. Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the battery energy storage system in DC micro-grid systems is demonstrated in this paper. The battery energy storage system (BESS is an important part of a DC micro-grid because renewable energy generation sources are fluctuating. The BESS can provide energy while the renewable energy is absent in the DC micro-grid. The circuit topology of the proposed BESS will be introduced. The design of the voltage controller and the current controller for the battery charger/discharger are also illustrated. Finally, experimental results are provided to validate the performance of the BESS.

  9. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  10. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  11. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  12. Performance Comparison of Rechargeable Batteries for Stationary Applications (Ni/MH vs. Ni–Cd and VRLA)

    OpenAIRE

    Michael A. Zelinsky; John M. Koch; Kwo-Hsiung Young

    2017-01-01

    The stationary power market, particularly telecommunications back-up (telecom) applications, is dominated by lead-acid batteries. A large percentage of telecom powerplants are housed in outdoor enclosures where valve-regulated lead-acid (VRLA) batteries are commonly used because of their low-maintenance design. Batteries in these enclosures can be exposed to temperatures which can exceed 70 °C, significantly reducing battery life. Nickel–cadmium (Ni–Cd) batteries have traditionally been deplo...

  13. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  14. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  15. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  16. Surface passivation: a new way to reduce self-output in LiMn{sub 2}O{sub 4}/Li lithium ion rechargeable batteries; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, C.; Blyr, A.; Tarascon, J.M. [Amiens Univ., 80 (France). Laboratoire de Reactivite et de Chimie des Solides; Amatucci, G. [Bellcore, (United States); Alphonse, P. [Toulouse-3 Univ., 31 (France). Laboratoire de Chimie des Materiaux Inorganiques

    1996-12-31

    The new generation of performing rechargeable lithium-ion batteries (``rocking-chair``-type) are penalized by important self-output phenomena linked with the use of highly oxidizing positive electrodes. In order to limit this problem in LiMn{sub 2}O{sub 4}/C batteries, two different passivation techniques were used in order to limit the surface contact between the positive electrode and the electrolyte. Thanks to these treatments, a significant reduction of the percentage of irreversible capacity losses is effectively observed. (J.S.) 3 refs.

  17. Surface passivation: a new way to reduce self-output in LiMn{sub 2}O{sub 4}/Li lithium ion rechargeable batteries; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, C; Blyr, A; Tarascon, J M [Amiens Univ., 80 (France). Laboratoire de Reactivite et de Chimie des Solides; Amatucci, G [Bellcore, (United States); Alphonse, P [Toulouse-3 Univ., 31 (France). Laboratoire de Chimie des Materiaux Inorganiques

    1997-12-31

    The new generation of performing rechargeable lithium-ion batteries (``rocking-chair``-type) are penalized by important self-output phenomena linked with the use of highly oxidizing positive electrodes. In order to limit this problem in LiMn{sub 2}O{sub 4}/C batteries, two different passivation techniques were used in order to limit the surface contact between the positive electrode and the electrolyte. Thanks to these treatments, a significant reduction of the percentage of irreversible capacity losses is effectively observed. (J.S.) 3 refs.

  18. Mission and status of the US Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Hurwitch, J. W.; Landgrebe, A. R.; Hauser, S. G.

    1985-05-01

    The mission of the US Department of Energy's battery research program has evolved to reflect the changing conditions of the world energy economy and the national energy policy. The battery energy storage program supports the goals of the National Energy Policy Plan (FY 1984). The goals are to provide an adequate supply of energy at reasonable costs, minimize federal control and involvement in the energy marketplace, promote a balanced and mixed energy resource system, and facilitate technology transfer from the public to the private sector. This paper describes the history of the battery energy storage program and its relevance to the national interest. Potential market applications for battery energy storage are reviewed, and each technology, its goals, and its current technical status are described. The paper concludes by describing the strategy developed to ensure effective technology transfer to the private sector and reviewing past significant accomplishments.

  19. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  20. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  1. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun

    2015-08-28

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion intercalation and extraction. Various intermediate phases are predicted to be formed during the first intercalation, whereas in later cycles other intermediate phases are encountered. The volume expansions after intercalation and extraction are analyzed. We show that different lithium and sodium oxide products found in recent experiments are due to different oxygen chemical potentials.

  2. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  3. Identifying Critical Factors in the Cost-Effectiveness of Solar and Battery Storage in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-21

    This analysis elucidates the emerging market for distributed solar paired with battery energy storage in commercial buildings across the United States. It provides insight into the near-term and future solar and solar-plus-storage market opportunities as well as the variables that impact the expected savings from installing behind-the-meter systems.

  4. Battery Energy Storage Market: Commercial Scale, Lithium-ion Projects in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce; Gagnon, Pieter; Anderson, Kate; Elgqvist, Emma; Fu, Ran; Remo, Tim

    2016-10-01

    This slide deck presents current market data on the commercial scale li-ion battery storage projects in the U.S. It includes existing project locations, cost data and project cost breakdown, a map of demand charges across the U.S. and information about how the ITC and MACRS apply to energy storage projects that are paired with solar PV technology.

  5. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  6. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium–oxygen battery

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zheng [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, TaiYuan 030051 (China); Zhang, Ming; Cheng, Junfang [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Gong, Yingpeng, E-mail: ypgong@hust.edu.cn [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Xi, E-mail: lixi@hust.edu.cn [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Chi, Bo; Pu, Jian; Jian, Li [Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-03-25

    Highlights: • Ag/β-MnO{sub 2} was prepared by in-situ composite technique using polymeric additives. • Ag/β-MnO{sub 2} can effectively improve the discharge capacity and the cycle life. • Li{sub 2}O is the main discharge product and no Li{sub 2}CO{sub 3} is formed. - Abstract: In this paper, Ag nanoparticles decorated β-MnO{sub 2} nanorods are studied as cathode catalyst for rechargeable lithium–oxygen battery (LOB). β-MnO{sub 2} nanorods are prepared using a simple hydrothermal method based on MnO{sub 4}{sup −} and the decoration of Ag nanoparticles is performed by in-situ composite technique in the presence of polymeric additives. The as-prepared materials are characterized by XRD, TEM, XPS, BET and Raman spectrum. Electrochemical charging and discharging capacity of β-MnO{sub 2} and Ag/β-MnO{sub 2} electrodes are investigated at the current density of 0.02 mA cm{sup −2} in the voltage window of 2.0–4.0 V. LOB with Ag/β-MnO{sub 2} electrode shows an initial discharge capacity of 873 mA hg{sup −1}{sub (electrode)}, with reversible charge capacity of 811 mA hg{sup −1}{sub (electrode)} while battery with only β-MnO{sub 2} has discharge capacity of 541 mA hg{sup −1}{sub (electrode)} and charge capacity of 445 mA hg{sup −1}{sub (electrode)}. Ag/β-MnO{sub 2} nanocomposite electrode shows good rate capability and cycle stability. After 10 cycles, the capacity of 742 mA hg{sup −1}{sub (electrode)} is still retained at the current density of 0.02 mA cm{sup −2} while only 219 mA hg{sup −1}{sub (electrode)} is retained at 0.5 mA cm{sup −2}. The capacity retention rate is 84.9% and 70.2% at 0.02 and 0.5 mA cm{sup −2}, respectively. During discharging, Li{sub 2}O is the main discharge product and no Li{sub 2}CO{sub 3} is formed. The results show that the electrochemical performance of β-MnO{sub 2} is greatly enhanced when Ag nanoparticles are introduced. And it is highly effective for decreasing the charging potential close to the

  7. Studies on battery storage requirement of PV fed wind-driven induction generators

    International Nuclear Information System (INIS)

    Rajan Singaravel, M.M.; Arul Daniel, S.

    2013-01-01

    Highlights: ► Sizing of battery storage for PV fed wind-driven IG system is taken up. ► Battery storage is also used to supply reactive power for wind-driven IG. ► Computation of LPSP by incorporating uncertainties of irradiation and wind speed. ► Sizing of hybrid power system components to ensure zero LPSP. ► Calculated storage size satisfied the constraints and improves battery life. - Abstract: Hybrid stand-alone renewable energy systems based on wind–solar resources are considered to be economically better and reliable than stand-alone systems with a single source. An isolated hybrid wind–solar system has been considered in this work, where the storage (battery bank) is necessary to supply the required reactive power for a wind-driven induction generator (IG) during the absence of power from a photovoltaic (PV) array. In such a scheme, to ensure zero Loss of Power Supply Probability (LPSP) and to improve battery bank life, a sizing procedure has been proposed with the incorporation of uncertainties in wind-speed and solar-irradiation level at the site of erection of the plant. Based on the proposed procedure, the size of hybrid power system components and storage capacity are determined. Storage capacity has been calculated for two different requirements. The first requirement of storage capacity is common to any hybrid scheme, which is; to supply both real and reactive power in the absence of wind and solar sources. The second requirement is to supply reactive power alone for the IG during the absence of photovoltaic power, which is unique to the hybrid scheme considered in this work. Storage capacity calculations for different conditions using the proposed approach, satisfies the constraints of maintaining zero LPSP and also improved cycle life of the battery bank

  8. Decision Support System for Aquifer Recharge (AR) and Aquifer Storage and Recovery (ASR) Planning, Design, and Evaluation - Principles and Technical Basis

    Science.gov (United States)

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at...

  9. Treatment of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T.; Negi, N.; Kaminaka, Takeshita, Y.

    1997-03-28

    At present, Ni-Cd battery is mainly used for the power source of portable AV devices and back-up power source of computer memory. From an environmental point of view, however, Ni-hydrogen battery in which hydrogen storage alloy is used instead of Cd as for the negative electrode has been developed. The productivity of Ni-hydrogen battery is not so high because it takes a very long time to activate the battery after it is assembled. This invention solves the problem. According to the invention, the hydrogen storage alloy containing Ni is immersed in a non-oxidizing acid aqueous solution containing dissolved oxygen by 1 mg/L or less. If a large amount of dissolved oxygen is contained in the acid solution, metal appearing on the surface of alloy by the acid treatment is directly combined with the dissolved oxygen, resulting in the re-formation of metal oxide. So that the effect of oxide removal by the acid treatment is reduced. Using the treated hydrogen storage alloy in the Ni-hydrogen battery makes it possible to produce the battery which has a high initial activity and a good storage property with less self-discharge. 2 tabs.

  10. Financial analysis of utility scale photovoltaic plants with battery energy storage

    International Nuclear Information System (INIS)

    Rudolf, Viktor; Papastergiou, Konstantinos D.

    2013-01-01

    Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed. - Highlights: • Generation shifting with batteries allows PV projects to generate additional revenues. • Battery lifetime, lifecycles and price are less relevant than electricity market prices. • Installed battery capacity of up to 50% of the daily PV energy boosts project economy. • A 25% higher premium for energy storage could improve NPV by approximately 65%

  11. Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bo [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); National Key Laboratory of Power Sources, Tianjin Institute of Power Sources, Tianjin 300381 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Bai, Zhimin, E-mail: zhimibai@cugb.edu.cn [Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Li, Minsi [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Dong, Lei; Xiong, Dongbin [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-06-15

    Highlights: • Hierarchical porous vanadium pentoxide nanofibers were synthesized by electrospinning. • V{sub 2}O{sub 5} nanofibers showed much enhanced lithium storage performance. • Kinetics process of electrospinning V{sub 2}O{sub 5} nanofibers was studied by means of EIS for the first time. • Strategies to enhance the electrochemical performance of V{sub 2}O{sub 5} electrode were concluded. - Abstract: The hierarchical V{sub 2}O{sub 5} nanofibers cathode materials with diameter of 200–400 nm are successfully synthesized via an electrospinning followed by annealing. Powder X-ray diffraction (XRD) pattern confirms the formation of phase-pure product. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) obviously display the hierarchical porous nanofibers constructed by attached tiny vanadium oxide nanoplates. Electrochemical behavior of the as-prepared product is systematically studied using galvanostatic charge/discharge testing, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It turns out that in comparison to the commercial V{sub 2}O{sub 5} and other unique nanostructured materials in the literature, our V{sub 2}O{sub 5} nanofibers show much enhanced lithium storage capacity, improved cyclic stability, and higher rate capability. After 100 cycles at a current density of 800 mA g{sup −1}, the specific capacity of the V{sub 2}O{sub 5} nanofibers retain 133.9 mAh g{sup −1}, corresponding to high capacity retention of 96.05%. More importantly, the EIS at various discharge depths clearly reveal the kinetics process of the V{sub 2}O{sub 5} cathode reaction with lithium. Based on our results, the possible approach to improve the specific capacity and rate capability of the V{sub 2}O{sub 5} cathode material is proposed. It is expected that this study could accelerate the development of V{sub 2}O{sub 5} cathode in rechargeable lithium ion batteries.

  12. A flexible model for economic operational management of grid battery energy storage

    International Nuclear Information System (INIS)

    Fares, Robert L.; Webber, Michael E.

    2014-01-01

    To connect energy storage operational planning with real-time battery control, this paper integrates a dynamic battery model with an optimization program. First, we transform a behavioral circuit model designed to describe a variety of battery chemistries into a set of coupled nonlinear differential equations. Then, we discretize the differential equations to integrate the battery model with a GAMS (General Algebraic Modeling System) optimization program, which decides when the battery should charge and discharge to maximize its operating revenue. We demonstrate the capabilities of our model by applying it to lithium-ion (Li-ion) energy storage operating in Texas' restructured electricity market. By simulating 11 years of operation, we find that our model can robustly compute an optimal charge-discharge schedule that maximizes daily operating revenue without violating a battery's operating constraints. Furthermore, our results show there is significant variation in potential operating revenue from one day to the next. The revenue potential of Li-ion storage varies from approximately $0–1800/MWh of energy discharged, depending on the volatility of wholesale electricity prices during an operating day. Thus, it is important to consider the material degradation-related “cost” of performing a charge-discharge cycle in battery operational management, so that the battery only operates when revenue exceeds cost. - Highlights: • A flexible, dynamic battery model is integrated with an optimization program. • Electricity price data is used to simulate 11 years of Li-ion operation on the grid. • The optimization program robustly computes an optimal charge-discharge schedule. • Variation in daily Li-ion battery revenue potential from 2002 to 2012 is shown. • We find it is important to consider the cost of a grid duty cycle

  13. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  14. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  15. Smart materials for energy storage in Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Ashraf E Abdel-Ghany

    2016-01-01

    Full Text Available Advanced lithium-ion batteries contain smart materials having the function of insertion electrodes in the form of powders with specific and optimized electrochemical properties. Different classes can be considered: the surface modified active particles at either positive or negative electrodes, the nano-composite electrodes and the blended materials. In this paper, various systems are described, which illustrate the improvement of lithium-ion batteries in term of specific energy and power, thermal stability and life cycling.

  16. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  17. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  18. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  19. Stannic oxide spherical nanoparticles: an anode material with long-term cyclability for Li-ion rechargeable batteries

    Science.gov (United States)

    Kalubarme, Ramchandra S.; Kale, Bharat B.; Gosavi, Suresh W.

    2017-08-01

    Transition metal oxides are widely used in energy storage applications. Stannic oxide nanostructures are prepared using a controlled, NaOH assisted, simple precipitation method. The morphology of the prepared material confirms the formation of fine nanoparticles having a rutile stannic oxide (SnO2) phase, with cassiterite structure, and size distribution ~20 nm. On testing, as an anode material for a Li-ion battery, stannic oxide delivers a reversible charge capacity of 957 mAh g-1 at an applied current rate of C/10. The stannic oxide shows excellent rate performance displaying capacity of 577 mAh g-1 at 10 C and capacity of 919 mAh g-1 retained after 200 cycles at an applied current rate of C/2. The super performance of stannic oxide fine particles stem from both the effective diffusion of Li-ions to reaction sites through porous channels and weaker stress/strain during Li insertion/desertion owing to its fine size.

  20. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  1. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  2. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  3. The mission and status of the U.S. Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Landgrebe, A. R.; Hurwitch, J. W.; Hauser, S. G.

    1985-12-01

    Attention is given to the U.S. Department of Energy's battery energy storage program history, assessing the importance it has had in the national interest to date in industrial, vehicular, and electric utility load leveling applications. The development status of battery technology is also evaluated for the cases of sodium-sulfur, zinc-bromine, zinc-ferricyanide, nickel-hydrogen, aluminum-air, lithium-metal disulfide, and fuel cell systems. Development trends are projected into the foreseeable future.

  4. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  5. Electroville: Grid-Scale Batteries: High Amperage Energy Storage Device—Energy for the Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MIT’s battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt don’t mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MIT’s battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

  6. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  7. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also discussed through a probabilistic analysis on some years of real data from the ADREAM photovoltaic building of the LAAS...

  8. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve......Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...

  9. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  10. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  11. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  12. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  13. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    Science.gov (United States)

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  14. The economics of using plug-in hybrid electric vehicle battery packs for grid storage

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Whitacre, J.F.; Apt, Jay

    2010-01-01

    We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO 4 /Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∝US$140 to $250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to $5000 for a 16 kWh battery) decreases to ∝10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit. (author)

  15. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    Science.gov (United States)

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  16. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... for Nuclear Power Plants.'' The guide describes methods that the NRC staff considers acceptable for... replacement of vented lead-acid storage batteries in nuclear power plants. ADDRESSES: Please refer to Docket...

  17. NREL to Research Revolutionary Battery Storage Approaches in Support of

    Science.gov (United States)

    ) energy storage systems using innovative chemistries, architectures and designs. ARPA-E's new program , Robust Affordable Next Generation Energy Storage Systems (RANGE), aims to accelerate widespread EV funding high risk and high reward transformational technologies." ARPA-E was officially authorized in

  18. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    The integration of renewable energy sources in the power system, with high percentage, is a well known challenge nowadays. Power sources like wind and solar are highly volatile, with uctuations on various time scales. One long term solution is to build a continentwide or worldwide supergrid....... Another solution is to use distributed energy storage units, and create virtual power plants. Stationary energy storage is a complementary solution, which can postpone the network expansion and can be optimized for dierent kind of grid services. As an energy storage solution with timing for few seconds...... multilevel converter structure with integrated energy storage is introduced. This converter structure is suitable to interface low and medium voltage energy storage units to medium and high voltage grids. It can also interconnect a DC and AC grid with bidirectional power ow, were both can be backed...

  19. LiCoO/sub 2/ structures by spray pyrolysis technique for rechargeable Li-ion battery

    International Nuclear Information System (INIS)

    Yilmaz, M.; Turgut, G.; Aydin, S.; Ertugrul, M.

    2012-01-01

    As the lithium-ion batteries have high energy density, Lithium-batteries have become a very attractive field of study for the researchers. Batteries' high energy density is up to the anode and cathode materials used in the batteries and the technique which is chosen for getting these materials. In this study, LiCoO/sub 2/, used for cathode active material in lithium ion batteries, has been prepared with spraying on a glass base by spray pyrolysis technique. LiCoO/sub 2 /was annealed at 600 deg. C for 3h in an air atmosphere; and crystal structures of the obtained samples were examined with XRD, the surface morphology of them was examined with SEM. Effect of annealing on crystallization has been investigated in prepared samples. (author)

  20. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling

    International Nuclear Information System (INIS)

    Heymans, Catherine; Walker, Sean B.; Young, Steven B.; Fowler, Michael

    2014-01-01

    The reuse of Li-ion EV batteries for energy storage systems (ESS) in stationary settings is a promising technology to support improved management of demand and supply of electricity. In this paper, MatLAB simulation of a residential energy profile and regulated cost structure is used to analyze the feasibility of and cost savings from repurposing an EV battery unit for peak-shifting. in situ residential energy storage can contribute to the implementation of a smart grid by supporting the reduction of demand during typical peak use periods. Use of an ESS increases household energy use but potentially improves economic effectiveness and reduces greenhouse gas emissions. The research supports the use of financial incentives for Li-ion battery reuse in ESS, including lower energy rates and reduced auxiliary fees. - Highlights: • EV Li-ion batteries can be reused in stationary energy storage systems (ESS). • A single ESS can shift 2 to 3 h of electricity used in a house. • While energy use increases, potential economic and environmental effectiveness improve. • ESS supports smart grid objectives. • Incentives like reduced fees are needed to encourage implementation of Li-ion battery ESS

  1. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  2. Aqueous hybrid ion batteries - An environmentally friendly alternative for stationary energy storage?

    Science.gov (United States)

    Peters, Jens F.; Weil, Marcel

    2017-10-01

    Aqueous hybrid ion batteries (AHIB) are being promoted as an environmentally friendly alternative to existing stationary battery technologies. However, no quantification of their potential environmental impacts has yet been done. This paper presents a prospective life cycle assessment of an AHIB module and compares its performance with lithium-ion and sodium-ion batteries in two different stationary energy storage applications. The findings show that the claim of being an environmentally friendly technology can only be supported with some major limitations. While the AHIB uses abundant and non-toxic materials, it has a very low energy density and requires increased amounts of material for providing a given storage capacity. Per kWh of battery, results comparable to those of the alternative lithium- or sodium-ion batteries are obtained, but significantly higher impacts under global warming and ozone depletion aspects. The comparable high cycle life of the AHIB compensates this partially, requiring less battery replacements over the lifetime of the application. On the other hand, its internal inefficiencies are higher, what becomes the dominating factor when charging majorly fossil based electricity, making AHIB unattractive for this type of applications.

  3. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  4. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Charge-discharge mechanisms of Li3V2(PO4)3 cathode materials in Li-batteries - studied by operando PXD

    DEFF Research Database (Denmark)

    Sørensen, Daniel Risskov; Mathiesen, Jette Katja; Henriksen, Christian

    Rechargeable Li-ion batteries are widely recognized as an enabling technology for electrochemical energy storage in applications ranging from small portable electronics over electric vehicles to grid-scale electricity storage1. However, Li-ion batteries still face challenges in terms...

  6. Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered...

  7. Method for measuring the charge of electric storage batteries. Verfahren zur Messung des Ladezustandes elektrischer Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W.

    1982-03-11

    With liquid-electrolyte storage batteries, charge can be deduced from density measurement which is feasible in a simple technical way by measuring hydrostatic pressure in the electrolyte fluid. Pressure difference is detected piezo-electrically and indicated externally by a voltmeter. Gas-filled or fluid-filled bellows serve as pressure sensors.

  8. Efficient electricity storage with a battolyser, an integrated Ni-Fe battery and electrolyser

    NARCIS (Netherlands)

    Mulder, F.M.; Weninger, B.; Middelkoop, J.; Ooms, F.G.B.; Schreuders, H.

    2017-01-01

    Grid scale electricity storage on daily and seasonal time scales is required to accommodate increasing amounts of renewable electricity from wind and solar power. We have developed for the first time an integrated battery-electrolyser ('battolyser') that efficiently stores electricity as a

  9. Control of a battery energy storage system connected to a low voltage grid

    NARCIS (Netherlands)

    van Dun, J.J.C.M.; de Groot, Robert; Morren, Johan; Slootweg, Han

    2015-01-01

    This paper describes the development of a control algorithm for a battery energy storage system, which is connected to a residential low voltage grid. By predicting future load demand and photovoltaic production within the neighbourhood concerned, flattening of the aggregated neighbourhood

  10. Batteries for energy storage. Examples, strategies, solutions; Batterien als Energiespeicher. Beispiele, Strategien, Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Fahlbusch, Eckhard (ed.)

    2015-07-01

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security. [German] Dieses Buch stellt die Vielfalt der Batterietechnologien vor und beschreibt ihre mobilen und stationaeren Anwendungs- und Einsatzmoeglichkeiten. Das gesellschaftliche Grossprojekt der Energiewende bedarf einer ganzheitlichen Betrachtung, die neben der Energiegewinnung und -verteilung aus Erneuerbaren Ressourcen besonders Fragen der Energiespeicherung und -effizienz beruecksichtigt. Daneben bietet das Buch einen Ausblick auf die weiteren Entwicklungsmoeglichkeiten der Batterietechnologien und Batterieanwendungen. Eine verbesserte Batterietechnik ist ein wichtiger Faktor, um der Elektromobilitaet und der stationaeren Anwendung von Batterien als dezentrale Energiespeicher zum Durchbruch zu verhelfen. Nicht zuletzt werden die Bedeutung und die Notwendigkeit des Recyclings von Batterien und der Vielfalt von Batterietechnologien dargestellt, die im Hinblick auf die Ressourcenschonung und die Ressourcensicherheit groesste Bedeutung haben.

  11. A Techno-Commercial Assessment of Residential and Bulk Battery Energy Storage

    Science.gov (United States)

    Nadkarni, Aditya

    2013-01-01

    Battery energy storage has shown a lot of potential in the recent past to be effective in various grid services due to its near instantaneous ramp rates and modularity. This thesis aims to determine the commercial viability of customer premises and substation sited battery energy storage systems. Five different types of services have been analyzed considering current market pricing of Lithium-ion batteries and power conditioning equipment. Energy Storage Valuation Tool 3.0 (Beta) has been used to exclusively determine the value of energy storage in the services analyzed. The results indicate that on the residential level, Lithium-ion battery energy storage may not be a cost beneficial option for retail tariff management or demand charge management as only 20-30% of the initial investment is recovered at the end of 15 year plant life. SRP's two retail Time-of-Use price plans E-21 and E-26 were analyzed in respect of their ability to increase returns from storage compared to those with flat pricing. It was observed that without a coupled PV component, E-21 was more suitable for customer premises energy storage, however, its revenue stream reduces with addition to PV. On the grid scale, however, with carefully chosen service hierarchy such as distribution investment deferral, spinning or balancing reserve support, the initial investment can be recovered to an extent of about 50-70%. The study done here is specific to Salt River Project inputs and data. Results for all the services analyzed are highly location specific and are only indicative of the overall viability and returns from them.

  12. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haoqing, E-mail: tanghaoqing@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zan, Lingxing [Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn 53117 (Germany); Zhu, Jiangtao; Ma, Yiheng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-05-15

    Lithium zinc titanate (Li{sub 2}ZnTi{sub 3}O{sub 8}) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li{sub 2}ZnTi{sub 3}O{sub 8}, the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} electrode display a high specific capacity of 188.6 mAh g{sup −1} and remain as high as 147.7 mAh g{sup −1} after 100 cycles at 2.0 A g{sup −1}. Moreover, a reversible capacity of 76.3 mAh g{sup −1} can be obtained after 1000 cycles at 2.0 A g{sup −1} and the retention is 42.7% for Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3}, which is much higher than un-coated Li{sub 2}ZnTi{sub 3}O{sub 8}. The superior lithium storage performances of the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La{sub 2}O{sub 3} coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La{sub 2}O{sub 3} coated Li{sub 2}ZnTi{sub 3}O{sub 8} particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li{sub 2}ZnTi{sub 3}O{sub 8} has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li{sup +}).

  13. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  14. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    Science.gov (United States)

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  15. Storage battery for electric vehicles. Energiespeicher fuer ein Elektrokraftfahrzeug

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-22

    Lead batteries in electric vehicles tend to produce electrolytic gas which will entrain acid from the cells during its discharge. The loss of acid will reduce the recombinator efficiency and tends to cause corrosion. To prevent this, an acid separation stage is arranged in the gas discharge duct. The acid separation stage consists of a gas washer and a dry filter. Acid separation is enhanced by small plastic elements arranged in the gas discharge chamber of the gas washer and the gas supply chamber of the dry filter. The gas outlet chamber above the washing liquid has a large volume in order to prevent washing liquid from slopping out.

  16. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Corbus, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  17. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  18. Treatment method of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Y.; Kaminaka, H.; Nagata, T.; Takeshita, Y.

    1997-04-04

    A nickel-hydrogen battery using a hydrogen storage alloy takes considerably long time for the initial activation treatment after the assembly of the battery. In this invention, a hydrogen storage alloy containing nickel is immersed in an aqueous acid solution or an aqueous alkaline solution and washed with a solution containing a complexing agent to form a nickel complex by a reaction with Ni(OH)2 in a concentration of 10{sup -6} to 10{sup -1} followed by washing with water. By using this method, hydroxides, particularly, Ni(OH)2 deposited on the alloy surface on the treatment of the hydrogen storage alloy with aqueous acid or alkaline solution can be removed efficiently to afford the hydrogen storage alloy with a high initial activity. The hydrogen storage alloy which is the object of this treatment method is AB5 type and AB2 type alloy used for a nickel-hydrogen battery and an alloy composed of nickel is particularly preferable. The complexing agent is selected from ammonia, ethylenediamine and cyanides. 2 figs., 6 tabs.

  19. Geometric Process-Based Maintenance and Optimization Strategy for the Energy Storage Batteries

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available Renewable energy is critical for improving energy structure and reducing environment pollution. But its strong fluctuation and randomness have a serious effect on the stability of the microgrid without the coordination of the energy storage batteries. The main factors that influence the development of the energy storage system are the lack of valid operation and maintenance management as well as the cost control. By analyzing the typical characteristics of the energy storage batteries in their life cycle, the geometric process-based model including the deteriorating system and the improving system is firstly built for describing the operation process, the preventive maintenance process, and the corrective maintenance process. In addition, this paper proposes an optimized management strategy, which aims to minimize the long-run average cost of the energy storage batteries by defining the time interval of the detection and preventive maintenance process as well as the optimal corrective maintenance times, subjected to the state of health and the reliability conditions. The simulation is taken under the built model by applying the proposed energy storage batteries’ optimized management strategy, which verifies the effectiveness and applicability of the management strategy, denoting its obvious practicality on the current application.

  20. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  1. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable

  2. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  4. Energy Storage Scheduling with an Advanced Battery Model: A Game–Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Matthias Pilz

    2017-11-01

    Full Text Available Energy storage systems will play a key role for individual users in the future smart grid. They serve two purposes: (i handling the intermittent nature of renewable energy resources for a more reliable and efficient system; and (ii preventing the impact of blackouts on users and allowing for more independence from the grid, while saving money through load-shifting. In this paper we investigate the latter scenario by looking at a neighbourhood of 25 households whose demand is satisfied by one utility company. Assuming the users possess lithium-ion batteries, we answer the question of how each household can make the best use of their individual storage system given a real-time pricing policy. To this end, each user is modelled as a player of a non-cooperative scheduling game. The novelty of the game lies in the advanced battery model, which incorporates charging and discharging characteristics of lithium-ion batteries. The action set for each player comprises day-ahead schedules of their respective battery usage. We analyse different user behaviour and are able to obtain a realistic and applicable understanding of the potential of these systems. As a result, we show the correlation between the efficiency of the battery and the outcome of the game.

  5. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    Science.gov (United States)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  6. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    Science.gov (United States)

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  8. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  9. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.

    Science.gov (United States)

    Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi

    2015-06-03

    One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.

  10. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  11. Simulation of Ni-MH Batteries via an Equivalent Circuit Model for Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2016-01-01

    Full Text Available Impedance measurement was conducted at the entire cell level for studying of the Ni-MH rechargeable batteries. An improved equivalent circuit model considering diffusion process is proposed for simulation of battery impedance data at different charge input levels. The cell capacity decay was diagnosed by analyzing the ohmic resistance, activation resistance, and mass transfer resistance of the Ni-MH cells with degraded capacity. The capacity deterioration of this type, Ni-MH cell, is considered in relation to the change of activation resistance of the nickel positive electrodes. Based on the report and surface analysis obtained from the energy dispersive X-ray spectroscopy, the composition formula of metal-hydride electrodes can be closely documented as the AB5 type alloy and the “A” elements are recognized as lanthanum (La and cerium (Ce. The capacity decay of the Ni-MH cell is potentially initiated due to starved electrolyte for the electrochemical reaction of active materials inside the Ni-MH battery, and the discharge product of Ni(OH2 at low state-of-charge level is anticipated to have more impeding effects on electrode kinetic process for higher power output and efficient energy delivery.

  12. Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries

    Science.gov (United States)

    Huang, Haili; Guo, Yinjian; Cheng, Yuanhui

    2018-03-01

    α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.

  13. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  14. Using GRACE Amplitude Data in Conjunction with the Spatial Distribution of Groundwater Recharge to Estimate the Components of the Terrestrial Water Storage Anomaly across the Contiguous United States

    Science.gov (United States)

    Sanford, W. E.; Reitz, M.; Zell, W.

    2017-12-01

    The GRACE satellite project by NASA has been mapping the terrestrial water storage anomaly (TWSA) across the globe since 2002. To date most of the studies using this data have focused on estimating long-term storage declines in groundwater aquifers or the cryosphere. In this study we are focusing on using the amplitude of the seasonal storage signal to estimate the sources and values of the different water components that are contributing to the TWSA signal across the contiguous United States (CONUS). Across the CONUS the TWSA seasonal amplitude observed by GRACE varies by a factor of ten or more (from 1 to 10+ cm of liquid water equivalent). For a seasonal sinusoidal recharge rate, the change in storage in either the soil (unsaturated zone beneath the root zone) or groundwater (by water-table fluctuation) is limited to the amplitude of the recharge rate divided by π or 2π, respectively. We compiled the GRACE signal for the 18 major HUC watersheds across the CONUS and compared them to estimates of seasonal recharge-rate amplitudes based on a recent map of recharge rates generated by the USGS. The ratios of the recharge to GRACE amplitudes suggest that all but two of the HUCs must have other substantial sources of storage change in addition to soil or groundwater. The most likely additional sources are (1) winter snowpack, (2) seasonal irrigation withdrawals, and/or (3) surface water (rivers or reservoirs). Estimates of the seasonal amplitudes of these three signals across the CONUS suggest they can explain the remaining GRACE seasonal signal that cannot be explained by soil or groundwater fluctuations. Each of these signals has its own unique spatial distribution, with snowpack limited to the northern states, surface water limited to large rivers or reservoirs, and irrigation as a dominant signal limited to arid to semi-arid agricultural regions. Use of the GRACE seasonal signal shows promise in constraining the hydraulic diffusivities of surficial aquifer

  15. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  16. Managed Aquifer Recharge: from Local Research and Experiences to Regional Aquifer Storage and Recovery

    Science.gov (United States)

    Hendriks, D.; Faneca, M.; Oude Essink, G.; van Baaren, E.; Stuurman, R.; Delsman, J. R.; van Kempen, C.; de Louw, P.

    2016-12-01

    Many areas in the world experience periodic water shortages due to meteorological drought, salt water intrusion or over-exploitation of the water resources. Recently, it was established that the depletion of aquifers in many areas of the world is in an advanced state (Gleeson et al, 2012). This poses enormous challenges as 2.5 billion people and many companies depend on groundwater now and in the future (UN, 2015; ESG, 2016). A solution to increase robustness of water systems and prevent water shortage is subsurface storage of water during wet periods using Managed Aquifer Research (MAR). In addition to mitigation of water shortage, MAR can also reduce the occurrence and degree of flooding. Here, we present an overview of Deltares MAR expertise and available tools for up-scaling MAR. Deltares has experience with both research and implementation of MAR in different parts of the world under various hydro(geo)logical, climatic and socio-economic conditions. Various MAR techniques were assessed/tested in coastal areas of the Netherlands, Spain, New York, New Orleans and in Bangladesh. In some of these areas specific groundwater shortage related issues occur, such as salt water intrusion or subsidence. In Singapore, monitoring campaigns and modeling were done to design MAR by infiltration of water in over-exploited aquifers. In Abu Dhabi, geophysical methods were used to detect the optimal conditions for MAR systems. To effectively increase the robustness of groundwater systems up-scaling of MAR is required. For this purpose, Deltares developed tools that provide insight in the potential demand, possibilities and effectiveness of MAR at larger scales. The Quick scan tool for Fresh Groundwater Buffering provides insight on regional to national scale and is based on GIS-information of water demand, water resources, and subsurface properties. This quick scan tool has been applied for Mozambique, Kenya, India and Bangladesh. The Fresh Water Optimizer assesses the

  17. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life

    International Nuclear Information System (INIS)

    Jiang, Baozheng; Xu, Chengjun; Wu, Changle; Dong, Liubing; Li, Jia; Kang, Feiyu

    2017-01-01

    Highlights: • Manganese oxides with Mn(III) state is firstly reported to store zinc ion. • Zinc ion battery with α-Mn 2 O 3 cathode is assembled. • Storage mechanism of zinc ion in α-Mn 2 O 3 is investigated. - Abstract: Rechargeable zinc ion battery is considered as one of the most potential energy storage devices for large-scale energy storage system due to its safety, low-cost, high capacity and nontoxicity. However, only a few cathode materials have been studied for rechargeable zinc ion batteries. Here, we firstly report manganese sesquioxide (Mn 2 O 3 ) with Mn(III) state as cathode material for rechargeable zinc ion battery. The α-Mn 2 O 3 cathode displays a reversible capacity of 148 mAh g −1 , which is relatively high among all the reported cathode materials for ZIB. The cathode also exhibits good rate capability and excellent cycling stability with a long cycle life up to 2000 times. The ion storage mechanism of α-Mn 2 O 3 in zinc ion battery was also revealed. The pristine α-Mn 2 O 3 undergoes a reversible phase transition from bixbyite structure to layered-type zinc birnessite during the electrochemical zinc ion insertion and extraction. The results not only benefit for the practical application of rechargeable zinc ion battery, but also broaden the horizons of understanding the electrochemical behavior and mechanism of rechargeable zinc ion batteries.

  18. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries

    Science.gov (United States)

    Lv, Xingshuai; Wei, Wei; Sun, Qilong; Huang, Baibiao; Dai, Ying

    2017-06-01

    There is a great desire to search for suitable anodes with good performance for rechargeable metal-ion batteries, which require not only large capacity but excellent rate performance and cycling stability. In this work, the electronic properties of NbSe2 monolayer were explored based on first-principles calculations. We performed a full geometry optimization for Li/Na-adsorbed structures and obtained favorable adsorption sites. The metallic character for both pristine NbSe2 monolayer and the Li/Na-adsorbed NbSe2 ensures good electrical conduction. In addition, we find that NbSe2 monolayer is more inclined to adsorb Li and Na atoms with smaller adsorption energy under Li/Na-rich condition, indicating the superiority of NbSe2 monolayer as an electrode. Then, we obtained a relatively low diffusion barrier of approximately 0.205 eV for Li and, in particular, a significantly small diffusion barrier of about 0.086 eV for Na, which ensures excellent cycling performance of NbSe2 monolayer as a battery electrode. Most importantly, the Li and Na adsorption density in NbSe2 monolayer can be as high as Li2NbSe2 and Na4NbSe2, corresponding to theoretical specific capacities of 203 and 312 mAh·g-1, respectively. And the average electrode potentials were predicted to be 0.51 V for the chemical stoichiometry of Li2NbSe2 and 0.22 V for Na4NbSe2. In view of these excellent properties, our work predicts that NbSe2 monolayer can be a promising anode material for the development of low-cost high-performance Li- and Na-ion batteries.

  19. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    Science.gov (United States)

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of surface coating on structure and properties of metallic lithium anode for rechargeable Li-O2 battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Wang, Q.; Ma, Q.; Song, Q.; Chen, Q.

    2017-07-01

    Amorphous lithium phosphorous oxynitride film was coated directly on pre-treated lithium metal as anode of lithium air battery by radio-frequency sputtering technique from a Li3PO4 target. The structure and composition of modified anode was analyzed before and after charge/discharge test in a lithium-air battery, which comprises 0.5M LiNO3/TEGDME as the electrolyte and super P carbon as cathode. Batteries were galvanostatically discharged by an Arbin BT-2000 battery tester between open current voltage and 2.15V vs. Li+/Li at various current regimes ranging from 0.1–0.4mA/cm2. Compared with fresh lithium, LIPON-coated anode exhibited better electrochemical performance. Good charging efficiency of 90% at a narrower voltage gap with high ionic conductivity of 9.4×10−5S/cm was achieved through optimizing lithium pre-treated conditions, sputtering N2 flows and suitable solute for electrolyte. (Author)

  1. Batteries in network-independent electric power supply plants. Demands on batteries, storage concepts, lead batteries, load condition, operation management; Batterien in netzfernen Stromversorgungsanlagen. Anforderungen an Batterien, Speicherkonzepte, Bleibatterien, Ladezustand, Betriebsfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.; Sauer, D.U. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg (Germany)

    2005-07-01

    In principal there are the storage possibilities, which mainly distinguish themselves by the type of energy for storage:1) electric storage; a) supra-conducting ring storage, b) condensers; 2) mechanical storage; a) water high storage, b) flywheels, c) (cavern-) pressurized air storage; 3) electro-chemical storage; a) gas storage systems (with electrolysis or fuel cell unit), b) accumulators with external storage (e.g. FeCR-Redox system), c) accumulators with internal storage (e.g.) Pb/PbO{sub 2}, NiCd). A few electro-chemical storage systems only are economically and technically feasible today. This contribution focuses on these systems, in particular on lead-acid accumulators. An overview of terms, which are often used related to battery storage, can be found at the end. A detailed bibliography is supposed to give the reader specific answers to various questions. (orig.)

  2. The lightest organic radical cation for charge storage in redox flow batteries.

    Science.gov (United States)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S; Su, Liang; Brushett, Fikile R; Cheng, Lei; Liao, Chen; Ferrandon, Magali S; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K; Curtiss, Larry A; Shkrob, Ilya A; Moore, Jeffrey S; Zhang, Lu

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a minimalistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. The observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

  3. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    International Nuclear Information System (INIS)

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  4. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Katie

    2016-11-01

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  5. The Research of Super Capacitor and Battery Hybrid Energy Storage System with the THIPWM

    Directory of Open Access Journals (Sweden)

    Jianwei Ma

    2014-02-01

    Full Text Available It has to be considered that dynamic performance of Super Capacitor and Battery hybrid energy storage system is poor and the output waveform of AC voltage distorted seriously. The Third Harmonic Injection PWM (THIPWM with the three-level inverter, which has a excellent performance to improve the dynamic performance of the super capacitor and battery, gathers information from ends of the DC output voltage or current and the total current of the DC side to solve the problem of unbalanced neutral line voltage of three-level inverter .It also keeps super capacitor and battery controlled smoothly during the operation, and reduces the final output waveform distortion index. The simulation results verify the practicality and correctness of the three-level inverter topology and its control algorithm.

  6. Nanostructured oxides for energy storage applications in batteries and supercapacitors

    International Nuclear Information System (INIS)

    Chandra, A.; Roberts, A. J.; Yee, E. L. H.; Slade, R. C. T.

    2009-01-01

    Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in super capacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of >100 F g -1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented. (authors)

  7. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  8. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  9. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  10. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  11. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  12. Nickel-metal hydride (Ni-MH) battery using Mg{sub 2}Ni-type hydrogen storage alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luo, J.L.; Chuang, K.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-04-28

    The performance of a sealed prismatic prototype Ni-MH battery having a Mg-Ni-Y-Al alloy anode was investigated. The materials were characterized using X-ray diffraction (XRD). The laboratory tests run on this prototype battery as well as the single electrode was compared. The electrochemical behavior was determined using electrochemical impedance spectroscopy (EIS). The battery has a good dischargeability but a high self-discharge rate during storage at open-circuit state. (orig.)

  13. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Darcovich, K.; Kenney, B.; MacNeil, D.D.; Armstrong, M.M.

    2015-01-01

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  14. Modeling and Operational Testing of an Isolated Variable Speed PMSG Wind Turbine with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    BAROTE, L.

    2012-05-01

    Full Text Available This paper presents the modeling and operational testing of an isolated permanent magnet synchronous generator (PMSG, driven by a small wind turbine with a battery energy storage system during wind speed and load variations. The whole system is initially modeled, including the PMSG, the boost converter and the storage system. The required power for the connected loads can be effectively delivered and supplied by the proposed wind turbine and energy storage systems, subject to an appropriate control method. Energy storage devices are required for power balance and power quality in stand alone wind energy systems. The main purpose is to supply 230 V / 50 Hz domestic appliances through a single-phase inverter. The experimental waveforms, compared to the simulation results, show a good prediction of the electrical variable parameters. Furthermore, it can be seen that the results validate the stability of the supply.

  15. Stationary battery storage of energy transition a central component; Stationaere Batteriespeicher der Energiewende eine zentrale Komponente

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Lux, Stephan [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2017-01-15

    In a regenerative energy system with strong fluctuations in electricity production, the importance of short-term storage is increasing - on the one hand, in order to optimal need-oriented use of the energy supply, on the other hand, at any time to ensure a high network quality. The present overview of stationary battery storage shows how important it will be especially in the area of larger storage facilities with direct link to regenerative power plants, as a district storage or in the industry. [German] In einem regenerativen Energiesystem mit starken Fluktuationen der Stromproduktion nimmt die Bedeutung der Kurzzeitspeicherung zu - einerseits, um das Energieangebot bedarfsgerecht optimal zu nutzen, andererseits, um zu jedem Zeitpunkt eine hohe Netzqualitaet zu gewaehrleisten. Der vorliegende Ueberblick ueber stationaere Batteriespeicher zeigt, wie wichtig vor allem der Bereich groesserer Speicher in direkter Koppelung mit regenerativen Kraftwerken, als Quartiersspeicher oder im Gewerbe sein wird.

  16. Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Pandžić, Hrvoje; Škrlec, Davor

    2014-01-01

    This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported...... by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities...

  17. IEEE standard for qualification of class 1E lead storage batteries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    IEEE Std 323-1974, Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations, was developed to provide guidance for demonstrating and documenting the adequacy of electrical equipment used in all Class 1E and interface systems. This standard, IEEE Std 535-1979, was developed to provide specific methods and type test procedures for lead storage batteries in reference to IEEE Std 323-1974

  18. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    International Nuclear Information System (INIS)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K.; Akimoto, H.

    2013-01-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery

  19. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  20. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  1. Hydrothermal Synthesis of Nanostructured MnO2 and Gamma Radiation Effects on Rechargeable Lithium Battery Performance.

    Science.gov (United States)

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Nanostructured manganese dioxide (MnO2) was synthesized by the hydrothermal method under various experimental conditions such as reaction time and concentration in order to obtain nanostructure material with different morphologies, and it was found that the morphology of the MnO2 obtained had a nanoparticle-like structure, urchin-like structure, or nanorod-like structure depending on the experimental conditions. Among the as-prepared MnO2 samples, the highest surface area was seen for the urchin-like structure, and this was irradiated by γ-rays with a total radiation dose of 30 kGy at a rate 1.0 x 10(4) Gy/h in order to determine the effect of γ-irradiation on battery performance. There was a decrease in battery performance in terms of capacity and stability for irradiated samples during 100 cycles.

  2. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  3. Structural Stability and Electronic Properties of Na2C6O6 for a Rechargeable Sodium-ion Battery

    Science.gov (United States)

    Yamashita, Tomoki; Fujii, Akihiro; Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    Sodium-ion batteries have been explored as a promising alternative to lithium-ion batteries owing to a significant advantage of a natural abundance of sodium. Recently, it has been reported that disodium rhodizonate, Na2C6O6, exhibit good electrochemical properties and cycle performance as a minor-metal free organic cathode for sodium-ion batteries. However, its crystal structures during discharge/charge cycle still remain unclear. In this work, we theoretically propose feasible crystal structures of Na2+xC6O6 using first principles calculations. A structural phase transition has been found: Na4C6O6 has a different C6O6 packing arrangement from Na2C6O6. Electronic structures of Na2+xC6O6 during discharge/charge cycle are also discussed. Our predictions could be the key to understanding the discharge/charge process of Na2C6O6. Supported by MEXT program ``Elements Strategy Initiative to Form Core Rersearch Center'' (since 2012), MEXT; Ministry of Education Culture, Sports, Science and Technology, Japan.

  4. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Prisciandaro, Marina; Medici, Franco; Vegliò, Francesco

    2017-09-01

    The purpose of this work is to describe and review the current status of the recycling technologies of spent NiMH batteries. In the first part of the work, the structure and characterization of NiMH accumulators are introduced followed by the description of the main scientific studies and the industrial processes. Various recycling routes including physical, pyrometallurgical and hydrometallurgical ones are discussed. The hydrometallurgical methods for the recovery of base metals and rare earths are mainly developed on the laboratory and pilot scale. The operating industrial methods are pyrometallurgical ones and are efficient only on the recovery of certain components of spent batteries. In particular fraction rich in nickel and other materials are recovered; instead the rare earths are lost in the slag and must be further refined by hydrometallurgical process to recover them. Considering the actual legislation regarding the disposal of spent batteries and the preservation of raw materials issues, implementations on laboratory scale and plant optimization studies should be conducted in order to overcome the industrial problems of the scale up for the hydrometallurgical processes.

  5. Redox flow batteries. Already an alternative storage solution for hybrid PV mini-grids?

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Matthias; Dennenmoser, Martin; Schwunk, Simon; Smolinka, Tom [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Doetsch, Christian; Berthold, Sascha [Fraunhofer Institute for Environmental, Safety and Energy Technology (UMSICHT), Oberhausen (Germany); Tuebke, Jens; Noack, Jens [Fraunhofer Institute for Chemical Technology (ICT), Karlsruhe (Germany)

    2010-07-01

    Due to the flexible scalability of the power to energy ratio redox flow batteries are a suitable solution for quite a lot of decentralized applications. E.g. the autonomy time of a stand-alone system or mini-grid can be raised by increasing the tank size of the redox flow battery. In this paper the test site ''Rappenecker Hof'' in the black forest is used as an example for simulation based life cycle cost analyses of a vanadium redox flow battery integrated in an autonomous hybrid PV system. Two cases with lead acid batteries are considered as benchmarks for economic viability of the redox flow battery solution in such applications. At the moment a 1 KW / 6 kWh system for decentralized solutions is developed and will be installed in the ''Solarhaus'' in Freiburg. The main results of the cell stack and system design as well as performance data are presented. Furthermore simulation models and the model based development of the ''Smart Redox flow Control'' are described. For the optimized integration of the storage unit in the energy system a communication interface for exchanging data with the supervisory energy management system is introduced. On this basis a SOC forecast according to a given demand profile can be determined. (orig.)

  6. Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1997-03-01

    The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented. costs. Conclusions and recommendations are presented

  7. Hierarchical Cr{sub 2}O{sub 3}@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yongqing; Lai, Yanqing; Zhang, Zhian, E-mail: zhangzhian@csu.edu.cn; Chen, Wei; Du, Ke; Li, Jie

    2016-04-25

    The development of catalyst materials is the most significant issue that hinders the practical applications of Li-O{sub 2} batteries. Herein we show the design and synthesis of the hierarchical chromic oxide-octahedral porous carbon (Cr{sub 2}O{sub 3}@OPC) composites catalyst with octahedral shape that derived from Cr-based metal-organic frameworks (MIL-101(Cr)) precursor. When applied as cathode catalysts in rechargeable Li-O{sub 2} batteries, the electrode with Cr{sub 2}O{sub 3}@OPC composites catalyst exhibits a low charge and discharge over-potential, high discharge capacity and excellent cycling stability. What's more, the electrode with Cr{sub 2}O{sub 3}@OPC composite shows a discharge capacity up to ∼4800 mAh g{sub (catalyst} {sub +} {sub carbon)}{sup −1} at a current density of 0.1 mA cm{sup −2}, and exhibits a very stable discharge voltage plateau of 2.7 V and a charge voltage plateau of ∼3.9 V. With the addition of Cr{sub 2}O{sub 3}@OPC composite, the Li-O{sub 2} batteries can obtain good cycle performance over 50 cycles at a fixed capacity of 800 mAh g{sub (catalyst} {sub +} {sub carbon)}{sup −1}. These results indicating that the Cr{sub 2}O{sub 3}@OPC composite derived from MIL-101(Cr) would be a promising catalyst for Li-O{sub 2} batteries. - Highlights: • The Cr{sub 2}O{sub 3}@C composites were prepared by the pyrolysis of Cr-MIL-101. • The Cr{sub 2}O{sub 3}@C composites possess octahedral shape consisted of Cr{sub 2}O{sub 3}@C nanoparticle. • The Cr{sub 2}O{sub 3}@C composites have mesoporous structure with large specific area. • The Cr{sub 2}O{sub 3}@C composites have an excellent intrinsic electrocatalytic activity. • The Cr{sub 2}O{sub 3}@C electrode exhibits great cycling performance.

  8. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance

    Science.gov (United States)

    Shin, Hyun-Seop; Jung, Kyu-Nam; Jo, Yong Nam; Park, Min-Sik; Kim, Hansung; Lee, Jong-Won

    2016-01-01

    There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g−1 at a current density of 100 mA g−1 and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour. PMID:27189834

  9. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  10. Energy recovery storage systems in electrical vehicles with batteries; Tecnicas de armazenamiento de energia em veiculos electricos a baterias

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, M.; Maia, J.; Foito, D.

    2004-07-01

    In this paper are presented three energy recovery storage systems that can be used in electrical vehicles with batteries. The first storage system uses ultra capacitors that is electrical energy storage, the second system is based on superconductivity magnetic storage, and the third system uses on kinetic energy stored in flywheels. It is also presented the power electronics needed to perform the energy systems. (Author)

  11. State-of-Charge Balancing Control of a Modular Multilevel Converter with an Integrated Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Hui Liang

    2018-04-01

    Full Text Available With the fast development of the electric vehicle industry, the reuse of second-life batteries in vehicles are becoming more attractive, however, both the state-of-charge (SOC inconsistency and the capacity inconsistency of second-life batteries have limits in their utilization. This paper focuses on the second-life batteries applied battery energy storage system (BESS based on modular multilevel converter (MMC. By analyzing the power flow characteristics among all sources within the MMC-BESS, a three-level SOC equilibrium control strategy aiming to battery capacity inconsistency is proposed to balance the energy of batteries, which includes SOC balance among three-phase legs, SOC balance between the upper and lower arms of each phase, and SOC balance of submodules within each arm. In battery charging and discharging control, by introducing power regulations based on battery capacity proportion of three-phase legs, capacity deviation between the upper and lower’s arm, and the capacity coefficient of the submodule into the SOC feedback control loop, SOC balance of all battery modules is accomplished, thus effectively improving the energy utilization of second-life battery energy storage system. Finally, the effectiveness and feasibility of the proposed methods are verified by results obtained from simulations and the experimental platform.

  12. Electrochemical performance of a rechargeable lithium battery containing a Li Mn{sub 2} O{sub 4} cathode; Desempenho eletroquimico de uma bateria recarregavel de litio com catodo de LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Fabio A.; Ferracin, Luiz C.; Brazuna, Priscila R.; Bocchi, Nerilso [Sao Carlos Univ., SP (Brazil). Dept. de Quimica. Lab. de Pesquisas em Eletroquimica

    1999-07-01

    This paper reports the evaluation of a rechargeable lithium battery, containing a Li Mn{sub 2} O{sub 4} cathode obtained from the {epsilon}-Mn O{sub 2}, through measurements of galvanostatic charge and discharge. The cathode presented a satisfactory electrochemical performance with charge capacity of approximately 110 m A h g{sup -1}. The Teflon electrochemical cell presented satisfactory results only for the initial charge and discharge cycles.

  13. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  14. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  15. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    Science.gov (United States)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  16. The effect of hydrogenation on the growth of carbon nanospheres and their performance as anode materials for rechargeable lithium-ion batteries

    Science.gov (United States)

    Zhao, Shijia; Fan, Yunxia; Zhu, Kai; Zhang, Dong; Zhang, Weiwei; Chen, Shuanglong; Liu, Ran; Yao, Mingguang; Liu, Bingbing

    2015-01-01

    Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced nanomaterials have rarely been studied. Here we report the synthesis of hydrogenated carbon nanospheres (HCNSs) with different degrees of hydrogenation by a facile solvothermal method, in which C2H3Cl3/C2H4Cl2 was used as the carbon precursor and potassium as the reductant. The hydrogenation level of the obtained nanospheres depends on the reaction temperature and higher temperature leads to lower hydrogenation due to the fact that the breaking of C-H bonds requires more external energy. The reaction temperature also affects the diameter of the HCNSs and larger spheres are produced at higher temperatures. More importantly, the size and the degree of hydrogenation are both critical factors for determining the electrochemical properties of the HCNSs. The nanospheres synthesized at 100 °C have a smaller size and a higher hydrogenation degree and show a capacity of 821 mA h g-1 after 50 cycles, which is significantly higher than that of the HCNSs produced at 150 °C (450 mA h g-1). Our study opens a possible way for obtaining high-performance anode materials for rechargeable lithium-ion batteries.

  17. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  18. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    Science.gov (United States)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  19. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Alfaruqi, Muhammad Hilmy; Rai, Alok Kumar; Mathew, Vinod; Jo, Jeonggeun; Kim, Jaekook

    2015-01-01

    ZnMn 2 O 4 /C nanoparticles are synthesized by one step polyol assisted pyro-synthesis for use as the anode in rechargeable lithium ion batteries without any post heat treatment. The as-prepared ZnMn 2 O 4 /C is tetragonal with a spherical particle size in the range of 10–30 nm. Electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanoparticle electrode delivered an initial charge capacity of 666.1 mAh g −1 and exhibited a capacity retention of ∼81% (539.4 mAh g −1 ) after 50 cycles. The capacity enhancement in the as-prepared ZnMn 2 O 4 /C may be explained on the basis of the polyol medium that enables to develop a sufficient carbon network that can act as electrical conduits during electrochemical reactions. The carbon network appears to enhance the particle-connectivity and hence improve the electronic conductivities

  20. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  1. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  2. Optimal Scheduling of a Multi-Carrier Energy Hub Supplemented By Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper introduces a management model for optimal scheduling of a multi-carrier energy hub. In the proposed hub, three types of assets are considered: dispersed generating systems (DGs) such as micro-combined heat and power (mCHP) units, storage devices such as battery-based electrical storage...... systems (ESSs), and heating/cooling devices such as electrical heater, heat-pumps and absorption chillers. The optimal scheduling and management of the examined energy hub assets in line with electrical transactions with distribution network is modeled as a mixed-integer non-linear optimization problem....... In this regard, optimal operating points of DG units as well as ESSs are calculated based on a cost-effective strategy. Degradation cost of ESSs is also taken into consideration for short-term scheduling. Simulation results demonstrate that including well-planned energy storage options together with optimal...

  3. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries

    International Nuclear Information System (INIS)

    Lopez I, J.

    2007-01-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO 2 , with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al 2 O 3 ; for that the study of the formation of thin films in bilayer form LiMO 2 /AI 2 O 3 is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO 2 it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO 2 , it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li 2 O) obtaining stoichiometric LiNiO 2 . For the formation of the thin films of LiNiO 2 it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO 2 and LiNiO 2 ). (Author)

  4. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    International Nuclear Information System (INIS)

    Zhu, Jiadeng; Lu, Yao; Chen, Chen; Ge, Yeqian; Jasper, Samuel; Leary, Jennifer D.; Li, Dawei; Jiang, Mengjin; Zhang, Xiangwu

    2016-01-01

    Hematite iron oxide (α-Fe_2O_3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g"−"1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe_2O_3 hinder its use in practical batteries. In this study, carbon-coated α-Fe_2O_3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g"−"1 even at superior high current density of 1000 mA g"−"1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe_2O_3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe_2O_3 nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe_2O_3/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe_2O_3/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe_2O_3–C nanofibers maintain high capacity at 1000 mA g"−"1 for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe_2O_3–C nanofibers after 200 cycles.

  5. Water-Lubricated Intercalation in V2 O5 ·nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries.

    Science.gov (United States)

    Yan, Mengyu; He, Pan; Chen, Ying; Wang, Shanyu; Wei, Qiulong; Zhao, Kangning; Xu, Xu; An, Qinyou; Shuang, Yi; Shao, Yuyan; Mueller, Karl T; Mai, Liqiang; Liu, Jun; Yang, Jihui

    2018-01-01

    Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H 2 O on Zn 2+ intercalation into bilayer V 2 O 5 ·nH 2 O is demonstrated. The results suggest that the H 2 O-solvated Zn 2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V 2 O 5 framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg -1 at 0.3 A g -1 . Meanwhile, it can maintain an energy density of 90 Wh kg -1 at a high power density of 6.4 kW kg -1 (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    Science.gov (United States)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  7. Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications

    Directory of Open Access Journals (Sweden)

    Nadia Belmonte

    2017-03-01

    Full Text Available In this paper, hydrogen coupled with fuel cells and lithium-ion batteries are considered as alternative energy storage methods. Their application on a stationary system (i.e., energy storage for a family house and a mobile system (i.e., an unmanned aerial vehicle will be investigated. The stationary systems, designed for off-grid applications, were sized for photovoltaic energy production in the area of Turin, Italy, to provide daily energy of 10.25 kWh. The mobile systems, to be used for high crane inspection, were sized to have a flying range of 120 min, one being equipped with a Li-ion battery and the other with a proton-exchange membrane fuel cell. The systems were compared from an economical point of view and a life cycle assessment was performed to identify the main contributors to the environmental impact. From a commercial point of view, the fuel cell and the electrolyzer, being niche products, result in being more expensive with respect to the Li-ion batteries. On the other hand, the life cycle assessment (LCA results show the lower burdens of both technologies.

  8. Tunable Reaction Potentials in Open Framework Nanoparticle Battery Electrodes for Grid-Scale Energy Storage

    KAUST Repository

    Wessells, Colin D.

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes. © 2012 American Chemical Society.

  9. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  10. Structural and Electrical Properties of Lithium-Ion Rechargeable Battery Using the LiFePO4/Carbon Cathode Material.

    Science.gov (United States)

    Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap

    2015-03-01

    LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.

  11. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  12. Start It up: Flywheel Energy Storage Efficiency

    Science.gov (United States)

    Dunn, Michelle

    2011-01-01

    The purpose of this project was to construct and test an off-grid photovoltaic (PV) system in which the power from a solar array could be stored in a rechargeable battery and a flywheel motor generator assembly. The mechanical flywheel energy storage system would in turn effectively power a 12-volt DC appliance. The voltage and current of…

  13. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  14. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  15. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  16. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  17. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  18. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  19. Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries

    International Nuclear Information System (INIS)

    Li Xiaoxia; Zhu, Aaron Li; Qu Wei; Wang Haijiang; Hui, Rob; Zhang Lei; Zhang Jiujun

    2010-01-01

    In this paper, Magneli phase Ti 4 O 7 was successfully synthesized using a TiO 2 reduction method, and characterized using X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrode coated with this Ti 4 O 7 material showed activities for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). For the ORR, several parameters, including overall electron transfer number, kinetic constants, electron transfer coefficient, and percentage H 2 O 2 production, were obtained using the rotating ring-disk electrode (RRDE) technique and the Koutecky-Levich theory. The overall electron transfer number was found to be between 2.3 and 2.9 in 1, 4, and 6 M KOH electrolytes, suggesting that the ORR process on the Ti 4 O 7 electrode was a mixed process of 2- and 4-electron transfer pathways. Electrochemical durability tests, carried out in highly concentrated KOH electrolyte, confirmed that this Ti 4 O 7 is a stable electrode material, suggesting that it should be a feasible candidate for the air-cathodes of zinc-air batteries. To understand the stability of this material, Raman and XPS spectra were also collected for the Ti 4 O 7 samples before and after the stability tests. The results and analysis revealed that a thin layer of TiO 2 formed on the Ti 4 O 7 surface, which may have prevented further oxidation into the bulk of the Ti 4 O 7 electrode.

  20. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    International Nuclear Information System (INIS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-01-01

    Highlights: • VO_xNTs were hydrothermally prepared using C_1_2H_2_7N as soft template with scalability. • Polypyrrole/VO_xNTs with less C_1_2H_2_7N template and higher conductivity were obtained. • Polypyrrole/VO_xNTs exhibit better performance as cathode for LIBs compared to VO_xNTs. • Further modification to VO_xNTs with desired electrochemical property can be expected. - Abstract: Vanadium oxide nanotubes (VO_xNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VO_xNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C_1_2H_2_7N) and intrinsic low conductivity of VO_x. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VO_xNTs and simultaneously form polypyrrole coating on VO_xNTs, respectively. The resulting polypyrrole/VO_xNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.