WorldWideScience

Sample records for receptor sensitivity autonomic

  1. Beta-adrenergic receptor sensitivity, autonomic balance and serotonergic activity in practitioners of Transcendental Meditation

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.A.

    1989-01-01

    The aim of this thesis was to investigate the acute autonomic effects of the Transcendental Meditation Program (TM) and resolve the conflict arising from discrepant neurochemical and psychophysiological data. Three experimental investigations were performed. The first examined beta{sub 2}-adrenergic receptors (AR's) on peripheral blood lymphocytes, via (I{sup 125})iodocyanopindolol binding, in 10 male mediating and 10 age matched non-meditating control subjects, to test the hypothesis that the long-term practice of TM and the TM Sidhi Program (TMSP) reduces end organ sensitivity to adrenergic agonists. The second investigated respiratory sinus arrhythmia (an indirect measure of cardiac Parasympathetic Nervous System tone), and skin resistance (a measure of Sympathetic Nervous System tone) during periods of spontaneous respiratory apneusis, a phenomenon occurring during TM that is known to mark the subjective experience of transcending. The third was within subject investigation of the acute effects of the TMSP on 5-hydroxytryptamine (5-HT) activity. Platelet 5-HT was assayed by high pressure liquid chromatography with electrochemical detection, plasma prolactin (PL) and lutenizing hormone (LH) by radioimmunoassay, tryptophan by spectrofluorimetry, and alpha-1-acid glycoprotein (AGP, a modulator of 5-HT uptake) by radial immunodiffusion assay.

  2. Cough reflex sensitivity in adolescents with diabetic autonomic neuropathy

    OpenAIRE

    2009-01-01

    Abstract Objective Diabetic autonomic neuropathy (DAN) is one of the chronic complications of diabetes mellitus which can involve one or more organ systems. DAN without apparent symptoms is more often in childhood and adolescence. While heart rate variability (HRV) and Ewing's battery of cardiovascular tests are regarded as a gold standard for the diagnosis of DAN, the examination of cough reflex sensitivity (CRS) is another possibility. The aim of this study was to compare HRV and CRS in chi...

  3. Autonomic Blockade Improves Insulin Sensitivity in Obese Subjects

    Science.gov (United States)

    Gamboa, Alfredo; Okamoto, Luis E.; Arnold, Amy C.; Figueroa, Rocio A.; Diedrich, André; Raj, Satish R.; Paranjape, Sachin Y.; Farley, Ginnie; Abumrad, Naji; Biaggioni, Italo

    2014-01-01

    Obesity is an important risk factor for the development of insulin resistance. Initial compensatory mechanisms include an increase in insulin levels, which are thought to induce sympathetic activation in an attempt to restore energy balance. We have previously shown, however, that sympathetic activity has no beneficial effect on resting energy expenditure in obesity. On the contrary, we hypothesize that sympathetic activation contributes to insulin resistance. To test this hypothesis, we determined insulin sensitivity using a standard hyperinsulinemic euglycemic clamp protocol in obese subjects randomly assigned in a crossover design one month apart to receive saline (intact day) or trimetaphan (4 mg/min IV, autonomic blocked day). Whole body glucose uptake (MBW in mg/kg/min) was used as index of maximal muscle glucose utilization. During autonomic blockade we clamped blood pressure with a concomitant titrated IV infusion of the nitric oxide synthase inhibitor L-NMMA. Of the 21 obese subjects (43±2 years of age, 35±2 kg/m2 BMI) studied fourteen were insulin resistant; they were more obese, had higher plasma glucose and insulin, and higher muscle sympathetic nerve activity (23.3±1.5 vs. 17.2±2.1 burst/min, p=0.03) compared to insulin sensitive subjects. Glucose utilization improved during autonomic blockade in insulin resistant subjects (MBW 3.8±0.3 blocked vs. 3.1±0.3 mg/kg/min intact; p=0.025), with no effect in the insulin sensitive group. These findings support the concept that sympathetic activation contributes to insulin resistance in obesity and may result in a feedback loop whereby the compensatory increase in insulin levels contributes to greater sympathetic activation. PMID:25001269

  4. 17beta-estradiol modulates baroreflex sensitivity and autonomic tone of female rats.

    Science.gov (United States)

    Saleh, T M; Connell, B J

    2000-05-12

    The following experiments examine the role of estrogen as a central modulator of autonomic tone and baroreflex sensitivity in the female rat. Female Sprague-Dawley rats were ovariectomized and then supplemented daily for 7 days with a fixed dose of estrogen (5 microg/kg; sc) to produce a stable level of estrogen similar to that present at proestrous (17 pg/ml). The rats were then anaesthetized with sodium thiobutabarbital (100 mg/kg) and instrumented to record blood pressure, heart rate and both vagal and renal efferent nerve activities. The sensitivity of the cardiac baroreflex was tested using intravenous injection of multiple doses of either phenylephrine hydrochloride or sodium nitroprusside. Estrogen-supplemented female rats exhibited a significantly enhanced BRS as compared to male rats from a previous study (0.78 vs. 0.5). Furthermore, bolus injection of estrogen (1x10(-2) mg/kg; iv) in estrogen-supplemented female rats produced a significant increase in vagal nerve activity and a significant decrease in renal nerve activity which together resulted in a further enhancement of the BRS (0.78 vs. 2.4). Injection of the selective estrogen receptor antagonist, ICI 182,780, into nucleus ambiguus and the intrathecal space of the spinal cord blocked the respective changes in parasympathetic and sympathetic nerve activities indicating that intravenously administered estrogen modulates baseline autonomic tone via the activation of central estrogen receptors.

  5. Cough reflex sensitivity in adolescents with diabetic autonomic neuropathy

    Directory of Open Access Journals (Sweden)

    Ciljakova M

    2009-12-01

    Full Text Available Abstract Objective Diabetic autonomic neuropathy (DAN is one of the chronic complications of diabetes mellitus which can involve one or more organ systems. DAN without apparent symptoms is more often in childhood and adolescence. While heart rate variability (HRV and Ewing's battery of cardiovascular tests are regarded as a gold standard for the diagnosis of DAN, the examination of cough reflex sensitivity (CRS is another possibility. The aim of this study was to compare HRV and CRS in children with diabetes mellitus. Materials and methods Sixty one patients (37 girls, 24 boys aged 15-19 suffering from diabetes mellitus type 1 completed the study. Based on HRV, patients were divided into 2 groups - with DAN (n = 25 and without DAN (n = 32, 4 patients were excluded because of ambiguous results. CRS was studied in each patient by inhalation of gradually increasing concentration of capsaicin. Results Subjects with DAN required a significantly higher concentration of capsaicin needed to evoke 2 coughs (median 625 μmol/l, IQR 68.4-625.0 μmol/l vs. median 29.3 μmol/l, IQR 9.8-156.3 μmol/l, P Conclusion Diabetes mellitus lowers the cough response. Cough reflex sensitivity appears to be another sensitive method for the evaluation of DAN in diabetes.

  6. TSH RECEPTOR GENETIC ALTERATIONS IN THE AUTONOMOUSLY FUNCTIONING THYROID ADENOMAS

    Institute of Scientific and Technical Information of China (English)

    施秉银; 李雪萍; 李社莉; 薛明战; 王毅; 徐莉

    2004-01-01

    Objective To determine the relationship between TSH receptor gene mutations and autonomously functioning thyroid adenomas (AFTAs). Methods The thyroid samples from 14 cases of diagnosed AFTAs were analyzed, with normal thyroid specimens adjacent to the tumors as controls. The 155 base pairs DNA fragments which encompassed the third cytoplasmic loop and the sixth transmembrane segments in the TSH receptor gene exon 10 were amplified by Polymerase chain reaction (PCR) and analyzed by the single-strand conformation polymorphism (SSCP). Direct sequencing of the PCR products was performed with Prism Dye Terminator Cycle Sequencing Core Kit. Results 6 of 14 AFTA specimens displayed abnormal migration in SSCP analysis. In sequence analysis of 3 abnormally migrated samples, one base substitution at nucleotide 1957 (A to C) and two same insertion mutations of one adenosine nucleotide between nucleotide 1972 and 1973 were identified. No mutations were found in controls. Conclusion This study confirmed the presence of TSH receptor gene mutations in AFTAs; both one-point substitution mutation and one-base insertion mutation were found to be responsible for the pathogenesis of AFTAs.

  7. Maternal Sensitivity and Infant Autonomic and Endocrine Stress Responses

    Science.gov (United States)

    Enlow, Michelle Bosquet; King, Lucy; Schreier, Hannah; Howard, Jamie M.; Rosenfield, David; Ritz, Thomas; Wright, Rosalind J.

    2014-01-01

    Background Early environmental exposures may help shape the development of the autonomic nervous system (ANS) and hypothalamic-pituitary-adrenal (HPA) axis, influencing vulnerability for health problems across the lifespan. Little is known about the role of maternal sensitivity in influencing the development of the ANS in early life. Aims To examine associations among maternal sensitivity and infant behavioral distress and ANS and HPA axis reactivity to the Repeated Still-Face Paradigm (SFP-R), a dyadic stress task. Study Design Observational repeated measures study. Subjects Thirty-five urban, sociodemographically diverse mothers and their 6-month-old infants. Outcome Measures Changes in infant affective distress, heart rate, respiratory sinus arrhythmia (RSA), and T-wave amplitude (TWA) across episodes of the SFP-R were assessed. A measure of cortisol output (area under the curve) in the hour following cessation of the SFP-R was also obtained. Results Greater maternal insensitivity was associated with greater infant sympathetic activation (TWA) during periods of stress and tended to be associated with greater cortisol output following the SFP-R. There was also evidence for greater affective distress and less parasympathetic activation (RSA) during the SFP-R among infants of predominantly insensitive mothers. Conclusions Caregiving quality in early life may influence the responsiveness of the sympathetic and parasympathetic branches of the ANS as well as the HPA axis. Consideration of the ANS and HPA axis systems together provides a fuller representation of adaptive versus maladaptive stress responses. The findings highlight the importance of supporting high quality caregiving in the early years of life, which is likely to promote later health. PMID:24794304

  8. Anxiety sensitivity in adolescents with somatoform autonomic dysfunction and adolescents with insulin dependent diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Pisarić Maja

    2011-01-01

    Full Text Available Anxiety sensitivity is defined as a belief that anxiety or fear may cause illness, embarrassment, or additional anxiety. The main purpose of this study was to find out if there were differences among adolescents with insulin dependent diabetes mellitus, adolescents with somatoform autonomic dysfunction and their healthy peers in different aspects of psychological functioning and anxiety sensitivity. The sample consisted of 93 subjects, aged 12 to 16. Hamburg Neuroticism and Extraversion Scale, Child Behaviour Checklist and Childhood Anxiety Sensitivity Index were administrated. The adolescents with somatoform autonomic dysfunction had significantly higher scores on neuroticism scale, different Child Behaviour Checklist subscales, and on anxiety sensitivity. Both groups with diagnosed illness had lower scores on extraversion scale compared to healthy peers. This study has shown that the adolescents with somatoform autonomic dysfunction are more prone to fears regarding bodily functioning, and that they are at a higher risk of developing an anxiety disorder.

  9. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Klippel, Brunella F; Duemke, Licia B; Leal, Marcos A; Friques, Andreia G F; Dantas, Eduardo M; Dalvi, Rodolfo F; Gava, Agata L; Pereira, Thiago M C; Andrade, Tadeu U; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2016-01-01

    It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1-adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively

  10. 617-R2 Mineralocorticoid Receptor Activation Contributes to the Supine Hypertension of Autonomic Failure

    Science.gov (United States)

    Arnold, Amy C.; Okamoto, Luis E.; Gamboa, Alfredo; Black, Bonnie K.; Raj, Satish R.; Elijovich, Fernando; Robertson, David; Shibao, Cyndya A.; Biaggioni, Italo

    2016-01-01

    Primary autonomic failure is characterized by disabling orthostatic hypotension; but at least half of these patients have paradoxical supine hypertension. Renin-angiotensin mechanisms were not initially thought to contribute to this hypertension, as plasma renin activity is often undetectable in autonomic failure. Plasma aldosterone levels are normal, however, and we recently showed that plasma angiotensin II is elevated and acts at AT1 receptors to contribute to hypertension in these patients. Since aldosterone and angiotensin II can also bind mineralocorticoid receptors to elevate blood pressure, we hypothesized that mineralocorticoid receptor activation plays a role in the hypertension of autonomic failure. To test this hypothesis, we determined the acute effects of the mineralocorticoid receptor antagonist eplerenone (50 mg, oral) versus placebo on supine blood pressure in a randomized, double blind, crossover study. Medications were given at 8:00 PM with blood pressure recorded every 2 hours for 12 hours. Ten primary autonomic failure patients with supine hypertension completed this study (7 Pure Autonomic Failure, 2 Multiple System Atrophy, 1 Parkinson’s disease; 7 male; 70±2 years of age). Eplerenone maximally reduced supine systolic blood pressure by 32±6 mmHg at 8 hours after administration (vs. 8±10 mmHg placebo, p=0.016), with no effect on nocturia (12-hour urine volume: 985±134 placebo vs. 931±94 ml eplerenone, p=0.492; nocturnal weight loss: −1.19±0.15 placebo vs. −1.18±0.15 kg eplerenone, p=0.766). These findings suggest that inappropriate mineralocorticoid receptor activation contributes to the hypertension of autonomic failure, likely independent of canonical mineralocorticoid effects, and provides rationale for use of eplerenone in these patients. PMID:26644241

  11. Mineralocorticoid Receptor Activation Contributes to the Supine Hypertension of Autonomic Failure.

    Science.gov (United States)

    Arnold, Amy C; Okamoto, Luis E; Gamboa, Alfredo; Black, Bonnie K; Raj, Satish R; Elijovich, Fernando; Robertson, David; Shibao, Cyndya A; Biaggioni, Italo

    2016-02-01

    Primary autonomic failure is characterized by disabling orthostatic hypotension, but at least half of these patients have paradoxical supine hypertension. Renin-angiotensin mechanisms were not initially thought to contribute to this hypertension because plasma renin activity is often undetectable in autonomic failure. Plasma aldosterone levels are normal, however, and we recently showed that plasma angiotensin II is elevated and acts at AT1 (angiotensin type 1) receptors to contribute to hypertension in these patients. Because aldosterone and angiotensin II can also bind mineralocorticoid receptors to elevate blood pressure, we hypothesized that mineralocorticoid receptor activation plays a role in the hypertension of autonomic failure. To test this hypothesis, we determined the acute effects of the mineralocorticoid receptor antagonist eplerenone (50 mg, oral) versus placebo on supine blood pressure in a randomized, double-blind, crossover study. Medications were given at 8:00 pm with blood pressure recorded every 2 hours for 12 hours. Ten primary autonomic failure patients with supine hypertension completed this study (7 pure autonomic failure, 2 multiple system atrophy, 1 parkinson's disease; 7 male; 70±2 years of age). Eplerenone maximally reduced supine systolic blood pressure by 32±6 mm Hg at 8 hours after administration (versus 8±10 mm Hg placebo, P=0.016), with no effect on nocturia (12-hour urine volume: 985±134 mL placebo versus 931±94 mL eplerenone, P=0.492; nocturnal weight loss: -1.19±0.15 kg placebo versus -1.18±0.15 kg eplerenone, P=0.766). These findings suggest that inappropriate mineralocorticoid receptor activation contributes to the hypertension of autonomic failure, likely independent of canonical mineralocorticoid effects, and provides rationale for use of eplerenone in these patients.

  12. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio;

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...

  13. Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Hijzen, T.H.; Oosting, R.S.; Maes, R.A.A.; Gugten, J. van der; Olivier, B.

    2002-01-01

    5-HT(1A) receptor knockout (KO) mice have been described as more anxious in various anxiety paradigms. Because anxiety is often associated with autonomic changes like elevated body temperature and tachycardia, radiotelemetry was used to study these parameters in wild type (WT) and KO mice in stress-

  14. Characterisation of the Redox Sensitive NMDA Receptor

    KAUST Repository

    Alzahrani, Ohood

    2016-05-01

    Glucose entry into the brain and its subsequent metabolism to L-lactate, regulated by astrocytes, plays a major role in synaptic plasticity and memory formation. A recent study has shown that L-lactate produced by the brain upon stimulation of glycolysis, and glycogen-derived L-lactate from astrocytes and its transport into neurons, is crucial for memory formation. A recent study revealed the molecular mechanisms that underlie the role of L-lactate in neuronal plasticity and long-term memory formation. L-lactate was shown to induce a cascade of molecular events via modulation of redox-sensitive N-Methyl-D-aspartate (NMDA) receptor activity that was mimicked by nicotinamide adenine dinucleotide hydride (NADH) co-enzyme. This indicated that changes in cellular redox state, following L-lactate transport inside the cells and its subsequent metabolism, production of NADH, and favouring a reduced state are the key effects of L-lactate. Therefore, we are investigating the role of L-lactate in modulating NMDA receptor function via redox modulatory sites. Accordingly, crucial redox-sensitive cysteine residues, Cys320 and Cys87, of the NR2A NMDA receptor subunit are mutated using site-directed mutation, transfected, and expressed in HEK293 cells. This cellular system will then be used to characterise and monitor its activity upon Llactate stimulation, compared to the wild type. This will be achieved by calcium imaging, using fluorescent microscopy. Our data shows that L-lactate potentiated NMDA receptor activity and increased intracellular calcium influx in NR1/NR2A wild type compared to the control condition (WT NR1/NR2A perfused with (1μM) glutamate and (1μM) glycine agonist only), showing faster response initiation and slower decay rate of the calcium signal to the baseline. Additionally, stimulating with L-lactate associated with greater numbers of cells having high fluorescent intensity (peak amplitude) compared to the control. Furthermore, L-lactate rescued the

  15. Cytisine induces autonomic cardiovascular responses via activations of different nicotinic receptors.

    Science.gov (United States)

    Li, Yi-Fan; Lacroix, Carly; Freeling, Jessica

    2010-04-19

    Nicotinic cholinergic receptors mediate autonomic transmission at ganglia. However, whether different subtypes of nicotinic cholinergic receptors expressed in autonomic ganglia elicit distinct roles in mediating sympathetic and parasympathetic regulations remain to be defined. In this study, we observed that different subtypes of nicotinic receptors were responsible for the sympathetic and parasympathetic cardiovascular responses. In urethane anesthetized mice, intravenous injection with cytisine, a non-selective nicotinic agonist, induced a brief but pronounced decrease in heart rate, followed by increases in heart rate and arterial blood pressure. The bradycardic response was blocked by atropine, and the pressor response was blocked by prazosin, confirming that these responses were parasympathetic and sympathetic activities, respectively. Hexamethonium, a ganglionic blocker, blocked both sympathetic and parasympathetic responses. Pretreatment with methyllycaconitine citrate, a selective alpha7 nicotinic receptor antagonist, significantly attenuated cytisine-induced sympathetic response with little effect on the parasympathetic response. In contrast, pretreatment with dihydro-beta-erythroidine hydrobromide, a selective alpha4beta2 nicotinic receptor antagonist, blocked cytisine-induced parasympathetic response but not the sympathetic response. Pretreatment with dihydro-beta-erythroidine hydrobromide also blocked baroreflex associated parasympathetic bradycardic response. Moreover, treatment with nicotine induced a bradycardic response without a significant pressor response, which was also attenuated by dihydro-beta-erythroidine hydrobromide. Collectively, these data suggest that different nicotinic receptors play distinct roles in sympathetic and parasympathetic ganglia. Specifically, activations of alpha7 and alpha4beta2 nicotinic receptors are involved in cytisine-induced cardiovascular sympathetic and parasympathetic responses, respectively.

  16. PARAMETRIC IDENTIFICATION AND SENSITIVITY ANALYSIS FOR AUTONOMOUS UNDERWATER VEHICLES IN DIVING PLANE

    Institute of Scientific and Technical Information of China (English)

    XU Feng; ZOU Zao-jian; YIN Jian-chuan; CAO Jian

    2012-01-01

    The inherent strongly nonlinear and coupling performance of the Autonomous Underwater Vehicles (AUV),maneuvering motion in the diving plane determines its difficulty in parametric identification.The motion parameters in diving plane are obtained by executing the Zigzag-like motion based on a mathematical model of maneuvering motion.A separate identification method is put forward for parametric identification by investigating the motion equations.Support vector machine is proposed to estimate the hydrodynamic derivatives by analyzing the data of surge,heave and pitch motions.Compared with the standard coefficients,the identified parameters show the validation of the proposed identification method.Sensitivity analysis based on numerical simulation demonstrates that poor sensitive derivative gives bad estimation results.Finally the motion simulation is implemented based on the dominant sensitive derivatives to verify the reconstructed model.

  17. Monitoring of beta-receptor sensitivity in cardiac surgery

    DEFF Research Database (Denmark)

    Yndgaard, S; Lippert, F K; Bigler, Dennis Richard

    1999-01-01

    To determine the repeatability of the hemodynamic response to repeated isoproterenol challenge doses to validate the standardized isoproterenol sensitivity test as an index of cardiovascular beta-receptor function.......To determine the repeatability of the hemodynamic response to repeated isoproterenol challenge doses to validate the standardized isoproterenol sensitivity test as an index of cardiovascular beta-receptor function....

  18. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kong-Ming, E-mail: kmguo@xidian.edu.cn [School of Electromechanical Engineering, Xidian University, P.O. Box 187, Xi' an 710071 (China); Jiang, Jun, E-mail: jun.jiang@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-07-04

    To apply stochastic sensitivity function method, which can estimate the probabilistic distribution of stochastic attractors, to non-autonomous dynamical systems, a 1/N-period stroboscopic map for a periodic motion is constructed in order to discretize the continuous cycle into a discrete one. In this way, the sensitivity analysis of a cycle for discrete map can be utilized and a numerical algorithm for the stochastic sensitivity analysis of periodic solutions of non-autonomous nonlinear dynamical systems under stochastic disturbances is devised. An external excited Duffing oscillator and a parametric excited laser system are studied as examples to show the validity of the proposed method. - Highlights: • A method to analyze sensitivity of stochastic periodic attractors in non-autonomous dynamical systems is proposed. • Probabilistic distribution around periodic attractors in an external excited Φ{sup 6} Duffing system is obtained. • Probabilistic distribution around a periodic attractor in a parametric excited laser system is determined.

  19. Identification of neurons that express ghrelin receptors in autonomic pathways originating from the spinal cord.

    Science.gov (United States)

    Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A

    2012-06-01

    Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with

  20. Adrenergic receptor polymorphisms and autonomic nervous system function in human obesity.

    Science.gov (United States)

    Yasuda, Koichiro; Matsunaga, Tetsuro; Adachi, Tetsuya; Aoki, Norihiko; Tsujimoto, Gozoh; Tsuda, Kinsuke

    2006-09-01

    Adrenergic receptors (ARs) are cell-surface G-protein-coupled receptors for catecholamines. They are essential components of the sympathetic nervous system, organized within the autonomic nervous system (ANS), which controls various physiological functions, including energy homeostasis and metabolism of glucose and lipids. An impairment of ANS function in metabolism is considered to be one of the pathological states associated with human obesity and related metabolic diseases; thus, alterations in AR function might be implicated in the pathophysiology of these diseases. Several studies have suggested an association between obesity phenotypes and some AR polymorphisms. In vitro and human clinical studies indicate that some of these polymorphisms have functional and pathophysiological significance, including the linkage to ANS function. This review summarizes present knowledge of AR polymorphisms related to human obesity, and their association with ANS function.

  1. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors

    Directory of Open Access Journals (Sweden)

    Latha eMukunda

    2016-02-01

    Full Text Available Flying insects have developed a remarkably sensitive olfactory system to detect faint and turbulent odor traces. This ability is linked to the olfactory receptors class of odorant receptors (ORs, occurring exclusively in winged insects. ORs form heteromeric complexes of an odorant specific receptor protein (OrX and a highly conserved co-receptor protein (Orco. The ORs form ligand gated ion channels that are tuned by intracellular signaling systems. Repetitive subthreshold odor stimulation of olfactory sensory neurons sensitizes insect ORs. This OR sensitization process requires Orco activity. In the present study we first asked whether OR sensitization can be monitored with heterologously expressed OR proteins. Using electrophysiological and calcium imaging methods we demonstrate that D. melanogaster OR proteins expressed in CHO cells show sensitization upon repeated weak stimulation. This was found for OR channels formed by Orco as well as by Or22a or Or56a and Orco. Moreover, we show that inhibition of calmodulin (CaM action on OR proteins, expressed in CHO cells, abolishes any sensitization. Finally, we investigated the sensitization phenomenon using an ex vivo preparation of olfactory sensory neurons (OSNs expressing Or22a inside the fly’s antenna. Using calcium imaging, we observed sensitization in the dendrites as well as in the soma. Inhibition of calmodulin with W7 disrupted the sensitization within the outer dendritic shaft, whereas the sensitization remained in the other OSN compartments. Taken together, our results suggest that CaM action is involved in sensitizing the OR complex and that this mechanisms accounts for the sensitization in the outer dendrites, whereas further mechanisms contribute to the sensitization observed in the other OSN compartments. The use of heterologously expressed OR proteins appears to be suitable for further investigations on the mechanistic basis of OR sensitization, while investigations on native

  2. The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway.

    Science.gov (United States)

    Green, Jennifer L; Inoue, Takao; Sternberg, Paul W

    2007-11-01

    Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment.

  3. Highly Sensitive and Miniaturized Fluorescence Detection System with an Autonomous Capillary Fluid Manipulation Chip

    Directory of Open Access Journals (Sweden)

    Ji Fang

    2012-05-01

    Full Text Available This paper presents a novel, highly sensitive and ultra-small fluorescent detection system, including an autonomous capillary fluid manipulation chip. The optical detector integrates a LED light source, all necessary optical components, and a photodiode with preamplifier into one package of about 2 cm × 2 cm × 2 cm. Also, the low-cost and simple pumpless microfluidic device works well in sample preparation and manipulation. This chip consists of capillary stop valves and trigger valves which are fabricated by lithography and then bonded with a polydimethylsiloxane-ethylene oxide polymer polydimethylsiloxane (PEO-PDMS cover. The contact angle of the PEO-PDMS can be adjusted by changing the concentration of the PEO. Hence, the fluidic chip can achieve functionalities such as timing features and basic logical functions. The prototype has been tested by fluorescence dye 5-Carboxyfluorescein (5-FAM dissolved into the solvent DMSO (Dimethyl Sulfoxide. The results prove a remarkable sensitivity at a pico-scale molar, around 1.08 pM. The low-cost and miniaturized optical detection system, with a self-control capillary-driven microfluidic chip developed in this work, can be used as the crucial parts in portable biochemical detection applications and point of care testing.

  4. Analysis of Parameter Sensitivity Using Robust Design Techniques for a Flatfish Type Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    M. Santhakumar

    2009-01-01

    Full Text Available Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUVs. The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modeling, and control of high-performance AUVs. In this paper, the sensitivity of hydrodynamic parameters on the control of a flatfish type AUV is analyzed using robust design techniques such as Taguchi's design method and statistical analysis tools such as Pareto-ANOVA. Since the pitch angle of an AUV is one of the crucial variables in the control applications, the sensitivity analysis of pitch angle variation is studied here. Eight prominent hydrodynamic coefficients are considered in the analysis. The results show that there are two critical hydrodynamic parameters, that is, hydrodynamic force and hydrodynamic pitching moment in the heave direction that influence the performance of a flatfish type AUV. A near-optimal combination of the parameters was identified and the simulation results have shown the effectiveness of the method in reducing the pitch error. These findings are significant for the design modifications as well as controller design of AUVs.

  5. Metabotropic glutamate2/3 receptor agonism facilitates autonomic recovery after pharmacological panic challenge in healthy humans.

    Science.gov (United States)

    Agorastos, Agorastos; Demiralay, Cüneyt; Stiedl, Oliver; Muhtz, Christoph; Wiedemann, Klaus; Kellner, Michael

    2016-05-01

    Group II metabotropic glutamate receptors (mGluR2/3) are suggested to modulate anxiety, arousal, and stress including autonomic control. However, no study has investigated mGluR2/3-related effects on baseline autonomic activity and reactivity to emotional challenge in humans as yet. Using a double-blind, randomized placebo-controlled, cross-over study design, we investigated the influence of a 1-week treatment with the mGluR2/3 agonist LY544344, prodrug of LY354740, on autonomic reactivity to a cholecystokinin tetrapeptide (CCK-4) panic challenge in eight healthy young men. The main outcome measures were time and frequency domain heart rate variability parameters during baseline, CCK-4 challenge, and recovery. There was no evidence for LY544344-mediated effects on baseline and CCK-4 challenge vagal activity, but a significantly lower recovery low frequency (%) and low frequency/high frequency ratio in the LY544344 group, suggesting enhanced autonomic recovery. This pilot study provides first human data indicating that mGluR2/3 agonism is involved in autonomic responsiveness, suggesting an important role of mGluR2/3 in central autonomic regulation.

  6. Cell death sensitization of leukemia cells by opioid receptor activation

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  7. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  8. NMDA receptor antagonists extend the sensitive period for imprinting.

    Science.gov (United States)

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  9. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  10. Hair receptor sensitivity to changes in laminar boundary layer shape.

    Science.gov (United States)

    Dickinson, B T

    2010-03-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  11. Role of autonomous androgen receptor signaling in prostate cancer initiation is dichotomous and depends on the oncogenic signal.

    Science.gov (United States)

    Memarzadeh, Sanaz; Cai, Houjian; Janzen, Deanna M; Xin, Li; Lukacs, Rita; Riedinger, Mireille; Zong, Yang; DeGendt, Karel; Verhoeven, Guido; Huang, Jiaoti; Witte, Owen N

    2011-05-10

    The steroid hormone signaling axis is thought to play a central role in initiation and progression of many hormonally regulated epithelial tumors. It is unclear whether all cancer-initiating signals depend on an intact hormone receptor signaling machinery. To ascertain whether cell autonomous androgen receptor (AR) is essential for initiation of prostate intraepithelial neoplasia (PIN), the response of AR-null prostate epithelia to paracrine and cell autonomous oncogenic signals was assessed in vivo by using the prostate regeneration model system. Epithelial-specific loss of AR blocked paracrine FGF10-induced PIN, whereas the add back of exogenous AR restored this response. In contrast, PIN initiated by cell-autonomous, chronic-activated AKT developed independent of epithelial AR signaling. Our findings demonstrate a selective role for AR in the initiation of PIN, dependent on the signaling pathways driving tumor formation. Insights into the role of hormone receptor signaling in the initiation of epithelial tumors may help define this axis as a target for chemoprevention of carcinomas.

  12. Trigonometric regressive spectral analysis reliably maps dynamic changes in baroreflex sensitivity and autonomic tone: the effect of gender and age.

    Directory of Open Access Journals (Sweden)

    Manja Reimann

    Full Text Available BACKGROUND: The assessment of baroreflex sensitivity (BRS has emerged as prognostic tool in cardiology. Although available computer-assisted methods, measuring spontaneous fluctuations of heart rate and blood pressure in the time and frequency domain are easily applicable, they do not allow for quantification of BRS during cardiovascular adaption processes. This, however, seems an essential criterion for clinical application. We evaluated a novel algorithm based on trigonometric regression regarding its ability to map dynamic changes in BRS and autonomic tone during cardiovascular provocation in relation to gender and age. METHODOLOGY/PRINCIPAL FINDINGS: We continuously recorded systemic arterial pressure, electrocardiogram and respiration in 23 young subjects (25+/-2 years and 22 middle-aged subjects (56+/-4 years during cardiovascular autonomic testing (metronomic breathing, Valsalva manoeuvre, head-up tilt. Baroreflex- and spectral analysis was performed using the algorithm of trigonometric regressive spectral analysis. There was an age-related decline in spontaneous BRS and high frequency oscillations of RR intervals. Changes in autonomic tone evoked by cardiovascular provocation were observed as shifts in the ratio of low to high frequency oscillations of RR intervals and blood pressure. Respiration at 0.1 Hz elicited an increase in BRS while head-up tilt and Valsalva manoeuvre resulted in a downregulation of BRS. The extent of autonomic adaption was in general more pronounced in young individuals and declined stronger with age in women than in men. CONCLUSIONS/SIGNIFICANCE: The trigonometric regressive spectral analysis reliably maps age- and gender-related differences in baroreflex- and autonomic function and is able to describe adaption processes of baroreceptor circuit during cardiovascular stimulation. Hence, this novel algorithm may be a useful screening tool to detect abnormalities in cardiovascular adaption processes even when

  13. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents.

    Science.gov (United States)

    de Oliveira, Cristiane; Garami, Andras; Lehto, Sonya G; Pakai, Eszter; Tekus, Valeria; Pohoczky, Krisztina; Youngblood, Beth D; Wang, Weiya; Kort, Michael E; Kym, Philip R; Pinter, Erika; Gavva, Narender R; Romanovsky, Andrej A

    2014-03-26

    The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.

  14. Autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1980-01-01

    In order to elucidate the physiological significance of autonomic neuropathy in juvenile diabetics, cardiovascular, hormonal and metabolic functions have been investigated in three groups of juvenile diabetics: One group had no signs of neuropathy, one group had presumably slight autonomic...... neuropathy (reduced beat-to-beat variation in heart rate during hyperventilation) and one group had clinically severe autonomic neuropathy, defined by presence of orthostatic hypotension. In all three experimental situations we found sympathetic dysfunction causing cardiovascular and/or hormonal...... maladjustments in patients with autonomic neuropathy. Regarding metabolic functions we found normal responses to graded exercise and insulin-induced hypoglycemia in patients with autonomic neuropathy in spite of blunted catecholamine responses, suggesting increased sensitivity of glycogen stores and adipose...

  15. Measurements on an autonomous wireless payload at 635 km distance using a sensitive radio telescope

    NARCIS (Netherlands)

    Bentum, Mark J.; Leijtens, Johan; Verhoeven, Chris; Marel, van der Hans

    2011-01-01

    The Delfi-C3 spacecraft carries the first autonomous wireless payload in space. This payload is a wireless sun sensor developed by TNO in the Netherlands. The data captured by the sensor is wirelessly transported to the central computer system inside the spacecraft. Since no additional power supply

  16. Clinical features of autoimmune autonomic ganglionopathy and the detection of subunit-specific autoantibodies to the ganglionic acetylcholine receptor in Japanese patients.

    Directory of Open Access Journals (Sweden)

    Shunya Nakane

    Full Text Available Autoimmune autonomic ganglionopathy (AAG is a rare acquired channelopathy that is characterized by pandysautonomia, in which autoantibodies to ganglionic nicotinic acetylcholine receptors (gAChR may play a central role. Radioimmunoprecipitation (RIP assays have been used for the sensitive detection of autoantibodies to gAChR in the serum of patients with AAG. Here, we developed luciferase immunoprecipitation systems (LIPS to diagnose AAG based on IgGs to both the α3 and β4 gAChR subunits in patient serum. We reviewed the serological and clinical data of 50 Japanese patients who were diagnosed with AAG. With the LIPS testing, we detected anti-α3 and -β4 gAChR antibodies in 48% (24/50 of the patients. A gradual mode of onset was more common in the seropositive group than in the seronegative group. Patients with AAG frequently have orthostatic hypotension and upper and lower gastrointestinal tract symptoms, with or without anti-gAChR. The occurrence of autonomic symptoms was not significantly different between the seropositive and seronegative group, with the exception of achalasia in three patients from the seropositive group. In addition, we found a significant overrepresentation of autoimmune diseases in the seropositive group and endocrinological abnormalities as an occasional complication of AAG. Our results demonstrated that the LIPS assay was a useful novel tool for detecting autoantibodies against gAChR in patients with AAG.

  17. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization.

    Science.gov (United States)

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix

    2015-10-16

    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.

  18. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity.

  19. Baroreflex Sensitivity And Autonomic Nervous System Function In Carotid Sinus Hypersensitivity

    DEFF Research Database (Denmark)

    Brinth, Louise Schouborg; Pors, Kirsten; Theibel, Ann Cathrine

    2015-01-01

    Syncope in the elderly may be caused by an apparent hypersensitivity in the high pressure baroreflex control of heart rate and blood pressure - carotid sinus hypersensitivity. Previous studies have found ambiguous results regarding the baroreceptor sensitivity in patients with carotid sinus hyper...... sensitivity may not follow the same neuronal pathways as those responding to the crude external pressures applied during carotid sinus massage...

  20. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure.

    Science.gov (United States)

    Jaenisch, Rodrigo B; Hentschke, Vítor S; Quagliotto, Edson; Cavinato, Paulo R; Schmeing, Letiane A; Xavier, Léder L; Dal Lago, Pedro

    2011-12-01

    Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P RMT (P RMT (P RMT (P RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.

  1. Association between depression, pressure pain sensitivity, stress and autonomous nervous system function in stable ischemic heart disease

    DEFF Research Database (Denmark)

    Ballegaard, Søren; Bergmann, Natasha; Karpatschof, Benny

    2016-01-01

    Background: Depression and ischemic heart disease (IHD) are associated with persistent stress and autonomic nervous system (ANS) dysfunction. The former can be measured by pressure pain sensitivity (PPS) of the sternum, and the latter by the PPS and systolic blood pressure (SBP) response to a tilt...... table test (TTT). Beta-blocker treatment reduces the efferent beta-adrenergic ANS function, and thus, the physiological stress response. Objective: To test the effect of beta-blockers on changes in depression score in patients with IHD, as well as the influence on persistent stress and ANS dysfunction....... Methods: Three months of non-pharmacological intervention aiming at reducing PPS and depression score in patients with stable IHD. Beta-blocker users (N = 102) were compared with non-users (N = 75), with respect to signs of depression measured by the Major Depressive Inventory questionnaire (MDI), resting...

  2. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome.

    Science.gov (United States)

    Duncan, Jhodie R; Garland, Marianne; Myers, Michael M; Fifer, William P; Yang, May; Kinney, Hannah C; Stark, Raymond I

    2009-11-01

    During pregnancy, exposure to nicotine and other compounds in cigarette smoke increases the risk of the sudden infant death syndrome (SIDS) two- to fivefold. Serotonergic (5-HT) abnormalities are found, in infants who die of SIDS, in regions of the medulla oblongata known to modulate cardiorespiratory function. Using a baboon model, we tested the hypothesis that prenatal exposure to nicotine alters 5-HT receptor and/or transporter binding in the fetal medullary 5-HT system in association with cardiorespiratory dysfunction. At 87 (mean) days gestation (dg), mothers were continuously infused with saline (n = 5) or nicotine (n = 5) at 0.5 mg/h. Fetuses were surgically instrumented at 129 dg for cardiorespiratory monitoring. Cesarean section delivery and retrieval of fetal medulla were performed at 161 (mean) dg for autoradiographic analyses of nicotinic and 5-HT receptor and transporter binding. In nicotine-exposed fetuses, high-frequency heart rate variability was increased 55%, possibly reflecting increases in the parasympathetic control of heart rate. This effect was more pronounced with greater levels of fetal breathing and age. These changes in heart rate variability were associated with increased 5-HT(1A) receptor binding in the raphé obscurus (P = 0.04) and increased nicotinic receptor binding in the raphé obscurus and vagal complex (P < 0.05) in the nicotine-exposed animals compared with controls (n = 6). The shift in autonomic balance in the fetal primate toward parasympathetic predominance with chronic exposure to nicotine may be related, in part, to abnormal 5-HT-nicotine alterations in the raphé obscurus. Thus increased risk for SIDS due to maternal smoking may be partly related to the effects of nicotine on 5-HT and/or nicotinic receptors.

  3. Autoimmune autonomic disorders.

    Science.gov (United States)

    Mckeon, Andrew; Benarroch, Eduardo E

    2016-01-01

    Autoimmune autonomic disorders occur because of an immune response directed against sympathetic, parasympathetic, and enteric ganglia, autonomic nerves, or central autonomic pathways. In general, peripheral autoimmune disorders manifest with either generalized or restricted autonomic failure, whereas central autoimmune disorders manifest primarily with autonomic hyperactivity. Some autonomic disorders are generalized, and others are limited in their anatomic extent, e.g., isolated gastrointestinal dysmotility. Historically, these disorders were poorly recognized, and thought to be neurodegenerative. Over the last 20 years a number of autoantibody biomarkers have been discovered that have enabled the identification of certain patients as having an autoimmune basis for either autonomic failure or hyperactivity. Peripheral autoimmune autonomic disorders include autoimmune autonomic ganglionopathy (AAG), paraneoplastic autonomic neuropathy, and acute autonomic and sensory neuropathy. AAG manifests with acute or subacute onset of generalized or selective autonomic failure. Antibody targeting the α3 subunit of the ganglionic-type nicotinic acetylcholine receptor (α3gAChR) is detected in approximately 50% of cases of AAG. Some other disorders are characterized immunologically by paraneoplastic antibodies with a high positive predictive value for cancer, such as antineuronal nuclear antibody, type 1 (ANNA-1: anti-Hu); others still are seronegative. Recognition of an autoimmune basis for autonomic disorders is important, as their manifestations are disabling, may reflect an underlying neoplasm, and have the potential to improve with a combination of symptomatic and immune therapies.

  4. Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Andersson, Linus; Claeson, Anna Sara; Dantoft, Thomas Meinertz;

    2016-01-01

    Purpose: Multiple chemical sensitivity (MCS) is a prevalent medically unexplained symptom characterized by symptom reactions to everyday chemical exposure below hygienic thresholds. The aim of this study was to investigate the expressions of hyper-reactivity in MCS during whole-body exposure to l...

  5. GABA(A)-benzodiazepine receptor complex sensitivity in 5-HT(1A) receptor knockout mice on a 129/Sv background.

    NARCIS (Netherlands)

    Pattij, T.; Groenink, L.; Oosting, R.S.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2002-01-01

    Previous studies in 5-HT(1A) receptor knockout (1AKO) mice on a mixed Swiss Websterx129/Sv (SWx129/Sv) and a pure 129/Sv genetic background suggest a differential gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor complex sensitivity in both strains, independent from the anxious phenotype. To

  6. Disconnection between activation and desensitization of autonomic nicotinic receptors by nicotine and cotinine.

    Science.gov (United States)

    Buccafusco, Jerry J; Shuster, Laura C; Terry, Alvin V

    2007-02-08

    Cotinine is the major metabolite of nicotine in humans, and the substance greatly outlasts the presence of nicotine in the body. Recently, cotinine has been shown to exert pharmacological properties of its own that include potential cognition enhancement, anti-psychotic activity, and cytoprotection. Since the metabolite is generally less potent than nicotine in vivo, we considered whether part of cotinine's efficacy could be related to a reduced ability to desensitize nicotinic receptors as compared with nicotine. Rats freely moving in their home cages were instrumented to allow ongoing measurement of mean arterial blood pressure (MAP). The ganglionic stimulant dimethylphenylpiperazinium (DMPP) maximally increased MAP by 25mmHg. Slow (20min) i.v. infusion of nicotine (0.25-1micromol) produced no change in resting MAP, but the pressor response to subsequent injection of DMPP was significantly attenuated in a dose-dependent manner by up to 51%. Pre-infusion of equivalent doses of cotinine produced the same maximal degree of inhibition of the response to DMPP. Discrete i.v. injections of nicotine also produced a dose dependent increase in MAP of up to 43mmHg after the highest tolerated dose. In contrast, injection of cotinine produced no significant change in MAP up to 13 times the highest dose of nicotine. These results illustrate the disconnection between nicotinic receptor activation and receptor desensitization, and they suggest that cotinine's pharmacological actions are either mediated through partial desensitization, or through non-ganglionic subtypes of nicotinic receptors.

  7. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.

    Science.gov (United States)

    Sophocleous, Antonia; Marino, Silvia; Logan, John G; Mollat, Patrick; Ralston, Stuart H; Idris, Aymen I

    2015-09-04

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing.

  8. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    Science.gov (United States)

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation.

  9. Manipulations of extracellular Loop 2 in α1 GlyR ultra-sensitive ethanol receptors (USERs) enhance receptor sensitivity to isoflurane, ethanol, and lidocaine, but not propofol.

    Science.gov (United States)

    Naito, A; Muchhala, K H; Trang, J; Asatryan, L; Trudell, J R; Homanics, G E; Alkana, R L; Davies, D L

    2015-06-25

    We recently developed ultra-sensitive ethanol receptors (USERs) as a novel tool for investigation of single receptor subunit populations sensitized to extremely low ethanol concentrations that do not affect other receptors in the nervous system. To this end, we found that mutations within the extracellular Loop 2 region of glycine receptors (GlyRs) and γ-aminobutyric acid type A receptors (GABAARs) can significantly increase receptor sensitivity to micro-molar concentrations of ethanol resulting in up to a 100-fold increase in ethanol sensitivity relative to wild-type (WT) receptors. The current study investigated: (1) Whether structural manipulations of Loop 2 in α1 GlyRs could similarly increase receptor sensitivity to other anesthetics; and (2) If mutations exclusive to the C-terminal end of Loop 2 are sufficient to impart these changes. We expressed α1 GlyR USERs in Xenopus oocytes and tested the effects of three classes of anesthetics, isoflurane (volatile), propofol (intravenous), and lidocaine (local), known to enhance glycine-induced chloride currents using two-electrode voltage clamp electrophysiology. Loop 2 mutations produced a significant 10-fold increase in isoflurane and lidocaine sensitivity, but no increase in propofol sensitivity compared to WT α1 GlyRs. Interestingly, we also found that structural manipulations in the C-terminal end of Loop 2 were sufficient and selective for α1 GlyR modulation by ethanol, isoflurane, and lidocaine. These studies are the first to report the extracellular region of α1 GlyRs as a site of lidocaine action. Overall, the findings suggest that Loop 2 of α1 GlyRs is a key region that mediates isoflurane and lidocaine modulation. Moreover, the results identify important amino acids in Loop 2 that regulate isoflurane, lidocaine, and ethanol action. Collectively, these data indicate the commonality of the sites for isoflurane, lidocaine, and ethanol action, and the structural requirements for allosteric modulation on

  10. Hair Receptor Sensitivity to Changes in Laminar Boundary Layer Shape (Postprint)

    Science.gov (United States)

    2010-02-01

    mathematical models, which appear to stem from morphological differences between the structural support of bat wing hair receptors and arthropod...copyright owner. Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized...to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric

  11. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors.

    Science.gov (United States)

    Steiner, Alexandre A; Turek, Victoria F; Almeida, Maria C; Burmeister, Jeffrey J; Oliveira, Daniela L; Roberts, Jennifer L; Bannon, Anthony W; Norman, Mark H; Louis, Jean-Claude; Treanor, James J S; Gavva, Narender R; Romanovsky, Andrej A

    2007-07-11

    An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).

  12. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Ahring, Philip K; Christensen, Jeppe K;

    2011-01-01

    interfaces, the (a4)(3)(ß2)(2) receptor contains a third low-sensitivity agonist binding site in the a4a4 interface. Occupation of this site is required for full activation and is responsible for the widened dynamic response range of this receptor subtype. By site-directed mutagenesis, we show that three...... residues, which differ between the a4ß2 and a4a4 sites, control agonist sensitivity. The results presented here provide a basic insight into the function of pentameric ligand-gated ion channels, which enables modulation of the receptors with hitherto unseen precision; it becomes possible to rationally...

  13. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  14. The impact of emotion-related autonomic nervous system responsiveness on pain sensitivity in female patients with fibromyalgia

    NARCIS (Netherlands)

    Middendorp, H. van; Lumley, M.A.; Houtveen, J.H.; Jacobs, J.W.G.; Bijlsma, J.W.J.; Geenen, R.

    2013-01-01

    OBJECTIVE: Patients with fibromyalgia have shown hyporeactive autonomic nervous system (ANS) responses to physical stressors, augmented pain to ANS changes, and heightened negative emotions, which can increase pain. This study examined ANS reactivity to negative emotions and its association with pai

  15. Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface

    Science.gov (United States)

    Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong

    2017-05-01

    Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.

  16. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Directory of Open Access Journals (Sweden)

    Elise Courtot

    2015-12-01

    Full Text Available Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  17. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    Science.gov (United States)

    Courtot, Elise; Charvet, Claude L; Beech, Robin N; Harmache, Abdallah; Wolstenholme, Adrian J; Holden-Dye, Lindy; O'Connor, Vincent; Peineau, Nicolas; Woods, Debra J; Neveu, Cedric

    2015-12-01

    Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.

  18. Variation in mothers' arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition.

    Science.gov (United States)

    Leerkes, E M; Su, J; Calkins, S; Henrich, V C; Smolen, A

    2017-02-01

    We examined the extent to which the arginine vasopressin receptor 1a (AVPR1a) and dopamine receptor D4 (DRD4) were related to sensitive maternal behavior directly or indirectly via maternal social cognition. Participants were 207 (105 European-American and 102 African-American) mothers and their children (52% females). Sensitive maternal behavior was rated and aggregated across a series of tasks when infants were 6 months, 1 year and 2 years old. At 6 months, mothers were interviewed about their empathy, attributions about infant behavior and beliefs about crying to assess their parenting-related social cognition. Mothers with long alleles for AVPR1a and DRD4 engaged in more mother-oriented social cognition (i.e. negative attributions and beliefs about their infants' crying, β = 0.13, P cognition. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor.

    Science.gov (United States)

    Eick, Geeta N; Thornton, Joseph W

    2011-03-01

    Members of the steroid hormone receptor (SR) family activate transcription from different DNA response elements and are regulated by distinct hormonal ligands. Understanding the evolutionary process by which this diversity arose can provide insight into how and why SRs function as they do. Here we review the characteristics of the ancient receptor protein from which the SR family descends by a process of gene duplication and divergence. Several orthogonal lines of evidence - bioinformatic, phylogenetic, and experimental - indicate that this ancient SR had the capacity to activate transcription from DNA estrogen response elements in response to estrogens. Duplication and divergence of the ancestral SR gene subsequently generated new receptors that were activated by other steroid hormones, including progestagens, androgens, and corticosteroids. The androgen and progesterone receptors recruited as their ligands steroids that were previously present as biochemical intermediates in the synthesis of estrogens. This process is an example of molecular exploitation--the evolution of new molecular interactions when an older molecule, which previously had a different function, is co-opted as a binding partner by a newly evolved molecule. The primordial interaction between the ancestral steroid receptor and estrogens may itself have evolved due to an early molecular exploitation event.

  20. Binding-induced autonomous disassembly of aptamer-DNAzyme supersandwich nanostructures for sensitive electrochemiluminescence turn-on detection of ochratoxin A

    Science.gov (United States)

    Chen, Ying; Yang, Mengli; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2013-12-01

    The self-assembled DNA nanostructure has been one of the most interesting research areas in the field of nanoscience, and the application of the DNA self-assembled nanostructures in biosensing is still in the early stage. In this work, based on the target-induced autonomous disassembly of the aptamer-DNAzyme supersandwich nanostructures, we demonstrated a highly sensitive strategy for electrochemiluminescent (ECL) detection of ochratoxin A (OTA). The aptamer-DNAzyme supersandwich nanostructures, which exhibited significant ECL quenching effect toward the oxygen/persulfate (O2/S2O82-) system, were self-assembled on the gold electrode surface. The presence of the target OTA and the exonuclease (RecJf) resulted in autonomous disassembly of the nanostructures and cyclic reuse of OTA, leading to efficient recovery of the ECL emission and highly sensitive detection of OTA. Our developed method also showed high selectivity against other interference molecules and can be applied for the detection of OTA in real red wine samples, which offers the proposed method opportunities for designing new DNA-based nanostructures for biosensing applications.

  1. [Autonomic neuropathies].

    Science.gov (United States)

    Siepmann, T; Penzlin, A I; Illigens, B M W

    2013-07-01

    Autonomic neuropathies are a heterogeneous group of diseases that involve damage of small peripheral autonomic Aδ- and C-fibers. Causes of autonomic nerve fiber damage are disorders such as diabetes mellitus and HIV-infection. Predominant symptoms of autonomic neuropathy are orthostatic hypotension, gastro-intestinal problems, urogenital dysfunction, and cardiac arrhythmia, which can severely impair the quality of life in affected patients. Furthermore, autonomic neuropathies can be induced by autoimmune diseases such as acute inflammatory demyelinating polyneuropathy, hereditary disorders such as the lysosomal storage disorder Fabry disease and hereditary sensory and autonomic neuropathies, as well as certain toxins and drugs.

  2. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  3. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    Science.gov (United States)

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  4. Social functioning and autonomic nervous system sensitivity across vocal and musical emotion in Williams syndrome and autism spectrum disorder.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2016-01-01

    Both Williams syndrome (WS) and autism spectrum disorders (ASD) are associated with unusual auditory phenotypes with respect to processing vocal and musical stimuli, which may be shaped by the atypical social profiles that characterize the syndromes. Autonomic nervous system (ANS) reactivity to vocal and musical emotional stimuli was examined in 12 children with WS, 17 children with ASD, and 20 typically developing (TD) children, and related to their level of social functioning. The results of this small-scale study showed that after controlling for between-group differences in cognitive ability, all groups showed similar emotion identification performance across conditions. Additionally, in ASD, lower autonomic reactivity to human voice, and in TD, to musical emotion, was related to more normal social functioning. Compared to TD, both clinical groups showed increased arousal to vocalizations. A further result highlighted uniquely increased arousal to music in WS, contrasted with a decrease in arousal in ASD and TD. The ASD and WS groups exhibited arousal patterns suggestive of diminished habituation to the auditory stimuli. The results are discussed in the context of the clinical presentation of WS and ASD.

  5. Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning.

    Science.gov (United States)

    Groman, Stephanie M; Lee, Buyean; London, Edythe D; Mandelkern, Mark A; James, Alex S; Feiler, Karen; Rivera, Ronald; Dahlbom, Magnus; Sossi, Vesna; Vandervoort, Eric; Jentsch, J David

    2011-05-18

    Deviations in reward sensitivity and behavioral flexibility, particularly in the ability to change or stop behaviors in response to changing environmental contingencies, are important phenotypic dimensions of several neuropsychiatric disorders. Neuroimaging evidence suggests that variation in dopamine signaling through dopamine D(2)-like receptors may influence these phenotypes, as well as associated psychiatric conditions, but the specific neurocognitive mechanisms through which this influence is exerted are unknown. To address this question, we examined the relationship between behavioral sensitivity to reinforcement during discrimination learning and D(2)-like receptor availability in vervet monkeys. Monkeys were assessed for their ability to acquire, retain, and reverse three-choice, visual-discrimination problems, and once behavioral performance had stabilized, they received positron emission tomography (PET) scans. D(2)-like receptor availability in dorsal aspects of the striatum was not related to individual differences in the ability to acquire or retain visual discriminations but did relate to the number of trials required to reach criterion in the reversal phase of the task. D(2)-like receptor availability was also strongly correlated with behavioral sensitivity to positive, but not negative, feedback during learning. These results go beyond electrophysiological findings by demonstrating the involvement of a striatal dopaminergic marker in individual differences in feedback sensitivity and behavioral flexibility, providing insight into the neural mechanisms that are affected in neuropsychiatric disorders that feature these deficits.

  6. Modified epidermal growth factor receptor (EGFR-bearing liposomes (MRBLs are sensitive to EGF in solution.

    Directory of Open Access Journals (Sweden)

    Albert Wong

    Full Text Available Cancers often overexpress EGF and other growth factors to promote cell replication and migration. Previous work has not produced targeted drug carriers sensitive to abnormal amounts of growth factors. This work demonstrates that liposomes bearing EGF receptors covalently crosslinked to p-toluic acid or methyl-PEO(4-NHS ester (or, in short, MRBLs exhibit an increased rate of release of encapsulated drug compounds when EGF is present in solution. Furthermore, the modified EGF receptors retain the abilities to form dimers in the presence of EGF and bind specifically to EGF. These results demonstrate that MRBLs are sensitive to EGF in solution and indicate that MRBL-reconstituted modified EGF receptors, in the presence of EGF in solution, form dimers which increase MRBL permeability to encapsulated compounds.

  7. Sensitization of rat facial cutaneous mechanoreceptors by activation of peripheral N-methyl-d-aspartate receptors.

    Science.gov (United States)

    Gazerani, Parisa; Dong, Xudong; Wang, Mianwei; Kumar, Ujendra; Cairns, Brian E

    2010-03-10

    The effect of subcutaneous injection of glutamate on the mechanical sensitivity of rat facial cutaneous mechanoreceptors was examined. Individual facial mechanoreceptors were recorded in the trigeminal ganglion of anesthetized Sprague-Dawley rats. An electronic von Frey hair was used to measure the mechanical threshold (MT) of the afferent fibers at baseline and following subcutaneous injection of glutamate (0, 0.01, 0.1, 1M; 10microl) or glutamate (0, 0.1M) plus the competitive N-methyl-d-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV; 0.01M). Subcutaneous injections were randomized and the investigator was unaware of their content. Changes in MT were assessed with a repeated measure ANOVA with time, sex and treatment as factors. Immunohistochemistry was used to confirm NMDA receptor expression by cutaneous nerve fibers. A total of 100 (50 per sex) facial mechanoreceptors were recorded from 61 (32 females, 29 males) rats in two separate experiments. Subcutaneous injections of higher concentrations of glutamate (1, 0.1M) induced a significant mechanical sensitization of skin afferent fibers (compared to 0 and 0.01M). Females (EC(50)=16.2mM) were more sensitive to glutamate than males (EC(50)=73.0mM). Facial cutaneous nerve fibers in both sexes expressed NMDA receptors. APV blocked the mechanical sensitization of the afferent fibers treated by glutamate 0.1M in both sexes with a lower effect in females at a 10-20minute post-injection. Subcutaneous injection of glutamate mechanically sensitizes rat facial cutaneous mechanoreceptors through activation of peripheral NMDA receptors. Peripheral NMDA receptor antagonists may be considered for craniofacial pain.

  8. Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor

    Science.gov (United States)

    Boulin, Thomas; Gielen, Marc; Richmond, Janet E.; Williams, Daniel C.; Paoletti, Pierre; Bessereau, Jean-Louis

    2008-01-01

    Levamisole-sensitive acetylcholine receptors (L-AChRs) are ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junctions of nematodes. They constitute a major drug target for anthelminthic treatments because they can be activated by nematode-specific cholinergic agonists such as levamisole. Genetic screens conducted in Caenorhabditis elegans for resistance to levamisole toxicity identified genes that are indispensable for the biosynthesis of L-AChRs. These include 5 genes encoding distinct AChR subunits and 3 genes coding for ancillary proteins involved in assembly and trafficking of the receptors. Despite extensive analysis of L-AChRs in vivo, pharmacological and biophysical characterization of these receptors has been greatly hampered by the absence of a heterologous expression system. Using Xenopus laevis oocytes, we were able to reconstitute functional L-AChRs by coexpressing the 5 distinct receptor subunits and the 3 ancillary proteins. Strikingly, this system recapitulates the genetic requirements for receptor expression in vivo because omission of any of these 8 genes dramatically impairs L-AChR expression. We demonstrate that 3 α- and 2 non-α-subunits assemble into the same receptor. Pharmacological analysis reveals that the prototypical cholinergic agonist nicotine is unable to activate L-AChRs but rather acts as a potent allosteric inhibitor. These results emphasize the role of ancillary proteins for efficient expression of recombinant neurotransmitter receptors and open the way for in vitro screening of novel anthelminthic agents. PMID:19020092

  9. Coefficient of variation of R-R intervals in electrocardiogram is a sensitive marker of anemia induced by autonomic neuropathy in type 1 diabetes.

    Science.gov (United States)

    Saito, Takatoshi; Tojo, Katsuyoshi; Nishimura, Rimei; Kageyama, Shigeru; Tajima, Naoko

    2007-10-01

    The present study investigated the relationship between hemoglobin (Hb) levels and autonomic failure using a sensitive marker, coefficient of variation of R-R intervals in electrocardiogram (CVR-R) in order to clarify a cause of normocytic normochromic anemia in type 1 diabetic patients without overt nephropathy. We recruited 46 patients with type 1 diabetes and measured creatinine clearance (Ccr), HbA1c, albuminuria, Hb levels and CVR-R of all patients. In addition, the status of diabetic retinopathy and neuropathy were also evaluated. Serum erythropoietin (EPO), Fe, total iron binding capacity, lactate dehydrogenase, total bilirubin levels and number of reticulocytes and mean corpuscular volume were also measured to distinguish types of anemia. To survey the statistical correlation existing between Hb and body mass index (BMI), Ccr, HbA1c, albuminuria or retinopathy, multiple regression analysis was performed. Serum EPO, Fe, TIBC, LDH and TB levels and number of reticulocytes and MCV were within normal limits. Multiple regression analysis disclosed that HbA1c, nephropathy evaluated by albuminuria and Ccr, and retinopathy has no concern with Hb level. There is only significant relationship between Hb levels and CVR-R. Similar results were obtained even if we analyzed a group of male and female separately. We conclude that CVR-R has the strong relationship on anemia without overt nephropathy in type 1 diabetes, indicating that autonomic failure contributes on the progression of anemia via a poor response of EPO to anemia.

  10. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    Science.gov (United States)

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In

  11. Baroreceptor sensitivity and diabetes mellitus.

    Science.gov (United States)

    Rowaiye, Olumide Olatubosun; Jankowska, Ewa Anita; Ponikowska, Beata

    2013-01-01

    Diabetes mellitus (DM) is a disease of increasing incidence and prevalence. Arterial baroreceptors are stretch-sensitive receptors, which in a reflex manner are involved in the homeostatic control of arterial blood pressure. Diabetic subjects have depressed baroreflex sensitivity (BRS), although the exact pathomechanisms are unclear. In this review, we discuss the features, clinicaland prognostic implications of reduced BRS for diabetic patients and the potential involvement of cardiovascular autonomic neuropathy and atherosclerosis. Finally, we demonstrate evidence on interventions (e.g. pioglitazone, alpha-lipoic acid, leptin, fluvastatin, physicaltraining etc.) which could improve BRS and ameliorate cardiovascular autonomic dysfunction in diabetic patients.

  12. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Edmondson, E.A. (Baylor College of Medicine, Houston, TX (USA)); Bonnet, K.A.; Friedhoff, A.J. (New York Univ. School of Medicine, NY (USA))

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in {sup 3}H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine.

  13. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  14. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Science.gov (United States)

    Duguet, Thomas B; Charvet, Claude L; Forrester, Sean G; Wever, Claudia M; Dent, Joseph A; Neveu, Cedric; Beech, Robin N

    2016-07-01

    Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the clade V parasitic

  15. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    Science.gov (United States)

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals.

  16. The EGFR family of receptors sensitizes cancer cells towards UV light

    Science.gov (United States)

    Petersen, Steffen; Neves-Petersen, Maria Teresa; Olsen, Birgitte

    2008-02-01

    A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both over expressing the EGF receptor, lead to arrest of the EGFR signaling pathway. We have investigated the available sequence and experimental 3D structures available in the Protein Data Bank. The EGF receptor contains a Furin like cystein rich extracellular domain. The cystein content is highly unusual, 25 disulphide bridges supports the 621 amino acid extracellular protein domain scaffold (1mb6.pdb). In two cases a tryptophan is neighboring a cystein in the primary sequence, which in itself is a rare observation. Aromatic residues is observed to be spatially close to all observed 25 disulphide bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs that are sensitive to UV light lead to the prediction that UV light could modify these receptors permanently and stop cancer proliferation. We hereby show that the EGFR family of receptors has the necessary structural motifs that make this family of proteins highly sensitive to UV light.

  17. Sensitive pseudobienzyme electrocatalytic DNA biosensor for mercury(II) ion by using the autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yali [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); College of resources and environments, Southwest University, Chongqing 400715 (China); Gao, Min [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Liu, Guangpeng [College of resources and environments, Southwest University, Chongqing 400715 (China); Chai, Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wei, Shiqing, E-mail: sqwei@swu.edu.cn [College of resources and environments, Southwest University, Chongqing 400715 (China); Yuan, Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-06

    Graphical abstract: -- Highlights: •An ultrasensitive detection system for Hg{sup 2+} detection was presented. •The autonomously assembled hemin/G-quadruplex DNAzyme nanowires were employed. •The DNAzyme simultaneously served as an NADH oxidase and HRP-mimicking DNAzyme. •The DNAzyme nanowires served as carrier for loading substantial redox probe Thi. -- Abstract: Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg{sup 2+}) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg{sup 2+}, the specific coordination between Hg{sup 2+} and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H{sub 2}O{sub 2} in the presence of dissolved O{sub 2}. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H{sub 2}O{sub 2}, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg{sup 2+} detection with the dynamic concentration range spanning from 1.0 ng L{sup −1} to 10 mg L{sup −1} Hg{sup 2+} and a detection limit of 0.5 ng L{sup −1} (2.5 pM) at the 3S{sub blank} level, and it also demonstrated excellent selectivity against other interferential metal ions.

  18. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    Science.gov (United States)

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  19. Related-to-receptor tyrosine kinase receptor regulates hematopoietic stem and progenitor sensitivity to myelosuppressive injury in mice.

    Science.gov (United States)

    Povinelli, Benjamin J; Srivastava, Pragya; Nemeth, Michael J

    2015-03-01

    Maintaining a careful balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) is necessary for lifelong blood formation. Previously, we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a noncanonical Wnt ligand receptor termed 'related-to-receptor tyrosine kinase' (Ryk). Expression of Ryk on HSPCs in vivo is associated with a lower rate of proliferation, and, following treatment with fluorouracil (5-FU), the percentage of Ryk(+/high) HSPCs increased and the percentage of Ryk(-/low) HSPCs decreased. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. We found that Ryk expression on HSPCs is associated with lower rates of apoptosis following 5-FU and radiation. Transient inhibition of Ryk signaling in vivo resulted in increased hematopoietic-stem-cell proliferation and decreased hematopoietic-stem-cell function in bone marrow transplant assays. Furthermore, inhibition of Ryk signaling sensitized HSPCs to 5-FU treatment in association with increased levels of reactive oxygen species. Together, these results demonstrated an association between Ryk expression and survival of HSPCs following suppressive injury. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  20. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  1. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  2. Silencing Receptor EphA2 Enhanced Sensitivity to Lipoplatin™ in Lung Tumor and MPM Cells.

    Science.gov (United States)

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Najmunnisa, Nasreen

    2016-08-08

    Receptor EphA2 is overexpressed in lung cancer and malignant pleural mesothelioma (MPM) which promote tumorogenesis. Lipoplatin™, a new liposomal cisplatin formulation, is used against resistant tumors. Use of cisplatin-based drugs leads to unacceptable toxicities. To improve the effectiveness of Lipoplatin, enhancing the cellular sensitivity of lung tumor and MPM cells is critical. Therefore, we targeted receptor EphA2 by silencing interference RNA (siRNA) and treated tumor cells with Lipoplatin. The combined effects of siRNA-EphA2 and Lipoplatin were determined. We report that silencing EphA2 significantly enhanced the cellular sensitivity of lung tumor and MPM cells to Lipoplatin and maybe a potential therapy for lung cancer.

  3. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    Science.gov (United States)

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors.

  4. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses

    OpenAIRE

    2013-01-01

    G protein-coupled receptor (GPR) 55 is sensitive to certain cannabinoids, it is expressed in the brain and, in cell cultures, it triggers mobilization of intracellular Ca(2+). However, the adaptive neurobiological significance of GPR55 remains unknown. Here, we use acute hippocampal slices and combine two-photon excitation Ca(2+) imaging in presynaptic axonal boutons with optical quantal analysis in postsynaptic dendritic spines to find that GPR55 activation transiently increases release prob...

  5. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion

    OpenAIRE

    McQuaid, Robyn J.; McInnis, Opal A.; Matheson, Kimberly; Anisman, Hymie

    2015-01-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social s...

  6. Specific antibodies and sensitive immunoassays for the human epidermal growth factor receptors (HER2, HER3, and HER4).

    Science.gov (United States)

    Broughton, Marianne Nordlund; Westgaard, Arne; Paus, Elisabeth; Øijordsbakken, Miriam; Henanger, Karoline J; Naume, Bjørn; Bjøro, Trine

    2017-06-01

    The use of trastuzumab in patients with breast cancer that overexpresses human epidermal growth factor receptor 2 has significantly improved treatment outcomes. However, a substantial proportion of this patient group still experiences progression of the disease after receiving the drug. Evaluation of the changes in expression of the human epidermal growth factor receptors could be of interest. Monoclonal antibodies against the extracellular domain of the human growth factor receptors, 2, 3, and 4, have been raised, and specific and sensitive immunoassays have been established. Sera from healthy individuals (Nordic Reference Interval Project and Database) were analyzed in the human epidermal growth factor receptor 2 assay (N = 805) and the human epidermal growth factor receptor 3 and 4 assays (N = 114), and reference limits were calculated. In addition, sera from 208 individual patients with breast cancer were tested in all three assays. Finally, the human epidermal growth factor receptor 2 assay was compared with a chemiluminescent immunoassay for serum human epidermal growth factor receptor 2/neu. Reference values were as follows: human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, human epidermal growth factor receptor 4, human epidermal growth factor receptor 2 and human epidermal growth factor receptor 3 serum levels between the patients with tissue human epidermal growth factor receptor 2-positive and tissue human epidermal growth factor receptor 2-negative ( p = 0.0026, p = 0.000011) tumors, but not in the serum levels of human epidermal growth factor receptor 4 ( p = 0.054). There was good agreement between the in-house human epidermal growth factor receptor 2 assay and the chemiluminescent immunoassay. Our new specific antibodies for all the three human epidermal growth factor receptors may prove valuable in the development of novel anti-human epidermal growth factor receptor targeted therapies with

  7. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  8. Autonomic neuropathies

    Science.gov (United States)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  9. Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation.

    Science.gov (United States)

    Naveilhan, P; Canals, J M; Arenas, E; Ernfors, P

    2001-09-01

    Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.

  10. Relationships between Irritable Bowel Syndrome Pain, Skin Temperature Indices of Autonomic Dysregulation, and Sensitivity to Thermal Cutaneous Stimulation

    Directory of Open Access Journals (Sweden)

    Fong Wong

    2010-01-01

    Full Text Available This study evaluated relationships between irritable bowel syndrome (IBS pain, sympathetic dysregulation, and thermal pain sensitivity. Eight female patients with diarrhea-predominant IBS and ten healthy female controls were tested for sensitivity to thermal stimulation of the left palm. A new method of response-dependent thermal stimulation was used to maintain pain intensity at a predetermined level (35% by adjusting thermal stimulus intensity as a function of pain ratings. Clinical pain levels were assessed prior to each testing session. Skin temperatures were recorded before and after pain sensitivity testing. The temperature of palmar skin dropped (1.5∘C when the corresponding location on the opposite hand of control subjects was subjected to prolonged thermal stimulation, but this response was absent for IBS pain patients. The patients also required significantly lower stimulus temperatures than controls to maintain a 35% pain rating. Baseline skin temperatures of patients were significantly correlated with thermode temperatures required to maintain 35% pain ratings. IBS pain intensity was not significantly correlated with skin temperature or pain sensitivity. The method of response-dependent stimulation revealed thermal hyperalgesia and increased sympathetic tone for chronic pain patients, relative to controls. Similarly, a significant correlation between resting skin temperatures and thermal pain sensitivity for IBS but not control subjects indicates that tonic sympathetic activation and a thermal hyperalgesia were generated by the chronic presence of visceral pain. However, lack of a significant relationship between sympathetic tone and ratings of IBS pain casts doubt on propositions that the magnitude of IBS pain is determined by psychological stress.

  11. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires.

    Science.gov (United States)

    Xie, Shunbi; Chai, Yaqin; Yuan, Yali; Bai, Lijuan; Yuan, Ruo

    2014-06-17

    In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR's ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM-50 nM with a detection limit of 33 fM (defined as S/N=3) for TB.

  12. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhenwen Zhang

    2016-01-01

    Full Text Available Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats.

  13. Rational design of T cell receptors with enhanced sensitivity for antigen.

    Directory of Open Access Journals (Sweden)

    Rajshekhar Alli

    Full Text Available Enhancing the affinity of therapeutic T cell receptors (TCR without altering their specificity is a significant challenge for adoptive immunotherapy. Current efforts have primarily relied on empirical approaches. Here, we used structural analyses to identify a glycine-serine variation in the TCR that modulates antigen sensitivity. A G at position 107 within the CDR3β stalk is encoded within a single mouse and human TCR, TRBV13-2 and TRBV12-5 respectively. Most TCR bear a S107. The S hydroxymethyl side chain intercalates into the core of the CDR3β loop, stabilizing it. G107 TRBV possess a gap in their CDR3β where this S hydroxymethyl moiety would fit. We predicted based on modeling and molecular dynamics simulations that a G107S substitution would increase CDR3β stability and thereby augment receptor sensitivity. Experimentally, a G107S replacement led to an ∼10-1000 fold enhanced antigen sensitivity in 3 of 4 TRBV13-2(+ TCR tested. Analysis of fine specificity indicated a preserved binding orientation. These results support the feasibility of developing high affinity antigen specific TCR for therapeutic purposes through the identification and manipulation of critical framework residues. They further indicate that amino acid variations within TRBV not directly involved in ligand contact can program TCR sensitivity, and suggest a role for CDR3 stability in this programming.

  14. Autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1983-01-01

    The diagnosis of autonomic neuropathy is often difficult to establish, since clinical symptoms generally appear late in the course of the disease, and may be non-specific. A number of recently developed quantifiable and reproducible autonomic nerve function tests are reviewed, with emphasis on th...

  15. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  16. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Science.gov (United States)

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  17. High maltose sensitivity of sweet taste receptors in the Japanese macaque (Macaca fuscata)

    Science.gov (United States)

    Nishi, Emiko; Tsutsui, Kei; Imai, Hiroo

    2016-01-01

    Taste sensitivity differs among animal species depending on feeding habitat. To humans, sucrose is one of the sweetest natural sugars, and this trait is expected to be similar in other primates. However, previous behavioral tests have shown that some primate species have equal preferences for maltose and sucrose. Because sweet tastes are recognized when compounds bind to the sweet taste receptor Tas1R2/Tas1R3, we evaluated the responses of human and Japanese macaque Tas1R2/Tas1R3 to various natural sugars using a heterologous expression system. Human Tas1R2/Tas1R3 showed high sensitivity to sucrose, as expected; however, Japanese macaque Tas1R2/Tas1R3 showed equally high sensitivity to maltose and sucrose. Furthermore, Japanese macaques showed equally high sensitivity to sucrose and maltose in a two-bottle behavioral experiment. These results indicate that Japanese macaques have high sensitivity to maltose, and this sensitivity is directly related to Tas1R2/Tas1R3 function. This is the first molecular biological evidence that for some primate species, sucrose is not the most preferable natural sugar, as it is for humans. PMID:27982108

  18. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1 via β-arrestin-2-mediated cross-talk.

    Directory of Open Access Journals (Sweden)

    Matthew P Rowan

    Full Text Available The transient receptor potential family V1 channel (TRPV1 is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C. Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.

  19. Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites.

    Science.gov (United States)

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S; Peretz, Jackye; Flaws, Jodi A

    2011-04-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary.

  20. A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA

    Science.gov (United States)

    Chen, Ying; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-12-01

    The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the nanostructure tracks and the Nt.AlwI-assisted cleavage of the overhang sequences in the presence of the walker are verified by using polyacrylamide gel electrophoresis analysis and cyclic voltammetry. The successive movement of the walker on the nanostructure tracks leads to continuous removal of massive ECL labels from the sensing electrode, which results in a significantly amplified suppression of the ECL emission for highly sensitive detection of sequence-specific DNA down to 0.19 pM. Results show that this DNA walking machine can also offer single-base mismatch discrimination capability. The successful application of the DNA walking machine for sequence-specific DNA detection can thus offer new opportunities for molecular machines in biosensing applications.The construction of a restriction enzyme (Nt.AlwI)-powered DNA walking machine and its application for highly sensitive detection of DNA are described. DNA nanostructure tracks containing four overhang sequences with electrochemiluminescence (ECL) labels and complementary to the walker (target DNA) are self-assembled on the sensing electrode. The walker hybridizes with the complementary sequences on the tracks and forms specific recognition sites for Nt.AlwI, which cleaves the overhang sequences, releases the ECL labels and enables directional movement of the walker along the tracks. The formation of the

  1. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  2. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  3. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  4. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  5. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    Science.gov (United States)

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  6. Role of dorsal hippocampal orexin-1 receptors in memory restoration induced by morphine sensitization phenomenon.

    Science.gov (United States)

    Alijanpour, S; Tirgar, F; Zarrindast, M-R

    2016-01-15

    The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization.

  7. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block.

    Science.gov (United States)

    Dravid, Shashank M; Erreger, Kevin; Yuan, Hongjie; Nicholson, Katherine; Le, Phuong; Lyuboslavsky, Polina; Almonte, Antoine; Murray, Ernest; Mosely, Cara; Barber, Jeremy; French, Adam; Balster, Robert; Murray, Thomas F; Traynelis, Stephen F

    2007-05-15

    We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.

  8. Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors

    Science.gov (United States)

    Charvet, Claude L.; Robertson, Alan P.; Cabaret, Jacques; Martin, Richard J.; Neveu, Cédric

    2012-01-01

    Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421–1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here

  9. NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Yu Luo

    Full Text Available BACKGROUND: The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR-mediated synaptic plasticity in the mesolimbic dopamine (DA circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre mice. METHODOLOGY AND PRINCIPAL FINDINGS: Using an additional NR1(DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre animals still blocks sensitization to cocaine. CONCLUSIONS/SIGNIFICANCE: These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.

  10. Testosterone and Androgen Receptor Sensitivity in Relation to Hyperactivity Symptoms in Boys with Autism Spectrum Disorders

    Science.gov (United States)

    2016-01-01

    Introduction Autism spectrum disorders (ASD) and hyperactivity symptoms exhibit an incidence that is male-biased. Thus androgen activity can be considered a plausible biological risk factor for these disorders. However, there is insufficient information about the association between increased androgen activity and hyperactivity symptoms in children with ASD. Methods In the present study, the relationship between parameters of androgenicity (plasmatic testosterone levels and androgen receptor sensitivity) and hyperactivity in 60 boys (age 3–15) with ASD is investigated. Given well documented differences in parent and trained examiners ratings of symptom severity, we employed a standardized parent`s questionnaire (Nisonger Child Behavior Rating Form) as well as a direct examiner`s rating (Autism diagnostic observation schedule) for assessment of hyperactivity symptoms. Results Although it was found there was no significant association between actual plasmatic testosterone levels and hyperactivity symptoms, the number of CAG triplets was significantly negatively correlated with hyperactivity symptoms (R2 = 0.118, p = 0.007) in the sample, indicating increased androgen receptor sensitivity in association with hyperactivity symptoms. Direct trained examiner´s assessment appeared to be a relevant method for evaluating of behavioral problems in the investigation of biological underpinnings of these problems in our study. Conclusions A potential ASD subtype characterized by increased rates of hyperactivity symptoms might have distinct etiopathogenesis and require a specific behavioral and pharmacological approach. We propose an increase of androgen receptor sensitivity as a biomarker for a specific ASD subtype accompanied with hyperactivity symptoms. Findings are discussed in terms of their implications for practice and future research. PMID:26910733

  11. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia

    DEFF Research Database (Denmark)

    Nøhr, Mark Klitgaard; Egerod, K L; Christiansen, S H

    2015-01-01

    in the ganglia of the transgenic mice was confirmed by immunohistochemistry using an antibody directed against the receptor protein, and double labeling colocalized mRFP and the FFAR3-protein in the same neurons. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) on extracts from the ganglia...... but also directly by modifying physiological reflexes integrating the peripheral nervous system and the gastro-intestinal tract....

  12. The dopamine D3 receptor knockout mouse mimics aging-related changes in autonomic function and cardiac fibrosis.

    Directory of Open Access Journals (Sweden)

    Tracy L Johnson

    Full Text Available Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr wild type (WT and young (2 mo D3 receptor knockout mice (D3KO. In WT, systolic and diastolic blood pressures and rate-pressure product (RPP significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.

  13. Do smoking intensity-related differences in vigilance indicate altered glucocorticoid receptor sensitivity?

    Science.gov (United States)

    Reuter, Martin; Hennig, Juergen; Netter, Petra

    2004-03-01

    The relationship of critical flicker fusion frequency (CFF) and a pharmacologically induced cortisol suppression by means of dexamethasone (DEX) and metyrapone (MET) was investigated during nicotine deprivation in a between-subjects design in 60 male smokers divided into light, medium and heavy smokers. DEX reduced vigilance in medium smokers and improved it in heavy smokers compared to placebo, whereas MET was more detrimental in heavy smokers. The hypothesis was put forward that the intensity of nicotine consumption is related to differences in glucocorticoid and mineralocorticoid receptor sensitivity.

  14. Clemastine Potentiates the Human P2X7 Receptor by Sensitizing It to Lower ATP Concentrations*

    OpenAIRE

    Nörenberg, Wolfgang; Hempel, Christoph; Urban, Nicole; Sobottka, Helga; Illes, Peter; Schaefer, Michael

    2011-01-01

    P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca2+ entry through P2X7 to lower ATP concentrations. Extrac...

  15. Solubilization of a guanyl nucleotide-sensitive alpha/sub 1/ adrenergic receptor from liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.I.; Moss, J.

    1987-05-01

    Rat liver membranes incubated with norepinephrine before solubilization with digitonin yielded a soluble hormone-receptor complex from which the release of tightly bound norepinephrine was facilitated by guanyl nucleotides. Binding of the alpha/sub 1/-adrenergic receptor antagonist, (/sup 3/H)-prazosin, to the soluble preparation was utilized as a gauge of guanyl nucleotide-induced release of receptor-bound agonist. The following potency series was obtained with regard to the ability of guanyl nucleotides to facilitate (/sup 3/H)-prazosin binding to the solubilized preparation: guanosine 5'-0-(3-thiotriphosphate)(K/sub 1/2/ = 2.5 nM), guanylyl-imidodiphosphate (K/sub 1/2/ = 10 nM), guanosine triphosphate (K/sub 1/2/ = 34 nM) and adenylyl-imidodiphosphate (K/sub 1/2/ > 1 mM). In the presence of guanylyl-imidodiphosphate (0.4 mM), the receptor population displayed monotonic binding parameters with a K/sub d/ for (/sup 3/H)-prazosin of 1.16 nM by Scatchard analysis. Competition curves against (/sup 3/H)-prazosin with the antagonists phentolamine and yohimbine revealed respective K/sub i/'s of .089 ..mu..M and 1.8 ..mu..M; curves with the agonists norepinephrine and isoproterenol yielded respective K/sub i/'s of 6.2..mu..M and 360 ..mu..M. Competition curves performed in the absence of guanyl nucleotide were complex demonstrating an apparent increase in affinity for agonists and an apparent decrease in affinity for antagonists. These curve shifts are consistent with the conversion of receptor to and from the guanyl nucleotide-sensitive state as a function of competing ligand concentration.

  16. Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone.

    Science.gov (United States)

    LaLone, Carlie A; Villeneuve, Daniel L; Cavallin, Jenna E; Kahl, Michael D; Durhan, Elizabeth J; Makynen, Elizabeth A; Jensen, Kathleen M; Stevens, Kyle E; Severson, Megan N; Blanksma, Chad A; Flynn, Kevin M; Hartig, Philip C; Woodard, Jonne S; Berninger, Jason P; Norberg-King, Teresa J; Johnson, Rodney D; Ankley, Gerald T

    2013-11-01

    Spironolactone is a pharmaceutical that in humans is used to treat conditions like hirsutism, various dermatologic afflictions, and female-pattern hair loss through antagonism of the androgen receptor. Although not routinely monitored in the environment, spironolactone has been detected downstream of a pharmaceutical manufacturer, indicating a potential for exposure of aquatic species. Furthermore, spironolactone has been reported to cause masculinization of female western mosquitofish, a response indicative of androgen receptor activation. Predictive methods to identify homologous proteins to the human and western mosquitofish androgen receptor suggest that vertebrates would be more susceptible to adverse effects mediated by chemicals like spironolactone that target the androgen receptor compared with invertebrate species that lack a relevant homolog. In addition, an adverse outcome pathway previously developed for activation of the androgen receptor suggests that androgen mimics can lead to reproductive toxicity in fish. To assess this, 21-d reproduction studies were conducted with 2 fish species, fathead minnow and Japanese medaka, and the invertebrate Daphnia magna. Spironolactone significantly reduced the fecundity of medaka and fathead minnows at 50 μg/L, whereas daphnia reproduction was not affected by concentrations as large as 500 μg/L. Phenotypic masculinization of females of both fish species was observed at 5 μg/L as evidenced by formation of tubercles in fathead minnows and papillary processes in Japanese medaka. Effects in fish occurred at concentrations below those reported in the environment. These results demonstrate how a priori knowledge of an adverse outcome pathway and the conservation of a key molecular target across vertebrates can be utilized to identify potential chemicals of concern in terms of monitoring and highlight potentially sensitive species and endpoints for testing.

  17. Sensitivity of the autonomic nervous system to visual and auditory affect across social and non-social domains in Williams syndrome

    Directory of Open Access Journals (Sweden)

    Anna Maaria Järvinen

    2012-09-01

    Full Text Available Although individuals with Williams syndrome (WS typically demonstrate an increased appetitive social drive, their social profile is characterized by dissociations, including socially fearless behavior coupled with anxiousness, and distinct patterns of peaks and valleys of ability. The aim of this study was to compare the processing of social and non-social visually and aurally presented affective stimuli, at the levels of behavior and autonomic nervous system (ANS responsivity, in individuals with WS contrasted with a typically developing (TD group, with the view of elucidating the highly sociable and emotionally sensitive predisposition noted in WS. Behavioral findings supported previous studies of enhanced competence in processing social over non-social stimuli by individuals with WS; however, the patterns of ANS functioning underlying the behavioral performance revealed a surprising profile previously undocumented in WS. Specifically, increased heart rate (HR reactivity, and a failure for electrodermal activity (EDA to habituate were found in individuals with WS contrasted with the TD group, predominantly in response to visual social-affective stimuli. Within the auditory domain, greater arousal linked to variation in heart beat period was observed in relation to music stimuli in individuals with WS. Taken together, the findings suggest that the pattern of ANS response in WS is more complex than previously noted, with increased arousal to face and music stimuli potentially underpinning the heightened behavioral emotionality to such stimuli. The lack of habituation may underlie the increased affiliation and attraction to faces characterizing individuals with WS. Future research directions are suggested.

  18. Gravity receptors in a microcrustacean water flea - Sensitivity of antennal-socket setae in Daphnia magna

    Science.gov (United States)

    Meyers, D. G.; Farmer, J. M.

    1982-01-01

    Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.

  19. Autonomic dysreflexia

    Science.gov (United States)

    ... most common cause of autonomic dysreflexia (AD) is spinal cord injury. The nervous system of people with AD over-responds to the types of stimulation that do not bother healthy people. Other causes ...

  20. Autonomous search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.

  1. A novel electrochemical aptasensor for highly sensitive detection of thrombin based on the autonomous assembly of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Shunbi, E-mail: xieshunbi@163.com; Chai, Yaqin, E-mail: yaqinchai@swu.edu.cn; Yuan, Yali; Bai, Lijuan; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2014-06-01

    Highlights: • This assay is label-free, the signal can be read out by measuring the electrochemical signal of hemin. • The hemin/G-quadruplex HRP-DNAzyme nanowires were formed via EXPAR reaction and HCR. • The prepared aptasensor exhibited low detection limit and wide linear range to TB. - Abstract: In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H{sub 2}O{sub 2}. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.

  2. Systemic leukotriene B4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat.

    Science.gov (United States)

    Marvar, Paul J; Hendy, Emma B; Cruise, Thomas D; Walas, Dawid; DeCicco, Danielle; Vadigepalli, Rajanikanth; Schwaber, James S; Waki, Hidefumi; Murphy, David; Paton, Julian F R

    2016-10-15

    Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant

  3. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj;

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells...

  4. ( sup 125 I)Iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kahoun, J.R.; Ruoho, A.E. (Univ. of Wisconsin, Madison (United States))

    1992-02-15

    A carrier-free radioiodinated cocaine photoaffinity label, (-)-3-({sup 125}I)iodo-4-azidococaine (({sup 125}I)IACoc), has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM ({sup 125}I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. ({sup 125}I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 {mu}M imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the ({sup 125}I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigma photolabel azido-({sup 3}H)DTG. Kinetic analysis of ({sup 125}I)IACoc binding to rat liver microsomes revealed two sites with K{sub d} values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, ({sup 125}I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization.

  5. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    Science.gov (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  6. The effect of chronic in vivo infusion of forskolin on noradrenergic receptor sensitivity.

    Science.gov (United States)

    Suzdak, P D; Browne, R G

    1985-01-01

    Forskolin, a diterpene isolated from the plant Coleus forskolii, activates the catalytic subunit of adenylate cyclase, resulting in a hormone receptor-independent increase in the intracellular production of cyclic AMP. This study was undertaken to assess the effect of chronic in vivo infusion of forskolin on noradrenergic neuronal activity. Forskolin was infused into the right lateral ventricle of male Sprague Dawley rats via Alzet osmotic minipumps (model 2001) for 7 days. Chronic infusion of forskolin resulted in a decrease in norepinephrine-stimulated cyclic AMP accumulation in the limbic forebrain. Chronic infusion of forskolin also resulted in a decrease in the Bmax for 3H-dihydroalprenolol (3H-DHA) binding to beta-adrenergic receptors in the cerebral cortex and hippocampus, with no apparent change in the Kd values. These data suggest the possibility of a novel therapeutic approach to modulating receptor sensitivity, and that chronic infusion of forskolin may be a useful model for studying the role of cyclic AMP in the control of neuronal activity.

  7. Peripheral injury of pelvic visceral sensory nerves alters GFRa (GDNF family receptor alpha localization in sensory and autonomic pathways of the sacral spinal cord

    Directory of Open Access Journals (Sweden)

    Shelley Lynne Forrest

    2015-04-01

    Full Text Available GDNF (glial cell line-derived neurotrophic factor, neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively and the tyrosine kinase Ret for downstream signalling. In rodent dorsal root ganglia (DRG most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recovery of sensation, and sensory hypersensitivity that contributes to pain. Our previous immunohistochemical studies of spinal cord and sciatic nerve injuries in adult rodents have identified characteristic changes in GFRα1, GFRα2 or GFRα3 in central spinal cord axons of sensory neurons located in dorsal root ganglia. Here we extend and contrast this analysis by studying injuries of the pelvic and hypogastric nerves that contain the majority of sensory axons projecting to the pelvic viscera (e.g., bladder and lower bowel. At 7 d, we detected some effects of pelvic but not hypogastric nerve transection on the ipsilateral spinal cord. In sacral (L6-S1 cord ipsilateral to nerve injury, GFRα1-immunoreactivity (IR was increased in medial dorsal horn and CGRP-IR was decreased in lateral dorsal horn. Pelvic nerve injury also upregulated GFRα1- and GFRα3-IR terminals and GFRα1-IR neuronal cell bodies in the sacral parasympathetic nucleus that provides the spinal parasympathetic preganglionic output to the pelvic nerve. This evidence suggests peripheral axotomy has different effects on somatic and visceral sensory input to the spinal cord, and identifies sensory-autonomic interactions as a possible site of post-injury regulation.

  8. Transcriptomic Evaluation of the Nicotinic Acetylcholine Receptor Pathway in Levamisole-resistant and -sensitive Oesophagostomum dentatum

    Science.gov (United States)

    Romine, Nathan M.; Martin, Richard J.; Beetham, Jeffrey K.

    2014-01-01

    Nematode anthelminthic resistance is widespread for the 3 major drug classes commonly used in agriculture: benzamidazoles, macrocyclic lactones, and nicotinic agonists e.g. levamisole. In parasitic nematodes the genetics of resistance are unknown other than to the benzimidazoles which primarily involve a single gene. In previous work with a levamisole resistant Oesophagostomum dentatum isolate, the nicotinic acetylcholine receptor (nAChR) exhibited decreased levamisole sensitivity. Here, using a transcriptomic approach on the same isolate, we investigate whether that decreased nAChR sensitivity is achieved via a 1-gene mechanism involving 1 of 27 nAChR pathway genes. 3 nAChR receptor subunit genes exhibited ≥ 2-fold change in transcript abundance: acr-21 and acr-25 increased, and unc-63 decreased. 4 SNPs having a ≥ 2-fold change in frequency were also identified. These data suggest that resistance is likely polygenic, involving modulated abundance of multiple subunits comprising the heteropentameric nAChR, and is not due to a simple 1-gene mechanism. PMID:24530453

  9. Strychnine-sensitive glycine receptors mediate the analgesic but not hypnotic effects of emulsified volatile anesthetics.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-01-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in hypnosis and analgesia induced by emulsified volatile anesthetics. After having established the mice model of hypnosis and analgesia by intraperitoneally injecting (i.p.) appropriate doses of ether, enflurane, isoflurane or sevoflurane, we intracerebroventricularly (i.c.v.) or intrathecally (i.t.) injected different doses of strychnine and then observed the effects on the sleeping time using the awaken test and the pain index in hot-plate test (HPPI) using the hot-plate test. In the awaken test, strychnine 1, 2, 4 microg (i.c.v.) had no distinctive effect on the sleeping time of the mice treated with the four emulsified inhalation anesthetics mentioned above (p > 0.05); in the hot-plate test, strychnine 0.1, 0.2, 0.4 microg (i.t.) can significantly and dose-dependently decrease the HPPI of the mice treated with emulsified ether, enflurane and sevoflurane (p strychnine 0.1 microg (i.t.) did not affect the HPPI of the mice treated with emulsified isoflurane (p > 0.05), but 0.2 and 0.4 microg (i.t.) can significantly decrease the HPPI of the mice treatedwith emulsified isoflurane (p strychnine-sensitive glycine receptors may contribute to the analgesic but not to the hypnotic effects induced by ether, enflurane, isoflurane and sevoflurane. Copyright (c) 2007 S. Karger AG, Basel.

  10. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    Science.gov (United States)

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes.

  11. Registered report: androgen receptor splice variants determine taxane sensitivity in prostate cancer

    Directory of Open Access Journals (Sweden)

    Xiaochuan Shan

    2015-09-01

    Full Text Available The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative seeks to address growing concerns about reproducibility in scientific research by conducting replications of recent papers in the field of prostate cancer. This Registered Report describes the proposed replication plan of key experiments from “Androgen Receptor Splice Variants Determine Taxane Sensitivity in Prostate Cancer” by Thadani-Mulero and colleagues (2014 published in Cancer Research in 2014. The experiment that will be replicated is reported in Fig. 6A. Thadani-Mulero and colleagues generated xenografts from two prostate cancer cell lines; LuCaP 86.2, which expresses predominantly the ARv567 splice variant of the androgen receptor (AR, and LuCaP 23.1, which expresses the full length AR as well as the ARv7 variant. Treatment of the tumors with the taxane docetaxel showed that the drug inhibited tumor growth of the LuCaP 86.2 cells but not of the LuCaP 23.1 cells, indicating that expression of splice variants of the AR can affect sensitivity to docetaxel. The Prostate Cancer Foundation-Movember Foundation Reproducibility Initiative is a collaboration between the Prostate Cancer Foundation, the Movember Foundation and Science Exchange, and the results of the replications will be published by PeerJ.

  12. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation.

    Science.gov (United States)

    Wong, Hayes; Dong, Xu-Dong; Cairns, Brian E

    2014-11-01

    Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2-7 m/s) than fast Aδ-fibers (7-12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.

  13. Bridge Technology with TSH Receptor Chimera for Sensitive Direct Detection of TSH Receptor Antibodies Causing Graves' Disease: Analytical and Clinical Evaluation.

    Science.gov (United States)

    Frank, C U; Braeth, S; Dietrich, J W; Wanjura, D; Loos, U

    2015-11-01

    Graves' disease is caused by stimulating autoantibodies against the thyrotropin receptor inducing uncontrolled overproduction of thyroid hormones. A Bridge Assay is presented for direct detection of these thyroid-stimulating immunoglobulins using thyrotropin receptor chimeras. A capture receptor, formed by replacing aa residues 261-370 of the human thyrotropin receptor with residues 261-329 from rat lutropin/choriogonadotropin receptor and fixed to microtiter plates, binds one arm of the autoantibody. The second arm bridges to the signal receptor constructed from thyrotropin receptor (aa 21-261) and secretory alkaline phosphatase (aa 1-519) inducing chemiluminescence. The working range of the assay is from 0.3 IU/l to 50 IU/l with a cutoff of 0.54 IU/l and functional sensitivity of 0.3 IU/l. Sensitivity and specificity are 99.8 and 99.1%, respectively, with a diagnostic accuracy of 0.998. The low grey zone is from 0.3-0.54 IU/l. The stimulatory character of the assayed antibodies is shown through a good correlation (r=0.7079, pGraves' disease, titers are increased in associated eye disease. In 3 hypothyroid patients with sera positive in the thyrotropin receptor competition assay and in the blocking bioassay, antibodies are not detected by the Bridge Assay, while the monoclonal blocking antibody K1-70 was detected. In Hashimoto disease thyrotropin receptor autoantibodies are detected in some patients, but not in goiter. This Bridge Assay delivers good diagnostic accuracy for identification of Graves' disease patients. Its high sensitivity may facilitate early detection of onset, remission, or recurrence of Graves' disease enabling timely adaption of the treatment.Human genes: TSHR, Homo sapiens, acc. no. M31774.1.

  14. Limitations of RNAi of α6 nicotinic acetylcholine receptor subunits for assessing the in vivo sensitivity to spinosad

    Institute of Scientific and Technical Information of China (English)

    Frank D.Rinkevich; Jeffrey G.Scott

    2013-01-01

    Spinosad is a widely used insecticide that exerts its toxic effect primarily through interactions with the nicotinic acetylcholine receptor.The α6 nicotinic acetyl-choline receptor subunit is involved in spinosad toxicity as demonstrated by the high levels of resistance observed in strains lacking α6.RNAi was performed against the Dα6 nicotinic acetylcholine receptor subunit in Drosophila melanogaster using the Ga14-UAS system to examine if RNAi would yield results similar to those of Dα6 null mutants.These Dα6-deficient flies were subject to spinosad contact bioassays to evaluate the role of the Dα6 nicotinic acetylcholine receptor subunit on spinosad sensitivity.The expression of Dα6 was reduced 60%-75% as verified by quantitative polymerase chain reaction.However,there was no change in spinosad sensitivity in D.melanogaster.We repeated RNAi experiments in Tribolium castaneum using injection of dsRNA for Tcasα6.RNAi of Tcasα6 did not result in changes in spinosad sensitivity,similar to results obtained with D.melanogaster.The lack of change in spinosad sensitivity in both D.melanogaster and T.castaneum using two routes of dsRNA administration shows that RNAi may not provide adequate conditions to study the role of nicotinic acetylcholine receptor subunits on insecticide sensitivity due to the inability to completely eliminate expression of the α6 subunit in both species.Potential causes for the lack of change in spinosad sensitivity are discussed.

  15. [Acute Sensory Neuropathies and Acute Autonomic Neuropathies].

    Science.gov (United States)

    Koike, Haruki

    2015-11-01

    From the perspective of neuropathies with an acute onset mimicking that of Guillain-Barré syndrome (GBS), cases with profound sensory and/or autonomic impairment without any significant weakness have been reported. Although the possibility of infectious or toxic etiologies should be carefully excluded, immune mechanisms similar to those in GBS are suggested to be involved in these so-called acute sensory neuropathies and acute autonomic neuropathies. The types of neuropathy include those with predominant sensory manifestations, predominant autonomic manifestations such as autoimmune autonomic ganglionopathy, and both sensory and autonomic manifestations such as acute autonomic and sensory neuropathy. Neuronopathy in the sensory and/or autonomic ganglia (i.e., ganglionopathy) has been commonly suggested in patients with these types of neuropathies. The presence of Anti-GD1b antibodies has been reported in some of the patients with acute sensory neuropathy with deep sensory impairment, whereas anti-ganglionic acetylcholine receptor antibodies are reported to be present in half of the patients with autoimmune autonomic ganglionopathy. The discovery of anti-ganglionic acetylcholine receptor antibodies significantly expanded the spectrum of autoimmune autonomic ganglionopathy. This is because some of the patients with chronic progression mimicking neurodegenerative diseases such as pure autonomic failure were positive for these antibodies. In contrast, pathologically significant autoantibodies have not been identified in acute autonomic and sensory neuropathy. Further studies are needed to clarify the pathogenesis and the spectrum of these types of neuropathies.

  16. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    Science.gov (United States)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  17. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  18. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine.

    Science.gov (United States)

    Xia, Yan; Portugal, George S; Fakira, Amanda K; Melyan, Zara; Neve, Rachael; Lee, H Thomas; Russo, Scott J; Liu, Jie; Morón, Jose A

    2011-11-09

    Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.

  19. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Directory of Open Access Journals (Sweden)

    James J Burston

    Full Text Available Osteoarthritis (OA of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2 receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation

  20. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Science.gov (United States)

    Burston, James J; Sagar, Devi Rani; Shao, Pin; Bai, Mingfeng; King, Emma; Brailsford, Louis; Turner, Jenna M; Hathway, Gareth J; Bennett, Andrew J; Walsh, David A; Kendall, David A; Lichtman, Aron; Chapman, Victoria

    2013-01-01

    Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA

  1. Autonomic Regulation of Splanchnic Circulation

    Directory of Open Access Journals (Sweden)

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  2. Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.

    Science.gov (United States)

    Itoh, K; Chiang, C-Y; Li, Z; Lee, J-C; Dostrovsky, J O; Sessle, B J

    2011-09-29

    Central sensitization is a crucial process underlying the increased neuronal excitability of nociceptive pathways following peripheral tissue injury and inflammation. Our previous findings have suggested that extracellular adenosine 5'-triphosphate (ATP) molecules acting at purinergic receptors located on presynaptic terminals (e.g., P2X2/3, P2X3 subunits) and glial cells are involved in the glutamatergic-dependent central sensitization induced in medullary dorsal horn (MDH) nociceptive neurons by application to the tooth pulp of the inflammatory irritant mustard oil (MO). Since growing evidence indicates that activation of P2X7 receptors located on glia is involved in chronic inflammatory and neuropathic pain, the aim of the present study was to test in vivo for P2X7 receptor involvement in this acute inflammatory pain model. Experiments were carried out in anesthetized Sprague-Dawley male rats. Single unit recordings were made in MDH functionally identified nociceptive neurons for which mechanoreceptive field, mechanical activation threshold and responses to noxious stimuli were tested. We found that continuous intrathecal (i.t.) superfusion over MDH of the potent P2X7 receptor antagonists brilliant blue G and periodated oxidized ATP could each significantly attenuate the MO-induced MDH central sensitization. MDH central sensitization could also be produced by i.t. superfusion of ATP and even more effectively by the P2X7 receptor agonist benzoylbenzoyl ATP. Superfusion of the microglial blocker minocycline abolished the MO-induced MDH central sensitization, consistent with reports that dorsal horn P2X7 receptors are mostly expressed on microglia. In control experiments, superfusion over MDH of vehicle did not produce any significant changes. These novel findings suggest that activation of P2X7 receptors in vivo may be involved in the development of central sensitization in an acute inflammatory pain model.

  3. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion.

    Science.gov (United States)

    McQuaid, Robyn J; McInnis, Opal A; Matheson, Kimberly; Anisman, Hymie

    2015-08-01

    A single-nucleotide polymorphism on the oxytocin receptor gene (OXTR), rs53576, involving a guanine (G) to adenine (A) substitution has been associated with altered prosocial features. Specifically, individuals with the GG genotype (i.e. the absence of the polymorphism) display beneficial traits including enhanced trust, empathy and self-esteem. However, because G carriers might also be more socially sensitive, this may render them more vulnerable to the adverse effects of a negative social stressor. The current investigation, conducted among 128 white female undergraduate students, demonstrated that relative to individuals with AA genotype, G carriers were more emotionally sensitive (lower self-esteem) in response to social ostracism promoted through an on-line ball tossing game (Cyberball). Furthermore, GG individuals also exhibited altered blood pressure and cortisol levels following rejection, effects not apparent among A carriers. The data support the view that the presence of the G allele not only promotes prosocial behaviors but also favors sensitivity to a negative social stressor.

  4. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  5. Behavioural activation system sensitivity is associated with cerebral μ-opioid receptor availability.

    Science.gov (United States)

    Karjalainen, Tomi; Tuominen, Lauri; Manninen, Sandra; Kalliokoski, Kari K; Nuutila, Pirjo; Jääskeläinen, Iiro P; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2016-08-01

    The reinforcement-sensitivity theory proposes that behavioural activation and inhibition systems (BAS and BIS, respectively) guide approach and avoidance behaviour in potentially rewarding and punishing situations. Their baseline activity presumably explains individual differences in behavioural dispositions when a person encounters signals of reward and harm. Yet, neurochemical bases of BAS and BIS have remained poorly understood. Here we used in vivo positron emission tomography with a µ-opioid receptor (MOR) specific ligand [(11)C]carfentanil to test whether individual differences in MOR availability would be associated with BAS or BIS. We scanned 49 healthy subjects and measured their BAS and BIS sensitivities using the BIS/BAS scales. BAS but not BIS sensitivity was positively associated with MOR availability in frontal cortex, amygdala, ventral striatum, brainstem, cingulate cortex and insula. Strongest associations were observed for the BAS subscale 'Fun Seeking'. Our results suggest that endogenous opioid system underlies BAS, and that differences in MOR availability could explain inter-individual differences in reward seeking behaviour.

  6. Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia.

    Science.gov (United States)

    Barrientos, Ruth M; Thompson, Vanessa M; Kitt, Meagan M; Amat, Jose; Hale, Matthew W; Frank, Matthew G; Crysdale, Nicole Y; Stamper, Christopher E; Hennessey, Patrick A; Watkins, Linda R; Spencer, Robert L; Lowry, Christopher A; Maier, Steven F

    2015-03-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher corticosterone levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal corticosterone levels were associated with increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 protein expression, the enzyme that catalyzes glucocorticoid formation and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia and prevented Escherichia coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia.

  7. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  8. Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity.

    Science.gov (United States)

    Walwyn, Wendy M; Chen, Wenling; Kim, Hyeyoung; Minasyan, Ani; Ennes, Helena S; McRoberts, James A; Marvizón, Juan Carlos G

    2016-01-06

    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon

  9. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination.

    Science.gov (United States)

    Refetoff, Samuel; Dumitrescu, Alexandra M

    2007-06-01

    At least six major steps are required for secreted thyroid hormone (TH) to exert its action on target tissues. Mutations interfering with three of these steps have been so far identified. The first recognized defect, which causes resistance to TH, involves the TH receptor beta gene and has been given the acronym RTH. Occurring in approximately 1 per 40,000 newborns, more than 1000 affected subjects, from 339 families, have been identified. The gene defect remains unknown in 15% of subjects with RTH. Two novel syndromes causing reduced sensitivity to TH were recently identified. One, producing severe psychomotor defects in > 100 males from 26 families, is caused by mutations in the cell-membrane transporter of TH, MCT8; the second, affecting the intracellular metabolism of TH in four individuals from two families, is caused by mutations in the SECISBP2 gene, which is required for the synthesis of selenoproteins, including TH deiodinases.

  10. Parkinson's disease: low-dose haloperidol increases dopamine receptor sensitivity and clinical response.

    Science.gov (United States)

    Hudson, Craig J; Seeman, Philip; Seeman, Mary V

    2014-01-01

    Background. It is known that ultra-low doses of haloperidol can cause dopamine supersensitivity of dopamine D2 receptors and related behaviour in animals. Objective. The objective was to determine whether a daily ultra-low dose of 40 micrograms of haloperidol could enhance the clinical action of levodopa in Parkinson's disease patients. Method. While continuing their daily treatment with levodopa, 16 patients with Parkinson's disease were followed weekly for six weeks. They received an add-on daily dose of 40 micrograms of haloperidol for the first two weeks only. The SPES/SCOPA scale (short scale for assessment of motor impairments and disabilities in Parkinson's disease) was administered before treatment and weekly throughout the trial. Results. The results showed a mean decrease in SPES/SCOPA scores after one week of the add-on treatment. Conclusion. SCOPA scores decreased after the addition of low-dose haloperidol to the standard daily levodopa dose. This finding is consistent with an increase in sensitivity of dopamine D2 receptors induced by haloperidol. Such treatment for Parkinson's disease may possibly permit the levodopa dose to be reduced and, thus, delay the onset of levodopa side effects.

  11. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy

    Science.gov (United States)

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho

    2017-10-01

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  12. Imine-linked receptors decorated ZnO-based dye-sensitized solar cells

    Indian Academy of Sciences (India)

    SATBIR SINGH; AMARPAL SINGH; NAVNEET KAUR

    2016-10-01

    This study reports the synthesis, characterization and photophysical properties of imine-linked receptors decorated ZnO nanoparticles using wet precipitation method. Initially, polymer dye 3 was synthesized usingcondensation reaction between 2-furancarboxaldehyde 1 and polyethylenimine 2. The decoration of imine-linked receptors on ZnO nanoparticles (sample A) was characterized and investigated by X-ray diffraction, scanning electronmicroscope and dynamic light scattering spectroscopic studies. Further, polymer dye 3 was added to ruthenium chloride (RuCl$_3$) to form a polymer–ruthenium-based composite dye-capped ZnO nanoparticles (sample B).The optical properties of sample A were evaluated by fluorescence and UV–Vis spectroscopy. The samples A and B were further processed to dye-sensitized solar cells using wet precipitation method. The results of observationsrevealed that the addition of ruthenium–polymer dye molecules increased the light harvesting capacity of ZnO-based DSSCs. A maximum solar power to electricity conversion efficiency ($\\eta$) of 3.83% was recorded for sample B-based DSSCs with ruthenium–metal complex dye as a good photosensitizer. The recorded photovoltaic efficiency of sample B-based DSSCs was enhanced by 1.36% compared to sample A-based DSSCs.

  13. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen.

    Science.gov (United States)

    Jolly, Pawan; Tamboli, Vibha; Harniman, Robert L; Estrela, Pedro; Allender, Chris J; Bowen, Jenna L

    2016-01-15

    This study reports the design and evaluation of a new synthetic receptor sensor based on the amalgamation of biomolecular recognition elements and molecular imprinting to overcome some of the challenges faced by conventional protein imprinting. A thiolated DNA aptamer with established affinity for prostate specific antigen (PSA) was complexed with PSA prior to being immobilised on the surface of a gold electrode. Controlled electropolymerisation of dopamine around the complex served to both entrap the complex, holding the aptamer in, or near to, it's binding conformation, and to localise the PSA binding sites at the sensor surface. Following removal of PSA, it was proposed that the molecularly imprinted polymer (MIP) cavity would act synergistically with the embedded aptamer to form a hybrid receptor (apta-MIP), displaying recognition properties superior to that of aptamer alone. Electrochemical impedance spectroscopy (EIS) was used to evaluate subsequent rebinding of PSA to the apta-MIP surface. The apta-MIP sensor showed high sensitivity with a linear response from 100pg/ml to 100ng/ml of PSA and a limit of detection of 1pg/ml, which was three-fold higher than aptamer alone sensor for PSA. Furthermore, the sensor demonstrated low cross-reactivity with a homologous protein (human Kallikrein 2) and low response to human serum albumin (HSA), suggesting possible resilience to the non-specific binding of serum proteins.

  14. A new sensitive flow-injection chemiluminescence method for the determination of H(2)-receptor antagonists.

    Science.gov (United States)

    Tang, Yu-Hai; Wang, Nan-Nan; Xiong, Xun-Yu; Xiong, Feng-Mei; Sun, Si-Juan

    2007-01-01

    Based on the chemiluminescence (CL) intensity generated from the potassium ferricyanide [K(3)Fe(CN)(6)]-rhodamine 6G system in sodium hydroxide (NaOH) medium, a new sensitive flow-injection chemiluminescence (FI-CL) method has been developed, validated and applied for the determination of three kinds of H(2)-receptor antagonists: cimetidine (CIMT), ranitidine (RANT) hydrochloride and famotidine (FAMT). Under the optimum conditions, the linear range for the determination was 1.0 x 10(-9)-7.0 x 10(-5) g/ml for CIMT, 1.0 x 10(-9)-5.0 x 10(-5) g/mL for RANT hydrochloride and 5.0 x 10(-9)-7.0 x 10(-5) g/mL for FAMT. During 11 repeated measurements of 1.0 x 10(-6) g/mL sample solutions, the relative standard deviations (RSDs) were all <5%. The detection limit was 8.56 x 10(-10) g/mL for CIMT, 8.69 x 10(-10) g/mL for RANT hydrochloride and 2.35 x 10(-9) g/mL for FAMT (S:N = 3). This method has been successfully implemented for the analysis of H(2)-receptor antagonists in pharmaceuticals.

  15. Folate-receptor-targeted NIR-sensitive polydopamine nanoparticles for chemo-photothermal cancer therapy.

    Science.gov (United States)

    Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Nguyen, Van Du; Park, Jong-Oh; Park, Sukho

    2017-10-20

    We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.

  16. Ryk receptor regulates hematopoietic stem and progenitor sensitivity to myelosuppressive injury in mice

    Science.gov (United States)

    Povinelli, Benjamin J.; Srivastava, Pragya; Nemeth, Michael J.

    2017-01-01

    Maintaining a careful balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) is necessary for lifelong blood formation. Previously, we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a non-canonical Wnt ligand receptor termed Ryk. Expression of Ryk on HSPCs in vivo is associated with a lower rate of proliferation and following treatment with fluorouracil (5-FU), the percentage of Ryk+/high HSPCs increased while the percent of Ryk−/low HSPCs decreased. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. We found that Ryk expression on HSPCs is associated with lower rates of apoptosis following 5-FU and radiation. Transient inhibition of Ryk signaling in vivo resulted in increased HSC proliferation and decreased HSC function in bone marrow transplant assays. Furthermore, inhibition of Ryk signaling sensitized HSPCs to 5-FU treatment in association with increased levels of reactive oxygen species. Together, these results demonstrated an association between Ryk expression and survival of HSPCs following suppressive injury. PMID:25461251

  17. Pharmacologic inhibition of ghrelin receptor signaling is insulin sparing and promotes insulin sensitivity.

    Science.gov (United States)

    Longo, Kenneth A; Govek, Elizabeth K; Nolan, Anna; McDonagh, Thomas; Charoenthongtrakul, Soratree; Giuliana, Derek J; Morgan, Kristen; Hixon, Jeffrey; Zhou, Chaoseng; Kelder, Bruce; Kopchick, John J; Saunders, Jeffrey O; Navia, Manuel A; Curtis, Rory; DiStefano, Peter S; Geddes, Brad J

    2011-10-01

    Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice. Antagonist treatment blocked ghrelin-induced and spontaneous food intake; however, the effects on spontaneous feeding were absent in GhrR KO mice, suggesting target-specific effects of the antagonists. Oral administration of antagonists to HFD-fed mice improved insulin sensitivity in both glucose tolerance and glycemic clamp tests. The insulin sensitivity observed was characterized by improved glucose disposal with dramatically decreased insulin secretion. It is noteworthy that these results mimic those obtained in similar tests of HFD-fed GhrR KO mice. HFD-fed mice treated for 56 days with antagonist experienced a transient decrease in food intake but a sustained body weight decrease resulting from decreased white adipose, but not lean tissue. They also had improved glucose disposal and a striking reduction in the amount of insulin needed to achieve this. These mice had reduced hepatic steatosis, improved liver function, and no evidence of systemic toxicity relative to controls. Furthermore, GhrR KO mice placed on low- or high-fat diets had lifespans similar to the wild type, emphasizing the long-term safety of ghrelin receptor blockade. We have therefore demonstrated that chronic pharmacologic blockade of the GhrR is an effective and safe strategy for treating metabolic syndrome.

  18. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    Science.gov (United States)

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  19. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, G H; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect...... immunogold labelling using a monoclonal antibody specific for phenylalkylamine and dihydropyridine sensitive Ca2+ channels. Using the same technique and a monoclonal antibody (bd-17) to the beta 2/beta 3-subunit of the GABAA-receptor, double labelling of Ca2+ channels and GABAA-receptors with gold particles...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  20. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses.

    Science.gov (United States)

    Sylantyev, Sergiy; Jensen, Thomas P; Ross, Ruth A; Rusakov, Dmitri A

    2013-03-26

    G protein-coupled receptor (GPR) 55 is sensitive to certain cannabinoids, it is expressed in the brain and, in cell cultures, it triggers mobilization of intracellular Ca(2+). However, the adaptive neurobiological significance of GPR55 remains unknown. Here, we use acute hippocampal slices and combine two-photon excitation Ca(2+) imaging in presynaptic axonal boutons with optical quantal analysis in postsynaptic dendritic spines to find that GPR55 activation transiently increases release probability at individual CA3-CA1 synapses. The underlying mechanism involves Ca(2+) release from presynaptic Ca(2+) stores, whereas postsynaptic stores (activated by spot-uncaging of inositol 1,4,5-trisphosphate) remain unaffected by GPR55 agonists. These effects are abolished by genetic deletion of GPR55 or by the GPR55 antagonist cannabidiol, a constituent of Cannabis sativa. GPR55 shows colocalization with synaptic vesicle protein vesicular glutamate transporter 1 in stratum radiatum. Short-term potentiation of CA3-CA1 transmission after a short train of stimuli reveals a presynaptic, Ca(2+) store-dependent component sensitive to cannabidiol. The underlying cascade involves synthesis of phospholipids, likely in the presynaptic cell, but not the endocannabinoids 2-arachidonoylglycerol or anandamide. Our results thus unveil a signaling role for GPR55 in synaptic circuits of the brain.

  1. Blockage of Peripheral NPY Y1 and Y2 Receptors Modulates Barorefex Sensitivity of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2013-03-01

    Full Text Available Background/Aims: Abnormal baroreceptor reflex sensitivity (BRS and elevated plasma neuropeptide Y (NPY are prevalent in diabetic patients. The present study was conducted to determine whether NPY Y1 receptor (Y1R and NPY Y2 receptor (Y2R contribute to the regulatin of BRS in diabetic rats. Methods: Diabetes mellitus (DM rats with hyperlipidemia were developed by an emulsion diet enriched with fat, sucrose and fructose followed by streptozocin (STZ. Y1R and Y2R specific antagonists (BIBP 3226 and BIIE 0246 were administered by a mini-osmotic pump. Systolic blood pressure (SBP, heart rate (HR, BRS and heart functions, as well as the plasma NPY and lipid level were measured after treatment for 4 weeks. Results: Both BIBP 3226 and BIIE 0246 treatment reversed the elevated total cholesterol (TC and low density lipoprotein (LDL-C level, and reduced high density lipoprotein (HDL-C level in DM rats. BIIE 0246 may attenuate the increased triglyceride (TG level in DM rats. In addition, neither BIBP 3226 nor BIIE 0246 treatment produced significant effects on BRS, SBP or HR (P>0.05 in DM rats, even after PE and SNP challenge. However, BIBP 3226 and BIIE 0246 further impaired LVSP, LVEDP, +dp/dtmax and -dp/dtmax. Conclusion: This study provided us with the evidence that the inhibition of peripheral Y1R and Y2R did not affect impaired BRS but amplified the deterioration of the compromised cardiac function in STZ-induced DM rats with hyperlipidemia.

  2. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    Science.gov (United States)

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  3. Development of Poliovirus Extraction Method from Stool Extracts by Using Magnetic Nanoparticles Sensitized with Soluble Poliovirus Receptor

    OpenAIRE

    Arita, Minetaro

    2013-01-01

    A method for extracting poliovirus (PV) from stool extracts was developed. Magnetic nanoparticles sensitized with soluble PV receptor efficiently extracted PV pseudovirus (>99% extraction) or endogenous infectious PVs (>90% extraction) from stool extracts. This method would be useful for extraction of PV from crude biological samples.

  4. A polymorphism in the glucocorticoid receptor gene may be associated with an increased sensitivity to glucocorticoids in vivo

    NARCIS (Netherlands)

    Huizenga, NATM; Koper, JW; De Lange, P; Pols, HAP; Stolk, RP; Burger, H; Grobbee, DE; Brinkmann, AO; De Jong, FH; Lamberts, SWJ

    1998-01-01

    We investigated whether a polymorphism at nucleotide position 1220, resulting in an asparagine-to-serine change at codon 363 in the glucocorticoid receptor (GR) gene is associated with an altered sensitivity to glucocorticoids. In a group of 216 elderly persons, 13 heterozygotes for the N363S polymo

  5. Glucocorticoid receptor haplotypes conferring increased sensitivity (Bcll and N363S) are associated with faster progression of multiple sclerosis.

    NARCIS (Netherlands)

    Melief, J.; Koper, J.W.; Endert, E.; Moller, H.; Hamann, J.; Uitdehaag, B.M.; Huitinga, I.

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus–pituitary–adrenal (HPA)-axi

  6. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  7. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    Science.gov (United States)

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  8. Manipulation of norepinephrine metabolism with yohimbine in the treatment of autonomic failure

    Science.gov (United States)

    Biaggioni, I.; Robertson, R. M.; Robertson, D.

    1994-01-01

    It has been postulated that alpha 2-adrenergic receptors play a modulatory role in the regulation of blood pressure. Activation of alpha 2-receptors located in the central nervous system results in inhibition of sympathetic tone and decrease of blood pressure. This indeed may be the mechanism of action of central sympatholytic antihypertensives such as alpha-methyldopa. Presynaptic alpha 2-receptors also are found in adrenergic nerve terminals. These receptors act as a negative feedback mechanism by inhibiting the release of norepinephrine. The relevance of alpha 2-adrenergic receptors for blood pressure regulation can be explored with yohimbine, a selective antagonist of these receptors. Yohimbine increases blood pressure in resting normal volunteers. This effect is associated with an increase in both sympathetic nerve activity, reflecting an increase in central sympathetic outflow, and in norepinephrine spillover, reflecting potentiation of the release of norepinephrine from adrenergic nerve terminals. These actions, therefore, underscore the importance of alpha 2-adrenergic receptors for blood pressure regulation even under resting conditions. Patients with autonomic failure, even those with severe sympathetic deprivation, are hypersensitive to the pressor effects of yohimbine. This increased responsiveness can be explained by sensitization of adrenergic receptors, analogous to denervation supersensitivity, and by the lack of autonomic reflexes that would normally buffer any increase in blood pressure. Preliminary studies suggest that the effectiveness of yohimbine in autonomic failure can be enhanced with monoamine oxidase inhibitors. Used in combination, yohimbine increases norepinephrine release, whereas monoamine oxidase inhibitors inhibit its degradation. Therefore, yohimbine is not only a useful tool in the study of blood pressure regulation, but may offer a therapeutic option in autonomic dysfunction.

  9. Neonatal oxytocin alters subsequent estrogen receptor alpha protein expression and estrogen sensitivity in the female rat.

    Science.gov (United States)

    Perry, Adam N; Paramadilok, Auratip; Cushing, Bruce S

    2009-12-14

    In most species, the effects of oxytocin (OT) on female reproductive behavior are dependent upon estrogen, which increases both OT and OT receptor expression. It is also becoming apparent that OT neurotransmission can influence estrogen signaling, especially during development, as neonatal OT manipulations in prairie voles alter ERalpha expression and estrogen-dependent behaviors. We tested the hypothesis that OT developmentally programs ERalpha expression and estrogen sensitivity in female Sprague-Dawley rats, a species previously used to establish the estrogen-dependence of OT signaling in adulthood. OT treatment for the first postnatal week significantly increased ERalpha-immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), but not in the medial preoptic area (MPOA). Conversely, neonatal OT antagonist (OTA) treatment significantly reduced ERalpha-immunoreactivity in the MPOA, but not in the VMH. Both treatments increased OT-immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN) and reduced estrogen sensitivity, indicated by reduced sexual receptivity following chronic estradiol benzoate (EB) administration. Behavioral deficits in OTA-treated females were apparent during both paced and non-paced tests with 0.5 microg EB (but not 5.0 or 10.0 microg EB), whereas deficits in OT-treated females were only observed during the initial paced test with 0.5 and 5.0 microg EB (but not 10.0 microg EB). The current results demonstrate that OT can positively regulate ERalpha expression within the MPOA and VMH during development; however, endogenous OT selectively programs ERalpha expression within the MPOA. Thus, exogenous OT or OTA exposure during development may have long-term consequences on behavior through stable changes in ERalpha and OT expression.

  10. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP Channels in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2015-12-01

    Full Text Available Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ, the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7-8 subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics.

  11. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity.

    Science.gov (United States)

    Xu, Chuanming; Lu, Aihua; Lu, Xiaohan; Zhang, Linlin; Fang, Hui; Zhou, Li; Yang, Tianxin

    2017-02-01

    A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.

  12. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis.

    Science.gov (United States)

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-08-27

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach.

  13. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    2007-01-01

    Full Text Available Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy. During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  14. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury.

    Directory of Open Access Journals (Sweden)

    Kai Kysenius

    Full Text Available The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.

  15. Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel.

    Science.gov (United States)

    Barhanin, J; Schmid, A; Lombet, A; Wheeler, K P; Lazdunski, M; Ellory, J C

    1983-01-25

    Measurements were made of the molecular sizes of two distinct receptors on the Na+ channel in rat brain synaptosomes that are specific for different neurotoxins. Radiation inactivation of the binding of radiolabeled derivatives of the toxins was consistent with Mr = 260,000 for the tetrodotoxin receptor and Mr = 266,000 for the receptor specific for two scorpion toxins, toxin II from Centruroides suffusus suffusus and toxin gamma from Tityus serrulatus serrulatus. Covalent cross-linking of the latter to its receptor similarly indicated Mr = 270,000. It seems most likely that these two distinct receptors reside on the same molecule.

  16. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  17. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Tanabe, Mitsuo; Nitta, Azusa; Ono, Hideki

    2010-01-01

    Recent evidence indicates that strychnine-sensitive glycine receptors are located in upper brain regions including the hippocampus. Because of excitatory effects of glycine via facilitation of NMDA-receptor function, however, the net effects of increased extracellular glycine on neuronal excitability in either physiological or pathophysiological conditions are mostly unclear. Here, we addressed the potential neuroprotective effect of either exogenous application of glycine and taurine, which are both strychnine-sensitive glycine-receptor agonists, or an endogenous increase of glycine via blockade of glycine transporter 1 (GlyT1) by assessing their ability to facilitate the functional recovery of field excitatory postsynaptic potentials (fEPSPs) after termination of brief oxygen/glucose deprivation (OGD) in the CA1 region in mouse hippocampal slices. Glycine and taurine promoted restoration of the fEPSPs after reperfusion, but this was never observed in the presence of strychnine. Interestingly, glycine and taurine appeared to generate neuroprotective effects only at their optimum concentration range. By contrast, blockade of GlyT1 by N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine or sarcosine did not elicit significant neuroprotection. These results suggest that activation of strychnine-sensitive glycine receptors potentially produces neuroprotection against metabolic stress such as OGD. However, GlyT1 inhibition is unlikely to elicit a sufficient increase in the extracellular level of glycine to generate neuroprotection.

  18. Autonomous Airship

    Directory of Open Access Journals (Sweden)

    Martin POSPÍŠILÍK

    2009-06-01

    Full Text Available This paper describes a project of attaching the autonomous monitoring system to a small helium airship. The airship is capable of independent operating inside a closed hall, being driven by means of ultrasonic detectors. It is accommodated to carry different monitoring units providing students with the opportunity to process various experiments and measurements. In the first experiment, the airship will carry WiFi router, camera and IP Relay by means of which the pertinent control of the airship through external web interface is enabled, independently on the ultrasonic detecting system.

  19. Autonomous Search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the

  20. Homodimerization enhances both sensitivity and dynamic range of the ligand-binding domain of type 1 metabotropic glutamate receptor.

    Science.gov (United States)

    Serebryany, Eugene; Folta-Stogniew, Ewa; Liu, Jian; Yan, Elsa C Y

    2016-12-01

    Cooperativity in ligand binding is a key emergent property of protein oligomers. Positive cooperativity (higher affinity for subsequent binding events than for initial binding) is frequent. However, the symmetrically homodimeric ligand-binding domain (LBD) of metabotropic glutamate receptor type 1 exhibits negative cooperativity. To investigate its origin and functional significance, we measured the response to glutamate in vitro of wild-type and C140S LBD as a function of the extent of dimerization. Our results indicate that homodimerization enhances the affinity of the first, but not the second, binding site, relative to the monomer, giving the dimeric receptor both greater sensitivity and a broader dynamic range.

  1. Group I metabotropic glutamate receptors in the medial prefrontal cortex: role in mesocorticolimbic glutamate release in cocaine sensitization.

    Science.gov (United States)

    Timmer, Kristin M; Steketee, Jeffery D

    2013-12-01

    Cocaine sensitization is associated with increased excitability of pyramidal projection neurons in the medial prefrontal cortex. Such hyperexcitability is presumed to increase glutamatergic input to the nucleus accumbens and ventral tegmental area. This study examined the effects of medial prefrontal cortex Group I metabotropic glutamate receptor activation on glutamate levels in the medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in sensitized and control animals. Male Sprague-Dawley rats received four daily injections of cocaine (15 mg/kg, i.p.) or saline (1 mL/kg i.p.). One, 7, or 21 days from the fourth injection, dual-probe microdialysis experiments were performed wherein Group I metabotropic glutamate receptor agonist DHPG was infused into the medial prefrontal cortex and glutamate levels in this region as well as the nucleus accumbens or ventral tegmental area were examined. Intra-mPFC DHPG infusion increased glutamate levels in the medial prefrontal cortex at 1 and 7 days withdrawal, and in the nucleus accumbens at 21 days withdrawal in sensitized rats. These results suggest Group I metabotropic glutamate receptor activation may contribute to the increased excitability of medial prefrontal cortex pyramidal neurons in sensitized animals.

  2. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2010-08-01

    Full Text Available Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα, is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1 receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFα on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFα. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFα pretreatment had a basal mEPSC frequency of 1.35 ± 0.20 Hz (n = 13, which was significantly higher when compared to a similar population of neurons in control slices (0.76 ± 0.08 Hz; n = 53; P

  3. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear.

    Science.gov (United States)

    Aridon, Paolo; Marini, Carla; Di Resta, Chiara; Brilli, Elisa; De Fusco, Maurizio; Politi, Fausta; Parrini, Elena; Manfredi, Irene; Pisano, Tiziana; Pruna, Dario; Curia, Giulia; Cianchetti, Carlo; Pasqualetti, Massimo; Becchetti, Andrea; Guerrini, Renzo; Casari, Giorgio

    2006-08-01

    Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor alpha 2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic alpha 2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior.

  4. AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice.

    Science.gov (United States)

    Jenda, M; Gawel, K; Marszalek, M; Komsta, L; Kotlinska, J H

    2015-03-03

    Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the

  5. Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

    Science.gov (United States)

    Zhang, Hai Xia; Thio, Liu Lin

    2007-12-01

    Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.

  6. Diabetic autonomic neuropathy.

    Science.gov (United States)

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  7. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...... to diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  8. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...... to diabetic autonomic neuropathy. Regardless of the mechanism of adrenergic denervation hypersensitivity in such patients, these data provide further evidence that measurements of cellular adrenergic receptors (and adenylate cyclase) in vitro are a fallible index of sensitivity to catecholamines in vivo....

  9. Neuronal Androgen Receptor Regulates Insulin Sensitivity via Suppression of Hypothalamic NF-κB–Mediated PTP1B Expression

    OpenAIRE

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D.; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-01-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes ...

  10. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, TH; Grefhorst, A; Abdelkarim, M; Caron, S; Torpier, G; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the

  11. Autonomic Involvement in Subacute and Chronic Immune-Mediated Neuropathies

    Science.gov (United States)

    Mazzeo, Anna; Stancanelli, Claudia; Vita, Giuseppe

    2013-01-01

    Autonomic function can be impaired in many disorders in which sympathetic, parasympathetic, and enteric arms of the autonomic nervous system are affected. Signs and symptoms of autonomic involvement are related to impairment of cardiovascular, gastrointestinal, urogenital, thermoregulatory, sudomotor, and pupillomotor autonomic functions. Availability of noninvasive, sensitive, and reproducible tests can help to recognize these disorders and to better understand specific mechanisms of some, potentially treatable, immune-mediated autonomic neuropathies. This paper describes autonomic involvement in immune-mediated neuropathies with a subacute or chronic course. PMID:23853716

  12. The glucocorticoid receptor 1A3 promoter correlates with high sensitivity to glucocorticoid-induced apoptosis in human lymphocytes.

    Science.gov (United States)

    Liddicoat, Douglas R; Kyparissoudis, Konstantinos; Berzins, Stuart P; Cole, Timothy J; Godfrey, Dale I

    2014-11-01

    Glucocorticoids (GCs) are powerful inhibitors of inflammation and immunity. Although glucocorticoid-induced cell death (GICD) is an important part of GCs actions, the cell types and molecular mechanisms involved are not well understood. Untranslated exon 1A3 of the human glucocorticoid receptor (GR) gene is a major determinant of GICD in GICD-sensitive human cancer cell lines, operating to dynamically upregulate GR levels in response to GCs. We measured the GICD sensitivity of freshly isolated peripheral blood mononuclear cells and thymocytes to dexamethasone in vitro, relating this to GR exon 1A3 expression. A clear GICD sensitivity hierarchy was detected: B cells>thymocytes/natural killer (NK) cells>peripheral T cells. Within thymocyte populations, GICD sensitivity decreased with maturation. Interestingly, NK cell subsets were differentially sensitive to GICD, with CD16(+)CD56(int) (cytotoxic) NK cells being highly resistant to GICD, whereas CD16(-)CD56(hi) (cytokine producing) NK cells were highly sensitive (similar to B cells). B-cell GICD was rescued by co-culture with interleukin-4. Strikingly, although no significant increases in GR protein were observed during 48 h of culture of GICD-sensitive and -resistant cells alike, GR 1A3 expression was increased over pre-culture levels in a manner directly proportional to the GICD sensitivity of each cell type. Accordingly, this is the first evidence that the GR exon 1A3 promoter is differentially regulated during thymic development and maturation of human T cells. Furthermore, human peripheral blood B cells are exquisitely GICD-sensitive in vitro, giving new insight into how GCs may downregulate immunity. Collectively, these data show that GR 1A3 expression is tied with GICD sensitivity in human lymphocytes, underscoring the potential for GR 1A3 expression to be used as a biomarker for sensitivity to GICD.

  13. Brain-derived neurotrophic factor activation of extracellular signal-regulated kinase is autonomous from the dominant extrasynaptic NMDA receptor extracellular signal-regulated kinase shutoff pathway.

    Science.gov (United States)

    Mulholland, P J; Luong, N T; Woodward, J J; Chandler, L J

    2008-01-24

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.

  14. The Constitutively Active V2 Receptor Mutants Conferring NSIAD Are Weakly Sensitive to Agonist and Antagonist Regulation

    Science.gov (United States)

    Perkovska, Sanja; Adra-Delenne, Anne-Laure; Mendre, Christiane; Ranchin, Bruno; Bricca, Giamperro; Geelen, Ghislaine; Mouillac, Bernard; Durroux, Thierry; Morin, Denis

    2009-01-01

    Patients having the nephrogenic syndrome of inappropriate antidiuresis present either the R137C or R137L V2 mutated receptor. While the clinical features have been characterized, the molecular mechanisms of functioning of these two mutants remain elusive. In the present study, we compare the pharmacological properties of R137C and R137L mutants with the wild-type and the V2 D136A receptor, the latter being reported as a highly constitutively active receptor. We have performed binding studies, second messenger measurements and BRET experiments in order to evaluate the affinities of the ligands, their agonist and antagonist properties and the ability of the receptors to recruit β-arrestins, respectively. The R137C and R137L receptors exhibit small constitutive activities regarding the Gs protein activation. In addition, these two mutants induce a constitutive β-arrestin recruitment. Of interest, they also exhibit weak sensitivities to agonist and to inverse agonist in term of Gs protein coupling and β-arrestin recruitment. The small constitutive activities of the mutants and the weak regulation of their functioning by agonist suggest a poor ability of the antidiuretic function to be adapted to the external stimuli, giving to the environmental factors an importance which can explain some of the phenotypic variability in patients having NSIAD. PMID:20027297

  15. Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via μ-opioid receptor.

    Science.gov (United States)

    Farahmandfar, Maryam; Karimian, Seyed Morteza; Zarrindast, Mohammad-Reza; Kadivar, Mehdi; Afrouzi, Hossein; Naghdi, Nasser

    2011-04-25

    Repeated administration of abuse drugs such as morphine elicits a progressive enhancement of drug-induced behavioral responses, a phenomenon termed behavioral sensitization. These changes in behavior may reflect plastic changes requiring regulation of glutamatergic system in the brain. In this study, we investigated the effect of morphine sensitization on extracellular glutamate concentration in the hippocampus, a brain region rich in glutamatergic neurons. Sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days free of the opioid treatment. The results showed that extracellular glutamate concentration in the CA1 was decreased following administration of morphine in non-sensitized rats. However, morphine-induced behavioral sensitization significantly increased the extracellular glutamate concentration in this area. The enhancement of glutamate in morphine sensitized rats was prevented by administration of naloxone 30 min before each of three daily doses of morphine. These results suggest an adaptation of the glutamatergic neuronal transmission in the hippocampus after morphine sensitization and it is postulated that opioid receptors may play an important role in this effect.

  16. Presynaptic P2 receptors?

    Science.gov (United States)

    Stone, T W; O'Kane, E M; Nikbakht, M R; Ross, F M

    2000-07-01

    Although the emphasis in ATP research has been on postjunctional receptors, there is also evidence for presynaptic receptors regulating transmitter release in the autonomic nervous system. Recent work has attempted to identify similar mechanisms in the central nervous system. Some of the existing results can be explained by the metabolism of nucleotides to adenosine or adenosine 5'-monophosphate (AMP). However, studies of presynaptic effects using sensitive electrophysiological tests such as paired-pulse interactions indicate that nucleotides can act at presynaptic sites, but that their effects may be mediated by a release of adenosine. Results are also described which indicate that, under some conditions, nucleotides can mediate phenomena such as long-term potentiation, which probably involves a significant presynaptic element. In part these effects may involve a nucleotide-induced release of adenosine and the simultaneous activation of P1 and P2 receptors.

  17. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation.

    Directory of Open Access Journals (Sweden)

    Benjamin J Tillotson

    Full Text Available The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs against the transferrin receptor (TfR by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.

  18. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  19. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    OpenAIRE

    Mavalli, Mahendra D.; DiGirolamo, Douglas J; FAN, Yong; Riddle, Ryan C.; Kenneth S Campbell; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A.; Esser, Karyn A.; Bamman, Marcas M.; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions ...

  20. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    Science.gov (United States)

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  1. Quantitative Autonomic Testing

    OpenAIRE

    Novak, Peter

    2011-01-01

    Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory shoul...

  2. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    Science.gov (United States)

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  3. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography......, and related this to 5-HT transporter (S)-[N-methyl-(3)H]citalopram binding. We also determined the regulation of 5-HT(4) receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT(2A) receptor [(3)H]MDL100907 binding....... In the Flinders Sensitive Line, the 5-HT(4) receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16-47% down-regulation of 5-HT(4...

  4. Individual differences in ethanol locomotor sensitization are associated with dopamine D1 receptor intra-cellular signaling of DARPP-32 in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Karina Possa Abrahao

    Full Text Available In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as "sensitized" and the 33% with the lowest levels as "non-sensitized". The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of

  5. Sensitive and direct detection of receptor binding specificity of highly pathogenic avian influenza A virus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Influenza A virus (IAV recognizes two types of N-acetylneuraminic acid (Neu5Ac by galactose (Gal linkages, Neu5Acα2,3Gal and Neu5Acα2,6Gal. Avian IAV preferentially binds to Neu5Acα2,3Gal linkage, while human IAV preferentially binds to Neu5Acα2,6Gal linkage, as a virus receptor. Shift in receptor binding specificity of avian IAV from Neu5Acα2,3Gal linkage to Neu5Acα2,6Gal linkage is generally believed to be a critical factor for its transmission ability among humans. Surveillance of this shift of highly pathogenic H5N1 avian IAV (HPAI is thought to be a very important for prediction and prevention of a catastrophic pandemic of HPAI among humans. In this study, we demonstrated that receptor binding specificity of IAV bound to sialo-glycoconjugates was sensitively detected by quantifying the HA gene with real-time reverse-transcription-PCR. The new assay enabled direct detection of receptor binding specificity of HPAIs in chicken clinical samples including trachea and cloaca swabs in only less than 4 h.

  6. Alteration of dopamine receptor sensitivity by opiates and the subsequent effect of this alteration on opiate tolerance and dependence

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.R.

    1985-01-01

    The present study was undertaken to determine whether there is an alteration of dopamine receptor sensitivity following opiate administration, and whether this alteration has any influence on the development of opiate tolerance and dependence. Behavioral hypersensitivity to direct-acting dopamine agonists was observed in mice following acute or chronic morphine administration. Acute levorphanol administration also resulted in potentiation of dopamine agonist-induced behaviors. An increase in density of dopamine receptors, as measured by (/sup 3/H)butyrophenone binding accompanied the development of behavioral hypersensitivity. This increase was localized to the striatum, an area important in the mediation of dopamine-agonist induced behaviors. Naloxone or LiCl coadministered with the opiates prevented the development of hypersensitivity and the increase in density of dopamine receptors. Coadministration of lithium enhanced the development of acute and chronic tolerance. Lithium enhanced the development of dependence as determined by naloxone-induced hypothermia in chronically morphine-treated mice. Apomorphine enhanced naloxone-induced withdrawal in acutely dependent mice. This enhancement was blocked by coadministration of lithium with the opiates. These results suggest that dopamine receptor supersensitivity influences the degree of tolerance and dependence.

  7. Activation of bitter taste receptors in pulmonary nociceptors sensitizes TRPV1 channels through the PLC and PKC signaling pathway.

    Science.gov (United States)

    Gu, Qihai David; Joe, Deanna S; Gilbert, Carolyn A

    2017-03-01

    Bitter taste receptors (T2Rs), a G protein-coupled receptor family capable of detecting numerous bitter-tasting compounds, have recently been shown to be expressed and play diverse roles in many extraoral tissues. Here we report the functional expression of T2Rs in rat pulmonary sensory neurons. In anesthetized spontaneously breathing rats, intratracheal instillation of T2R agonist chloroquine (10 mM, 0.1 ml) significantly augmented chemoreflexes evoked by right-atrial injection of capsaicin, a specific activator for transient receptor potential vanilloid receptor 1 (TRPV1), whereas intravenous infusion of chloroquine failed to significantly affect capsaicin-evoked reflexes. In patch-clamp recordings with isolated rat vagal pulmonary sensory neurons, pretreatment with chloroquine (1-1,000 µM, 90 s) concentration dependently potentiated capsaicin-induced TRPV1-mediated inward currents. Preincubating with diphenitol and denatonium (1 mM, 90 s), two other T2R activators, also enhanced capsaicin currents in these neurons but to a lesser extent. The sensitizing effect of chloroquine was effectively prevented by the phospholipase C inhibitor U73122 (1 µM) or by the protein kinase C inhibitor chelerythrine (10 µM). In summary, our study showed that activation of T2Rs augments capsaicin-evoked TRPV1 responses in rat pulmonary nociceptors through the phospholipase C and protein kinase C signaling pathway. Copyright © 2017 the American Physiological Society.

  8. The EGFR family of receptors sensitizes cancer cells towards UV light

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Neves Petersen, Teresa; Olsen, Birgitte

    2008-01-01

    bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open......A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both...... disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs...

  9. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol.

    Directory of Open Access Journals (Sweden)

    Meredith J Ezak

    Full Text Available We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn, but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.

  10. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  11. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)

    Science.gov (United States)

    Yoshizawa, Masato; Jeffery, William R.; van Netten, Sietse M.; McHenry, Matthew J.

    2014-01-01

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment. PMID:24265419

  12. A synthetic lethal screen identifies the Vitamin D receptor as a novel gemcitabine sensitizer in pancreatic cancer cells.

    Science.gov (United States)

    Bhattacharjee, V; Zhou, Y; Yen, T J

    2014-01-01

    Overcoming chemoresistance of pancreatic cancer (PCa) cells should significantly extend patient survival. The current treatment modalities rely on a variety of DNA damaging agents including gemcitabine, FOLFIRINOX, and Abraxane that activate cell cycle checkpoints, which allows cells to survive these drug treaments. Indeed, these treatment regimens have only extended patient survival by a few months. The complex microenvironment of PCa tumors has been shown to complicate drug delivery thus decreasing the sensitivity of PCa tumors to chemotherapy. In this study, a genome-wide siRNA library was used to conduct a synthetic lethal screen of Panc1 cells that was treated with gemcitabine. A sublethal dose (50 nM) of the drug was used to model situations of limiting drug availability to PCa tumors in vivo. Twenty-seven validated sensitizer genes were identified from the screen including the Vitamin D receptor (VDR). Gemcitabine sensitivity was shown to be VDR dependent in multiple PCa cell lines in clonogenic survival assays. Sensitization was not achieved through checkpoint override but rather through disrupting DNA repair. VDR knockdown disrupted the cells' ability to form phospho-γH2AX and Rad51 foci in response to gemcitabine treatment. Disruption of Rad51 foci formation, which compromises homologous recombination, was consistent with increased sensitivity of PCa cells to the PARP inhibitor Rucaparib. Thus inhibition of VDR in PCa cells provides a new way to enhance the efficacy of genotoxic drugs.

  13. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus).

    Science.gov (United States)

    Yoshizawa, Masato; Jeffery, William R; van Netten, Sietse M; McHenry, Matthew J

    2014-03-15

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment.

  14. Background odour induces adaptation and sensitization of olfactory receptors in the antennae of houseflies

    NARCIS (Netherlands)

    Kelling, F.J; Ialenti, F.; den Otter, C.J

    2002-01-01

    The presence of background odour was found to have a small but significant effect on the sensitivity of the antennal olfactory system of houseflies, Musca domestica Linnaeus (Diptera: Muscidae), to new pulses of odour. We show that cross-adaptation and cross-sensitization between a background odour

  15. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  16. A novel first exon directs hormone-sensitive transcription of the pig prolactin receptor

    Science.gov (United States)

    Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation.We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcri...

  17. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  18. Human cytomegalovirus increases HUVEC sensitivity to thrombin and modulates expression of thrombin receptors.

    Science.gov (United States)

    Popović, Milan; Paskas, Svetlana; Zivković, Maja; Burysek, Ladislav; Laumonnier, Yves

    2010-08-01

    Human cytomegalovirus (HCMV) establishes a life-long persistent infection. HCMV infection could be associated with chronic inflammatory diseases, such as cardiovascular disease and atherosclerosis. Here we observed that in HCMV (AD-169) pre-exposed human umbilical vein endothelial cells (HUVEC), thrombin-induced expression of IL-1alpha and M-CSF is markedly enhanced compared to the un-exposed cells. Study of the expression of thrombin receptor genes in HUVEC showed that HCMV triggered a time- and concentration-dependent expression of the thrombin receptors PAR1, PAR3 and PAR4 at the mRNA level. Induction of PAR1 and PAR3 mRNA expression is due to transcriptional activation of their promoters as shown by gene reporter assay. Furthermore, the virus induced expression of PAR1 and PAR3 but not PAR4 proteins, as analyzed by Western immunoblotting. However, flow cytometric analysis revealed that only PAR3, expressed at very low level in control HUVEC, is induced at the surface during the exposure to the virus. Our data suggest that although exposure to HCMV induces a minor increase of cell-surface receptors expression, it does make endothelial cells more responsive to additional thrombin stimulation.

  19. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  20. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  1. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jiyoon Ryu

    2014-05-01

    Full Text Available Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2 to the insulin receptor (IR is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.

  2. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  3. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    Science.gov (United States)

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  4. [Autonomic nervous system in diabetes].

    Science.gov (United States)

    Emdin, M

    2001-08-01

    Hyperglycemia and hyperinsulinemia have a primary role in determining the early functional and later anatomic changes at the level of the autonomic pathways controlling the circulation, and besides in directly influencing cardiac and vascular cellular targets and feed-back baroreceptor system sensitivity to neurohumoral modulation in patients with diabetes mellitus. The basic mechanisms of dysfunction and damage, and the clinical and prognostic value of diabetic cardiovascular dysautonomia are discussed together with the diagnostic apparatus and the possible therapeutic approaches.

  5. [Trigeminal autonomic cephalgias].

    Science.gov (United States)

    Maximova, M Yu; Piradov, M A; Suanova, E T; Sineva, N A

    2015-01-01

    Review of literature on the trigeminal autonomic cephalgias are presented. Trigeminal autonomic cephalgias are primary headaches with phenotype consisting of trigeminal pain with autonomic sign including lacrimation, rhinorrhea and miosis. Discussed are issues of classification, pathogenesis, clinical picture, diagnosis, differential diagnosis and treatment of this headache. Special attention is paid to cluster headache, paroxysmal hemicrania, SUNCT syndrome, hemicrania continua.

  6. Restoring Light Sensitivity in Blind Retinae Using a Photochromic AMPA Receptor Agonist.

    Science.gov (United States)

    Laprell, L; Hüll, K; Stawski, P; Schön, C; Michalakis, S; Biel, M; Sumser, M P; Trauner, D

    2016-01-20

    Retinal degenerative diseases can have many possible causes and are currently difficult to treat. As an alternative to therapies that require genetic manipulation or the implantation of electronic devices, photopharmacology has emerged as a viable approach to restore visual responses. Here, we present a new photopharmacological strategy that relies on a photoswitchable excitatory amino acid, ATA. This freely diffusible molecule selectively activates AMPA receptors in a light-dependent fashion. It primarily acts on amacrine and retinal ganglion cells, although a minor effect on bipolar cells has been observed. As such, it complements previous pharmacological approaches based on photochromic channel blockers and increases the potential of photopharmacology in vision restoration.

  7. Lysine Methylation of Progesterone Receptor at Activation Function 1 Regulates both Ligand-independent Activity and Ligand Sensitivity of the Receptor*

    Science.gov (United States)

    Chung, Hwa Hwa; Sze, Siu Kwan; Woo, Amanda Rui En; Sun, Yang; Sim, Kae Hwan; Dong, Xue Ming; Lin, Valerie C-L.

    2014-01-01

    Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity. PMID:24415758

  8. Lysine methylation of progesterone receptor at activation function 1 regulates both ligand-independent activity and ligand sensitivity of the receptor.

    Science.gov (United States)

    Chung, Hwa Hwa; Sze, Siu Kwan; Woo, Amanda Rui En; Sun, Yang; Sim, Kae Hwan; Dong, Xue Ming; Lin, Valerie C-L

    2014-02-28

    Progesterone receptor (PR) exists in two isoforms, PRA and PRB, and both contain activation functions AF-1 and AF-2. It is believed that AF-1 is primarily responsible for the ligand-independent activity, whereas AF-2 mediates ligand-dependent PR activation. Although more than a dozen post-translational modifications of PR have been reported, no post-translational modification on AF-1 or AF-2 has been reported. Using LC-MS/MS-based proteomic analysis, this study revealed AF-1 monomethylation at Lys-464. Mutational analysis revealed the remarkable importance of Lys-464 in regulating PR activity. Single point mutation K464Q or K464A led to ligand-independent PR gel upshift similar to the ligand-induced gel upshift. This upshift was associated with increases in both ligand-dependent and ligand-independent PR phosphorylation and PR activity due to the hyperactivation of AF-1. In contrast, mutation of Lys-464 to the bulkier phenylalanine to mimic the effect of methylation caused a drastic decrease in PR activity. Importantly, PR-K464Q also showed heightened ligand sensitivity, and this was associated with increases in its functional interaction with transcription co-regulators NCoR1 and SRC-1. These results suggest that monomethylation of PR at Lys-464 probably has a repressive effect on AF-1 activity and ligand sensitivity.

  9. The Importance of G Protein-Coupled Receptor Kinase 4 (GRK4 in Pathogenesis of Salt Sensitivity, Salt Sensitive Hypertension and Response to Antihypertensive Treatment

    Directory of Open Access Journals (Sweden)

    Brian Rayner

    2015-03-01

    Full Text Available Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP. This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs was emphasised in the African American Study of Kidney Disease (AASK where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in

  10. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice.

    Science.gov (United States)

    Mavalli, Mahendra D; DiGirolamo, Douglas J; Fan, Yong; Riddle, Ryan C; Campbell, Kenneth S; van Groen, Thomas; Frank, Stuart J; Sperling, Mark A; Esser, Karyn A; Bamman, Marcas M; Clemens, Thomas L

    2010-11-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism.

  11. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    Science.gov (United States)

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  12. Exploring the contextual sensitivity of factors that determine cell-to-cell variability in receptor-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Suzanne Gaudet

    Full Text Available Stochastic fluctuations in gene expression give rise to cell-to-cell variability in protein levels which can potentially cause variability in cellular phenotype. For TRAIL (TNF-related apoptosis-inducing ligand variability manifests itself as dramatic differences in the time between ligand exposure and the sudden activation of the effector caspases that kill cells. However, the contribution of individual proteins to phenotypic variability has not been explored in detail. In this paper we use feature-based sensitivity analysis as a means to estimate the impact of variation in key apoptosis regulators on variability in the dynamics of cell death. We use Monte Carlo sampling from measured protein concentration distributions in combination with a previously validated ordinary differential equation model of apoptosis to simulate the dynamics of receptor-mediated apoptosis. We find that variation in the concentrations of some proteins matters much more than variation in others and that precisely which proteins matter depends both on the concentrations of other proteins and on whether correlations in protein levels are taken into account. A prediction from simulation that we confirm experimentally is that variability in fate is sensitive to even small increases in the levels of Bcl-2. We also show that sensitivity to Bcl-2 levels is itself sensitive to the levels of interacting proteins. The contextual dependency is implicit in the mathematical formulation of sensitivity, but our data show that it is also important for biologically relevant parameter values. Our work provides a conceptual and practical means to study and understand the impact of cell-to-cell variability in protein expression levels on cell fate using deterministic models and sampling from parameter distributions.

  13. Peripheral autonomic neuropathy: diagnostic contribution of skin biopsy.

    Science.gov (United States)

    Donadio, Vincenzo; Incensi, Alex; Giannoccaro, Maria Pia; Cortelli, Pietro; Di Stasi, Vitantonio; Pizza, Fabio; Jaber, Masen Abdel; Baruzzi, Agostino; Liguori, Rocco

    2012-11-01

    Skin biopsy has gained widespread use for the diagnosis of somatic small-fiber neuropathy, but it also provides information on sympathetic fiber morphology. We aimed to ascertain the diagnostic accuracy of skin biopsy in disclosing sympathetic nerve abnormalities in patients with autonomic neuropathy. Peripheral nerve fiber autonomic involvement was confirmed by routine autonomic laboratory test abnormalities. Punch skin biopsies were taken from the thigh and lower leg of 28 patients with various types of autonomic neuropathy for quantitative evaluation of skin autonomic innervation. Results were compared with scores obtained from 32 age-matched healthy controls and 25 patients with somatic neuropathy. The autonomic cutoff score was calculated using the receiver operating characteristic curve analysis. Skin biopsy disclosed a significant autonomic innervation decrease in autonomic neuropathy patients versus controls and somatic neuropathy patients. Autonomic innervation density was abnormal in 96% of patients in the lower leg and in 79% of patients in the thigh. The abnormal findings disclosed by routine autonomic tests ranged from 48% to 82%. These data indicate the high sensitivity and specificity of skin biopsy in detecting sympathetic abnormalities; this method should be useful for the diagnosis of autonomic neuropathy, together with currently available routine autonomic testing.

  14. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  15. Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization.

    Science.gov (United States)

    Song, Shelly Sooyun; Kang, Byeong Jun; Wen, Lei; Lee, Hyo Jin; Sim, Hye-Ri; Kim, Tae Hyong; Yoon, Sehyoun; Yoon, Bong-June; Augustine, George J; Baik, Ja-Hyun

    2014-01-01

    Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc) have been proposed to contribute to drug-mediated addictive behaviors. Here we have used an optogenetic approach to examine the role of NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs) in cocaine-induced behavioral sensitization. Adeno-associated viral vectors encoding channelrhodopsin-2 (ChR2) were delivered into the NAc of D2R-Cre transgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2R-MSNs form local inhibitory circuits, because photostimulation of D2R-MSN evoked inhibitory postsynaptic currents (IPSCs) in neighboring MSNs. Photostimulation of NAc D2R-MSN in vivo affected neither the initiation nor the expression of cocaine-induced behavioral sensitization. However, photostimulation during the drug withdrawal period attenuated expression of cocaine-induced behavioral sensitization. These results show that D2R-MSNs of NAc play a key role in withdrawal-induced plasticity and may contribute to relapse after cessation of drug abuse.

  16. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation.

    Science.gov (United States)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; de Las Heras, Beatriz; Hortelano, Sonsoles

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones

    Directory of Open Access Journals (Sweden)

    Magherini Pier C

    2010-09-01

    Full Text Available Abstract Protease-activated receptors (PAR1-4 are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.

  18. The autonomic laboratory

    Science.gov (United States)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  19. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper.

    Science.gov (United States)

    Bavan, Selvan; Straub, Volko A; Blaxter, Mark L; Ennion, Steven J

    2009-01-20

    vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms.

  20. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper

    Directory of Open Access Journals (Sweden)

    Blaxter Mark L

    2009-01-01

    to the split between vertebrates and invertebrates. Furthermore, several characteristics of HdP2X including fast kinetics with low ATP sensitivity, potentiation by ivermectin in a channel with fast kinetics and distinct copper and zinc binding sites not dependent on histidines make HdP2X a useful model for comparative structure-function studies allowing a better understanding of P2X receptors in higher organisms.

  1. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Qiang LIU; Jie WU

    2006-01-01

    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  2. Greater Sensitivity of Blood Pressure Than Renal Toxicity to Tyrosine Kinase Receptor Inhibition With Sunitinib

    DEFF Research Database (Denmark)

    Lankhorst, Stephanie; Baelde, Hans J; Kappers, Mariëtte H W

    2015-01-01

    of these side effects. Normotensive Wistar Kyoto rats were exposed to 3 different doses of sunitinib or vehicle. After 8 days, rats were euthanized. Telemetrically measured blood pressure rose dose dependently, from 13 to 30 mm Hg. Proteinuria was present at all doses, but a rise in cystatin C occurred only...... histological abnormalities with the low dose. Podocyte number per glomerular circumference did not change. Glomerular nephrin, Neph1, podocin, and endothelin-converting enzyme gene expression were downregulated in a dose-dependent manner. We conclude that the sunitinib-induced rise in blood pressure requires......Hypertension and renal injury are off-target effects of sunitinib, a tyrosine kinase receptor inhibitor used for the treatment of various tumor types. Importantly, these untoward effects are accompanied by activation of the endothelin system. Here, we set up a study to explore the dose dependency...

  3. Tau Tubulin Kinase TTBK2 Sensitivity of Glutamate Receptor GluK2

    Directory of Open Access Journals (Sweden)

    Kristina Nieding

    2016-09-01

    Full Text Available Background/Aims: Inherited, autosomal dominant spinocerebellar ataxia type 11 (SCA11 is caused by loss of function mutations of TTBK2 (tau tubulin kinase 2. Mutations observed in patients with SCA11 include truncated TTBK2(450. The present study explored the possibility that TTBK2 influences the function of the glutamate receptor GluK2. Methods: GluK2 was expressed in Xenopus oocytes without and with additional expression of wild type TTBK2, the truncated mutant TTBK2(450, or the kinase dead mutants TTBK2(KD and TTBK2(450/KD. GluK2 current was determined by dual electrode voltage clamp and GluK2 protein abundance in the cell membrane utilizing confocal microscopy. Results: Glutamate exposure of GluK2 expressing oocytes generated a current, which was significantly lower in oocytes expressing GluK2 together with TTBK2 wt or TTBK2(KD than in oocytes expressing GluK2 alone or together with either TTBK2(450 or TTBK2(450/KD. According to confocal microscopy of EGFP-tagged GluK2, TTBK2 wt decreased the GluK2 protein abundance in the cell membrane. Overexpression of an inactive RAB5(N133I mutant but not RAB5wt could reverse the TTBK2 effect on GluK2 suggesting that RAB5 function is required for the effect. Conclusions: TTBK2 down-regulates GluK2 activity by decreasing the receptor protein abundance in the cell membrane via RAB5-dependent endocytosis, an effect that may protect against neuroexcitotoxicity.

  4. Love to win or hate to lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward vs. punishment

    Science.gov (United States)

    Tomer, Rachel; Slagter, Heleen A; Christian, Bradley T; Fox, Andrew S; King, Carlye R; Murali, Dhanabalan; Gluck, Mark A; Davidson, Richard J

    2014-01-01

    Humans show consistent differences in the extent to which their behavior reflects a bias towards appetitive approach-related behavior or avoidance of aversive stimuli (Elliot, 2008). We examined the hypothesis that in healthy subjects this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding , we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward vs. punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition. PMID:24345165

  5. Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice.

    Science.gov (United States)

    Chefer, V I; Shippenberg, T S

    2009-03-01

    Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward. Importantly, they demonstrate that DOPr has a distinct role in the development of each of these drug-induced adaptations. The anti-rewarding and tolerance-reducing properties of DOPr antagonists may offer new opportunities for the treatment and prevention of opioid dependence as well as for the development of effective analgesics with reduced abuse liability.

  6. Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands

    OpenAIRE

    2004-01-01

    Evidence indicates that imidazoline I2 binding sites (I2BSs) are present on monoamine oxidase (MAO) and on soluble (plasma) semicarbazide-sensitive amine oxidase enzymes. The binding site on MAO has been described as a modulatory site, although no effects on activity are thought to have been observed as a result of ligands binding to these sites.We examined the effects in vitro of several imidazoline binding site ligands on activities of bovine plasma amine oxidase (BPAO) and porcine kidney d...

  7. Strychnine-sensitive glycine receptors mediate analgesia induced by emulsified inhalation anaesthetics in thermal nociception but not in chemical nociception.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-03-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in analgesia induced by emulsified inhalation anaesthetics. After having established the mice model of analgesia by intraperitoneal or subcutaneous injections of appropriate doses of ether, enflurane, isoflurane or sevoflurane, we injected different doses of strychnine intrathecally and then observed the effects on the tail-flick latency using the tail-withdrawal test and the writhing times and acetic acid-induced writhing test. In the tail-withdrawal test, all four emulsified inhalation anaesthetics (intraperitoneally) significantly increased the tail-flick latency (P strychnine. In the acetic acid-induced writhing test, writhing times inhibition induced by subcutaneous administration of four emulsified inhalation anaesthetics was not effected by intrathecal strychnine (0.1, 0.2 and 0.4 microg). The data presented in this study suggest that glycine receptors are specifically involved in mediating the analgesic effect of ether, enflurane, isoflurane and sevoflurane on thermal-induced nociception but not chemically induced nociception.

  8. The canonical transient receptor potential 6 (TRPC6) channel is sensitive to extracellular pH in mouse platelets.

    Science.gov (United States)

    Berna-Erro, Alejandro; Albarran, Letizia; Dionisio, Natalia; Redondo, Pedro C; Alonso, Nieves; Gomez, Luis J; Salido, Gines M; Rosado, Juan A

    2014-01-01

    The canonical transient receptor potential-6 (TRPC6) is a receptor-activated non-selective Ca(2+) channel regulated by a variety of modulators such as diacylglycerol, Ca(2+)/calmodulin or phosphorylation. The present study is aimed to investigate whether different situations, such as acidic pH, exposure to reactive oxygen species (ROS) or hypoxic-like conditions modulate TRPC6 channel function. Here we show normal aggregation and Ca(2+) mobilization stimulated by thrombin in TRPC6 KO platelets; however, OAG (1-oleoyl-2-acetyl-sn-glycerol)-evoked Ca(2+) entry was attenuated in the absence of TRPC6. Exposure of mouse platelets to acidic pH resulted in abolishment of thrombin-evoked aggregation and attenuated platelet aggregation induced by thapsigargin (TG) or OAG. Both OAG-induced Ca(2+) entry and platelet aggregation were greatly attenuated in cells expressing TRPC6 channels. Exposure of platelets to H2O2 or deferoxamine did not clearly alter thrombin, TG or OAG-induced platelet aggregation. Our results indicate that TRPC6 is sensitive to acidic pH but not to exposure to ROS or hypoxic-like conditions, which might be involved in the pathogenesis of the altered platelet responsiveness to DAG-generating agonists in disorders associated to acidic pH.

  9. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Isaure Chauvot de Beauchêne

    2014-07-01

    Full Text Available Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D localized in crucial regulatory segments, the juxtamembrane region (JMR and the activation (A- loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.

  10. Neuronal Fc gamma receptor I as a novel mediator for IgG immune complex-induced peripheral sensitization

    Institute of Scientific and Technical Information of China (English)

    Lintao Qu

    2012-01-01

    Chronic pain often accompanies immune-related diseases with an elevated level of IgG immune complex (IgG-IC) in the serum and/or the affected tissues though the underlying mechanisms are largely unknown. Fc gamma receptors (FcγRs), known as the receptors for the Fc domain of immunoglobulin G (IgG), are typically expressed on immune cells. A general consensus is that the activation of FcγRs by IgG-IC in such immune cells induces the release of proinflammatory cytokines from the immune cells, which may contribute to the IgG-IC-mediated peripheral sensitization. In addition to the immune cells, recent studies have revealed that FcγRI, but not FcγRII and FcγRIII, is also expressed in a subpopulation of primary sensory neurons. Moreover, IgG-IC directly excites the primary sensory neurons through neuronal FcγRI. These findings indicate that neuronal FcγRI provides a novel direct linkage between immunoglobulin and primary sensory neurons, which may be a novel target for the treatment of pain in the immune-related disorders. In this review, we summarize the expression pattern, functions, and the associated cellular signaling of FcγRs in the primary sensory neurons.

  11. Highly Selective and Sensitive Detection of Acetylcholine Using Receptor-Modified Single-Walled Carbon Nanotube Sensors

    Science.gov (United States)

    Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2015-03-01

    Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.

  12. Association of β3 Adrenergic Receptor and Peroxisome Proliferator-activated Receptor Gamma 2 Polymorphisms With Insulin Sensitivity: A Twin Study

    Institute of Scientific and Technical Information of China (English)

    TIAN-JIAO CHEN; CHENG-YE JI; XIAO-YING ZHENG; YONG-HUA HU

    2007-01-01

    Objective To study the effect of β3 adrenergic receptor (β3AR) Trp64Arg and peroxisome proliferator activated receptor gamma 2 (PPARγ2) Pro12Ala polymorphisms on insulin resistance. Methods One hundred and eight dizygotic twin pairs were enrolled in this study. Microsatellite polymorphism was used to diagnose zygosity of twins. Insulin sensitivity was estimated with logarithm transformed homeostasis model assessment (HOMA). PCR-RFLP analysis was performed to detect the variants. As a supplement to the sib-pair method, identity by state (IBS) was used to analyze the association of polymorphisms with insulin sensitivity. Results The genotype frequencies of Trp64Trg, Trp64Arg, and Arg64Arg were 72.3%, 23.8%, and 3.9%, respectively, while the genotype frequencies of Pro12Pro, Pro12Ala, and Ala12Ala were 89.9%, 9.6%,and 0.5%, respectively. For β3AR Trp64Arg the interclass co-twin correlations of Waist-to-hip ratio (WHR), blood glucose (GLU), and insulin (INS), homeostasis model assessment insulin resistance index (HOMA-IR) of the twin pairs sharing 2alleles of IBS were greater than those sharing 0-1 allele of IBS, and HOMA-IR had statistic significance. For PPARγ2 Pro12Ala most traits of twin pairs sharing 2 alleles of IBS had greater correlations and statistic significance in body mass index (BMI),WHR, percent of body fat (PBF) and GLU, but there were low correlations of either insulin or HOMA-IR of twin pairs sharing 1 or 2 alleles of IBS. The combined effects of the two variations showed less squared significant twin-pair differences of INS and HOMA-IR among twins sharing 4 alleles of IBS. Conclusions β3AR Trp64Arg and PPARγ2 Pro12Ala polymorphisms might be associated with insulin resistance and obesity, and there might be slight synergistic effects between this two gene loci,and further studies are necessary to confirm this finding.

  13. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium

    OpenAIRE

    Ginsburg, Gail T.; Kimmel, Alan R.

    1997-01-01

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4− cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentia...

  14. The Prostaglandin E2 Receptor EP4 Regulates Obesity-Related Inflammation and Insulin Sensitivity.

    Directory of Open Access Journals (Sweden)

    Mika Yasui

    Full Text Available With increasing body weight, macrophages accumulate in adipose tissue. There, activated macrophages secrete numerous proinflammatory cytokines and chemokines, giving rise to chronic inflammation and insulin resistance. Prostaglandin E2 suppresses macrophage activation via EP4; however, the role of EP4 signaling in insulin resistance and type 2 diabetes mellitus remains unknown. In this study, we treated db/db mice with an EP4-selective agonist, ONO-AE1-329, for 4 weeks to explore the role of EP4 signaling in obesity-related inflammation in vivo. Administration of the EP4 agonist did not affect body weight gain or food intake; however, in the EP4 agonist-treated group, glucose tolerance and insulin resistance were significantly improved over that of the vehicle-treated group. Additionally, administration of the EP4 agonist inhibited the accumulation of F4/80-positive macrophages and the formation of crown-like structures in white adipose tissue, and the adipocytes were significantly smaller. The treatment of the EP4 agonist increased the number of anti-inflammatory M2 macrophages, and in the stromal vascular fraction of white adipose tissue, which includes macrophages, it markedly decreased the levels of proinflammatory cytokines and chemokines. Further, EP4 activation increased the expression of adiponectin and peroxidase proliferator-activated receptors in white adipose tissue. Next, we examined in vitro M1/M2 polarization assay to investigate the impact of EP4 signaling on determining the functional phenotypes of macrophages. Treatment with EP4 agonist enhanced M2 polarization in wild-type peritoneal macrophages, whereas EP4-deficient macrophages were less susceptible to M2 polarization. Notably, antagonizing peroxidase proliferator-activated receptor δ activity suppressed EP4 signaling-mediated shift toward M2 macrophage polarization. Thus, our results demonstrate that EP4 signaling plays a critical role in obesity-related adipose tissue

  15. The Prostaglandin E2 Receptor EP4 Regulates Obesity-Related Inflammation and Insulin Sensitivity.

    Science.gov (United States)

    Yasui, Mika; Tamura, Yukinori; Minami, Manabu; Higuchi, Sei; Fujikawa, Risako; Ikedo, Taichi; Nagata, Manabu; Arai, Hidenori; Murayama, Toshinori; Yokode, Masayuki

    2015-01-01

    With increasing body weight, macrophages accumulate in adipose tissue. There, activated macrophages secrete numerous proinflammatory cytokines and chemokines, giving rise to chronic inflammation and insulin resistance. Prostaglandin E2 suppresses macrophage activation via EP4; however, the role of EP4 signaling in insulin resistance and type 2 diabetes mellitus remains unknown. In this study, we treated db/db mice with an EP4-selective agonist, ONO-AE1-329, for 4 weeks to explore the role of EP4 signaling in obesity-related inflammation in vivo. Administration of the EP4 agonist did not affect body weight gain or food intake; however, in the EP4 agonist-treated group, glucose tolerance and insulin resistance were significantly improved over that of the vehicle-treated group. Additionally, administration of the EP4 agonist inhibited the accumulation of F4/80-positive macrophages and the formation of crown-like structures in white adipose tissue, and the adipocytes were significantly smaller. The treatment of the EP4 agonist increased the number of anti-inflammatory M2 macrophages, and in the stromal vascular fraction of white adipose tissue, which includes macrophages, it markedly decreased the levels of proinflammatory cytokines and chemokines. Further, EP4 activation increased the expression of adiponectin and peroxidase proliferator-activated receptors in white adipose tissue. Next, we examined in vitro M1/M2 polarization assay to investigate the impact of EP4 signaling on determining the functional phenotypes of macrophages. Treatment with EP4 agonist enhanced M2 polarization in wild-type peritoneal macrophages, whereas EP4-deficient macrophages were less susceptible to M2 polarization. Notably, antagonizing peroxidase proliferator-activated receptor δ activity suppressed EP4 signaling-mediated shift toward M2 macrophage polarization. Thus, our results demonstrate that EP4 signaling plays a critical role in obesity-related adipose tissue inflammation and

  16. Cholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat: distribution of axons and presence of muscarinic receptors.

    Science.gov (United States)

    Papka, R E; Traurig, H H; Schemann, M; Collins, J; Copelin, T; Wilson, K

    1999-05-01

    Acetylcholine (ACh) stimulates contraction of the uterus and dilates the uterine arterial supply. Uterine cholinergic nerves arise from the paracervical ganglia and were, in the past, characterized based on acetylcholinesterase (AChE) histochemistry. However, the histochemical reaction for acetylcholinesterase provides only indirect evidence of acetylcholine location and is a nonspecific marker for cholinergic nerves. The present study: (1) reevaluated cholinergic neurons of the paracervical ganglia, (2) examined the cholinergic innervation of the uterus by using retrograde axonal tracing and antibodies against molecules specific to cholinergic neurons, choline acetyltransferase and the vesicular acetylcholine transporter, and (3) examined muscarinic receptors in the paracervical ganglia using autoradiography and a radiolabeled agonist. Most ganglionic neurons were choline acetyltransferase- and vesicular acetylcholine transporter-immunoreactive and were apposed by choline acetyltransferase/vesicular acetylcholine transporter-immunoreactive terminals. Retrograde tracing showed that some cholinergic neurons projected axons to the uterus. These nerves formed moderately dense plexuses in the myometrium, cervical smooth muscle and microarterial system of the uterine horns and cervix. Finally, the paracervical ganglia contain muscarinic receptors. These results clearly reveal the cholinergic innervation of the uterus and cervix, a source of these nerves, and demonstrate the muscarinic receptor content of the paracervical ganglia. Cholinergic nerves could play significant roles in the control of uterine myometrium and vasculature.

  17. GABA(B) receptor activation in the ventral tegmental area inhibits the acquisition and expression of opiate-induced motor sensitization.

    Science.gov (United States)

    Leite-Morris, Kimberly A; Fukudome, Eugene Y; Shoeb, Marwa H; Kaplan, Gary B

    2004-02-01

    Opiate-induced motor sensitization refers to the progressive and enduring motor response that develops after intermittent drug administration, and results from neuroadaptive changes in ventral tegmental area (VTA) and nucleus accumbens (NAc) neurons. Repeated activation of mu-opioid receptors localized on gamma-aminobutyric acid (GABA) neurons in the VTA enhances dopaminergic cell activity and stimulates dopamine release in the nucleus accumbens. We hypothesize that GABA(B) receptor agonist treatment in the VTA blocks morphine-induced motor stimulation, motor sensitization, and accumbal Fos immunoreactivity by inhibiting the activation of dopaminergic neurons. First, C57BL/6 mice were coadministered a single subcutaneous injection of morphine with intra-VTA baclofen, a GABA(B) receptor agonist. Baclofen produced a dose-dependent inhibition of opiate-induced motor stimulation that was attenuated by 2-hydroxysaclofen, a GABA(B) receptor antagonist. Next, morphine was administered on days 1, 3, 5, and 9 and mice demonstrated sensitization to its motor stimulant effects and concomitant induction of Fos immunoreactivity in the NAc shell (NAcS) but not NAc core. Intra-VTA baclofen administered during morphine pretreatment blocked the acquisition of morphine-induced motor sensitization and Fos activation in the NAcS. Intra-VTA baclofen administered only on day 9 blocked the expression of morphine-induced motor sensitization and Fos activation in the NAcS. A linear relationship was found between morphine-induced motor activity and accumbal Fos in single- and repeated-dose treatment groups. In conclusion, GABA(B) receptor stimulation in the VTA blocked opiate-induced motor stimulation and motor sensitization by inhibiting the activation of NAcS neurons. GABA(B) receptor agonists may be useful pharmacological treatments in altering the behavioral effects of opiates.

  18. B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides.

    Science.gov (United States)

    Schwamb, Janine; Feldhaus, Valeska; Baumann, Michael; Patz, Michaela; Brodesser, Susanne; Brinker, Reinhild; Claasen, Julia; Pallasch, Christian P; Hallek, Michael; Wendtner, Clemens-Martin; Frenzel, Lukas P

    2012-11-08

    Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.

  19. Characterization of strychnine-sensitive glycine receptor in the intact frog retina: modulation by protein kinases.

    Science.gov (United States)

    Salceda, Rocío; Aguirre-Ramirez, Marisela

    2005-03-01

    We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 microM, respectively. Specific binding of glycine was displaced by beta-alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.

  20. [Effect of corticotropin releasing factor(CRF) on somatic pain sensitivity in conscious rats: involvement of CRF1 and CRF2 receptors].

    Science.gov (United States)

    Iarushkina, N I; Bagaeva, T R; Filaretova, L P

    2014-11-01

    Corticotropin-releasing factor (CRF) is involved in the regulation of pain sensitivity and can cause an analgesic effect in animals and humans. The aim of the study was to investigate the involvement of CRF1 and CRF2 receptors in CRF-induced analgesic effect (after intraperitoneal injection) on somatic pain sensitivity in conscious rats. Somatic pain sensitivity was tested by tail flick latency (tail flick test). The involvement of CRF1 and CRF2 receptors was studied by their selective antagonists NBI 27914 and astressin 2B, respectively. Systemic administration of CRF caused an increase in tail flick latency (analgesic effect). Pretreatment with NBI 27914 or astressin 2B eliminated CRF-induced analgesic effect. Besides, NBI 27914, but not astressin 2B, increased basal tail flick latency. The data obtained indicate that the analgesic effect can be mediated by both CRF1 and CRF2 receptors. CRF-1 receptor, in contrast to the CRF2 receptors, may be involved in the regulation of the basal level of pain sensitivity.

  1. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    Science.gov (United States)

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  2. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension.

    Science.gov (United States)

    Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P; Kimball, Christie D; Grobe, Justin L; van Gool, Jeanette M G; Sullivan, Michelle N; Earley, Scott; Danser, A H Jan; Ichihara, Atsuhiro; Feng, Yumei

    2014-02-01

    The (pro)renin receptor (PRR), which binds both renin and prorenin, is a newly discovered component of the renin-angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, nonproteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate-salt-induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. PRR expression, detected by immunostaining and reverse transcription-polymerase chain reaction, was significantly decreased in the brains of knockout mice compared with wild-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild-type mice. This hypertensive response was abolished in PRR-knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate-salt increased PRR expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in PRR-knockout mice. PRR knockout in neurons prevented the development of deoxycorticosterone acetate-salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, nonproteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate-salt-induced hypertension, possibly through diminished angiotensin II formation.

  3. Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine.

    Science.gov (United States)

    Poorthuis, Rogier B; Mansvelder, Huibert D

    2013-10-15

    Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    Science.gov (United States)

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Transforming growth factor beta receptor 1 is increased following abstinence from cocaine self-administration, but not cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Amy M Gancarz-Kausch

    Full Text Available The addicted phenotype is characterized as a long-lasting, chronically relapsing disorder that persists following long periods of abstinence, suggesting that the underlying molecular changes are stable and endure for long periods even in the absence of drug. Here, we investigated Transforming Growth Factor-Beta Type I receptor (TGF-β R1 expression in the nucleus accumbens (NAc following periods of withdrawal from cocaine self-administration (SA and a sensitizing regimen of non-contingent cocaine. Rats were exposed to either (i repeated systemic injections (cocaine or saline, or (ii self-administration (cocaine or saline and underwent a period of forced abstinence (either 1 or 7 days of drug cessation. Withdrawal from cocaine self-administration resulted in an increase in TGF-β R1 protein expression in the NAc compared to saline controls. This increase was specific for volitional cocaine intake as no change in expression was observed following a sensitizing regimen of experimenter-administered cocaine. These findings implicate TGF-β signaling as a novel potential therapeutic target for treating drug addiction.

  6. Estrogen receptor alpha overexpressing mouse antral follicles are sensitive to atresia induced by methoxychlor and its metabolites.

    Science.gov (United States)

    Paulose, Tessie; Hannon, Patrick R; Peretz, Jackye; Craig, Zelieann R; Flaws, Jodi A

    2012-06-01

    Methoxychlor (MXC) and its metabolites bind to estrogen receptors (ESRs) and increase ovarian atresia. To test whether ESR alpha (ESR1) overexpressing (ESR1 OE) antral follicles are more sensitive to atresia compared to controls, we cultured antral follicles with vehicle, MXC (1-100 μg/ml) or metabolites (0.1-10 μg/ml). Results indicate that MXC and its metabolites significantly increase atresia in ESR1 OE antral follicles at lower doses compared to controls. Activity of pro-apoptotic factor caspase-3/7 was significantly higher in ESR1 OE treated antral follicles compared to controls. ESR1 OE mice dosed with MXC 64 mg/kg/day had an increased percentage of atretic antral follicles compared to controls. Furthermore, pro-caspase-3 levels were found to be significantly lower in ESR1 OE ovaries than controls dosed with MXC 64 mg/kg/day. These data suggest that ESR1 OE ovaries are more sensitive to atresia induced by MXC and its metabolites in vitro and in vivo compared to controls.

  7. Optogenetics reveals a role for accumbal medium spiny neurons expressingdopamine D2 receptors in cocaine-induced behavioral sensitization

    Directory of Open Access Journals (Sweden)

    Shelly Sooyun eSong

    2014-10-01

    Full Text Available Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc have beenproposed to contribute to drug-mediated addictive behaviors. Here we have used anoptogenetic approach to examine the role of NAc medium spiny neurons (MSNs expressingdopamine D2 receptors (D2R in cocaine-induced behavioral sensitization. Adeno-associatedviral vectors coding channelrhodopsin-2 (ChR2 were delivered into the NAc of D2R-Cretransgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2RMSNsform local inhibitory circuits, because photostimulation of D2R-MSN evokedinhibitory postsynaptic currents in neighboring MSNs. Photostimulation of NAc D2R-MSNin vivo affected neither the initiation nor the expression of cocaine-induced behavioralsensitization. However, photostimulation during the drug withdrawal period attenuatedexpression of cocaine-induced behavioral sensitization. These results show that D2R-MSNsof NAc play a key role in withdrawal-induced plasticity and may contribute to relapse aftercessation of drug abuse.

  8. Cardiac Autonomic Function Is Associated With the Coronary Microcirculatory Function in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Christian Stevns; Hasbak, Philip

    2016-01-01

    Cardiac autonomic dysfunction and cardiac microvascular dysfunction are diabetic complications associated with increased mortality, but the association between these has been difficult to assess. We applied new and sensitive methods to assess this in patients with type 2 diabetes mellitus (T2DM...... (123)I-metaiodobenzylguanidine scintigraphy was conducted in a subgroup of 29 patients and 14 control subjects and evaluated as the late heart-to-mediastinum ratio and washout rate. Impaired function of all the cardiac autonomic measures (except the washout rate) was associated with reduced CFR....... A heart rate variability index, reflecting sympathetic and parasympathetic function (low-frequency power), and the late heart-to-mediastinum ratio, reflecting the function of adrenergic receptors and sympathetic activity, were positively correlated with CFR after adjustment for age and heart rate...

  9. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Rezayof, Ameneh; Assadpour, Sara; Alijanpour, Sakineh

    2013-01-01

    In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.

  10. Metabolic and cardiovascular responses to epinephrine in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Richter, E; Madsbad, S

    1987-01-01

    . To study these responses, we administered epinephrine in a graded intravenous infusion (0.5 to 5 micrograms per minute) to seven diabetic patients without neuropathy, seven diabetic patients with autonomic neuropathy, and seven normal subjects. Mean arterial pressure decreased significantly in the patients...... with autonomic neuropathy than in the other groups (P less than 0.05). These findings indicate that several beta-receptor-mediated responses to epinephrine are enhanced in patients with diabetic autonomic neuropathy. The underlying mechanism remains to be elucidated.......Norepinephrine-induced vasoconstriction, which is mediated by alpha-adrenergic receptors, is accentuated in patients with autonomic neuropathy. In contrast, responses mediated by beta-adrenergic receptors, including vasodilatation and metabolic changes, have not been evaluated in these patients...

  11. Aryl hydrocarbon receptor (AHR-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities

    Directory of Open Access Journals (Sweden)

    Okey Allan B

    2010-04-01

    Full Text Available Abstract Background The major toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD appear to result from dysregulation of mRNA levels mediated by the aryl hydrocarbon receptor (AHR. Dioxin-like chemicals alter expression of numerous genes in liver, but it remains unknown which lie in pathways leading to major toxicities such as hepatotoxicity, wasting and lethality. To identify genes involved in these responses we exploited a rat genetic model. Rats expressing an AHR splice-variant lacking a portion of the transactivation domain are highly resistant to dioxin-induced toxicities. We examined changes in hepatic mRNA abundances 19 hours after TCDD treatment in two dioxin-resistant rat strains/lines and two dioxin-sensitive rat strains/lines. Results Resistant rat strains/lines exhibited fewer transcriptional changes in response to TCDD than did rats with wildtype AHR. However, well-known AHR-regulated and dioxin-inducible genes such as CYP1A1, CYP1A2, and CYP1B1 remained fully responsive to TCDD in all strains/lines. Pathway analysis indicated that the genes which respond differently to TCDD between sensitive and resistant rats are mainly involved in lipid metabolism, cellular membrane function and energy metabolism. These pathways previously have been shown to respond differently to dioxin treatment in dioxin-sensitive versus dioxin-resistant rats at a biochemical level and in the differential phenotype of toxicologic responses. Conclusion The transactivation-domain deletion in dioxin-resistant rats does not abolish global AHR transactivational activity but selectively interferes with expression of subsets of genes that are candidates to mediate or protect from major dioxin toxicities such as hepatotoxicity, wasting and death.

  12. Neuronal androgen receptor regulates insulin sensitivity via suppression of hypothalamic NF-κB-mediated PTP1B expression.

    Science.gov (United States)

    Yu, I-Chen; Lin, Hung-Yun; Liu, Ning-Chun; Sparks, Janet D; Yeh, Shuyuan; Fang, Lei-Ya; Chen, Lumin; Chang, Chawnshang

    2013-02-01

    Clinical investigations highlight the increased incidence of metabolic syndrome in prostate cancer (PCa) patients receiving androgen deprivation therapy (ADT). Studies using global androgen receptor (AR) knockout mice demonstrate that AR deficiency results in the development of insulin resistance in males. However, mechanisms by which AR in individual organs coordinately regulates insulin sensitivity remain unexplored. Here we tested the hypothesis that functional AR in the brain contributes to whole-body insulin sensitivity regulation and to the metabolic abnormalities developed in AR-deficient male mice. The mouse model selectively lacking AR in the central nervous system and AR-expressing GT1-7 neuronal cells were established and used to delineate molecular mechanisms in insulin signaling modulated by AR. Neuronal AR deficiency leads to reduced insulin sensitivity in middle-aged mice. Neuronal AR regulates hypothalamic insulin signaling by repressing nuclear factor-κB (NF-κB)-mediated induction of protein-tyrosine phosphatase 1B (PTP1B). Hypothalamic insulin resistance leads to hepatic insulin resistance, lipid accumulation, and visceral obesity. The functional deficiency of AR in the hypothalamus leads to male mice being more susceptible to the effects of high-fat diet consumption on PTP1B expression and NF-κB activation. These findings suggest that in men with PCa undergoing ADT, reduction of AR function in the brain may contribute to insulin resistance and visceral obesity. Pharmacotherapies targeting neuronal AR and NF-κB may be developed to combat the metabolic syndrome in men receiving ADT and in elderly men with age-associated hypogonadism.

  13. The mu opioid receptor A118G gene polymorphism moderates effects of trait anger-out on acute pain sensitivity.

    Science.gov (United States)

    Bruehl, Stephen; Chung, Ok Y; Burns, John W

    2008-10-15

    Both trait anger-in (managing anger through suppression) and anger-out (managing anger through direct expression) are related to pain responsiveness, but only anger-out effects involve opioid mechanisms. Preliminary work suggested that the effects of anger-out on postoperative analgesic requirements were moderated by the A118G single nucleotide polymorphism of the mu opioid receptor gene. This study further explored these potential genotypexphenotype interactions as they impact acute pain sensitivity. Genetic samples and measures of anger-in and anger-out were obtained in 87 subjects (from three studies) who participated in controlled laboratory acute pain tasks (ischemic, finger pressure, thermal). McGill Pain Questionnaire (MPQ) Sensory and Affective ratings for each pain task were standardized within studies, aggregated across pain tasks, and combined for analyses. Significant anger-outxA118G interactions were observed (p'seffects tests for both pain measures revealed that whereas anger-out was nonsignificantly hyperalgesic in subjects homozygous for the wild-type allele, anger-out was significantly hypoalgesic in those with the variant G allele (p'spain sensitivity in high anger-out subjects with the G allele and heightened pain sensitivity in low anger-out subjects with the G allele relative to responses in homozygous wild-type subjects. No genetic moderation was observed for anger-in, although significant main effects on MPQ-Affective ratings were noted (peffects were due to overlap with negative affect, but anger-outxA118G interactions were not, suggesting unique effects of expressive anger regulation. Results support opioid-related genotypexphenotype interactions involving trait anger-out.

  14. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  15. [Emotion, amygdala, and autonomic nervous system].

    Science.gov (United States)

    Ueyama, Takashi

    2012-10-01

    Emotion refers to the dynamic changes of feeling accompanied by the alteration of physical and visceral activities. Autonomic nervous system (sympathetic and parasympathetic) regulates the visceral activities. Therefore, monitoring and analyzing autonomic nervous activity help understand the emotional changes. To this end, the survey of the expression of immediate early genes (IEGs), such as c-Fos in the brain and target organs, and the viral transneuronal labeling method using the pseudorabies virus (PRV) have enabled the visualization of the neurocircuitry of emotion. By comparing c-Fos expression and data from PRV or other neuroanatomical labeling techniques, the central sites that regulate emotional stress-induced autonomic activation can be deduced. Such regions have been identified in the limbic system (e. g., the extended amygdaloid complex; lateral septum; and infralimbic, insular, and ventromedial temporal cortical regions), as well as in several hypothalamic and brainstem nuclei. The amygdala is structurally diverse and comprises several subnuclei, which play a role in emotional process via projections from the cortex and a variety of subcortical structures. All amygdaloid subnuclei receive psychological information from other limbic systems, while the lateral and central subnuclei receive peripheral and sensory information. Output to the hypothalamus and peripheral sympathetic system mainly originates from the medial amygdala. As estrogen receptor α, estrogen receptor β, and androgen receptor are expressed in the medial amygdala, sex steroids may modulate the autonomic nervous activities.

  16. Quantitative autonomic testing.

    Science.gov (United States)

    Novak, Peter

    2011-07-19

    Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.

  17. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    violations of voltage constraints. This voltage-sensitive controller can also operate alone, without the frequency-sensitive controller, to provide voltage regulation service and increase load diversity in any distribution network where lower voltage level corresponds to higher load.The frequency......-sensitive and voltage-sensitive autonomous load are viable alternatives to conventional frequency and voltage control devices. When used in combination, they complement each other. In systems where the operator has centrally dispatchable resources to regulate frequency, these resources can be used to dispatch otherwise...... autonomous frequency-sensitive loads. Moreover, where centrally dispatchable frequency regulation resources can rapidly change operating points, such as in a micro-grid, the energy sources can be used as transmitters for a ultra-low-bandwidth uni-directional power line communication system....

  18. Biological variation and reference intervals for circulating osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor kappa B ligand and high-sensitivity C-reactive protein

    DEFF Research Database (Denmark)

    Sennels, H P; Jacobsen, Søren; Jensen, T

    2007-01-01

    Objective. Monitoring inflammatory diseases and osteoclastogenesis with osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor kappa B ligand (total sRANKL) and high-sensitivity C-reactive protein (hsCRP) has recently attracted increased interest. The purpose...

  19. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis

    NARCIS (Netherlands)

    Melief, Jeroen; Koper, Jan W; Endert, Erik; Møller, Holger J; Hamann, Jörg; Uitdehaag, Bernard M; Huitinga, I.

    2016-01-01

    As high cortisol levels are implicated in suppressed disease activity of multiple sclerosis (MS), glucocorticoid receptor (GR) polymorphisms that affect glucocorticoid (GC) sensitivity may impact on this by changing local immunomodulation or regulation of the hypothalamus-pituitary-adrenal (HPA)-axi

  20. Effect of carotid and aortic baroreceptors on cardiopulmonary reflex: the role of autonomic function

    Directory of Open Access Journals (Sweden)

    T.L. Fernandes

    2010-07-01

    Full Text Available We determined the sympathetic and parasympathetic control of heart rate (HR and the sensitivity of the cardiopulmonary receptors after selective carotid and aortic denervation. We also investigated the participation of the autonomic nervous system in the Bezold-Jarish reflex after selective removal of aortic and carotid baroreceptors. Male Wistar rats (220-270 g were divided into three groups: control (CG, N = 8, aortic denervation (AG, N = 5 and carotid denervation (CAG, N = 9. AG animals presented increased arterial pressure (12% and HR (11% compared with CG, while CAG animals presented a reduction in arterial pressure (16% and unchanged HR compared with CG. The sequential blockade of autonomic effects by atropine and propranolol indicated a reduction in vagal function in CAG (a 50 and 62% reduction in vagal effect and tonus, respectively while AG showed an increase of more than 100% in sympathetic control of HR. The Bezold-Jarish reflex was evaluated using serotonin, which induced increased bradycardia and hypotension in AG and CAG, suggesting that the sensitivity of the cardiopulmonary reflex is augmented after selective denervation. Atropine administration abolished the bradycardic responses induced by serotonin in all groups; however, the hypotensive response was still increased in AG. Although the responses after atropine were lower than the responses before the drug, indicating a reduction in vagal outflow after selective denervation, our data suggest that both denervation procedures are associated with an increase in sympathetic modulation of the vessels, indicating that the sensitivity of the cardiopulmonary receptors was modulated by baroreceptor fibers.

  1. Direct detection of calmodulin tuning by ryanodine receptor channel targets using a Ca2+-sensitive acrylodan-labeled calmodulin.

    Science.gov (United States)

    Fruen, Bradley R; Balog, Edward M; Schafer, Janet; Nitu, Florentin R; Thomas, David D; Cornea, Razvan L

    2005-01-11

    Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).

  2. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Vision The Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  3. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  4. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    Autonomic neuropathy is a common complication in long-term diabetes, about 30% of the patients showing measurable signs of autonomic dysfunction after 10 years duration of disease. The diagnosis is often difficult to establish because clinical symptoms generally occur late in the course...

  5. The Pharmacology of Autonomic Failure: From Hypotension to Hypertension.

    Science.gov (United States)

    Biaggioni, Italo

    2017-01-01

    Primary neurodegenerative autonomic disorders are characterized clinically by loss of autonomic regulation of blood pressure. The clinical picture is dominated by orthostatic hypotension, but supine hypertension is also a significant problem. Autonomic failure can result from impairment of central autonomic pathways (multiple system atrophy) or neurodegeneration of peripheral postganglionic autonomic fibers (pure autonomic failure, Parkinson's disease). Pharmacologic probes such as the ganglionic blocker trimethaphan can help us in the understanding of the underlying pathophysiology and diagnosis of these disorders. Conversely, understanding the pathophysiology is crucial in the development of effective pharmacotherapy for these patients. Autonomic failure patients provide us with an unfortunate but unique research model characterized by loss of baroreflex buffering. This greatly magnifies the effect of stimuli that would not be apparent in normal subjects. An example of this is the discovery of the osmopressor reflex: ingestion of water increases blood pressure by 30-40 mm Hg in autonomic failure patients. Animal studies indicate that the trigger of this reflex is related to hypo-osmolality in the portal circulation involving transient receptor potential vanilloid 4 receptors. Studies in autonomic failure patients have also revealed that angiotensin II can be generated through noncanonical pathways independent of plasma renin activity to contribute to hypertension. Similarly, the mineralocorticoid receptor antagonist eplerenone produces acute hypotensive effects, highlighting the presence of non-nuclear mineralocorticoid receptor pathways. These are examples of careful clinical research that integrates pathophysiology and pharmacology to advance our knowledge of human disease. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Development and validation of sensitive sandwich ELISAs for two investigational nonapeptide metastin receptor agonists, TAK-448 and TAK-683.

    Science.gov (United States)

    Yoshida, Nobuyo; Nishizawa, Naoki; Matsui, Hisanori; Moriya, Yuu; Kitada, Chieko; Asami, Taiji; Matsumoto, Hirokazu

    2012-11-01

    TAK-448 and TAK-683, investigational agents with potential utility in the treatment of prostate cancer, are potent low molecular weight metastin receptor agonists consisting of nine amino acids. Monoclonal antibodies (mAbs) against these agents were developed to facilitate their evaluation in preclinical studies. Six mAbs were obtained from four immunogens. Three mAbs recognized the C-terminal of TAK-683 and TAK-448, two recognized the N-terminal of TAK-683, and one recognized the N-terminal of TAK-448. Using various combinations of these six mAbs, sandwich ELISAs for TAK-448 and TAK-683 were developed. These assays were highly sensitive, specific, and accurate. The detection limit for TAK-448 and TAK-683 was 3 and 5 pg/mL, respectively, and there was no interference from rat plasma, rat metastin, or analogs of TAK-448/TAK-683. Recovery achieved ≤±10% with intra-/inter-day assay precision coefficient of variation <10%. The assay demonstrated high stability and sample pre-treatment was not required. Each assay detected the dose-dependent concentration of TAK-448 and TAK-683 in blood 24h after a single intravenous administration of 0.1 and 1mg/kg doses. In conclusion, sensitive sandwich ELISAs were developed to detect the small peptides TAK-448 and TAK-683. The novel assays reliably quantified these nonapeptides in rat plasma, and thus will be useful for preclinical studies of these agents. This methodology may be applicable to the development of similar assays for other short peptides.

  7. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro.

    Science.gov (United States)

    Terasaki, Masanori; Yasuda, Michiko; Shimoi, Kayoko; Jozuka, Kazuhiko; Makino, Masakazu; Shiraishi, Fujio; Nakajima, Daisuke

    2014-09-15

    The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (ppaper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells.

  8. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    Science.gov (United States)

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  9. Cell-autonomous role of TGFβ and IL-2 receptors in CD4+ and CD8+ inducible regulatory T-cell generation during GVHD.

    Science.gov (United States)

    Sawamukai, Norifumi; Satake, Atsushi; Schmidt, Amanda M; Lamborn, Ian T; Ojha, Priti; Tanaka, Yoshiya; Kambayashi, Taku

    2012-06-01

    FoxP3(+) regulatory T cells (Tregs) suppress GVHD while preserving graft-versus-tumor effects, making them an attractive target for GVHD therapy. The donor-derived Treg pool can potentially be derived from the expansion of preexisting natural Tregs (nTregs) or from de novo generation of inducible Tregs (iTregs) from donor Tconvs in the transplantation recipient. Using an MHC-mismatched model of acute GVHD, in the present study we found that the Treg pool was comprised equally of donor-derived nTregs and iTregs. Experiments using various combinations of T cells from wild-type and FoxP3-deficient mice suggested that both preexisting donor nTregs and the generation of iTregs in the recipient mice contribute to protection against GVHD. Surprisingly, CD8(+)FoxP3(+) T cells represented approximately 70% of the iTreg pool. These CD8(+)FoxP3(+) T cells shared phenotypic markers with their CD4(+) counterparts and displayed suppressive activity, suggesting that they were bona fide iTregs. Both CD4(+) and CD8(+) Tregs appeared to be protective against GVHD-induced lethality and required IL-2 and TGFβ receptor expression for their generation. These data illustrate the complex makeup of the donor-derived FoxP3(+) Treg pool in allogeneic recipients and their potential role in protection against GVHD.

  10. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism

    Science.gov (United States)

    Jiang, Man; Polepalli, Jai; Chen, Lulu Y.; Zhang, Bo; Südhof, Thomas C.; Malenka, Robert C.

    2016-01-01

    Neuroligins are postsynaptic cell-adhesion molecules implicated in autism and other neuropsychiatric disorders. Despite extensive work, the role of neuroligins in synapse function and plasticity, especially NMDA receptor (NMDAR)-dependent LTP, remains unclear. To establish which synaptic functions unequivocally require neuroligins, we analyzed single and triple conditional knockout (cKO) mice for all three major neuroligin isoforms (NL1-NL3). We inactivated neuroligins by stereotactic viral expression of Cre-recombinase in hippocampal CA1 region pyramidal neurons at postnatal day 0 (P0) or day 21 (P21), and measured synaptic function, synaptic plasticity, and spine numbers in acute hippocampal slices 2–3 weeks later. Surprisingly, we find that ablation of neuroligins in newborn or juvenile mice only modestly impaired basal synaptic function in hippocampus, and caused no alteration in postsynaptic spine numbers. However, triple cKO of NL1-NL3 or single cKO of NL1 impaired NMDAR-mediated excitatory postsynaptic currents (NMDAR EPSCs), and abolished NMDAR-dependent LTP. Strikingly, the NL1 cKO also abolished LTP elicited by activation of L-type Ca2+-channels during blockade of NMDARs. These findings demonstrate that neuroligins are generally not essential for synapse formation in CA1 pyramidal neurons but shape synaptic properties and that NL1 specifically is required for LTP induced by postsynaptic Ca2+-elevations, a function which may contribute to the pathophysiological role of neuroligins in brain disorders. PMID:27217145

  11. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  12. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps.

    Science.gov (United States)

    Basu, Reetobrata; Baumgaertel, Nicholas; Wu, Shiyong; Kopchick, John J

    2017-03-14

    Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.

  13. Metformin Attenuates Aβ Pathology Mediated Through Levamisole Sensitive Nicotinic Acetylcholine Receptors in a C. elegans Model of Alzheimer's Disease.

    Science.gov (United States)

    Ahmad, Waqar; Ebert, Paul R

    2016-09-05

    The metabolic disease, type 2 diabetes mellitus (T2DM), is a major risk factor for Alzheimer's disease (AD). This suggests that drugs such as metformin that are used to treat T2DM may also be therapeutic toward AD and indicates an interaction between AD and energy metabolism. In this study, we have investigated the effects of metformin and another T2DM drug, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) in C. elegans expressing human Aβ42. We found that Aβ expressed in muscle inhibited levamisole sensitive nicotinic acetylcholine receptors and that metformin delayed Aβ-linked paralysis and improved acetylcholine neurotransmission in these animals. Metformin also moderated the effect of neuronal expression of Aβ: decreasing hypersensitivity to serotonin, restoring normal chemotaxis, and improving fecundity. Metformin was unable to overcome the small effect of neuronal Aβ on egg viability. The protective effects of metformin were associated with a decrease in the amount of toxic, oligomeric Aβ. AICAR has a similar protective effect against Aβ toxicity. This work supports the notion that anti-diabetes drugs and metabolic modulators may be effective against AD and that the worm model can be used to identify the specific interactions between Aβ and cellular proteins.

  14. Love to win or hate to Lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward versus punishment.

    Science.gov (United States)

    Tomer, Rachel; Slagter, Heleen A; Christian, Bradley T; Fox, Andrew S; King, Carlye R; Murali, Dhanabalan; Gluck, Mark A; Davidson, Richard J

    2014-05-01

    Humans show consistent differences in the extent to which their behavior reflects a bias toward appetitive approach-related behavior or avoidance of aversive stimuli [Elliot, A. J. Approach and avoidance motivation. In A. J. Elliot (Ed.), Handbook of approach and avoidance motivation (pp. 3-14). New York: Psychology Press, 2008]. We examined the hypothesis that in healthy participants this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding, we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward versus punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition.

  15. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans

    DEFF Research Database (Denmark)

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru;

    2002-01-01

    -induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin......Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin...... concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity...

  16. Autonomic nervous system and immune system interactions.

    Science.gov (United States)

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  17. Retinoic acid receptor-dependent, cell-autonomous, endogenous retinoic acid signaling and its target genes in mouse collecting duct cells.

    Science.gov (United States)

    Wong, Yuen Fei; Wilson, Patricia D; Unwin, Robert J; Norman, Jill T; Arno, Matthew; Hendry, Bruce M; Xu, Qihe

    2012-01-01

    Vitamin A is necessary for kidney development and has also been linked to regulation of solute and water homeostasis and to protection against kidney stone disease, infection, inflammation, and scarring. Most functions of vitamin A are mediated by its main active form, all-trans retinoic acid (tRA), which binds retinoic acid receptors (RARs) to modulate gene expression. We and others have recently reported that renal tRA/RAR activity is confined to the ureteric bud (UB) and collecting duct (CD) cell lineage, suggesting that endogenous tRA/RARs primarily act through regulating gene expression in these cells in embryonic and adult kidney, respectively. To explore target genes of endogenous tRA/RARs, we employed the mIMCD-3 mouse inner medullary CD cell line, which is a model of CD principal cells and exhibits constitutive tRA/RAR activity as CD principal cells do in vivo. Combining antagonism of RARs, inhibition of tRA synthesis, exposure to exogenous tRA, and gene expression profiling techniques, we have identified 125 genes as candidate targets and validated 20 genes that were highly regulated (Dhrs3, Sprr1a, and Ppbp were the top three). Endogenous tRA/RARs were more important in maintaining, rather than suppressing, constitutive gene expression. Although many identified genes were expressed in UBs and/or CDs, their exact functions in this cell lineage are still poorly defined. Nevertheless, gene ontology analysis suggests that these genes are involved in kidney development, renal functioning, and regulation of tRA signaling. A rigorous approach to defining target genes for endogenous tRA/RARs has been established. At the pan-genomic level, genes regulated by endogenous tRA/RARs in a CD cell line have been catalogued for the first time. Such a catalogue will guide further studies on molecular mediators of endogenous tRA/RARs during kidney development and in relation to renal defects associated with vitamin A deficiency.

  18. Maternal exposure to estradiol and endocrine disrupting compounds alters the sensitivity of sea urchin embryos and the expression of an orphan steroid receptor.

    Science.gov (United States)

    Roepke, Troy A; Chang, Ernest S; Cherr, Gary N

    2006-10-01

    Endocrine disrupting compounds (EDCs) are known to affect reproduction and development in marine invertebrates. In previous work, we have shown that developing sea urchin embryos were sensitive to estradiol and estrogenic EDCs at environmentally relevant concentrations in a tamoxifen-sensitive manner (Roepke et al. 2005. Aquat Toxicol 71:155-173). In this study, we report the effects of maternal exposure to EDCs on embryo sensitivity and regulation of an orphan steroid receptor in sea urchin eggs. Maternal exposures were conducted by injecting female Strongylocentrotus purpuratus sea urchins initiating oogenesis with two concentrations of estradiol, octylphenol, tributyltin and o, p-DDD for 8 weeks with an induced spawning before and after the injection cycle. Developing embryos were less sensitive to estradiol following maternal exposure to estradiol, octylphenol and DDD. The steroidogenesis inhibitor, spironolactone, and the aromatase inhibitor, formestane, affected normal sea urchin development with EC50 values of 18 and 2 microM, respectively. Binding of estradiol was demonstrated in homogenates supernatants of sea urchin embryos by filtration centrifugation and column chromatography, but saturation was not reached until 4-6 hr and was highly variable. Analysis of eggs from pre- and post-injection spawns using real-time Q-PCR for the mRNA of an orphan steroid receptor, SpSHR2, shows that receptor mRNA increased in eggs with estradiol, octylphenol and tributyltin but decreased with DDD. RIA showed that estradiol may be present during gastrulation. In summary, maternal exposure to estradiol and EDCs alters embryo sensitivity and regulates the expression of an orphan steroid receptor in the egg.

  19. In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D2-Like Receptors through Blink Rate

    Science.gov (United States)

    Groman, Stephanie M.; James, Alex S.; Seu, Emanuele; Tran, Steven; Clark, Taylor A.; Harpster, Sandra N.; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H.; Elsworth, John D.; London, Edythe D.

    2014-01-01

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors. PMID:25339755

  20. In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate.

    Science.gov (United States)

    Groman, Stephanie M; James, Alex S; Seu, Emanuele; Tran, Steven; Clark, Taylor A; Harpster, Sandra N; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H; Elsworth, John D; London, Edythe D; Jentsch, James David

    2014-10-22

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors.

  1. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  2. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    Full Text Available Dong Yan,1,2 Yang Ge,1 Haiteng Deng,3 Wenming Chen,4 Guangyu An1 1Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Translational Molecular pathology, M.D Anderson Cancer Center, Houston, TX, USA; 3School of Sciences, Tsinghua University, 4Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL triggers apoptosis in tumor cells, but when used alone, it is not effective in the treatment of TRAIL-resistant tumors. Some studies have shown that gefitinib interacts with recombinant mutant human TRAIL (rmhTRAIL to induce high levels of apoptosis in gefitinib-responsive bladder cancer cell lines; however, the molecular mechanisms underlying the anticancer effects are not fully understood. Several reports have shown that the death receptor 5 (DR5 plays an important role in sensitizing cancer cells to apoptosis induced by TRAIL. Therefore, we investigated the effects of the combination of drugs and the expression of the DR5 to analyze the growth of a gefitinib-responsive non-small cell lung cancer cell line PC9, which was treated with rmhTRAIL and gefitinib individually or in combination.Methods: Human PC9 non-small cell lung cancer cells harboring an epidermal growth factor receptor mutation were used as a model for the identification of the therapeutic effects of gefitinib alone or in combination with rmhTRAIL, and cytotoxicity was assessed by MTT assays. Cell cycle and apoptosis were investigated using flow cytometry. Moreover, the effects of drugs on DR5, BAX, FLIP, and cleaved-caspase3 proteins expressions were analyzed using Western blot analyses. Finally, quantitative polymerase chain reaction analysis was carried out to assess whether rmhTRAIL and gefitinib modulate the expression of genes related to drug activity.Results: Gefitinib and rmh

  3. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  4. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    Science.gov (United States)

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  5. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    Science.gov (United States)

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  6. Epigenetic reactivation of estrogen receptor-α (ERα by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2013-02-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα-negative breast cancer is clinically aggressive and normally does not respond to conventional estrogen target-directed therapies. The soybean isoflavone, genistein (GE, has been shown to prevent and inhibit breast cancer and recent studies have suggested that GE can enhance the anticancer capacity of an estrogen antagonist, tamoxifen (TAM, especially in ERα-positive breast cancer cells. However, the role of GE in ERα-negative breast cancer remains unknown. Methods We have evaluated the in vitro and in vivo epigenetic effects of GE on ERα reactivation by using MTT assay, real-time reverse transcription-polymerase chain reaction (RT-PCR assay, western-blot assay, immunoprecipitation (ChIP assay, immunohistochemistry and epigenetic enzymatic activity analysis. Preclinical mouse models including xenograft and spontaneous breast cancer mouse models were used to test the efficacy of GE in vivo. Results We found that GE can reactivate ERα expression and this effect was synergistically enhanced when combined with a histone deacetylase (HDAC inhibitor, trichostatin A (TSA, in ERα-negative MDA-MB-231 breast cancer cells. GE treatment also re-sensitized ERα-dependent cellular responses to activator 17β-estradiol (E2 and antagonist TAM. Further studies revealed that GE can lead to remodeling of the chromatin structure in the ERα promoter thereby contributing to ERα reactivation. Consistently, dietary GE significantly prevented cancer development and reduced the growth of ERα-negative mouse breast tumors. Dietary GE further enhanced TAM-induced anti-cancer efficacy due at least in part to epigenetic ERα reactivation. Conclusions Our studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo. The results from our studies reveal a novel therapeutic combination approach using bioactive

  7. Inherited autonomic neuropathies.

    Science.gov (United States)

    Axelrod, Felicia B; Hilz, Max J

    2003-12-01

    Inherited autonomic neuropathies are a rare group of disorders associated with sensory dysfunction. As a group they are termed the "hereditary sensory and autonomic neuropathies" (HSAN). Classification of the various autonomic and sensory disorders is ongoing. In addition to the numerical classification of four distinct forms proposed by Dyck and Ohta (1975), additional entities have been described. The best known and most intensively studied of the HSANs are familial dysautonomia (Riley-Day syndrome or HSAN type III) and congenital insensitivity to pain with anhidrosis (HSAN type IV). Diagnosis of the HSANs depends primarily on clinical examinations and specific sensory and autonomic assessments. Pathologic examinations are helpful in confirming the diagnosis and in differentiating between the different disorders. In recent years identification of specific genetic mutations for some disorders has aided diagnosis. Replacement or definitive therapies are not available for any of the disorders so that treatment remains supportive and directed toward specific symptoms.

  8. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801.

    Science.gov (United States)

    Bygrave, A M; Masiulis, S; Nicholson, E; Berkemann, M; Barkus, C; Sprengel, R; Harrison, P J; Kullmann, D M; Bannerman, D M; Kätzel, D

    2016-04-12

    It has been suggested that a functional deficit in NMDA-receptors (NMDARs) on parvalbumin (PV)-positive interneurons (PV-NMDARs) is central to the pathophysiology of schizophrenia. Supportive evidence come from examination of genetically modified mice where the obligatory NMDAR-subunit GluN1 (also known as NR1) has been deleted from PV interneurons by Cre-mediated knockout of the corresponding gene Grin1 (Grin1(ΔPV) mice). Notably, such PV-specific GluN1 ablation has been reported to blunt the induction of hyperlocomotion (a surrogate for psychosis) by pharmacological NMDAR blockade with the non-competitive antagonist MK-801. This suggests PV-NMDARs as the site of the psychosis-inducing action of MK-801. In contrast to this hypothesis, we show here that Grin1(ΔPV) mice are not protected against the effects of MK-801, but are in fact sensitized to many of them. Compared with control animals, Grin1(ΔPV)mice injected with MK-801 show increased stereotypy and pronounced catalepsy, which confound the locomotor readout. Furthermore, in Grin1(ΔPV)mice, MK-801 induced medial-prefrontal delta (4 Hz) oscillations, and impaired performance on tests of motor coordination, working memory and sucrose preference, even at lower doses than in wild-type controls. We also found that untreated Grin1(ΔPV)mice are largely normal across a wide range of cognitive functions, including attention, cognitive flexibility and various forms of short-term memory. Taken together these results argue against PV-specific NMDAR hypofunction as a key starting point of schizophrenia pathophysiology, but support a model where NMDAR hypofunction in multiple cell types contribute to the disease.

  9. Oxidative stress causes renal dopamine D1 receptor dysfunction and salt-sensitive hypertension in Sprague-Dawley rats.

    Science.gov (United States)

    Banday, Anees A; Lau, Yuen-Sum; Lokhandwala, Mustafa F

    2008-02-01

    Renal dopamine plays an important role in maintaining sodium homeostasis and blood pressure (BP) during increased sodium intake. The present study was carried out to determine whether renal dopamine D1 receptor (D1R) dysfunction contributes to increase in salt sensitivity during oxidative stress. Male Sprague-Dawley rats, divided into various groups, received tap water (vehicle); 1% NaCl (high salt [HS]); L-buthionine sulfoximine (BSO), an oxidant; and HS plus BSO with or without Tempol, an antioxidant, for 12 days. Compared with vehicle, HS intake increased urinary dopamine production and decreased basal renal Na/K-ATPase activity but did not affect BP. BSO-treated rats exhibited oxidative stress and a mild increase in BP. In these rats, D1R expression and G protein coupling were reduced, and SKF38393, a D1R agonist, failed to inhibit Na/K-ATPase activity and promote sodium excretion. Concomitant administration of BSO and HS caused oxidative stress, D1R dysfunction, and a marked increase in BP. Although renal dopamine production was increased, it failed to reduce the basal Na/K-ATPase activity in these animals. Treatment of BSO plus HS rats with Tempol decreased oxidative stress and restored endogenous, as well as exogenous, D1R agonist-mediated Na/K-ATPase inhibition and normalized BP. In conclusion, during HS intake, the increased dopamine production via Na/K-ATPase inhibition prevents an increase in BP. During oxidative stress, D1R function is defective, and there is mild hypertension. However, in the presence of oxidative stress, HS intake causes marked elevation in BP, which results from a defective renal D1R function leading to the failure of dopamine to inhibit Na/K-ATPase and promote sodium excretion.

  10. let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor α signaling in breast cancer.

    Science.gov (United States)

    Zhao, Yingchun; Deng, Caishu; Lu, Weida; Xiao, Jing; Ma, Danjun; Guo, Mingxi; Recker, Robert R; Gatalica, Zoran; Wang, Zhaoyi; Xiao, Gary Guishan

    2011-01-01

    MicroRNAs (miRNAs) play an important regulatory role in breast tumorigenesis. Previously, we found that let-7 miRNAs were downregulated significantly in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. In this study, we further found that endogenous levels of let-7b and let-7i miRNAs are inversely correlated with levels of estrogen receptor (ER)-a36, a new variant of ER-α66, in the FFPE tissue set. Bioinformatic analysis suggested that ER-α36 may be another target of let-7 miRNAs. To test this hypothesis, cotransfection of let-7 mimics or inhibitors together with full-length or a fragment of ER-α36 3'UTR luciferase construct was performed, and we found that let-7b and let-7i mimics suppressed the activity of reporter gene significantly, which was enhanced remarkably by let-7b and let-7i inhibitors. Both mRNA and protein expression of ER-α36 were inhibited by let-7 mimics and enhanced by let-7 inhibitors. Furthermore, ER-α36 mediated nongenomic MAPK and Akt pathways were weakened by let-7b and let-7i mimics in triple negative breast cancer cell line MDA-MB-231. The reverse correlation between let-7 miRNAs and ER-α36 also exists in Tamoxifen (Tam)-resistant MCF7 cell line. Transfection of let-7 mimics to Tam-resistant MCF7 cells downregulated ER-α36 expression and enhanced the sensitivity of MCF7 cells to Tam in estrogen-free medium, which could be restored by overexpression of ER-α36 constructs without 3'UTR. Our results suggested a novel regulatory mechanism of let-7 miRNAs on ER-α36 mediated nongenomic estrogen signal pathways and Tam resistance.

  11. Receptors from glucocorticoid-sensitive lymphoma cells and two clases of insensitive clones: physical and DNA-binding properties.

    Science.gov (United States)

    Yamamoto, K R; Stampfer, M R; Tomkins, G M

    1974-10-01

    Mouse lymphoma tissue culture cells (S49.1A) are normally killed by dexamethasone, a synthetic glucocorticoid hormone. Dexamethasone-resistant clones have been selected from this line, some of which retain the ability to specifically bind dexamethasone. Addition of [(3)H]dexamethasone to cultures, followed by cell fractionation, reveals that the nuclear transfer of hormone-receptor complexes in some of these variant clones is deficient (nt(-)), while others show increased nuclear transfer (nt(i)) relative to the parental line. Two independently selected members of each class have been studied here, in an effort to elucidate the molecular determinants involved in the receptor-nucleus interaction in vivo. The labeled receptors in cell-free extracts bind to DNA-cellulose, but only after previous incubation of the extract at 20 degrees , similar to the treatment required for cell-free interaction of receptors with nuclei. More importantly, the apparent DNA-binding affinity of the nt(-) receptors is lower than the wild type, whereas the nt(i) receptors bind DNA with an affinity higher than the parental molecules. The parallelism of nuclear and DNA binding, together with the observations that the receptors from the variants have sedimentation properties different from the wild-type cells, lead us to conclude that (i) these variants may contain altered receptor molecules and (ii) DNA is probably the primary nuclear binding site for steroid receptors in vivo.

  12. Autonomic cardiac innervation

    OpenAIRE

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targe...

  13. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  14. Dioxin sensitivity-related two critical amino acids of arylhydrocarbon receptor may not correlate with the taxonomy or phylogeny in avian species.

    Science.gov (United States)

    Fujisawa, Nozomi; Kawai, Yusuke K; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yamamoto, Hideaki; Ishizuka, Mayumi

    2013-12-30

    There are two arylhydrocarbon receptor (AhR) isoforms in birds, AhR1 and AhR2. The varying sensitivity of AhR is reported to be related to two critical amino acids at positions 325 and 381 in the AhR1 ligand-binding domain. In this study, seven avian species whose in vivo dioxin sensitivity was known, and 13 species with no data regarding their in vivo dioxin sensitivity were examined. The two critical amino acids in the ligand-binding domain were investigated in avian species, and the results were compared with the taxonomy or phylogenetic trees for the bird AhR proteins. We found that the two critical amino acids did not correlate with the taxonomy or phylogeny of these proteins, suggesting that dioxin sensitivity was independent of taxonomy.

  15. The gamma-aminobutyric acid type B (GABAB receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Fu Zhenyu

    2012-07-01

    Full Text Available Abstract Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c. obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  16. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells.

    Science.gov (United States)

    Li, Hongchang; Cheng, Yuqing; Liu, Yong; Chen, Bo

    2016-09-01

    Based on the fluorescence quenching of folic acid-sensitive bovine serum albumin-directed gold nanoclusters (BSA-AuNCs) via folic acid-induced the change of environment around BSA-AuNCs, we have constructed a turn on fluorescence imaging of folate receptor overexpressed tumor cells. In this paper, the primary fluorescence intensity of BSA-AuNCs was quenched via self-assembly of folic acid onto BSA-AuNCs to produce negligible fluorescence background, the linear range of the method was 0.1-100μg/mL with the limit of detection (LOD) of 30ng/mL (S/N=3); In the presence of overexpression of folate receptor on the surface of tumor cells, the primary fluorescence intensity of BSA-AuNCs turned on by folic acid desorbing from BSA-AuNCs, the linear range of method was 0.12-2μg/mL with the LOD of 20ng/mL (S/N=3). Additionally, due to specific and high affinity of folic acid and folate receptor, the probe had high selectivity for folate receptor, other interferences hardly changed the fluorescence intensity of the probe. Moreover, the text for cytotoxicity implied that the probe had no toxicity for tumor cells. Consequently, using the fluorescence probe, satisfactory results for the turn on imaging of folate receptor overexpressed tumor cells were obtained. A novel turn-on and red fluorescent probe for folate receptor overexpressed tumor cells was developed based on the recovery of fluorescence intensity of folic acid-sensitive BSA-AuNCs.

  17. Effect of inhaled procaterol on cough receptor sensitivity to capsaicin in patients with asthma or chronic bronchitis and in normal subjects.

    OpenAIRE

    Fujimura, M; Sakamoto, S.; Kamio, Y.; Bando, T.; Kurashima, K.; T. Matsuda

    1993-01-01

    BACKGROUND--To evaluate the effect of inhaled beta 2 adrenergic agonists on the sensitivity of airway cough receptors, the effect of inhaled procaterol on cough induced by aerosolised capsaicin, a stimulant of C fibres, was studied in patients with asthma or chronic bronchitis and in normal subjects. METHOD--Eleven patients with asthma and 10 with chronic bronchitis and 14 normal subjects participated. Increasing concentrations of capsaicin solution were inhaled for 15 seconds by tidal breath...

  18. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase.

    Science.gov (United States)

    Kleppisch, T; Nelson, M T

    1995-01-01

    The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels. PMID:8618917

  19. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  20. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  1. P2X3 Receptors Mediate Visceral Hypersensitivity during Acute Chemically-Induced Colitis and in the Post-Inflammatory Phase via Different Mechanisms of Sensitization

    Science.gov (United States)

    Deiteren, Annemie; van der Linden, Laura; de Wit, Anouk; Ceuleers, Hannah; Buckinx, Roeland; Timmermans, Jean-Pierre; Moreels, Tom G.; Pelckmans, Paul A.; De Man, Joris G.; De Winter, Benedicte Y.

    2015-01-01

    Objectives Experiments using P2X3 knock-out mice or more general P2X receptor antagonists suggest that P2X3 receptors contribute to visceral hypersensitivity. We aimed to investigate the effect of the selective P2X3 antagonist A-317491 on visceral sensitivity under physiological conditions, during acute colitis and in the post-inflammatory phase of colitis. Methods Trinitrobenzene sulphonic-acid colitis was monitored by colonoscopy: on day 3 to confirm the presence of colitis and then every 4 days, starting from day 10, to monitor convalescence and determine the exact timepoint of endoscopic healing in each rat. Visceral sensitivity was assessed by quantifying visceromotor responses to colorectal distension in controls, rats with acute colitis and post-colitis rats. A-317491 was administered 30 min prior to visceral sensitivity testing. Expression of P2X3 receptors (RT-PCR and immunohistochemistry) and the intracellular signalling molecules cdk5, csk and CASK (RT-PCR) were quantified in colonic tissue and dorsal root ganglia. ATP release in response to colorectal distension was measured by luminiscence. Results Rats with acute TNBS-colitis displayed significant visceral hypersensitivity that was dose-dependently, but not fully, reversed by A-317491. Hypersenstivity was accompanied by an increased colonic release of ATP. Post-colitis rats also displayed visceral hypersensitivity that was dose-dependently reduced and fully normalized by A-317491 without increased release of ATP. A-317491 did not modify visceral sensitivity in controls. P2X3 mRNA and protein expression in the colon and dorsal root ganglia were similar in control, acute colitis and post-colitis groups, while colonic mRNA expression of cdk5, csk and CASK was increased in the post-colitis group only. Conclusions These findings indicate that P2X3 receptors are not involved in sensory signaling under physiological conditions whereas they modulate visceral hypersensitivity during acute TNBS-colitis and even

  2. P2X3 receptors mediate visceral hypersensitivity during acute chemically-induced colitis and in the post-inflammatory phase via different mechanisms of sensitization.

    Directory of Open Access Journals (Sweden)

    Annemie Deiteren

    Full Text Available Experiments using P2X3 knock-out mice or more general P2X receptor antagonists suggest that P2X3 receptors contribute to visceral hypersensitivity. We aimed to investigate the effect of the selective P2X3 antagonist A-317491 on visceral sensitivity under physiological conditions, during acute colitis and in the post-inflammatory phase of colitis.Trinitrobenzene sulphonic-acid colitis was monitored by colonoscopy: on day 3 to confirm the presence of colitis and then every 4 days, starting from day 10, to monitor convalescence and determine the exact timepoint of endoscopic healing in each rat. Visceral sensitivity was assessed by quantifying visceromotor responses to colorectal distension in controls, rats with acute colitis and post-colitis rats. A-317491 was administered 30 min prior to visceral sensitivity testing. Expression of P2X3 receptors (RT-PCR and immunohistochemistry and the intracellular signalling molecules cdk5, csk and CASK (RT-PCR were quantified in colonic tissue and dorsal root ganglia. ATP release in response to colorectal distension was measured by luminiscence.Rats with acute TNBS-colitis displayed significant visceral hypersensitivity that was dose-dependently, but not fully, reversed by A-317491. Hypersenstivity was accompanied by an increased colonic release of ATP. Post-colitis rats also displayed visceral hypersensitivity that was dose-dependently reduced and fully normalized by A-317491 without increased release of ATP. A-317491 did not modify visceral sensitivity in controls. P2X3 mRNA and protein expression in the colon and dorsal root ganglia were similar in control, acute colitis and post-colitis groups, while colonic mRNA expression of cdk5, csk and CASK was increased in the post-colitis group only.These findings indicate that P2X3 receptors are not involved in sensory signaling under physiological conditions whereas they modulate visceral hypersensitivity during acute TNBS-colitis and even more so in the post

  3. First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage-sensitive calcium channels

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1992-01-01

    Using cerebellar granule neurons in culture it was demonstrated that exposure of the cells to the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) leads to an increase in the number of voltage-gated calcium channels as revealed by quantitative preembedding indirect imm...... of THIP-treated cultures. This suggests that primarily low affinity GABAA-receptors are closely associated with Ca2+ channels and this may be important for the ability of these receptors to mediate an inhibitory action on transmitter release even under extreme depolarizing conditions....

  4. Autonomous Evolutionary Information Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional information systems are passive, i.e., data orknowledge is created , retrieved, modified, updated, and deleted only in response to operations issued by users or application programs, and the systems only can execute queries or t ransactions explicitly submitted by users or application programs but have no ab ility to do something actively by themselves. Unlike a traditional information system serving just as a storehouse of data or knowledge and working passively a ccording to queries or transactions explicitly issued by users and application p rograms, an autonomous evolutionary information system serves as an autonomous a nd evolutionary partner of its users that discovers new knowledge from its datab ase or knowledge-base autonomously, cooperates with its users in solving proble m s actively by providing the users with advices, and has a certain mechanism to i mprove its own state of “knowing” and ability of “working”. This paper semi nall y defines what is an autonomous evolutionary information system, explain why aut onomous evolutionary information systems are needed, and presents some new issue s, fundamental considerations, and research directions in design and development of autonomous evolutionary information systems.

  5. Autonomic disturbances in narcolepsy.

    Science.gov (United States)

    Plazzi, Giuseppe; Moghadam, Keivan Kaveh; Maggi, Leonardo Serra; Donadio, Vincenzo; Vetrugno, Roberto; Liguori, Rocco; Zoccoli, Giovanna; Poli, Francesca; Pizza, Fabio; Pagotto, Uberto; Ferri, Raffaele

    2011-06-01

    Narcolepsy is a clinical condition characterized mainly by excessive sleepiness and cataplexy. Hypnagogic hallucinations and sleep paralysis complete the narcoleptic tetrad; disrupted night sleep, automatic behaviors and weight gain are also usual complaints. Different studies focus on autonomic changes or dysfunctions among narcoleptic patients, such as pupillary abnormalities, fainting spells, erectile dysfunction, night sweats, gastric problems, low body temperature, systemic hypotension, dry mouth, heart palpitations, headache and extremities dysthermia. Even if many studies lack sufficient standardization or their results have not been replicated, a non-secondary involvement of the autonomic nervous system in narcolepsy is strongly suggested, mainly by metabolic and cardiovascular findings. Furthermore, the recent discovery of a high risk for overweight and for metabolic syndrome in narcoleptic patients represents an important warning for clinicians in order to monitor and follow them up for their autonomic functions. We review here studies on autonomic functions and clinical disturbances in narcoleptic patients, trying to shed light on the possible contribute of alterations of the hypocretin system in autonomic pathophysiology.

  6. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Papke, R L; Meyers, C; Huang, G L; de Fiebre, C M

    1997-09-12

    The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.

  7. Central cardiovascular actions of L-homocysteine microinjected into ventrolateral medullary autonomic areas of the rat.

    Science.gov (United States)

    Takemoto, Yumi

    2016-09-01

    Elevated L-homocysteine concentrations in the plasma and cerebrospinal fluid are related to cardiovascular and neuronal diseases, and could contribute to disease development. However, the central cardiovascular actions of L-homocysteine in two important autonomic regulating areas remain unknown: the rostral ventrolateral medulla (RVLM), including pre-sympathetic neurons, and the caudal ventrolateral medulla (CVLM), including interneurons projecting to pre-sympathetic neurons in the RVLM. Therefore, the aim of the current study was to examine the influence of L-homocysteine microinjected into the RVLM and CVLM areas on changes in arterial blood pressure (ABP) and heart rate (HR) of anesthetized rats, as well as the influence of ionotropic excitatory amino acid (iEAA) receptors on the central actions of L-homocysteine. L-Homocysteine solutions were microinjected into the RVLM and CVLM, which were defined according to pressor and depressor responses to L-glutamate microinjections, respectively. ABP and HR increased in the RVLM and decreased in the CVLM after microinjection with L-homocysteine, similar to L-glutamate, in a dose-dependent manner, suggesting mediation of EAA receptors. Prior microinjection of the N-methyl-D-aspartate (NMDA) iEAA receptor antagonist MK801, but not the non-NMDA receptor antagonist CNQX, abolished the observed responses to L-homocysteine in both the RVLM and CVLM. These results indicate the central cardiovascular actions of L-homocysteine via MK801-sensitive receptors of the medullary autonomic neurons in the rat RVLM and CVLM. It remains unknown if the central cardiovascular actions are related to cardiovascular diseases after endogenously and locally augmented L-homocysteine production by disordered metabolism. Further studies on functional significance of L-homocysteine may provide some clue to understand its toxic mechanism.

  8. Autonomous surveillance for biosecurity.

    Science.gov (United States)

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Specific suppression of insulin sensitivity in growth hormone receptor gene-disrupted (GHR-KO) mice attenuates phenotypic features of slow aging.

    Science.gov (United States)

    Arum, Oge; Boparai, Ravneet K; Saleh, Jamal K; Wang, Feiya; Dirks, Angela L; Turner, Jeremy G; Kopchick, John J; Liu, Jun-Li; Khardori, Romesh K; Bartke, Andrzej

    2014-12-01

    In addition to their extended lifespans, slow-aging growth hormone receptor/binding protein gene-disrupted (knockout) (GHR-KO) mice are hypoinsulinemic and highly sensitive to the action of insulin. It has been proposed that this insulin sensitivity is important for their longevity and increased healthspan. We tested whether this insulin sensitivity of the GHR-KO mouse is necessary for its retarded aging by abrogating that sensitivity with a transgenic alteration that improves development and secretory function of pancreatic β-cells by expressing Igf-1 under the rat insulin promoter 1 (RIP::IGF-1). The RIP::IGF-1 transgene increased circulating insulin content in GHR-KO mice, and thusly fully normalized their insulin sensitivity, without affecting the proliferation of any non-β-cell cell types. Multiple (nonsurvivorship) longevity-associated physiological and endocrinological characteristics of these mice (namely beneficial blood glucose regulatory control, altered metabolism, and preservation of memory capabilities) were partially or completely normalized, thus supporting the causal role of insulin sensitivity for the decelerated senescence of GHR-KO mice. We conclude that a delayed onset and/or decreased pace of aging can be hormonally regulated.

  10. Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts.

    Science.gov (United States)

    Certal, Mariana; Vinhas, Adriana; Pinheiro, Ana Rita; Ferreirinha, Fátima; Barros-Barbosa, Aurora Raquel; Silva, Isabel; Costa, Maria Adelina; Correia-de-Sá, Paulo

    2015-11-01

    During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.

  11. Autonomous electrochromic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  12. Simple Autonomous Chaotic Circuits

    Science.gov (United States)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  13. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    Science.gov (United States)

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  14. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  15. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.

    Science.gov (United States)

    Rétey, J V; Adam, M; Khatami, R; Luhmann, U F O; Jung, H H; Berger, W; Landolt, H-P

    2007-05-01

    Caffeine is the most widely used stimulant in Western countries. Some people voluntarily reduce caffeine consumption because it impairs the quality of their sleep. Studies in mice revealed that the disruption of sleep after caffeine is mediated by blockade of adenosine A2A receptors. Here we show in humans that (1) habitual caffeine consumption is associated with reduced sleep quality in self-rated caffeine-sensitive individuals, but not in caffeine-insensitive individuals; (2) the distribution of distinct c.1083T>C genotypes of the adenosine A2A receptor gene (ADORA2A) differs between caffeine-sensitive and -insensitive adults; and (3) the ADORA2A c.1083T>C genotype determines how closely the caffeine-induced changes in brain electrical activity during sleep resemble the alterations observed in patients with insomnia. These data demonstrate a role of adenosine A2A receptors for sleep in humans, and suggest that a common variation in ADORA2A contributes to subjective and objective responses to caffeine on sleep.

  16. Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.

    Directory of Open Access Journals (Sweden)

    Ting Ruan

    Full Text Available Sensitization of vagal lung C-fibers (VLCFs induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist, α,β-methylene-ATP (a P2X receptor agonist, and phenylbiguanide (a 5-HT3 receptor agonist in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2 and by dimethylthiourea (a hydroxyl radical scavenger. The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist and by iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (a P2X receptor antagonist. The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist, and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1 increased lung ROS sensitizes

  17. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  18. Effects of testosterone on pelvic autonomic pathways: progress and pitfalls.

    Science.gov (United States)

    Keast, J R

    2000-03-15

    Testosterone has potent effects on reproductive behavior, many of which are due to actions on brain nuclei and spinal motoneurons controlling perineal muscles. The autonomic circuits involved in penile erection, ejaculation and emission, have been less commonly considered as targets for circulating androgens. This review demonstrates that many components of pelvic autonomic reflex pathways, including preganglionic neurons, autonomic ganglion cells and primary afferent neurons, are likely to be influenced by testosterone. The steroid appears to play an important role in maintaining neuronal morphology, transmitter synthesis and receptor expression throughout adulthood. Surprisingly, the effects of testosterone are not limited to neurons involved in reproductive reflexes. The challenge is now to determine the range of neuronal features influenced by androgens, and the mechanisms by which these occur. Studies of androgen receptor location indicate that in many autonomic neurons gene expression may be directly influenced by androgens, but a mismatch between receptor distribution and androgen action shows that in some cells other mechanisms must exist. It is also possible that androgens are metabolised to estrogens by some peripheral neurons. Irrespective of the mechanism, it is time to acknowledge that testosterone is an important "maintenance factor" for autonomic neurons.

  19. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  20. Autonomous Hexapod Spider Robot

    DEFF Research Database (Denmark)

    Pandey, Nisha; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar

    2017-01-01

    Robotics world is changing very rapidly in today’s scenario. One of its unique applications is hexapod robots (walking leg robots). These types of robots can walk on uneven surfaces and can be used for spying purpose in various forms of industries. This paper represents the autonomous feature of ...

  1. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving...

  2. Autonomous Forest Fire Detection

    NARCIS (Netherlands)

    Breejen, E. den; Breuers, M.; Cremer, F.; Kemp, R.A.W.; Roos, M.; Schutte, K.; Vries, J.S. de

    1998-01-01

    Forest fire detection is a very important issue in the pre-suppression process. Timely detection allows the suppression units to reach the fire in its initial stages and this will reduce the suppression costs considerably. The autonomous forest fire detection principle is based on temporal contrast

  3. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    OpenAIRE

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3...

  4. The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases.

    Science.gov (United States)

    Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, María; Herrero-Labrador, Raquel; Burgueño, Javier; Zamanillo, Daniel; Garzón, Javier

    2014-12-01

    Through the cannabinoid receptor 1 (CB1), the endocannabinoid system plays a physiological role in maintaining the activity of glutamate N-methyl-D-aspartate (NMDA) receptor within harmless limits. The influence of cannabinoids must be proportional to the stimulus in order to prevent NMDAR overactivation or exaggerated hypofunction that may precipitate symptoms of psychosis. In this framework, the recently reported association of CB1s with NMDARs, which mediates the reduction of cannabinoid analgesia promoted by NMDAR antagonism, could also support the precipitation of schizophrenia brought about by the abuse of smoked cannabis, mostly among vulnerable individuals. Accordingly, we have investigated this possibility using neuroprotection and analgesia as reporters of the CB1-NMDAR connection. We found that the Sigma 1 receptor (σ1R) acts as a safety switch, releasing NMDARs from the influence of CB1s and thereby avoiding glutamate hypofunction. In σ1R(-/-) mice the activity of NMDARs increases and cannot be regulated by cannabinoids, and NMDAR antagonism produces no effect on cannabinoid analgesia. In wild-type mice, ligands of the σ1R did not affect the CB1-NMDAR regulatory association, however, experimental NMDAR hypofunction enabled σ1R antagonists to release NMDARs from the negative control of CB1s. Of the σ1R antagonists tested, their order of activity was: S1RA > BD1047 ≫ NE100 = BD1063, although SKF10047, PRE-084 and (+)pentazocine were inactive yet able to abolish the effect of S1RA in this paradigm. Thus, the σ1R controls the extent of CB1-NMDAR interaction and its failure might constitute a vulnerability factor for cannabis abuse, potentially precipitating schizophrenia that might otherwise be induced later in time by the endogenous system.

  5. A novel antagonist, phenylbenzene omega-phosphono-alpha-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord.

    Science.gov (United States)

    Saitoh, T; Ishida, M; Maruyama, M; Shinozaki, H

    1994-01-01

    1. 3-[2'-Phosphonomethyl[1,1'-biphenyl]-3-yl]alanine (PMBA) is a novel glycine antagonist at strychnine-sensitive receptors. The chemical structure of PMBA, possessing both a glycine moiety and a phosphono group, is quite different from that of strychnine. 2. In the spinal motoneurone of newborn rats, glycine (100 microM-1 mM) induced depolarizing responses in a concentration-dependent manner. PMBA effectively inhibited depolarizing responses to glycine and other agonists, such as taurine and beta-alanine. The dose-response curves for glycine were shifted to the right in an almost parallel manner (pA2 value: 5.30 +/- 0.23, n = 5) by PMBA which was about 60 times less potent than strychnine (pA2 value: 7.08 +/- 0.21, n = 5) as a glycine antagonist. 3. PMBA (1-100 microM) did not interact with modulatory glycine sites on N-methyl-D-aspartate (NMDA) receptors, which suggests a high selectivity of PMBA for strychnine-sensitive glycine receptors. At considerably high concentrations (0.1 mM-1 mM), PMBA depressed responses to GABA (pA2 value: 3.57 +/- 0.24, n = 3). 4. PMBA inhibited the binding of [3H]-strychnine to synaptosomes from adult rat spinal cords; the IC50 values of PMBA, glycine and strychnine were 8 +/- 2, 9 +/- 3 and 0.08 +/- 0.04 microM, respectively (n = 5) for [3H]-strychnine (4.8 nM). 5. PMBA is a central excitant drug with relatively high potency and selectivity and should be useful as a pharmacological probe for analysing the mechanisms underlying physiological functions of glycine receptors. PMID:7812607

  6. Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis.

    Science.gov (United States)

    Arnold, Amy C; Shaltout, Hossam A; Gilliam-Davis, Shea; Kock, Nancy D; Diz, Debra I

    2011-06-01

    The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II.

  7. Genetic evidence for involvement of neuronally expressed S1P₁ receptor in nociceptor sensitization and inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Norbert Mair

    Full Text Available Sphingosine-1-phosphate (S1P is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P₁ receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P₁ receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P₁ receptor. Our data show that neuronally expressed S1P₁ receptors play a significant role in regulating nociceptor function and that S1P/S1P₁ signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.

  8. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  9. The effect of chronic selective serotonin reuptake inhibitor treatment on serotonin(1B) receptor sensitivity and HPA axis activity

    NARCIS (Netherlands)

    Jongsma, M.E.; Bosker, F.J; Cremers, T.I.F.H.; Westerink, B.H.C.; Den Boer, J.A.

    2005-01-01

    The authors have investigated 5-HT1B receptor function in prefrontal cortex and dorsal hippocampus as well as the HPA axis response after subchronic (24 h) and chronic (15 days) treatment with the SSRI citalopram. All experiments were carried out in presence of citalopram to prevent rapid resensitiz

  10. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H;

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth...

  11. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants.

    Science.gov (United States)

    Rogers, G N; Pritchett, T J; Lane, J L; Paulson, J C

    1983-12-01

    Human and animal (avian and equine) influenza A virus isolates of the H3 serotype exhibit marked differences in their ability to bind specific sialyloligosaccharide sequences that serve as cell surface receptor determinants (G. Rogers and J. Paulson, 1983, Virology 127, 361-373). Whereas human isolates of this subtype strongly agglutinate enzymatically modified human erythrocytes containing the terminal SA alpha 2,6Gal sequence, avian and equine isolates preferentially agglutinate erythrocytes bearing the SA alpha 2, 3Gal sequence. As shown in this report, a glycoprotein found in horse serum, alpha 2-macroglobulin, is a potent inhibitor of viral adsorption to the cell surface for human H3 isolates. In contrast, avian and equine isolates are poorly inhibited suggesting a correlation between receptor specificity and inhibitor sensitivity. Growth of a human H3 isolate (A/Memphis/102/72) on MDCK cells in the presence of horse serum resulted in an overall shift in the virus receptor specificity from preferential binding of the SA alpha 2,6Gal linkage to preferential binding of the SA alpha 2,3Gal linkage characteristic of avian and equine isolates. Clonally isolated variants of A/Memphis/102/72 grown in the presence or absence of horse serum exhibited binding properties that account for those observed in the field isolates. Clones which preferentially bound the SA alpha 2,6Gal linkage, like the parent human virus, were very sensitive to inhibition of hemagglutination by horse serum and equine alpha 2-macroglobulin. In contrast, receptor variants which preferentially bound the SA alpha 2,3Gal linkage, like the avian and equine isolate, were insensitive to such inhibitors. None of the variants was very sensitive to inhibition of hemagglutination by human alpha 2-macroglobulin. These results suggest that the presence, in vivo, of a glycoprotein inhibitor such as equine alpha 2-macroglobulin could suppress infection of influenza viruses bearing an H3 hemagglutinin with a SA

  12. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    Science.gov (United States)

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  13. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.

    Science.gov (United States)

    Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

    2015-01-05

    Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanisms of drug sensitization to TRA-8, an agonistic death receptor 5 antibody, involve modulation of the intrinsic apoptotic pathway in human breast cancer cells.

    Science.gov (United States)

    Amm, Hope M; Zhou, Tong; Steg, Adam D; Kuo, Huichien; Li, Yufeng; Buchsbaum, Donald J

    2011-04-01

    TRA-8, a monoclonal antibody to death receptor 5 induces apoptosis in various cancer cells; however, the degree of sensitivity varies from highly sensitive to resistant. We have previously shown that resistance to TRA-8 can be reversed by using chemotherapeutic agents, but the mechanism underlying this sensitization was not fully understood. Here, we examined the combination of TRA-8 with doxorubicin or bortezomib in breast cancer cells. In TRA-8-resistant BT-474 and T47D cells, both chemotherapy agents synergistically sensitized cells to TRA-8 cytotoxicity with enhanced activation of apoptosis shown by cleavage of caspases and PARP, reduced Bid, increased proapoptotic Bcl-2 proteins, and increased mitochondrial membrane depolarization. Doxorubicin or bortezomib combined with TRA-8 also reduced Bcl-XL and X-linked inhibitors of apoptosis (XIAP) in treated cells. Furthermore, targeting these proteins with pharmacologic modulators, AT-101, BH3I-2' and AT-406, produced sensitization to TRA-8. TRA-8 combined with AT-101 or BH3I-2', inhibitors of antiapoptotic Bcl-2 proteins, produced synergistic cytotoxicity against ZR-75-1, BT-474, and T47D cells. The IAP-targeting compound, AT-406, was synergistic with TRA-8 in BT-474 cells, and to a lesser extent T47D cells. Activation of the intrinsic apoptotic pathway was a common mechanism associated with sensitization of TRA-8-resistant breast cancer cell lines. Collectively, these studies show that the Bcl-2 and IAP families of proteins are involved in TRA-8 and chemotherapy resistance via their modulation of the intrinsic apoptotic pathway. Targeting these proteins with novel agents sensitized TRA-8-resistant breast cancer cells, suggesting this approach may represent a potent therapeutic strategy in the treatment of breast cancer. ©2011 AACR.

  15. High-sensitivity epidermal growth factor receptor immunostaining for colorectal carcinomas, compared with EGFR PharmDx™: a study of diagnostic accuracy.

    Science.gov (United States)

    Shiogama, Kazuya; Wongsiri, Trai; Mizutani, Yasuyoshi; Inada, Ken-ichi; Tsutsumi, Yutaka

    2013-01-01

    Immunostaining for epidermal growth factor receptor (EGFR) is important in the contemporary therapeutic strategy of colorectal carcinomas. We tried to increase detection sensitivity, and compared the high-sensitivity EGFR immunostaining with a worldwide standard, EGFR PharmDx™ (Dako). In order to pursue high-sensitivity EGFR detection, deparaffinized sections were pressure-cooked in 1 mM EDTA solution, pH 8.0. Two mouse monoclonal antibodies against EGFR, clone EGFR2.5 and DAK-H1-WT, and six kinds of secondary detection reagents, including biotin-free catalyzed signal amplification (CSA II), Simple Stain MAX-PO, PolyVue, Novolink, EnVision™ FLEX+, and MACH3, were evaluated to compare the results with those with EGFR PharmDx™, employing a combination of 2-18-C9 as the primary monoclonal antibody and EnVision™ as the secondary reagent. Furthermore, we replaced EnVision™ in the EGFR PharmDx™ kit with CSAII. EGFR detection sensitivity was higher with DAK-H1-WT than with EGFR2.5, and among the secondary reagents, the strongest signals were observed with Novolink. All 30 colorectal carcinomas showed distinct expression of EGFR with our high-sensitivity EGFR immunostaining, while only 16 (53%) gave focal positivity with EGFR PharmDx™. When EnVision™ in EGFR PharmDx™ was replaced by CSA II, strong signals were seen in all cases, and the expression pattern was comparable with our sequence. Non-neoplastic crypt epithelial cells often showed weakly signal with the standard EGFR PharmDx™, but consistently revealed strong membrane staining in the two high-sensitivity sequences. EGFR PharmDx™ frequently gave false negativity. Importantly, EGFR was consistently and sensitively detected when the secondary polymer in the EGFR PharmDx™ kit was simply replaced by CSA II.

  16. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice

    Science.gov (United States)

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.

    2015-01-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  17. Sensitivity of a Tier I screening battery compared to an in utero exposure for detecting the estrogen receptor agonist 17 beta-estradiol.

    Science.gov (United States)

    O'Connor, J C; Frame, S R; Biegel, L B; Cook, J C; Davis, L G

    1998-08-01

    A Tier I screening battery for detecting endocrine active compounds (EACs) has been evaluated for its ability to identify 17 beta-estradiol, a pure estrogen receptor agonist. In addition, the responses obtained with the Tier I battery were compared to the responses obtained from F1 generation rats from a 90-day/one-generation reproduction study with 17 beta-estradiol in order to characterize the sensitivity of the Tier I battery against the sensitivity of an in utero exposure for detecting EACs. The Tier I battery incorporates two short-term in vivo tests (5-day ovariectomized female battery; 15-day intact male battery) and an in vitro yeast transactivation system (YTS) for identifying compounds that alter endocrine homeostasis. The Tier I female battery consists of traditional uterotrophic endpoints coupled with biochemical and hormonal endpoints. It is designed to identify compounds that are estrogenic/antiestrogenic or modulate dopamine levels. The Tier I male battery consists of organ weights coupled with microscopic evaluations and a comprehensive hormonal assessment. It is designed to identify compounds that have the potential to act as agonists or antagonists to the estrogen, androgen, progesterone, or dopamine receptor; steroid biosynthesis inhibitors (aromatase, 5 alpha-reductase, and testosterone biosynthesis); or compounds that alter thyroid function. The YTS is designed to identify compounds that bind to steroid hormone receptors (estrogen, androgen, and progesterone) and activate gene transcription. The profile generated for 17 beta-estradiol was characteristic of the responses expected with a pure estrogen receptor agonist. In the female battery, responses to 17 beta-estradiol included increases in uterine fluid imbibition, uterine weight, estrus conversion, uterine stromal cell proliferation, uterine epithelial cell height, uterine progesterone receptor content, serum prolactin and estradiol levels, and decreases in uterine estrogen receptor content

  18. Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2013-01-01

    Full Text Available Abstract Background Bladder pain of unknown etiology has been associated with co-morbid conditions and functional abnormalities in neighboring pelvic organs. Mechanisms underlying pain co-morbidities include cross-sensitization, which occurs predominantly via convergent neural pathways connecting distinct pelvic organs. Our previous results showed that colonic inflammation caused detrusor instability via activation of transient receptor potential vanilloid 1 (TRPV1 signaling pathways, therefore, we aimed to determine whether neurogenic bladder dysfunction can develop in the absence of TRPV1 receptors. Methods Adult male C57BL/6 wild-type (WT and TRPV1−/− (knockout mice were used in this study. Colonic inflammation was induced by intracolonic trinitrobenzene sulfonic acid (TNBS. The effects of transient colitis on abdominal sensitivity and function of the urinary bladder were evaluated by cystometry, contractility and relaxation of detrusor smooth muscle (DSM in vitro to various stimuli, gene and protein expression of voltage-gated sodium channels in bladder sensory neurons, and pelvic responses to mechanical stimulation. Results Knockout of TRPV1 gene did not eliminate the development of cross-sensitization between the colon and urinary bladder. However, TRPV1−/− mice had prolonged intermicturition interval and increased number of non-voiding contractions at baseline followed by reduced urodynamic responses during active colitis. Contractility of DSM was up-regulated in response to KCl in TRPV1−/− mice with inflamed colon. Application of Rho-kinase inhibitor caused relaxation of DSM in WT but not in TRPV1−/− mice during colonic inflammation. TRPV1−/− mice demonstrated blunted effects of TNBS-induced colitis on expression and function of voltage-gated sodium channels in bladder sensory neurons, and delayed development of abdominal hypersensitivity upon colon-bladder cross-talk in genetically modified animals. Conclusions The

  19. Intracerebroventricular injection of leukotriene B4 attenuates antigen-induced asthmatic response via BLT1 receptor stimulating HPA-axis in sensitized rats

    Directory of Open Access Journals (Sweden)

    Jiang Jun-Xia

    2010-04-01

    Full Text Available Abstract Background Basic and clinical studies suggest that hypothalamic-pituitary-adrenal (HPA axis is the neuroendocrine-immnue pathway that functionally regulates the chronic inflammatory disease including asthma. Our previous studies showed corresponding changes of cytokines and leukotriene B4 (LTB4 between brain and lung tissues in antigen-challenged asthmatic rats. Here, we investigated how the increased LTB4 level in brain interacts with HPA axis in regulating antigen-induced asthmatic response in sensitized rats. Methods Ovalbumin-sensitized rats were challenged by inhalation of antigen. Rats received vehicle, LTB4 or U75302 (a selective LTB4 BLT1 receptor inhibitor was given via intracerebroventricular injection (i.c.v 30 min before challenge. Lung resistance (RL and dynamic lung compliance (Cdyn were measured before and after antigen challenge. Inflammatory response in lung tissue was assessed 24 h after challenge. Expression of CRH mRNA and protein in hypothalamus were evaluated by RT-PCR and Western Blot, and plasma levels of adrenocorticotropic hormone (ACTH and corticosterone (CORT were measured using the ELISA kits. Results Antigen challenge decreased pulmonary function and induced airway inflammation, evoked HPA axis response in sensitized rats. Administration of LTB4 via i.c.v markedly attenuated airway contraction and inflammation. Meanwhile, LTB4 via i.c.v markedly increased CORT and ACTH level in plasma before antigen challenge, and followed by further increases in CORT and ACTH levels in plasma after antigen challenge in sensitized rats. Expression of CRH mRNA and protein in hypothalamus were also significantly increased by LTB4 via i.c.v in sensitized rats after antigen challenge. These effect were completely blocked by pre-treatment with BLT1 receptor antagonist U75302 (10 ng, but not by BLT2 antagonist LY255283. Conclusions LTB4 administered via i.c.v down-regulates the airway contraction response and inflammation through

  20. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity.

    Science.gov (United States)

    Flint, David J; Binart, Nadine; Boumard, Stephanie; Kopchick, John J; Kelly, Paul

    2006-10-01

    Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40-50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.

  1. Complement C3a binding to its receptor as a negative modulator of Th2 response in liver injury in trichloroethylene-sensitized mice.

    Science.gov (United States)

    Wang, Feng; Zha, Wan-sheng; Zhang, Jia-xiang; Li, Shu-long; Wang, Hui; Ye, Liang-ping; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2014-08-17

    Trichloroethylene (TCE) is a major occupational health hazard and causes occupational medicamentosa-like dermatitis (OMLDT) and liver damage. Recent evidence suggests immune response as a distinct mode of action for TCE-induced liver damage. This study aimed to explore the role of the key complement activation product C3a and its receptor C3aR in TCE-induced immune liver injury. A mouse model of skin sensitization was induced by TCE in the presence and absence of the C3aR antagonist SB 290157. Liver function was evaluated by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in conjunction with histopathological characterizations. C3a and C3aR were detected by immunohistochemistry and C5b-9 was assessed by immunofluorescence. IFN-γ and IL4 expressions were determined by flow cytometry and ELISA. The total sensitization rate was 44.1%. TCE sensitization caused liver cell necrosis and inflammatory infiltration, elevated serum ALT and AST, expression of C3a and C3aR, and deposition of C5b-9 in the liver. IFN-γ and IL-4 expressions were up-regulated in spleen mononuclear cells and their serum levels were also increased. Pretreatment with SB 290157 resulted in more inflammatory infiltration in the liver, higher levels of AST, reduced C3aR expression on Kupffer cells, and decreased IL-4 levels while IFN-γ remained unchanged. These data demonstrate that blocking of C3a binding to C3aR reduces IL4, shifts IFN-γ and IL-4 balance, and aggravates TCE-sensitization induced liver damage. These findings reveal a novel mechanism whereby modulation of Th2 response by C3a binding to C3a receptor contributes to immune-mediated liver damage by TCE exposure.

  2. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    OpenAIRE

    2010-01-01

    Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα), is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR) in dorsal root ganglion (DRG) cells and in the spinal cord has been shown to play an important role in neuropathic and inflam...

  3. Increased Sensitivity of the Neuronal Nicotinic Receptor α2 Subunit Causes Familial Epilepsy with Nocturnal Wandering and Ictal Fear

    OpenAIRE

    Aridon, Paolo; Marini, Carla; Di Resta, Chiara; Brilli, Elisa; De Fusco, Maurizio; Politi, Fausta; Parrini, Elena; Manfredi, Irene; Pisano, Tiziana; Pruna, Dario; Curia, Giulia; Cianchetti, Carlo; Pasqualetti, Massimo; Becchetti, Andrea; Guerrini, Renzo

    2006-01-01

    Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the α4 and β2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular gene...

  4. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP).

    Science.gov (United States)

    Heydorn, Arne; Søndergaard, Birgitte P; Ersbøll, Bjarne; Holst, Birgitte; Nielsen, Finn Cilius; Haft, Carol Renfrew; Whistler, Jennifer; Schwartz, Thue W

    2004-12-24

    Adaptor and scaffolding proteins determine the cellular targeting, the spatial, and thereby the functional association of G protein-coupled seven-transmembrane receptors with co-receptors, transducers, and downstream effectors and the adaptors determine post-signaling events such as receptor sequestration through interactions, mainly with the C-terminal intracellular tails of the receptors. A library of tails from 59 representative members of the super family of seven-transmembrane receptors was probed as glutathione S-transferase fusion proteins for interactions with four different adaptor proteins previously proposed to be involved in post-endocytotic sorting of receptors. Of the two proteins suggested to target receptors for recycling to the cell membrane, which is the route believed to be taken by a majority of receptors, ERM (ezrin-radixin-moesin)-binding phosphoprotein 50 (EBP50) bound only a single receptor tail, i.e. the beta(2)-adrenergic receptor, whereas N-ethylmaleimide-sensitive factor bound 11 of the tail-fusion proteins. Of the two proteins proposed to target receptors for lysosomal degradation, sorting nexin 1 (SNX1) bound 10 and the C-terminal domain of G protein-coupled receptor-associated sorting protein bound 23 of the 59 tail proteins. Surface plasmon resonance analysis of the binding kinetics of selected hits from the glutathione S-transferase pull-down experiments, i.e. the tails of the virally encoded receptor US28 and the delta-opioid receptor, confirmed the expected nanomolar affinities for interaction with SNX1. Truncations of the NK(1) receptor revealed that an extended binding epitope is responsible for the interaction with both SNX1 and G protein-coupled receptor-associated sorting protein as well as with N-ethylmaleimide-sensitive factor. It is concluded that the tail library provides useful information on the general importance of certain adaptor proteins, for example, in this case, ruling out EBP50 as being a broad spectrum

  5. Mobile Autonomous Humanoid Assistant

    Science.gov (United States)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  6. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors.

    Science.gov (United States)

    Kim, Ji-Hun; Kim, Yu Chul; Park, Byoungduck

    2016-02-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anticancer agent possessing the ability to induce apoptosis in various cancer cells but not in non‑malignant cells. However, certain type of cancer cells are resistant to TRAIL‑induced apoptosis and some acquire resistance after the first treatment. So development of an agent that can reduce or avoid resistance in TRAIL‑induced apoptosis has garnered significant attention. The present study evaluated the anticancer potential of hispolon in TRAIL‑induced apoptosis and indicated hispolon can sensitize cancer cells to TRAIL. As the mechanism of action was examined, hispolon was found to activate caspase‑3, caspase‑8 and caspase‑9, while downregulating the expression of cell survival proteins such as cFLIP, Bcl‑2 and Bcl‑xL and upregulating the expression of Bax and truncated Bid. We also found hispolon induced death receptors in a non‑cell type‑specific manner. Upregulation of death receptors by hispolon was found to be p53-independent but linked to the induction of CAAT enhancer binding protein homologous protein (CHOP). Overall, hispolon was demonstrated to potentiate the apoptotic effects of TRAIL through downregulation of anti‑apoptotic proteins and upregulation of death receptors linked with CHOP and pERK elevation.

  7. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-09-11

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG1, kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  8. Sensitization by extracellular Ca(2+) of rat P2X(5) receptor and its pharmacological properties compared with rat P2X(1).

    Science.gov (United States)

    Wildman, Scott S; Brown, Sean G; Rahman, Mary; Noel, Carole A; Churchill, Linda; Burnstock, Geoffrey; Unwin, Robert J; King, Brian F

    2002-10-01

    The recombinant rat P2X(5) (rP2X(5)) receptor, a poorly understood ATP-gated ion channel, was studied under voltage-clamp conditions and compared with the better understood homomeric rP2X(1) receptor with which it may coexist in vivo. Expressed in defolliculated Xenopus laevis oocytes, rP2X(5) responded to ATP with slowly desensitizing inward currents that, for successive responses, ran down in the presence of extracellular Ca(2+) (1.8 mM). Replacement of Ca(2+) with either Ba(2+) or Mg(2+) prevented rundown, although agonist responses were very small, whereas reintroduction of Ca(2+) for short periods of time ( 2',3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP) > suramin > reactive blue 2 (RB-2) > diinosine pentaphosphate (Ip(5)I). In contrast, the potency order at rP2X(1) was TNP-ATP = Ip(5)I > PPADS > suramin = RB-2. Thus, the Ca(2+)-sensitized homomeric rP2X(5) receptor is similar in agonist profile to homomeric rP2X(1)-although it can be distinguished from the latter by GTP agonism, antagonist profile, and the modulatory effects of H(+) and Zn(2+) ions.

  9. Autonomous robotic sweeper

    OpenAIRE

    Kržišnik, Domen

    2015-01-01

    There is already a wide range of personal/domestic robots on the market capable of performing various tasks. We haven't however been able to find any commercially available robots designed for effectively performing the task of backyard sweeping. This thesis presents the process and end result of planning, assembly and programming of an autonomous robot, capable of performing the above mentioned task. We first analyze robots with similar functions, including robotic vacuum cleaners and lawn m...

  10. Autonomous Undersea Observations

    Science.gov (United States)

    2016-06-13

    less expensive sensor systems for a variety of applications, including measurement of physical characteristics of the ocean, threat detection, and...multiple autonomous environmental sensors within an acoustic modem-based infrastructure capable of communicating to and from the sensors and to and...networks, and telesonar with high speed platforms. This effort is concentrating on the development and demonstration of the two modem- based sensors . We

  11. Science Letters: A synthetic Toll-like receptor 2 ligand decreases allergic immune responses in a mouse rhinitis model sensitized to mite allergen

    Institute of Scientific and Technical Information of China (English)

    Cheng ZHOU; Xiao-dong KANG; Zhi CHEN

    2008-01-01

    It has been proposed that activation of Toll-like receptors (TLRs) plays crucial roles in the polarization of adaptive immune responses. A synthetic Toll-like receptor 2 (TLR2) ligand, Pam3CSK4, has been reported to modulate the balance of Thl/Tn2 responses. We evaluated the modulation effect of Pam3CSK4 on allergic immune response in a mouse rhinitis model sensitized to house dust mite allergen (HDM). Mice were sensitized and challenged with Dermatophagoides farinae allergen (Der f), and then the allergic mice were treated by Pam3CSK4. Nasal allergic symptoms and eosinophils were scored. Der f-specific cytokine responses were examined in the splenocytes and bronchoalveolar lavage fluid (BALF). Serum level of total IgE was also detected. After establishing a mouse allergic rhinitis model with HDM, we have showed that Pam3CSK4 treatment not only ameliorated the nasal allergic symptoms remarkably but also decreased the eosinophils and total inflammation cells in BALF significantly. Analysis of cytokine profile found that' IFN-γ released from either BALF or stimulated splenocytes increased markedly in Pam3CSK4-treated mice, while IL-13 decreased significantly. Moreover, serum level of total IgE was significantly lower in Pam3CSK4-treated mice than in the untreated. Thus, in an allergic rhinitis mouse model developed with HDM, Pam3CSK4 was shown to exhibit an antiallergic effect, indicating its potential application in allergic diseases.

  12. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  13. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC50) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect.

  14. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex.

    Science.gov (United States)

    Kolumam, Ganesh; Chen, Mark Z; Tong, Raymond; Zavala-Solorio, Jose; Kates, Lance; van Bruggen, Nicholas; Ross, Jed; Wyatt, Shelby K; Gandham, Vineela D; Carano, Richard A D; Dunshee, Diana Ronai; Wu, Ai-Luen; Haley, Benjamin; Anderson, Keith; Warming, Søren; Rairdan, Xin Y; Lewin-Koh, Nicholas; Zhang, Yingnan; Gutierrez, Johnny; Baruch, Amos; Gelzleichter, Thomas R; Stevens, Dale; Rajan, Sharmila; Bainbridge, Travis W; Vernes, Jean-Michel; Meng, Y Gloria; Ziai, James; Soriano, Robert H; Brauer, Matthew J; Chen, Yongmei; Stawicki, Scott; Kim, Hok Seon; Comps-Agrar, Laëtitia; Luis, Elizabeth; Spiess, Christoph; Wu, Yan; Ernst, James A; McGuinness, Owen P; Peterson, Andrew S; Sonoda, Junichiro

    2015-07-01

    Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  15. Participation of complement 3a receptor (C3aR) in the sensitization phase of Th2 mediated allergic contact dermatitis.

    Science.gov (United States)

    Niebuhr, Margarete; Bäumer, Wolfgang; Kietzmann, Manfred; Wichmann, Katja; Heratizadeh, Annice; Werfel, Thomas

    2012-01-01

    The complement system has emerged as a bridge between innate and adaptive immune responses. An involvement of C3aR has been described during skin inflammation. The aim of the study was to investigate the role of C3a in a mouse model of allergic skin inflammation, such as allergic contact dermatitis (ACD) which is a clinical manifestation of contact sensitivity (CS). The sensitization phase was studied using the local lymph node test: Mice were sensitized on three consecutive days by application of non-irritant concentrations of toluene-2,4-diisocyanate (TDI; 0.5%) onto the ear skin. On day 5, auricular draining lymph nodes were obtained. The elicitation phase was investigated by sensitization with TDI on the depilated and tape-stripped abdominal skin and challenge with TDI on the ear skin and measuring of ear swelling in vivo and cytokine secretion in activated splenocytes in vitro respectively. Complement 3a receptor deficient (C3aRKO) mice showed increased cytokine responses (interleukin[IL]-5, IL-6, IL-17, granulocyte macrophage-colony stimulating factor [GM-CSF]) in the sensitization phase of ACD to TDI. However, no differences in CS responses to TDI were observed in C3aR KO mice compared with WT controls in the elicitation phase of ACD as assessed by measuring of ear swelling in vivo and cytokines in skin and in activated splenocytes in vitro, namely IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, interferon-γ (IFN-γ), GM-CSF and tumor necrosis factor (TNF)-α. These findings provide a new insight into the participation of C3a in the sensitization phase of CS immune responses.

  16. Trigeminal autonomic cephalalgias.

    Science.gov (United States)

    Eller, M; Goadsby, P J

    2016-01-01

    The trigeminal autonomic cephalalgias (TACs) are a group of primary headache disorders characterised by lateralized symptoms: prominent headache and ipsilateral cranial autonomic features, such as conjunctival injection, lacrimation and rhinorrhea. The TACs are: cluster headache (CH), paroxysmal hemicrania (PH), short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT)/short-lasting neuralgiform headache attacks with cranial autonomic features (SUNA) and hemicrania continua (HC). Their diagnostic criteria are outlined in the International Classification of Headache Disorders, third edition-beta (ICHD-IIIb). These conditions are distinguished by their attack duration and frequency, as well as response to treatment. HC is continuous and by definition responsive to indomethacin. The main differential when considering this headache is chronic migraine. Other TACs are remarkable for their short duration and must be distinguished from other short-lasting painful conditions, such as trigeminal neuralgia and primary stabbing headache. Cluster headache is characterised by exquisitely painful attacks that occur in discrete episodes lasting 15-180 min a few times a day. In comparison, PH occurs more frequently and is of shorter duration, and like HC is responsive to indomethacin. SUNCT/SUNA is the shortest duration and highest frequency TAC; attacks can occur over a hundred times every day.

  17. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  18. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus.

    Science.gov (United States)

    Aydemir, M; Yazisiz, V; Basarici, I; Avci, A B; Erbasan, F; Belgi, A; Terzioglu, E

    2010-03-01

    Neurological involvement is a well-documented issue in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, little is known about the involvement of the autonomic nervous system. This study was conducted to investigate autonomic nervous system dysfunction in patients with RA and SLE. Twenty-six RA patients, 38 SLE patients and 40 healthy controls were recruited from our in- and out-patient departments. Heart rate variability (HRV) parameters (the power of the high- [HF] and low-frequency [LF] band of haemodynamic time series, the ratio between low- and high-frequency components [LF/HF ratio], the power spectral density), baroreflex sensitivity (BRS) and beat-to-beat blood pressures were assessed by a novel non-invasive haemodynamic monitoring tool (Task Force Monitor [TFM], CNSystems Medizintechnik GmbH, Graz, Austria). Autonomic nervous system dysfunction was determined according to classical Ewing autonomic test battery. Furthermore, we implemented a secondary autonomic test score by modifying the Ewing test battery with additional criteria. Both the classical and modified Ewing test batteries have revealed that the frequencies of autonomic neuropathy were significantly higher in patient groups compared with controls (p disease duration, disease activity and autoantibody positivity. Consequently, we believe that further large-scale studies investigating cardiovascular autonomic neuropathy in rheumatic diseases should be carried out to verify our findings and manifest clinical consequences beyond these results.

  19. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated.

    Science.gov (United States)

    Salling, Michael C; Harrison, Neil L

    2014-09-01

    Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing. Copyright © 2014 the American Physiological Society.

  20. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  1. Wild-type and specific mutant androgen receptor mediates transcription via 17β-estradiol in sex hormone-sensitive cancer cells.

    Science.gov (United States)

    Susa, Takao; Ikaga, Reina; Kajitani, Takashi; Iizuka, Masayoshi; Okinaga, Hiroko; Tamamori-Adachi, Mimi; Okazaki, Tomoki

    2015-07-01

    We previously encountered regulatory processes wherein dihydrotestosterone (DHT) exerted its inhibitory effect on parathyroid hormone-related protein (PTHrP) gene repression through the estrogen receptor (ER)α, but not the androgen receptor (AR), in breast cancer MCF-7 cells. Here, we investigated whether such aberrant ligand-nuclear receptor (NR) interaction is present in prostate cancer LNCaP cells. First, we confirmed that LNCaP cells expressed large amounts of AR at negligible levels of ERα/β or progesterone receptor. Both suppression of PTHrP and activation of prostate-specific antigen genes were observed after independent administration of 17β-estradiol (E2), DHT, or R5020. Consistent with the notion that the LNCaP AR lost its ligand specificity due to a mutation (Thr-Ala877), experiments with siRNA targeting the respective NR revealed that the AR monopolized the role of the mediator of shared hormone-dependent regulation, which was invariably associated with nuclear translocation of this mutant AR. Microarray analysis of gene regulation by DHT, E2, or R5020 disclosed that more than half of the genes downstream of the AR (Thr-Ala877) overlapped in the LNCaP cells. Of particular interest, we realized that the AR (wild-type [wt]) and AR (Thr-Ala877) were equally responsible for the E2-AR interactions. Fluorescence microscopy experiments demonstrated that both EGFP-AR (wt) and EGFP-AR (Thr-Ala877) were exclusively localized within the nucleus after E2 or DHT treatment. Furthermore, reporter assays revealed that some other cancer cells exhibited aberrant E2-AR (wt) signaling similar to that in the LNCaP cells. We herein postulate the presence of entangled interactions between wt AR and E2 in certain hormone-sensitive cancer cells.

  2. The new INNOVANCE® PFA P2Y cartridge is sensitive to the detection of the P2Y₁₂ receptor inhibition.

    Science.gov (United States)

    Koessler, Juergen; Kobsar, Anna L; Rajkovic, Mirjana S; Schafer, Andreas; Flierl, Ulrike; Pfoertsch, Stephanie; Bauersachs, Johann; Steigerwald, Udo; Rechner, Andreas R; Walter, Ulrich

    2011-01-01

    phosphorylation assay was achieved using CT > 200 s and PRI INNOVANCE® PFA P2Y * was 97% and the specificity for a "good response" 65%. In summary, INNOVANCE® PFA P2Y * showed a high sensitivity for the detection of P2Y₁₂ receptor blockade, but had only a limited specificity for a "good response" to clopidogrel. Therefore, this new cartridge is a useful tool to rule out P2Y₁₂ receptor inhibition, if normal or only slightly prolonged CTs are obtained. Its predictive value for risk assessment of thromboembolic events, e.g. after coronary stent implantation, needs to be evaluated in clinical trials.

  3. Identification of contact and respiratory sensitizers according to IL-4 receptor α expression and IL-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Goutet, Michèle, E-mail: michele.goutet@inrs.fr; Pépin, Elsa; Langonné, Isabelle; Huguet, Nelly; Ban, Masarin

    2012-04-15

    Identification of allergenic chemicals is an important occupational safety issue. While several methods exist to identify contact sensitizers, there is currently no validated model to predict the potential of chemicals to act as respiratory sensitizers. Previously, we reported that cytometry analysis of the local immune responses induced in mice dermally exposed to the respiratory sensitizer trimellitic anhydride (TMA 10%) and contact sensitizer dinitrochlorobenzene (DNCB 1%) could identify divergent expression of several immune parameters. The present study confirms, first, that IgE-positive B cells, MHC class II molecules, interleukin (IL)-2, IL-4 and IL-4Rα can differentiate the allergic reactions caused by high doses of strong respiratory (TMA, phthalic anhydride and toluene diisocyanate) and contact sensitizers (DNCB, dinitrofluorobenzene and oxazolone). The second part of the study was designed to test the robustness of these markers when classing the weakly immunogenic chemicals most often encountered. Six respiratory allergens, including TMA (2.5%), five contact allergens, including DNCB (0.25%), and two irritants were compared at doses of equivalent immunogenicity. The results indicated that IL-4Rα and IL-2 can be reliably used to discriminate sensitizers. Respiratory sensitizers induced markedly higher IL-4Rα levels than contact allergens, while irritants had no effect on this parameter. Inversely, contact allergens tended to induce higher percentages of IL-2{sup +}CD8{sup +} cells than respiratory allergens. In contrast, the markers MHC-II, IgE and IL-4 were not able to classify chemicals with low immunogenic potential. In conclusion, IL-4Rα and IL-2 have the potential to be used in classifying a variety of chemical allergens. -- Highlights: ► Identification of chemical allergens is an important occupational safety issue. ► There is currently no model to predict the potential of chemicals to induce asthma. ► We analyze immune responses induced

  4. Vasopressin Type 1A Receptor Deletion Enhances Cardiac Contractility, β-Adrenergic Receptor Sensitivity and Acute Cardiac Injury-induced Dysfunction.

    Science.gov (United States)

    Wasilewski, Melissa A; Grisanti, Laurel A; Song, Jianliang; Carter, Rhonda L; Repas, Ashley A; Myers, Valerie D; Gao, Erhe; Koch, Walter J; Cheung, Joseph Y; Feldman, Arthur M; Tilley, Douglas

    2016-09-02

    V1AR expression is elevated in chronic human heart failure and contributes to cardiac dysfunction in animal models, in part via reduced βAR responsiveness.  While cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease βAR activity, it is unknown whether V1AR inhibition conversely augments βAR responsiveness.  Further, although V1AR has been shown to contribute to chronic progression of heart failure, its impact on cardiac function following acute ischemic injury has not been reported.  Using V1AR KO mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischemic injury, βAR sensitivity and cardiomyocyte responsiveness to βAR stimulation.  Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ.  Enhanced cardiac contractility in V1AR KO mice was associated with augmented β-blocker sensitivity, suggesting increased basal βAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban and cardiac troponin I phosphorylation were elevated versus control mice.  At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to βAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced βAR-mediated contractility in control myocytes.  Therefore, while V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischemic injury, its effects on βAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

  5. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    . However, a relationship between the AS status and FcepsilonRI has not been investigated. We aimed to characterize basophils from AS by looking at histamine release (HR) (sensitivity and reactivity) and the FcepsilonRI molecule, and compare it with nonatopic (NA) or allergic (A) persons....

  6. Seasonal dynamics of chemokine receptors and CD62L in subjects with asymptomatic skin sensitization to birch and grass pollen

    DEFF Research Database (Denmark)

    Assing, K; Bodtger, U; Poulsen, Lars K.

    2006-01-01

    Asymptomatic skin sensitization (AS) has been shown to be a risk factor for respiratory allergic disease. CCR4, CXCR1 and CD62L have all been assigned a role in the immunopathogenesis of allergy. Memory T-cell expression of CCR4, CXCR1 and CD62L has not hitherto been investigated in subjects...

  7. Chronically Restricted Sleep Leads to Depression-Like Changes in Neurotransmitter Receptor Sensitivity and Neuroendocrine Stress Reactivity in Rats

    NARCIS (Netherlands)

    Novati, Arianna; Roman, Viktor; Cetin, Timur; Hagewoud, Roelina; den Boer, Johan A.; Luiten, Paul G.M.; Meerlo, Peter

    2008-01-01

    Study Objectives: Frequently disrupted and restricted sleep is a common problem for many people in our Western society. In the long run, insufficient sleep may have repercussions for health and may sensitize individuals to psychiatric diseases. In this context, we applied an animal model of chronic

  8. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)

    NARCIS (Netherlands)

    Yoshizawa, Masato; Jeffery, William R; van Netten, Sietse M; McHenry, Matthew J

    2014-01-01

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral

  9. Chronically Restricted Sleep Leads to Depression-Like Changes in Neurotransmitter Receptor Sensitivity and Neuroendocrine Stress Reactivity in Rats

    NARCIS (Netherlands)

    Novati, Arianna; Roman, Viktor; Cetin, Timur; Hagewoud, Roelina; den Boer, Johan A.; Luiten, Paul G.M.; Meerlo, Peter

    2008-01-01

    Study Objectives: Frequently disrupted and restricted sleep is a common problem for many people in our Western society. In the long run, insufficient sleep may have repercussions for health and may sensitize individuals to psychiatric diseases. In this context, we applied an animal model of chronic

  10. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus)

    NARCIS (Netherlands)

    Yoshizawa, Masato; Jeffery, William R; van Netten, Sietse M; McHenry, Matthew J

    2014-01-01

    The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral

  11. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    , which includes the cardiac centre and controls autonomic functions, and therefore autonomic dysfunction may be experienced early in the disease course. Sleep disturbances are also common non-motor complications of PD, and therefore PD patients undergo polysomnography at the Danish Center for Sleep...... Medicine to assess the sleep disturbances. The aim of this PhD dissertation was to: 1) Develop a method to investigate autonomic changes during sleep in neurodegenerative diseases, and apply this method on PD, iRBD and narcolepsy patients to evaluate the autonomic function in these diseases. 2) Validate...... the method by applying standardized methods to measure the autonomic function based on heart rate variability (HRV) measures. 3) Based on the results, assess the validity of autonomic dysfunction as an early marker of a neurodegenerative disease. 4) Evaluate the influence of hypocretin loss in narcolepsy...

  12. Autonomic disorders in multiple sclerosis.

    Science.gov (United States)

    Lensch, E; Jost, W H

    2011-01-01

    Multiple sclerosis is an inflammatory disease leading to disseminated lesions of the central nervous system resulting in both somatomotor and autonomic disturbances. These involve the central centers of the autonomic nervous system, as well as the automatic control and pathway systems. All autonomic functions may be disordered individually or in combined form. There is no other disease with a clinical picture so multifaceted. Besides cardiovascular dysfunctions disorders of bladder and rectum have become apparent. Somatomotor and autonomic disturbances occur with similar frequency; however the focused exam often heavily favors somatomotor symptoms. Autonomic disturbances should primarily be taken into account on history taking and clinical examination. Individual diagnosis and treatment is a secondary feature. Impairments of the autonomic nervous systems in multiple sclerosis are frequently overlooked.

  13. Autonomic Disorders in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    E. Lensch

    2011-01-01

    Full Text Available Multiple sclerosis is an inflammatory disease leading to disseminated lesions of the central nervous system resulting in both somatomotor and autonomic disturbances. These involve the central centers of the autonomic nervous system, as well as the automatic control and pathway systems. All autonomic functions may be disordered individually or in combined form. There is no other disease with a clinical picture so multifaceted. Besides cardiovascular dysfunctions disorders of bladder and rectum have become apparent. Somatomotor and autonomic disturbances occur with similar frequency; however the focused exam often heavily favors somatomotor symptoms. Autonomic disturbances should primarily be taken into account on history taking and clinical examination. Individual diagnosis and treatment is a secondary feature. Impairments of the autonomic nervous systems in multiple sclerosis are frequently overlooked.

  14. Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine.

    Science.gov (United States)

    Revel, Florent G; Meyer, Claas A; Bradaia, Amyaouch; Jeanneau, Karine; Calcagno, Eleonora; André, Cédric B; Haenggi, Markus; Miss, Marie-Thérèse; Galley, Guido; Norcross, Roger D; Invernizzi, Roberto W; Wettstein, Joseph G; Moreau, Jean-Luc; Hoener, Marius C

    2012-11-01

    Trace amines (TAs) such as β-phenylethylamine, p-tyramine, or tryptamine are biogenic amines found in the brain at low concentrations that have been implicated in various neuropsychiatric disorders like schizophrenia, depression, or attention deficit hyperactivity disorder. TAs are ligands for the recently identified trace amine-associated receptor 1 (TAAR1), an important modulator of monoamine neurotransmission. Here, we sought to investigate the consequences of TAAR1 hypersignaling by generating a transgenic mouse line overexpressing Taar1 specifically in neurons. Taar1 transgenic mice did not show overt behavioral abnormalities under baseline conditions, despite augmented extracellular levels of dopamine and noradrenaline in the accumbens nucleus (Acb) and of serotonin in the medial prefrontal cortex. In vitro, this was correlated with an elevated spontaneous firing rate of monoaminergic neurons in the ventral tegmental area, dorsal raphe nucleus, and locus coeruleus as the result of ectopic TAAR1 expression. Furthermore, Taar1 transgenic mice were hyposensitive to the psychostimulant effects of amphetamine, as it produced only a weak locomotor activation and failed to alter catecholamine release in the Acb. Attenuating TAAR1 activity with the selective partial agonist RO5073012 restored the stimulating effects of amphetamine on locomotion. Overall, these data show that Taar1 brain overexpression causes hyposensitivity to amphetamine and alterations of monoaminergic neurotransmission. These observations confirm the modulatory role of TAAR1 on monoamine activity and suggest that in vivo the receptor is either constitutively active and/or tonically activated by ambient levels of endogenous agonist(s).

  15. Dopamine D3 receptor knock-out mice exhibit increased behavioral sensitivity to the anxiolytic drug diazepam.

    Science.gov (United States)

    Leggio, Gian Marco; Micale, Vincenzo; Le Foll, Bernard; Mazzola, Carmen; Nobrega, José N; Drago, Filippo

    2011-04-01

    Dopamine D(3) receptors (DRsD3) seem to have a pivotal role in mood disorders. Using the elevated plus maze (EPM) and the novelty-induced grooming test (NGT), we assessed the responses of DRD3-deficient (D(3)(-/-)) mice to the acute treatment (different testing time) with the anxiolytic drug, diazepam. D(3)(-/-) mice treated with diazepam (0.1 or 0.5mg/kg) exhibited a better behavioral response in the EPM than their wild type (WT). Furthermore, in D(3)(-/-) mice, but not in WT, 1mg/kg diazepam induced anxiolytic effects at all testing times. The contribution of DRsD3 in the anxiolytic effects of diazepam was confirmed by similar results obtained in EPM by using the selective DRD3 antagonist U99194A (10mg/kg) in combination with diazepam, in WT animals. D(3)(-/-) mice treated with diazepam (all doses), also showed a decrease in grooming behavior. However, the [(3)H]flunitrazepam autoradiographic analysis revealed no significant changes in D(3)(-/-) mice compared to WT, suggesting that if γ-aminobutyric acid receptor GABA(A) changes are involved, they do not occur at the level of binding to benzodiazepine site. These data suggest that D(3)(-/-) mice exhibit low baseline anxiety levels and provide the evidence that the DRD3 is involved in the modulation of benzodiazepine anxiolytic effects.

  16. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans.

    Science.gov (United States)

    Stefan, Norbert; Vozarova, Barbora; Funahashi, Tohru; Matsuzawa, Yuji; Weyer, Christian; Lindsay, Robert S; Youngren, Jack F; Havel, Peter J; Pratley, Richard E; Bogardus, Clifton; Tataranni, P Antonio

    2002-06-01

    Adiponectin, the most abundant adipose-specific protein, has been found to be negatively associated with degree of adiposity and positively associated with insulin sensitivity in Pima Indians and other populations. Moreover, adiponectin administration to rodents has been shown to increase insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and also increase whole-body insulin sensitivity. To further characterize the relationship between plasma adiponectin concentration and insulin sensitivity in humans, we examined 1) the cross-sectional association between plasma adiponectin concentration and skeletal muscle IR tyrosine phosphorylation and 2) the prospective effect of plasma adiponectin concentration at baseline on change in insulin sensitivity. Fasting plasma adiponectin concentration, body composition (hydrodensitometry or dual energy X-ray absorptiometry), insulin sensitivity (insulin-stimulated glucose disposal, hyperinsulinemic clamp), and glucose tolerance (75-g oral glucose tolerance test) were measured in 55 Pima Indians (47 men and 8 women, aged 31 +/- 8 years, body fat 29 +/- 8% [mean +/- SD]; 50 with normal glucose tolerance, 3 with impaired glucose tolerance, and 2 with diabetes). Group 1 (19 subjects) underwent skeletal muscle biopsies for the measurement of basal and insulin-stimulated tyrosine phosphorylation of the IR (stimulated by 100 nmol/l insulin). The fold increase after insulin stimulation was calculated as the ratio between maximal and basal phosphorylation. Group 2 (38 subjects) had follow-up measurements of insulin-stimulated glucose disposal. Cross-sectionally, plasma adiponectin concentration was positively associated with insulin-stimulated glucose disposal (r = 0.58, P < 0.0001) and negatively associated with percent body fat (r = -0.62, P < 0.0001) in the whole group. In group 1 plasma adiponectin was negatively associated with the basal (r = -0.65, P = 0.003) and positively associated with the fold increase in IR

  17. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors...

  18. Tumor necrosis factor receptor-1 is essential for LPS-induced sensitization and tolerance to oxygen-glucose deprivation in murine neonatal organotypic hippocampal slices.

    Science.gov (United States)

    Markus, Tina; Cronberg, Tobias; Cilio, Corrado; Pronk, Cornelis; Wieloch, Tadeusz; Ley, David

    2009-01-01

    Inflammation and ischemia have a synergistic damaging effect in the immature brain. The role of tumor necrosis factor (TNF) receptors 1 and 2 in lipopolysaccharide (LPS)-induced sensitization and tolerance to oxygen-glucose deprivation (OGD) was evaluated in neonatal murine hippocampal organotypic slices. Hippocampal slices from balb/c, C57BL/6 TNFR1(-/-), TNFR2(-/-), and wild-type (WT) mice obtained at P6 were grown in vitro for 9 days. Preexposure to LPS immediately before OGD increased propidium iodide-determined cell death in regions CA1, CA3, and dentate gyrus from 4 up to 48 h after OGD (P<0.001). Extending the time interval between LPS exposure and OGD to 72 h resulted in tolerance, that is reduced neuronal cell death after OGD (P<0.05). Slices from TNFR1(-/-) mice showed neither LPS-induced sensitization nor LPS-induced tolerance to OGD, whereas both effects were present in slices from TNFR2(-/-) and WT mice. Cytokine secretion (TNFalpha and interleukin-6) during LPS exposure was decreased in TNFR1(-/-) slices and increased in TNFR2(-/-) as compared with WT slices. We conclude that LPS induces sensitization or tolerance to OGD depending on the time interval between exposure to LPS and OGD in murine hippocampal slice cultures. Both paradigms are dependent on signaling through TNFR1.

  19. Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Bai

    Full Text Available Aberrant activation of the hedgehog (Hh signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT and cancer stem-like cell (CSC maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001 in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001. These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs.

  20. Effects of angiotensin Ⅱ receptor antagonist on expression of collagen Ⅲ, collagen Ⅴ, and transforming growth factor β1 in the airway walls of sensitized rats

    Institute of Scientific and Technical Information of China (English)

    杜永成; 许建英; 张韶君

    2004-01-01

    Background Repeated attacks of bronchial asthma lead to different degrees of airway remodeling, the mechanism of which is not yet clear. Some evidences indicate that it is related to the excessive expression of some growth promotion factors. Angiotensin Ⅱ is a polypeptide that may be involved in airway remodeling. To evaluate its role in airway remodeling in asthma, we observed the effects of an angiotensin Ⅱ type 1 receptor antagonist (valsartan) on the expression of collagen Ⅲ, collagen Ⅴ, and transforming growth factor β1 (TGF-β1) mRNA and protein in the airway walls of sensitized rats.Methods Forty Wistar rats were randomly divided into 5 groups: control group, sensitized group, and valsartan groups 1, 2, and 3. The rats in the sensitized group and in valsartan groups 1, 2, and 3 were sensitized and challenged with ovalbumin. Rats in control group were sensitized and challenged with 0.9% NaCl. Rats from valsartan groups 1, 2, and 3 were drenched with valsartan (10 μg, 20 μg, or 30 μg, respectively) at the time of the ovalbumin challenges. The expression of collagen Ⅲ, collagen Ⅴ, and TGF-β1 protein were detected using immunohistochemical method in combination with image analysis methods. The expression of TGF-β1 mRNA was detected by in situ hybridization. Results The expression in the airways of collagen Ⅲ and collagen Ⅴ was significantly higher in rats from the sensitized group (7.73±0.81, 1.34±0.28) and from valsartan groups 1, 2, and 3 (5.73±0.64, 1.13±0.15; 4.96±0.51, 0.98±0.08; 4.43±0.35, 0.93±0.06, respectively) than those in the control group (2.65±0.38, 0.67±0.08, P<0.05). In addition, collagen levels were significantly lower in valsartan groups 1, 2, and 3 than those from the sensitized group (P<0.05). The expression of TGF-β1 mRNA and protein in the airways was significantly higher in rats from the sensitized group (20.49%±3.46%, 29.73%±3.25%) and from valsartan groups 1, 2, and 3 (16.47%±1.94%, 19.41%±1.87%; 14

  1. Jam avoidance with autonomous systems

    CERN Document Server

    Tordeux, Antoine

    2016-01-01

    Many car-following models are developed for jam avoidance in highways. Two mechanisms are used to improve the stability: feedback control with autonomous models and increasing of the interaction within cooperative ones. In this paper, we compare the linear autonomous and collective optimal velocity (OV) models. We observe that the stability is significantly increased by adding predecessors in interaction with collective models. Yet autonomous and collective approaches are close when the speed difference term is taking into account. Within the linear OV models tested, the autonomous models including speed difference are sufficient to maximise the stability.

  2. Robotics and Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment for developing and evaluating intelligent software for both actual and simulated autonomous vehicles. Laboratory computers provide...

  3. Hereditary sensory and autonomic neuropathy type V: Report of a rare case

    Directory of Open Access Journals (Sweden)

    Ritesh Kalaskar

    2015-01-01

    Full Text Available Hereditary sensory and autonomic neuropathy (HSAN type V is a rare inherited disease caused by a mutation in the neurotrophic tyrosine kinase receptor, type 1 gene located on chromosome 1 (1q21-q22. It is characterized by pain insensitivity, partial anhydrosis without mental retardation and unimpaired touch and pressure sensitivity. Self-mutilation injury involving the teeth, lips, tongue, ears, eyes, nose, and fingers are invariable feature of this disorder. The purpose of this paper was to discuss the diagnosis and oral management of 18-month-old girl with HSAN type V, having typical oral manifestation of bitten tongue and auto-extraction of primary teeth. Modified bite guard was given to the patient to prevent further self-mutilating injuries to the tongue.

  4. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  5. Electrophysiological identification of thermo- and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa.

    Science.gov (United States)

    Piersanti, Silvana; Rebora, Manuela; Almaas, Tor Jorgen; Salerno, Gianandrea; Gaino, Elda

    2011-10-01

    Recent ultrastructural investigations on Odonata antennal flagellum describe two types of sensilla styloconica, T1 and T2. The styloconic sensilla are located in pits, at the bottom of deep cavities, and share common features typical of thermo-hygroreceptors. In order to ascertain if the Odonata antennae are involved in hygroreception and thermoreception, we carried out electrophysiological recordings (single cell recordings, SCR) from adult males and females of Libellula depressa L., 1758. After contact was established, the antenna was stimulated by rapid changes in temperature and humidity. The present research shows the occurrence of a dry (DC), a moist (MC) and a cold (CC) receptor neurons on the antennal flagellum of L. depressa. These data demonstrate for the first time the presence of functional thermo-hygroreceptors on the antennal flagellum of dragonflies. The present results extend our knowledge of the not visual sensory modalities of Odonata, a field of research unexplored so far.

  6. Taurine activates strychnine-sensitive glycine receptors in neurons freshly isolated from nucleus accumbens of young rats.

    Science.gov (United States)

    Jiang, Zhenglin; Krnjević, Kresimir; Wang, Fushun; Ye, Jiang Hong

    2004-01-01

    Although functional glycine receptors (GlyRs) are present in the mature nucleus accumbens (NAcc), an important area of the mesolimbic dopamine system involved in drug addiction, their role has been unclear because the NAcc contains little glycine. However, taurine, an agonist of GlyRs, is abundant throughout the brain, especially during early development. In the present study on freshly dissociated NAcc neurons from young Sprague-Dawley rats (12- to 21-day old), we found that both glycine and taurine can strongly depolarize NAcc neurons and modulate their excitability. In voltage-clamped NAcc neurons, glycine and taurine elicited chloride currents (IGly and ITau) with an EC50 of 0.12 and 1.25 mM, respectively. The reversal potential of IGly or ITau was 0 mV in conventional whole cell mode and -30 mV in gramicidin-perforated mode. At concentrations taurine were very effectively antagonized by strychnine and by picrotoxin (with an IC50 of 60 nM and 36.5 microM for IGly, and 40 nM and 42.2 microM for ITau) but were insensitive to 10 microM bicuculline. The currents elicited by taurine (taurine (10 mM) showed partial cross-desensitization with IGABA, and it was substantially antagonized by 10 microM bicuculline. These results indicate that taurine binds mainly to GlyRs in NAcc, but it could be a partial agonist of GABAA receptors. By activating GlyRs, taurine may play an important physiological role in the control of NAcc function, especially during development.

  7. Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer

    Science.gov (United States)

    Collins, Denis; Jacob, Wolfgang; Cejalvo, Juan Miguel; Ceppi, Maurizio; James, Ian; Hasmann, Max; Crown, John; Cervantes, Andrés; Weisser, Martin

    2017-01-01

    Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo. Our data show that both HER2 and HER3 can directly complex with the ER and can mediate phosphorylation of the ER. Phosphorylation of the ER was only observed in cells that expressed both HER2 and ERα or in heregulin-stimulated cells that expressed both HER3 and ERα. Using a mouse xenograft model of ER+/HER2-low (HER2 immunohistochemistry 1+ or 2+ without gene amplification) human breast cancer we show that the combination of lumretuzumab and pertuzumab is highly efficacious and induces long-lasting tumor regression in vivo and adding endocrine therapy (fulvestrant) to this combination further improved efficacy. In addition, a prolonged clinical response was observed with the combination of lumretuzumab and pertuzumab in a patient with ER+/HER2-low breast cancer who had failed endocrine therapy. These preclinical data confirm that direct cross talk exists between HER2/HER3 and ER which may explain the resistance mechanisms to endocrine therapy and monoclonal antibodies that target HER2 and HER3. Our data also indicate that the triplet of anti-HER2, anti-HER3, and endocrine therapy might be an efficacious combination for treating patients with ER+/HER2-low breast cancer, which is an area of significant unmet medical need. PMID:28493933

  8. Electrophysiology of autonomic neuromuscular transmission involving ATP.

    Science.gov (United States)

    Sneddon, P

    2000-07-01

    Electrophysiological investigations of autonomic neuromuscular transmission have provided great insights into the role of ATP as a neurotransmitter. Burnstock and Holman made the first recordings of excitatory junction potentials (e.j.p.s) produced by sympathetic nerves innervating the smooth muscle of the guinea-pig vas deferens. This led to the identification of ATP as the mediator of e.j.p.s in this tissue, where ATP acts as a cotransmitter with noradrenaline. The e.j.p.s are mediated solely by ATP acting on P2X(1) receptors leading to action potentials and a rapid phasic contraction, whilst noradrenaline mediates a slower, tonic contraction which is not dependent on membrane depolarisation. Subsequent electrophysiological studies of the autonomic innervation of smooth muscles of the urogenital, gastrointestinal and cardiovascular systems have revealed a similar pattern of response, where ATP mediates a fast electrical and mechanical response, whilst another transmitter such as noradrenaline, acetylcholine, nitric oxide or a peptide mediates a slower response. The modulation of junction potentials by a variety of pre-junctional receptors and the mechanism of inactivation of ATP as a neurotransmitter will also be described.

  9. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14.

    Science.gov (United States)

    Huang, J-M; Nagatomo, I; Suzuki, E; Mizuno, T; Kumagai, T; Berezov, A; Zhang, H; Karlan, B; Greene, M I; Wang, Q

    2013-04-25

    The Yes-associated protein (YAP) is a transcriptional factor involved in tissue development and tumorigenesis. Although YAP has been recognized as a key element of the Hippo signaling pathway, the mechanisms that regulate YAP activities remain to be fully characterized. In this study, we demonstrate that the non-receptor type protein tyrosine phosphatase 14 (PTPN14) functions as a negative regulator of YAP. We show that YAP forms a protein complex with PTPN14 through the WW domains of YAP and the PPXY motifs of PTPN14. In addition, PTPN14 inhibits YAP-mediated transcriptional activities. Knockdown of YAP sensitizes cancer cells to various anti-cancer agents, such as cisplatin, the EGFR tyrosine kinase inhibitor erlotinib and the small-molecule antagonist of survivin, S12. YAP-targeted modalities may be used in combination with other cancer drugs to achieve maximal therapeutic effects.

  10. Soluble urokinase plasminogen activator receptor is in contrast to high-sensitive C-reactive-protein associated with coronary artery calcifications in healthy middle-aged subjects

    DEFF Research Database (Denmark)

    Sørensen, Mette Hjortdal; Gerke, Oke; Eugen-Olsen, Jesper;

    2014-01-01

    OBJECTIVE: The main objective of this study was to investigate the association between two markers of low-grade inflammation; soluble urokinase plasminogen activator receptor (suPAR) and high-sensitive C-reactive protein (hs-CRP); and coronary artery calcification (CAC) score detected by cardiac...... computed tomography (CT) scan. DESIGN: A cross sectional study of 1126 randomly sampled middle-aged men and women. METHODS: CAC score was measured by a non-contrast cardiac CT scan and total 10-year cardiovascular mortality risk was estimated using the Systematic Coronary Risk Evaluation (SCORE). Plasma...... samples were analysed for suPAR and hs-CRP. The association of suPAR and hs-CRP to CAC was evaluated by logistic regression analyses adjusting for categorised SCORE. The additive effect of suPAR to SCORE was evaluated by comparing area under curve (AUC) and net reclassification improvement (NRI). RESULTS...

  11. Schizophrenia, amphetamine-induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-09-01

    Full Text Available Abstract Background All antipsychotics work via dopamine D2 receptors (D2Rs, suggesting a critical role for D2Rs in psychosis; however, there is little evidence for a change in receptor number or pharmacological nature of D2Rs. Recent data suggest that D2Rs form dimers in-vitro and in-vivo, and we hypothesized that schizophrenia, as well as preclinical models of schizophrenia, would demonstrate altered dimerization of D2Rs, even though the overall number of D2Rs was unaltered. Methods We measured the expression of D2Rs dimers and monomers in patients with schizophrenia using Western blots, and then in striatal tissue from rats exhibiting the amphetamine-induced sensitized state (AISS. We further examined the interaction between D2Rs and the dopamine transporter (DAT by co-immunoprecipitation, and measured the expression of dopamine D2High receptors with ligand binding assays in rat striatum slices with or without acute amphetamine pre-treatment. Results We observed significantly enhanced expression of D2Rs dimers (277.7 ± 33.6% and decreased expression of D2Rs monomers in post-mortem striatal tissue of schizophrenia patients. We found that amphetamine facilitated D2Rs dimerization in both the striatum of AISS rats and in rat striatal neurons. Furthermore, amphetamine-induced D2Rs dimerization may be associated with the D2R-DAT protein-protein interaction as an interfering peptide that disrupts the D2R-DAT coupling, blocked amphetamine-induced up-regulation of D2Rs dimerization. Conclusions Given the fact that amphetamine induces psychosis and that the AISS rat is a widely accepted animal model of psychosis, our data suggest that D2R dimerization may be important in the pathophysiology of schizophrenia and may be a promising new target for novel antipsychotic drugs.

  12. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.

    Science.gov (United States)

    Lin, Ligen; Saha, Pradip K; Ma, Xiaojun; Henshaw, Iyabo O; Shao, Longjiang; Chang, Benny H J; Buras, Eric D; Tong, Qiang; Chan, Lawrence; McGuinness, Owen P; Sun, Yuxiang

    2011-12-01

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  13. Bleomycin induced sensitivity to TRAIL/Apo-2L-mediated apoptosis in human seminomatous testicular cancer cells is correlated with upregulation of death receptors.

    Science.gov (United States)

    Timur, Mujgan; Cort, Aysegul; Ozdemir, Evrim; Sarikcioglu, Sureyya Bilmen; Sanlioglu, Salih; Sanlioglu, Ahter Dilsad; Ozben, Tomris

    2015-01-01

    The most common solid tumor is testicular cancer among young men. Bleomycin is an antitumor antibiotic used for the therapy of testicular cancer. TRAIL is a proapoptotic cytokine that qualified as an apoptosis inducer in cancer cells. Killing cancer cells selectively via apoptosis induction is an encouraging therapeutic strategy in clinical settings. Combination of TRAIL with chemotherapeutics has been reported to enhance TRAIL-mediated apoptosis of different kinds of cancer cell lines. The molecular ground for sensitization of tumour cells to TRAIL by chemotherapeutics might involve upregulation of TRAIL-R1 (TR/1, DR4) and/or TRAIL-R2 (TR/2, DR5) receptors or activation of proapoptotic proteins including caspases. The curative potential of TRAIL to eradicate cancer cells selectively in testicular cancer has not been studied before. In this study, we investigated apoptotic effects of bleomycin, TRAIL, and their combined application in NTera-2 and NCCIT testicular cancer cell lines. We measured caspase 3 levels as an apoptosis indicator, and TRAIL receptor expressions using flow cytometry. Both NTera-2 and NCCIT cells were fairly resistant to TRAIL's apoptotic effect. Incubation of bleomycin alone caused a significant increase in caspase 3 activity in NCCIT. Combined incubation with bleomycin and TRAIL lead to elevated caspase 3 activity in Ntera-2. Exposure to 72 h of bleomycin increased TR/1, TR/2, and TR/3 cell-surface expressions in NTera-2. Elevation in TR/1 cell-surface expression was evident only at 24 h of bleomycin application in NCCIT. It can be concluded that TRAIL death receptor expressions in particular are increased in testicular cancer cells via bleomycin treatment, and TRAIL-induced apoptosis is initiated.

  14. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Liu Qiang

    2012-12-01

    Full Text Available Abstract Background β-amyloid (Aβ accumulation is described as a hallmark of Alzheimer’s disease (AD. Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs, which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE, a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.

  15. Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death.

    Science.gov (United States)

    Purton, Jared F; Monk, Julie A; Liddicoat, Douglas R; Kyparissoudis, Konstantinos; Sakkal, Samy; Richardson, Samantha J; Godfrey, Dale I; Cole, Timothy J

    2004-09-15

    Glucocorticoid (GC) hormones cause pronounced T cell apoptosis, particularly in immature thymic T cells. This is possibly due to tissue-specific regulation of the glucocorticoid receptor (GR) gene. In mice the GR gene is transcribed from five separate promoters designated: 1A, 1B, 1C, 1D, and 1E. Nearly all cells express GR from promoters 1B-1E, but the activity of the 1A promoter has only been reported in the whole thymus or lymphocyte cell lines. To directly assess the role of GR promoter use in sensitivity to glucocorticoid-induced cell death, we have compared the activity of the GR 1A promoter with GC sensitivity in different mouse lymphocyte populations. We report that GR 1A promoter activity is restricted to thymocyte and peripheral lymphocyte populations and the cortex of the brain. The relative level of expression of the 1A promoter to the 1B-1E promoters within a lymphocyte population was found to directly correlate with susceptibility to GC-induced cell death, with the extremely GC-sensitive CD4+CD8+ thymocytes having the highest levels of GR 1A promoter activity, and the relatively GC-resistant alphabetaTCR+CD24(int/low) thymocytes and peripheral T cells having the lowest levels. DNA sequencing of the mouse GR 1A promoter revealed a putative glucocorticoid-response element. Furthermore, GR 1A promoter use and GR protein levels were increased by GC treatment in thymocytes, but not in splenocytes. These data suggest that tissue-specific differences in GR promoter use determine T cell sensitivity to glucocorticoid-induced cell death. Copyright 2004 The American Association of Immunologists, Inc.

  16. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.

    Science.gov (United States)

    Doering, Jon A; Giesy, John P; Wiseman, Steve; Hecker, Markus

    2013-03-01

    Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.

  17. Learning for Autonomous Navigation

    Science.gov (United States)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  18. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  19. Effects of GLP-1 receptor agonists on insulin sensitivity%GLP-1受体激动剂的胰岛素增敏效应

    Institute of Scientific and Technical Information of China (English)

    郑仁东; 刘超

    2012-01-01

    Insulin resistance and lack of insulin secretion is the main pathogenesis of type 2 diabetes.Researches have shown that glucagon-like peptide-1 ( GLP-1 ) receptor agonists could effectively improve the function of pancreatic β cell,and promote the secretion of insulin.Moreover,GLP-1 receptor agonists could regulate signal transduction,increase adipocytes differentiation and glucose uptake,decrease expression of inflammation factors,reduce weight and so on.Therefore,it can improve insulin resistance,increase insulin sensitivity.%2型糖尿病的发病机制主要涉及胰岛素抵抗张胰岛素分泌缺乏.研究表明,胰高血糖素样肽-1受体激动剂在有效改善胰岛β细胞功能,促进胰岛素分泌的同时,还能够作用于细胞信号转导,促进脂肪细胞分化和葡萄糖摄取,并通过减轻相关炎性反应因子表达,降低体重等,改善胰岛素抵抗,增加胰岛素敏感性.

  20. The Dual Amylin- and Calcitonin-Receptor Agonist KBP-042 Increases Insulin Sensitivity and Induces Weight Loss in Rats with Obesity

    DEFF Research Database (Denmark)

    Hjuler, Sara Toftegaard; Gydesen, Sofie; Andreassen, Kim Vietz

    2016-01-01

    Objective: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 μg/kg-10 μg/kg) compared with saline-treated and pair-fed controls. Methods: Rats with obesity received daily s.c. ad...... combines two highly relevant features, namely weight loss and insulin sensitivity, and is thus an excellent candidate for chronic treatment of obesity and insulin resistance....... a sustained weight loss of up to 20% without any significant weight reduction in the pair-fed groups. Decreases in adipose tissues and lipid deposition in the liver were observed, while plasma adiponectin was increased and plasma leptin levels were decreased. Acute administration of KBP-042 led to impaired......Objective: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 μg/kg-10 μg/kg) compared with saline-treated and pair-fed controls. Methods: Rats with obesity received daily s...

  1. Inhibition of the Receptor for Advanced Glycation End-Products (RAGE) Attenuates Neuroinflammation While Sensitizing Cortical Neurons Towards Death in Experimental Subarachnoid Hemorrhage.

    Science.gov (United States)

    Li, Hua; Yu, Jia-Sheng; Zhang, Ding-Ding; Yang, Yi-Qing; Huang, Li-Tian; Yu, Zhuang; Chen, Ru-Dong; Yang, Hong-Kuan; Hang, Chun-Hua

    2017-01-01

    Subarachnoid hemorrhage (SAH) is a threatening and devastating neurological insult with high mortality and morbidity rates. Despite considerable efforts, the underlying pathophysiological mechanisms are still poorly understood. The receptor for advanced glycation end products (RAGE) is a multiligand receptor that has been implicated in various pathological conditions. We previously showed that RAGE was upregulated and may be involved in pathophysiology of SAH. In the current study, we investigated its potential role in SAH. We found that the upregulation of RAGE after SAH was NF-κB-dependent positive feedback regulation. Further, pharmacological inhibition of RAGE attenuated neuroinflammation, indicating a possible contributive role of RAGE in inflammation-associated brain injury after SAH. Conversely, however, inhibition of RAGE sensitized neurons, exacerbating cell death, which correlated with augmented apoptosis and diminished autophagy, suggesting that activation of RAGE may protect against SAH-induced neuronal injury. Furthermore, we demonstrate that inhibition of RAGE significantly reduced brain edema and improved neurological function at day 1 but not at day 3 post-SAH. Taken together, these results suggest that RAGE exerts dual role after SAH. Our findings also suggest caution should be exercised in setting RAGE-targeted treatment for SAH.

  2. Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway.

    Science.gov (United States)

    Yeramian, Andree; Sorolla, Anabel; Velasco, Ana; Santacana, Maria; Dolcet, Xavier; Valls, Joan; Abal, Leandre; Moreno, Sara; Egido, Ramón; Casanova, Josep M; Puig, Susana; Vilella, Ramón; Llombart-Cussac, Antonio; Matias-Guiu, Xavier; Martí, Rosa M

    2012-02-15

    Despite the use of multiple therapeutic strategies, metastatic melanoma remains a challenge for oncologists. Thus, new approaches using combinational treatment may be used to try to improve the prognosis of this disease. In this report, we have analyzed the expression of receptor tyrosine kinases (RTKs) in melanoma specimens and in four metastatic melanoma cell lines. Both melanoma specimens and cell lines expressed RTKs, suggesting that they may represent eventual targets for multitargeted tyrosine kinase inhibitor, Suntinib. Sunitinib reduced the proliferation of two melanoma cell lines (M16 and M17) and increased apoptosis in one of them (M16). Moreover, the two metastatic melanoma cell lines harbored an activated receptor (PDGFRα and VEGFR, respectively), and Sunitinib suppressed the phosphorylation of the RTKs and their downstream targets Akt and ribosomal protein S6, in these two cell lines. Similar results were obtained when either PDGFRα or VEGFR2 expression was silenced by lentiviral-mediated short-hairpin RNA delivery in M16 and M17, respectively. To evaluate the interaction between Sunitinib and Bortezomib, median dose effect analysis using MTT assay was performed, and combination index was calculated. Bortezomib synergistically enhanced the Sunitinib-induced growth arrest in Sunitinib-sensitive cells (combination index < 1). Moreover, LY294002, a PI3K inhibitor, sensitized melanoma cells to Bortezomib treatment, suggesting that downregulation of phospho-Akt by Sunitinib mediates the synergy obtained by Bortezomib + Sunitinib cotreatment. Altogether, our results suggest that melanoma cells harboring an activated RTK may be clinically responsive to pharmacologic RTK inhibition by Sunitinib, and a strategy combining Sunitinib and Bortezomib, may provide therapeutic benefit. Copyright © 2011 UICC.

  3. Autonomous Learner Model Resource Book

    Science.gov (United States)

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  4. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous

  5. Proportionality and Autonomous Weapons Systems

    NARCIS (Netherlands)

    van den Boogaard, J.

    2015-01-01

    Given the swift technologic development, it may be expected that the availability of the first truly autonomous weapons systems is fast approaching. Once they are deployed, these weapons will use artificial intelligence to select and attack targets without further human intervention. Autonomous weap

  6. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J. (Univ. Medical Center, Geneva (Switzerland))

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 {mu}M. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide.

  7. Autonomic correlates of physical and moral disgust.

    Science.gov (United States)

    Ottaviani, Cristina; Mancini, Francesco; Petrocchi, Nicola; Medea, Barbara; Couyoumdjian, Alessandro

    2013-07-01

    Given that the hypothesis of a common origin of physical and moral disgust has received sparse empirical support, this study aimed to shed light on the subjective and autonomic signatures of these two facets of the same emotional response. Participants (20 men, 20 women) were randomly assigned to physical or moral disgust induction by the use of audio scripts while their electrocardiogram was continuously recorded. Affect ratings were obtained before and after the induction. Time and frequency domain heart rate variability (HRV) measures were obtained. After controlling for disgust sensitivity (DS-R) and obsessive-compulsive (OCI-R) tendencies, both scripts elicited disgust but whereas the physical script elicited a feeling of dirtiness, the moral script evoked more indignation and contempt. The disgust-induced subjective responses were associated with opposite patterns of autonomic reactivity: enhanced activity of the parasympathetic nervous system without concurrent changes in heart rate (HR) for physical disgust and decreased vagal tone and increased HR and autonomic imbalance for moral disgust. Results suggest that immorality relies on the same biological root of physical disgust only in subjects with obsessive compulsive tendencies. Disgust appears to be a heterogeneous response that varies based on the individuals' contamination-based appraisal. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A;

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non...

  9. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non...

  10. Association Between Autonomic Impairment and Structural Deficit in Parkinson Disease.

    Science.gov (United States)

    Chen, Meng-Hsiang; Lu, Cheng-Hsien; Chen, Pei-Chin; Tsai, Nai-Wen; Huang, Chih-Cheng; Chen, Hsiu-Ling; Yang, I-Hsiao; Yu, Chiun-Chieh; Lin, Wei-Che

    2016-03-01

    Patients with Parkinson disease (PD) have impaired autonomic function and altered brain structure. This study aimed to evaluate the relationship of gray matter volume (GMV) determined by voxel-based morphometry (VBM) to autonomic impairment in patients with PD. Whole-brain VBM analysis was performed on 3-dimensional T1-weighted images in 23 patients with PD and 15 sex- and age-matched healthy volunteers. The relationship of cardiovascular autonomic function (determined by survey) to baroreflex sensitivity (BRS) (determined from changes in heart rate and blood pressure during the early phase II of the Valsalva maneuver) was tested using least-squares regression analysis. The differences in GMV, autonomic parameters, and clinical data were correlated after adjusting for age and sex. Compared with controls, patients with PD had low BRS, suggesting worse cardiovascular autonomic function, and smaller GMV in several brain locations, including the right amygdala, left hippocampal formation, bilateral insular cortex, bilateral caudate nucleus, bilateral cerebellum, right fusiform, and left middle frontal gyri. The decreased GMVs of the selected brain regions were also associated with increased presence of epithelial progenitor cells (EPCs) in the circulation. In patients with PD, decrease in cardiovascular autonomic function and increase in circulating EPC level are associated with smaller GMV in several areas of the brain. Because of its possible role in the modulation of the circulatory EPC pool and baroreflex control, the left hippocampal formation may be a bio-target for disease-modifying therapy and treatment monitoring in PD.

  11. Evolutionary Autonomous Health Monitoring System (EAHMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's Robotics, Tele-Robotics and Autonomous Systems Roadmap, we are proposing the "Evolutionary Autonomous Health Monitoring System" (EAHMS) for...

  12. Expression and colocalization of NMDA receptor and FosB/ΔFosB in sensitive brain regions in rats after chronic morphine exposure.

    Science.gov (United States)

    Zhang, Qiang; Liu, Qi; Li, Tongzhou; Liu, You; Wang, Lei; Zhang, Zhonghai; Liu, Hongzhi; Hu, Min; Qiao, Yuehua; Niu, Haichen

    2016-02-12

    Research in the last decade demonstrated that the NMDA receptor (NMDAR) has an important role in opiate-induced neural and behavioral plasticity. In addition, increased levels of FosB-like proteins (FosB/ΔFosB) were found to be related to morphine withdrawal behaviors. However, the relationship between NMDAR and FosB/ΔFosB in sensitive brain regions during morphine withdrawal is largely unknown. In this study, we aimed to investigate NMDAR dynamics and FosB/ΔFosB levels in multiple brain regions and whether they are related in sensitive brain regions during morphine abstinence. Quantitative immunohistochemistry was adopted to test NMDAR and FosB/ΔfosB levels during morphine withdrawal in rats. Increased NMDAR and FosB/ΔFosB levels were found in the nucleus accumbens core (AcbC), nucleus accumbens shell (AcbSh), central amygdaloid nucleuscapsular part (CeC), ventral tegmental area (VTA) and cingulate cortex (Cg). Double-immunofluorescence labeling indicated that NMDAR colocalized with Fos/ΔFosB in these five regions. These results suggest that multiple phenotypic regions are mediated by NMDAR and Fos/ΔFosB during morphine withdrawal, such as the motivational (AcbC, AcbSh), limbic (CeC, VTA) and executive (Cg) system pathways, and may be the primary targets of NMDAR and Fos/ΔfosB that impact morphine withdrawal behaviors.

  13. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  14. Bitter taste study in a sardinian genetic isolate supports the association of phenylthiocarbamide sensitivity to the TAS2R38 bitter receptor gene.

    Science.gov (United States)

    Prodi, D A; Drayna, D; Forabosco, P; Palmas, M A; Maestrale, G B; Piras, D; Pirastu, M; Angius, A

    2004-10-01

    Recently, a major locus on chromosome 7q was found in association with the taste sensitivity to phenylthiocarbamide (PTC) in humans. This region contains the TAS2R38 gene that encodes a member of the TAS2R bitter taste receptor family. Three SNPs within this gene demonstrated a strong association with taster status in Utah families and in an additional sample of 85 unrelated individuals. We studied a small isolated village in eastern Sardinia and carried out a genome-wide scan to map the genetic basis of PTC perception in this population. We performed both qualitative and quantitative PTC-taste linkage analysis. Qualitative analysis was carried out by defining a cut-off from the bimodal distribution of the trait and classifying subjects as tasters and non-tasters (75 and 25%, respectively). Linkage analysis on 131 subjects belonging to a unique large multi-generation pedigree comprising 239 subjects confirmed significant evidence for linkage at 7q35 also in our population. Haplotype analyses of the three SNPs inside the PTC gene allowed us to identify only two haplotypes that were associated with the non-taster phenotype (80% AVI homozygous) and to taster phenotype (40% PAV homozygous and 56% PAV/AVI heterozygous). Sex, age and haplotype effect explained 77.2 % of the total variance in PTC sensitivity.

  15. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  16. Autonomous Gaussian Decomposition

    CERN Document Server

    Lindner, Robert R; Murray, Claire E; Stanimirović, Snežana; Babler, Brian L; Heiles, Carl; Hennebelle, Patrick; Goss, W M; Dickey, John

    2014-01-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21cm absorption spectra from the 21cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the HI line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the up...

  17. Role of the monocyte chemoattractant protein-1/C-C chemokine receptor 2 signaling pathway in transient receptor potential vanilloid type 1 ablation-induced renal injury in salt-sensitive hypertension.

    Science.gov (United States)

    Wang, Youping; Zhu, Mingjun; Xu, Hui; Cui, Lin; Liu, Weihong; Wang, Xiaoxiao; Shen, Si; Wang, Donna H

    2015-09-01

    Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1(-/-) mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1(-/-) mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1(-/-) mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1(-/-) mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1(-/-) mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1

  18. Mobile Intelligent Autonomous Systems

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2010-01-01

    Full Text Available Mobile intelligent autonomous systems (MIAS is a fast emerging research area. Although it can be regarded as a general R&D area, it is mainly directed towards robotics. Several important subtopics within MIAS research are:(i perception and reasoning, (ii mobility and navigation,(iii haptics and teleoperation, (iv image fusion/computervision, (v modelling of manipulators, (vi hardware/software architectures for planning and behaviour learning leadingto robotic architecture, (vii vehicle-robot path and motionplanning/control, (viii human-machine interfaces for interaction between humans and robots, and (ix application of artificial neural networks (ANNs, fuzzy logic/systems (FLS,probabilistic/approximate reasoning (PAR, Bayesian networks(BN and genetic algorithms (GA to the above-mentioned problems. Also, multi-sensor data fusion (MSDF playsvery crucial role at many levels of the data fusion process:(i kinematic fusion (position/bearing tracking, (ii imagefusion (for scene recognition, (iii information fusion (forbuilding world models, and (iv decision fusion (for tracking,control actions. The MIAS as a technology is useful for automation of complex tasks, surveillance in a hazardousand hostile environment, human-assistance in very difficultmanual works, medical robotics, hospital systems, autodiagnosticsystems, and many other related civil and military systems. Also, other important research areas for MIAScomprise sensor/actuator modelling, failure management/reconfiguration, scene understanding, knowledge representation, learning and decision-making. Examples ofdynamic systems considered within the MIAS would be:autonomous systems (unmanned ground vehicles, unmannedaerial vehicles, micro/mini air vehicles, and autonomousunder water vehicles, mobile/fixed robotic systems, dexterousmanipulator robots, mining robots, surveillance systems,and networked/multi-robot systems, to name a few.Defence Science Journal, 2010, 60(1, pp.3-4,

  19. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization.

    Science.gov (United States)

    Peng, Qinghua; Sun, Xi; Liu, Ziyong; Yang, Jianghua; Oh, Ki-Wan; Hu, Zhenzhen

    2014-09-01

    Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.

  20. Pretreatment with group I metabotropic glutamate receptors antagonists attenuates lethality induced by acute cocaine overdose and expression of sensitization to hyperlocomotor effect of cocaine in mice.

    Science.gov (United States)

    Kotlinska, Jolanta; Bochenski, Marcin

    2011-01-01

    Cocaine abuse and dependence is a worldwide health problem. However, there are no currently approved medications to reduce cocaine abuse/relapse and toxicity. The aim of the present study was to test, whether group I metabotropic glutamate receptors (mGluRs) antagonists (mGluR1 and mGluR5) differentially regulate toxic versus behavioral effects of cocaine, both phenomena relevant to the psychopathology of cocaine addiction in humans. In the present study, we assessed the impact of mGluR1 antagonist-EMQMCM and mGluR5 antagonist-MTEP on the cocaine-induced lethality and the expression of sensitization to hyperlocomotor effect of cocaine in mice. Our study indicated that EMQMCM and MTEP, both substances at the doses of 5 and 10 mg/kg (but not 2.5 mg/kg), decreased cocaine-induced lethality produced by 75 mg/kg of cocaine, which was given acutely. The effect of EMQMCM was dose-dependent, and this compound at the dose of 10 mg/kg almost completely abolished the lethality induced by cocaine. MTEP reduced this cocaine effect at the doses of 5 and 10 mg/kg, equally. Furthermore, EMQMCM (1.25-5 mg/kg) at the doses of 2.5 and 5.0 mg/kg, and MTEP (2.5-10 mg/kg) only at the highest dose of 10 mg/kg, significantly reduced the expression of cocaine-induced (10 mg/kg) behavioral sensitization. Our results suggest that stimulation of mGluR1 and mGluR5 is involved in lethal effect of cocaine overdose and cocaine seeking behavior evaluated in behavioral sensitization test. However, the participation of mGluR1 in these cocaine effects seems to be dominant. Therefore, antagonists showing preferences towards mGluR1 might be useful in therapy of cocaine toxicity and abuse.

  1. The fibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor {alpha}-mediated superoxide dismutase induction in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguang; An, Zhengzhe; Song, Hye Jin; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Jang, Seong Soon [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) {alpha} and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofi brate (FF). Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. In HeLa cells total SOD activity was increased with increasing FF doses up to 30 {mu}M. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, PPAR{alpha} and PPAR{gamma} were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and PPAR{alpha} were not increased with FF. However, the mRNA of PPAR{gamma} was increased with FF. FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with PPAR{alpha}.

  2. Decreased hepatic peroxisome proliferator-activated receptor-γ contributes to increased sensitivity to endotoxin in obstructive jaundice

    Institute of Scientific and Technical Information of China (English)

    Xin Lv; Jian-Gang Song; Hong-Hai Li; Jun-Ping Ao; Ping Zhang; Ye-Sheng Li; Shao-Li Song; Xiang-Rui Wang

    2011-01-01

    AIM:To investigate the role of hepatic peroxisome proliferator-activated receptor -γ (PPAR-γ) in increased susceptibility to endotoxin-induced toxicity in rats with bile duct ligation during endotoxemia. METHODS: Male Sprague-Dawley rats were subjected to bile duct ligation (BDL). Sham-operated animals served as controls. DNA binding were determined by polymerase chain reaction, Western blotting analysis, and electrophoretic mobility shift assay, respectively. BDL and sham-operated rats received a non-lethal dose of intraperitoneal lipopolysaccharide (LPS) injection (3 mg/kg, i.p.). Additionally, the potential beneficial effects of the PPAR-γ agonist rosiglitazone were determined in BDL and sham-operated rats treated with a non-lethal dose of LPS. Survival was assessed in BDL rats treated with a non-lethal dose of LPS and in sham-operated rats treated at a lethal dose of LPS (6 mg/kg, i.p.). RESULTS: PPAR-γ activity in rats undergoing BDL was significantly lower than in the sham-controls. Hepatic PPAR-γ gene expression was downregulated at both the mRNA and protein levels. In a parallel group, serum levels of pro-inflammatory cytokines were nearly undetectable in the sham-operated rats. When challenged with a non-lethal dose of LPS (3 mg/kg), the BDL rats had approximately a 2.4-fold increase in serum IL-6, a 2.7 fold increase in serum TNF-α, 2.2-fold increase in serum IL-1 and 4.2-fold increase in serum ALT. The survival rate was significantly lower as compared with that in sham-operated group. Additionally, rosiglitazone significantly reduced the concentration of TNF-α, IL-1β, IL-6 and ALT in sham-operated rats, but not in BDL rats, in response to LPS (3 mg/kg). Also, the survival was improved by rosiglitazone in sham-operated rats challenged with a lethal dose of LPS, but not in BDL rats, even with a non-lethal dose of LPS (3 mg/kg). CONCLUSION: Obstructive jaundice downregulates hepatic PPAR-γ expression, which in turn may contribute to

  3. CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens.

    Science.gov (United States)

    Molaei, Marzieh; Fatahi, Zahra; Zaringhalam, Jalal; Haghparast, Abbas

    2016-04-01

    The basolateral amygdala (BLA) is rich of CB1 cannabinoid receptors (CB1R) and has reciprocal connections with the nucleus accumbens (NAc) which is involved in opioid sensitization. In this study, effects of intra-BLA administration of CB1R agonist on sensitization to antinociceptive effect of morphine and changes in the levels of μ-opioid receptor (MOR), p-CREB, and c-fos in the NAc were investigated. Animals received intra-BLA microinjection of CB1R agonist (WIN55,212-2) once daily for 3 days consecutively (sensitization period). After 5 days free of drug, tail-flick test was performed before and after the administration of an ineffective dose of morphine. Afterward, the levels of MOR, p-CREB, and c-fos proteins were measured in the NAc by Western blot analysis. The results indicated that intra-BLA injection of WIN55,212-2 during sensitization period resulted in the induction of antinociceptive responses by ineffective dose of morphine and caused a significant increase in the MOR and c-fos levels but not p-CREB/CREB ratio in the NAc. These finding revealed that CB1 receptor agonist in the BLA induces development of morphine sensitization and increases expression of MOR in the NAc. It seems that c-fos is one of the important factors involved in the induction of sensitization to antinociceptive effect of morphine.

  4. Autonomous software: Myth or magic?

    CERN Document Server

    Allan, Alasdair; Saunders, Eric S

    2008-01-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  5. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  6. Age Effect on Autonomic Cardiovascular Control in Pilots

    Science.gov (United States)

    2000-08-01

    Nantcheva**, M. Vukov*** *National Center of Hygiene, Medical Ecology and Nutrition 15 Dimitar Nestorov Blvd. 1431 Sofia, Bulgaria "**Military Medical...cardiovascular derived indices. Most sensitive to aging process from regulation, involve in part autonomic influences. time-domain HRV measures...completing of the mission tasks (15). A components, and baroreflex sensitivity with age (29). number of studies have investigated the impact of the

  7. An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins.

    Science.gov (United States)

    Subramaniam, Aruljothi; Loo, Ser Yue; Rajendran, Peramaiyan; Manu, Kanjoormana A; Perumal, Ekambaram; Li, Feng; Shanmugam, Muthu K; Siveen, Kodappully Sivaraman; Park, Joo-In; Ahn, Kwang Seok; Hui, Kam M; Kumar, Alan P; Sethi, Gautam

    2013-10-01

    Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical trials for cancer, however many tumor cells, including hepatocellular carcinoma (HCC) develop resistance to TRAIL-induced apoptosis. Hence, novel agents that can alleviate TRAIL-induced resistance are urgently needed. In the present report, we investigated the potential of emodin to enhance apoptosis induced by TRAIL in HCC cells. As observed by MTT cytotoxicity assay and the externalization of the membrane phospholipid phosphatidylserine, we found that emodin can significantly potentiate TRAIL-induced apoptosis in HCC cells. When investigated for the mechanism(s), we observed that emodin can downregulate the expression of various cell survival proteins, and induce the cell surface expression of both TRAIL receptors, death receptors (DR) 4 as well as 5. In addition, emodin increased the expression of C/EBP homologous protein (CHOP) in a time-dependent manner. Knockdown of CHOP by siRNA decreased the induction of emodin-induced DR5 expression and apoptosis. Emodin-induced induction of DR5 was mediated through the generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of DR5 and the induction of apoptosis. Also, the knockdown of X-linked inhibitor of apoptosis protein by siRNA significantly reduced the sensitization effect of emodin on TRAIL-induced apoptosis. Overall, our experimental results clearly indicate that emodin can indeed potentiate TRAIL-induced apoptosis through the downregulation of antiapoptotic proteins, increased expression of apoptotic proteins, and ROS mediated upregulation of DR in HCC cells.

  8. A 41-year-old man with polyarthritis and severe autonomic neuropathy

    Directory of Open Access Journals (Sweden)

    Matthew E Bourcier

    2008-09-01

    Full Text Available Matthew E Bourcier, Aaron I VinikEastern Virginia Medical School, Norfolk, VA, USAAbstract: Orthostasis due to autonomic neuropathy can cause severe debilitation and prove refractory to treatment. This report describes a case of severe sympathetic and parasympathetic autonomic dysfunction as a consequence of acetylcholine receptor antibodies and Sjogren’s syndrome. Symptomatic management, plasma fluid expanders, and IVIG therapy failed to offer a salutary response to the condition. Etanercept therapy provided improvement of the orthostasis and autonomic function measured as high and low frequency respiratory effects on heart rate variability as well as enhancement of skin blood flow using Laser Doppler. It would be of considerable interest to determine the effectiveness of etanercept in other autoimmune neuropathies.Keywords: autonomic neuropathy, etanercept, IntraEpidermal Nerve Fibers (IENF, acetylcholine receptor antibodies, laser doppler skin blood flow, orthostasis

  9. Effect of Morphine-Sensitization in D2 Receptor Gene Expression in the Mice Brain in the Absence and Presence of Lithium Chloride

    Directory of Open Access Journals (Sweden)

    Hoda Mehregan

    2010-01-01

    Full Text Available Objective: In this study we have investigated the changes in D2 receptor expression levelin morphine-sensitized mice, in the absence and presence of lithium chloride (LiCl. Theresult would pave the way to comprehend and confront this complicated event.Materials and Methods: Male NMRI mice, weighing 20-25g, were used in this study.They were divided into six groups. The first group received 0.9% saline as the controlgroup and the other group was treated with morphine sulphate (30 mg/kg. LiCl (5 and 10mg/kg treatments was separately performed in two other groups. The final two groupswere simultaneously treated with morphine sulphate (30 mg/kg and LiCl (5 mg/kg inone group and morphine sulphate (30 mg/kg accompanied by LiCl (10 mg/kg in theother group. All injections were performed intraperitoneally and once daily. After a fiveday wash-out, mice were decapitated and the brain regions which included the striatum,prefrontal cortex (PFC and hippocampus were extracted. Using relative Real-Timepolymerase chain reaction (PCR, the expression levels of the long (D2L and short (D2Sisoforms of the D2 receptor were investigated.Results: Morphine treatment leads to a significant increase (p<0.0.5 in D2S levels in thestriatum and PFC but has no effect on D2L levels in the examined regions. In the groupreceiving LiCl 5mg/kg, the D2L levels showed a significant augmentation in PFC and thehippocampus (p<0.05 as well as the striatum (p<0.001. The D2S levels in the samegroup, significantly increased in the PFC (p<0.05 and striatum (p<0.001. LiCl at a doseof 10 mg/kg did not alter the expression of either isoforms in any region. While simultaneousadministration of morphine and LiCl (10 mg/kg resulted in a marked increase in D2Slevels in the striatum (p<0.001 and PFC (p<0.05, morphine administration along withLiCl (5mg/kg was ineffective on the expression levels of D2L and D2S isoforms whencompared to the control group.Conclusion: Morphine sensitization leads to an

  10. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Thebault, S.C.; Lemonnier, L.; Bidaux, G.; Flourakis, M.; Bavencoffe, A.; Gordienko, D.; Roudbaraki, M.; Delcourt, P.; Panchin, Y.; Shuba, Y.; Skryma, R.; Prevarskaya, N.

    2005-01-01

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the pro

  11. Circulating levels of osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and high-sensitivity C-reactive protein in patients with active rheumatoid arthritis randomized to etanercept alone or in combination with methotrexate

    DEFF Research Database (Denmark)

    Sennels, H.; Sørensen, Steen; Østergaard, Mikkel;

    2008-01-01

    OBJECTIVE: To determine whether circulating levels of osteopontin (OPN), osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-kappa B ligand (total sRANKL), and high-sensitivity C-reactive protein (hsCRP) change in patients with rheumatoid arthritis (RA) during...

  12. Nimotuzumab enhances radiation sensitivity of NSCLC H292 cells in vitro by blocking epidermal growth factor receptor nuclear translocation and inhibiting radiation-induced DNA damage repair

    Directory of Open Access Journals (Sweden)

    Teng K

    2015-04-01

    Full Text Available Kai Teng,1,2,* Yong Zhang,1,* Xiaoyan Hu,1 Yihui Ding,1 Rui Gong,1 Li Liu1,* 1Department of Thoracic Oncology, Cancer Center of Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Radiation Oncology, Hainan Cancer Hospital, Haikou, Hainan, People’s Republic of China *These authors contributed equally to this work Background: The epidermal growth factor receptor (EGFR signaling pathway plays a significant role in radiation resistance. There is evidence that EGFR nuclear translocation is associated with DNA double-strand breaks (DSB repair. Nimotuzumab has shown the effect of radiosensitization in various cancer cells, but little is known about the relationship between nimotuzumab and EGFR nuclear translocation in non-small cell lung cancer (NSCLC cell lines. In this study, we selected two NSCLC cell lines, namely, H292 (with high EGFR expression and H1975 (with low EGFR expression and explored the mechanisms underlying radiation sensitivity.Methods: MTT assay, clonogenic survival assay, and flow cytometry were performed separately to test cell viability, radiation sensitivity, cell cycle distribution, and apoptosis. Protein γ-H2AX, DNA-PK/p-DNA-PK, and EGFR/p-EGFR expression were further compared both in the cytoplasm and the nucleus with the western blot.Results: Nimotuzumab reduced the viability of H292 cells and sensitized H292 cells to ionizing radiation. The radiation sensitivity enhancement ratio (SER was 1.304 and 1.092 for H292 and H1975 cells, respectively. H292 cells after nimotuzumab administration were arrested at the G0/G1 phase in response to radiation. Apoptosis was without statistical significance in both cell lines. γ-H2AX formation in the combination group (nimotuzumab and radiation increased both in the cytoplasm and the nucleus along with the decreased expression of nuclear EGFR/p-EGFR and p-DNA-PK in H292 cells (P<0.05 that

  13. Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices.

    Science.gov (United States)

    Izumi, Yukitoshi; Zorumski, Charles F

    2015-02-01

    Whereas ifenprodil has been used as a selective GluN1/GluN2B (NR1/NR2B, B-type) receptor antagonist to distinguish between GluN2B (NR2B) and GluN2A (NR2A)-containing N-methyl-d-aspartate receptors (NMDARs), TCN 201 (3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide) and TCN 213 [N-(cyclohexylmethyl)-2-[{5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio]acetamide] have been found to be selective GluN1/GluN2A (NR1/NR2A, A-type) antagonists. Based on the premise that A- and B-types are major synaptic NMDARs, we examined whether inhibition of NMDAR excitatory postsynaptic potentials (EPSPs) by the TCN compounds and ifenprodil are complementary. Contrary to this prediction, inhibition of NMDAR EPSPs by the TCN compounds and ifenprodil were largely overlapping in the CA1 region of hippocampal slices from 30-day-old rats. After partial inhibition by ifenprodil, TCN compounds produced little further suppression of NMDAR EPSPs. Similarly, after partial inhibition by TCN compounds ifenprodil failed to further suppress NMDAR EPSPs. However, low micromolar d-2-amino-5-phosphonovalerate, a competitive NMDAR antagonist, which alone only partially inhibits NMDAR EPSPs, markedly suppresses residual NMDAR responses in the presence of ifenprodil or the TCNs, suggesting that low 2-amino-5-phosphonovalerate antagonizes both ifenprodil- and TCN-insensitive synaptic NMDARs. These observations can be most readily interpreted if ifenprodil and TCNs act on a similar population of synaptic NMDARs. Recent lines of evidence suggest that the majority of hippocampal synaptic NMDARs are triheteromers. If so, modulation of GluN2A, and not just GluN2B NMDARs, could dampen long-term depression (LTD). Indeed, both TCNs, like ifenprodil, blocked LTD, suggesting the involvement of ifenprodil- and TCN-sensitive NMDARs in LTD induction. However, the TCNs plus ifenprodil failed to inhibit long-term potentiation (LTP), suggesting that neither ifenprodil- nor TCN-sensitive

  14. SIRTF autonomous star tracker

    Science.gov (United States)

    van Bezooijen, Roelof W. H.

    2003-03-01

    Two redundant AST-301 autonomous star trackers (AST) serve as the primary attitude sensors for JPL's space infrared telescope facility (SIRTF). These units, which employ a 1553B interface to output their attitude quaternions and uncertainty at a 2 Hz rate, provide a 1 σaccuracy of better than 0.18, 0.18, and 5.1 arcsec about their X, Y, and Z axes, respectively. This is a factor 5.5 better than the accuracy of the flight-proven AST-201 from which the trackers were derived. To obtain this improvement, the field of view (FOV) was reduced to 5 by 5 degrees, the accurate Tycho-1 and ACT catalogs were used for selecting the 71,830 guide stars, star image centroiding was improved to better than 1/50th of a pixel, and optimal attitude estimation was implemented. In addition, the apparent direction to each guide star in the FOV is compensated for proper motion, parallax, velocity aberration, and optical distortion. The AST-301 employs autonomous time-delayed integration (TDI) to achieve image motion compensation (IMC) about its X axis that prevents accuracy degradation, even at rates of 2.1 deg/s, making it actually suitable for use on spinning spacecraft. About the Y axis, a software function called "image motion accommodation" (IMA) processes smeared images to maximize the signal to noise ratio of the resulting synthetic images, which enables robust and accurate tracking at rates tested up to 0.42 deg/s. The AST-301 is capable of acquiring its attitude anywhere in the sky in less than 3 seconds with a 99.98% probability of success, without requiring any a priori attitude knowledge. Following a description of the 7.1 kg AST-301, its operation and IMA, the methodology for translating the night sky test data into performance numbers is presented, while, in addition, the results of tests used to measure alignment stability over temperature are included.

  15. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    Science.gov (United States)

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  16. Framework for Autonomous Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phoenix Integration and MIT propose to create a novel autonomous optimization tool and application programming interface (API). The API will demonstrate the ability...

  17. Cranial Autonomic Symptoms in Migraine

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-11-01

    Full Text Available Cranial autonomic symptoms (CAS in patients with migraine and cluster headaches (CH were characterized and compared in a prospective study of consecutive patients attending a headache clinic at Taipei Veterans General Hospital, Taiwan.

  18. Autonomic function in manganese alloy workers.

    Science.gov (United States)

    Barrington, W W; Angle, C R; Willcockson, N K; Padula, M A; Korn, T

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a "frog shop" for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6-10 years before and 1.2-3.4 years after the diagnosis of the index case exceeded 1.0 mg/m3 in 29% and 0.2 mg/m3 in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR' interval) and the rates of change at low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz). MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used. The five frog shop workers had abnormal sympathovagal balance with decreased high frequency variability (increased ln LF/ln HF). Seven of the eight workers had symptoms of autonomic dysfunction and significantly decreased heart rate variability (rMSSD) but these did not distinguish the relative exposure. Mood or affect was disturbed in all with associated changes in short-term memory and attention in four of the subjects. There were no significant correlations with serum or urine manganese. Power spectrum analysis of 24-h ambulatory ECG indicating a decrease in parasympathetic high frequency activation of heart rate variability may provide a sensitive index of central autonomic dysfunction reflecting increased exposure to manganese, although the contribution of exposures to solvents and other metals cannot be excluded. Neurotoxicity due to the gouging

  19. In vivo opioid receptor heteromerization: where do we stand?

    OpenAIRE

    Massotte, D

    2014-01-01

    Opioid receptors are highly homologous GPCRs that modulate brain function at all levels of neural integration, including autonomous, sensory, emotional and cognitive processing. Opioid receptors functionally interact in vivo, but the underlying mechanisms involving direct receptor–receptor interactions, affecting signalling pathways or engaging different neuronal circuits, remain unsolved. Heteromer formation through direct physical interaction between two opioid receptors or between an opioi...

  20. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  1. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans.

    NARCIS (Netherlands)

    H. Lans (Hannes); G. Jansen (Gert)

    2006-01-01

    textabstractIn the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neu

  2. Is paramecium swimming autonomic?

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  3. AUTONOMOUS GAUSSIAN DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  4. [Autonomic peripheral neuropathy].

    Science.gov (United States)

    Adams, David; Cauquil, Cecile; Lozeron, Pierre

    2012-11-01

    The mechanisms of dysautonomic disturbances are varied and mostly acquired. They can result from lesions of sympathetic or parasympathetic vegetative fibers located in the peripheral contingent, or in the somatic contingent by demyelination or axonal loss; or more rarely by cellular bodies in the sympathetic or parasympathetic ganglia. Several chronic peripheral neuropathies can be associated with dysautonomia. Only some causes need to be known because they can be clinically significant. Dysautonomia may be seen during chronic acquired neuropathies but also acute or subacute ones. The most frequent cause in the world is the dysautonomia of the diabetes; it affects all the systems; the cardiovascular dysfunction has an impact on the prognosis for survival when it is severe. Hereditary autonomic neuropathies are rare; they can declare themselves very early during the Riley-Day syndrome or very late during amyloid polyneuropathies due to transthyretin gene mutation. The diagnosis can be confirmed by molecular biology. The dysautonomia is frequent and often severe. These neuropathies justify symptomatic treatment to improve quality of life. For some of them, a specific treatment can be proposed to treat the causal affection to try to stop the progression of the disease.

  5. Prion protein is a key determinant of alcohol sensitivity through the modulation of N-methyl-D-aspartate receptor (NMDAR activity.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available The prion protein (PrP is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP(-/- mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion to ethanol inhibition of N-methyl-D-aspartate (NMDA receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP(-/- mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP(-/- mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP(-/- mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions.

  6. Anti-epidermal growth factor receptor siRNA carried by chitosan-transacylated lipid nanocapsules increases sensitivity of glioblastoma cells to temozolomide

    Directory of Open Access Journals (Sweden)

    Messaoudi K

    2014-03-01

    Full Text Available Khaled Messaoudi,1 Patrick Saulnier,1 Kim Boesen,1 Jean-Pierre Benoit,1,2 Frederic Lagarce1,21L'Université Nantes Angers Le Mans, INSERM U1066, Micro et nanomédecines biomimétiques, Angers, France; 2Pharmacy Department, Angers University Hospital, Angers, FranceAbstract: Epidermal growth factor receptor (EGFR is a crucial protein that plays an important role in the maintenance and development of glioblastomas. The silencing or knockdown of EGFR is possible by administering a small interfering ribonucleic acid (siRNA. Lipid nanocapsules (LNCs covered by chitosan were developed in our laboratory by a transacylation process. The resulting nanocapsules have a positive zeta potential that enables electrostatic interactions with the negatively-charged siRNA. Prior to transfection, the cytotoxicity of the nanocapsules by (3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS test was performed on the U87MG cell line to determine non-toxic levels of the LNCs to avoid cell mortality. Treatment of the U87MG cells with the chitosan-transacylated LNCs/anti-EGFR siRNA complex resulted in a reduction of EGFR expression by 51.95%±6.03% (P≤0.05 after 96 hours of incubation. It also increased the cellular sensitiv