WorldWideScience

Sample records for receiver phase meter

  1. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  2. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  3. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  4. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    Science.gov (United States)

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  5. Real Time Phase Noise Meter Based on a Digital Signal Processor

    Science.gov (United States)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  6. Design and Implementation of Wireless Energy Meter System for Monitoring the Single Phase Supply

    OpenAIRE

    U. V, Prashanth B.

    2013-01-01

    Wireless energy meter is a system developed to serve as a basic single-phase energy meter with advanced functionalities such as Peak hour setting, Peak load setting Wireless reading transmission; further the system eliminates the role of a Meter Reader.

  7. Estimation of Received Signal Strength Distribution for Smart Meters with Biased Measurement Data Set

    DEFF Research Database (Denmark)

    Kielgast, Mathias Rønholt; Rasmussen, Anders Charly; Laursen, Mathias Hjorth

    2017-01-01

    This letter presents an experimental study and a novel modelling approach of the wireless channel of smart utility meters placed in basements or sculleries. The experimental data consist of signal strength measurements of consumption report packets. Since such packets are only registered if they ......This letter presents an experimental study and a novel modelling approach of the wireless channel of smart utility meters placed in basements or sculleries. The experimental data consist of signal strength measurements of consumption report packets. Since such packets are only registered...... if they can be decoded by the receiver, the part of the signal strength distribution that falls below the receiver sensitivity threshold is not observable. We combine a Rician fading model with a bias function that captures the cut-off in the observed signal strength measurements. Two sets of experimental...... data are analysed. It is shown that the proposed method offers an approximation of the distribution of the signal strength measurements that is better than a naïve Rician fitting....

  8. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    Science.gov (United States)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  9. Phase Noise Tolerant QPSK Receiver Using Phase Sensitive Wavelength Conversion

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Xu, Jing; Lei, Lei

    2013-01-01

    A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated.......A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated....

  10. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    International Nuclear Information System (INIS)

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu

    2009-01-01

    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  11. Experimental Evaluation of the "Polished Panel Optical Receiver" Concept on the Deep Space Network's 34 Meter Antenna

    Science.gov (United States)

    Vilnrotter, Victor A.

    2012-01-01

    The potential development of large aperture ground-based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation proposes to polish the aluminum reflector panels of 34-meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by even state-of-the-art polished aluminum panels. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. A custom designed aluminum panel has been mounted on the 34 meter research antenna at Deep-Space Station 13 (DSS-13), and a remotely controlled CCD camera with a large CCD sensor in a weather-proof container has been installed next to the subreflector, pointed directly at the custom polished panel. Using the planet Jupiter as the optical point-source, the point-spread function (PSF) generated by the polished panel has been characterized, the array data processed to determine the center of the intensity distribution, and expected communications performance of the proposed polished panel optical receiver has been evaluated.

  12. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  13. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  14. Two-Phase Quality/Flow Meter

    Science.gov (United States)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  15. Formation and surface strengthening of nano-meter embedded phases during high energy Ti implanted and annealed steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Cui Ping; Wang Ping

    1999-12-01

    Observation of transmission electron microscope indicated that the phase of FeTi 2 with 3.5-20 nm in diameter is embedded in high energy Ti implanted layer. It's average diameter is 8 nm. The nano-meter phases were embedded among dislocations and grain boundary in Ti implanted steel at 400 degree C. The wear resistance has been improved. The embedded structure can be changed obviously after annealing. The structure has been changed slightly after annealing at annealing temperature raging from 350 to 500 degree C, however, the hardness and wear resistance of implanted layer increased greatly. The maximum of hardness is obtained when the sample was annealed at 500 degree C for 20 min. It can be seen that the strengthening of implanted layer has enhanced by annealing indeed. The grain boundary and dislocations have disappeared; the diameter of nano-meter phases increased from 10 nm to 15 nm after annealing at temperature of 750 degree C and 1000 degree respectively. The average densities of nano-meter phases are 8.8 x 10 10 /cm 2 and 6.5 x 10 10 /cm 2 respectively for both of annealing temperature. The hardness decreased obviously when the annealing temperature is greater than 750 degree C

  16. Metering apparatus and tariffs for electricity supply

    International Nuclear Information System (INIS)

    1990-01-01

    Conference papers presented cover system economies and tariff structure with papers on pricing of electricity and new metering technologies. Other topics reviewed include metering apparatus design, electronic metering apparatus and solid phase metering technology. Meter data retrieval, bulk supply metering, test equipment and maintenance, and legal requirements and standards are discussed. (author)

  17. Detection Performance of Upgraded "Polished Panel" Optical Receiver Concept on the Deep-Space Network's 34 Meter Research Antenna

    Science.gov (United States)

    Vilnrotter, Victor A.

    2012-01-01

    The development and demonstration of a "polished panel" optical receiver concept on the 34 meter research antenna of the Deep Space Network (DSN) has been the subject of recent papers. This concept would enable simultaneous reception of optical and microwave signals by retaining the original shape of the main reflector for microwave reception, but with the aluminum panels polished to high reflectivity to enable focusing of optical signal energy as well. A test setup has been installed on the DSN's 34 meter research antenna at Deep Space Station 13 (DSS-13) of NASA's Goldstone Communications Complex in California, and preliminary experimental results have been obtained. This paper describes the results of our latest efforts to improve the point-spread function (PSF) generated by a custom polished panel, in an attempt to reduce the dimensions of the PSF, thus enabling more precise tracking and improved detection performance. The design of the new mechanical support structure and its operation are described, and the results quantified in terms of improvements in collected signal energy and optical communications performance, based on data obtained while tracking the planet Jupiter with the 34 meter research antenna at DSS-13.

  18. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L [Powtel Monitoring Systems, Inc., Ajax, ON (Canada)

    1996-12-31

    Portable meters were discussed as alternatives to standard billing meters for temporary installations. Current, voltage and power factor at a distribution station were measured to calculate kW and kVAR, using an easy to install product that communicates live readings directly to the existing billing system. A background of situations where temporary metering is a possible alternative to regular meters was presented. Use of electronic, clamp on Electronic Recording Ammeters (ERA) and their drawbacks were discussed. An improved temporary metering solution using FM radio transmission to deliver live data to a receiving device, the Eagle Series 3500, was introduced. Improvements over previous ERA systems were discussed, including accuracy, lack of batteries, immediate confirmation of functionality, current, voltage and power factor monitoring, direct feed to billing system, line crew savings, need for only a single unit at any given site, bi-directional power flow metering, independent report storage media, and a portable voltage and P.F. diagnostic tool. Details of trial applications at the Utopia distribution station west of Barrie, ON were presented. This technology was said to be still in the testing stage, but its flexibility and economy were sonsidered to be very promising for future application.

  19. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  20. Applications of Pitot-meter techniques in two-phase, steam/water, flow

    International Nuclear Information System (INIS)

    Kastner, W.; Manzano-Ruiz, J.J.

    1985-01-01

    A simple technique, based on the interpretation of dynamic-pressure readings obtained with local and averaging Pitot-meters (APM) in tow-phase flow, is described and analyzed. The mean dynamic-pressure measurements obtained with an APM allow the calculation of the mass flux of the mixture if the steam quality is known and a combination of two slip-factor correlations is used. The local dynamic-pressure measurements with a multiple Pitot-probe technique provide information on the transition between the most commonly found flow patterns in horizontal piping, i.e. stratified, annular and annular-mist flow

  1. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    Science.gov (United States)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  2. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  3. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  4. Sector smart meter audit review report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-31

    This paper presented the results of an electricity distributor sector smart meter audit review conducted by the Ontario Energy Board (OEB) for the period of January 1, 2006 to September 30, 2009. The review summarized the results of a questionnaire related to distributors' smart meter regulatory accounting treatment. Seventy-eight distributors responded to the survey. The review included details of: (1) total investments in smart metering initiative for capital expenditures (CAPEX) and operating maintenance and administrative expenses (OM and A), (2) funding dollars received by the distributors, (3) board-approved recoveries for CAPEX and OM and A, (4) recorded stranded meter costs, and (5) number of smart meters installed in the review period. The audit review demonstrated that some distributors incorrectly recorded carrying charges related to smart meter OM and A expenses, and that some smart meter transactions were recorded in accounts other than OEB established accounts in the general ledger. Results of the audit will be used to provide further accounting assistance to electricity distributors. 7 tabs.

  5. Development of quick-response area-averaged void fraction meter

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari

    2000-11-01

    Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)

  6. Smart meter implementation plan : report of the Board to the Minister

    International Nuclear Information System (INIS)

    2005-01-01

    This report provides detailed information about Ontario's smart meter implementation plan. The smart metering system will measure how much electricity a customer uses on an hourly basis, with data being transferred daily to local electricity distributors. Energy prices will vary according to the time of day when energy was being consumed, a system that supports current methods of charging larger customers. The plan proposes that all new and existing customers in Ontario have some type of smart meter by 2010 as part of a two-phased plan. Customers will receive timely information on consumption, and distributors will offer variable pricing plans. It was advised that costs be included in the distribution rate immediately upon installation of smart meters. Detailed information on implementation, smart metering costs, minimum requirements, and non-commodity time of use rates were presented. Critical tasks for establishing a framework for implementation included: ministerial approval of the plan; identification of a program coordinator; the establishment of a correct regulatory framework; a vendor approval process requiring appropriate permissions for radio frequency licences; technology pilots on behalf of distributors to assure adequate adaptation and the development of procedures concerning procurement, internal schedules and deployment; coordination between government, regulatory bodies and distributors towards the establishment of communication strategies, implementation plans and distributor approaches. 5 tabs., 6 figs

  7. Three-channel phase meters based on the AD8302 and field programmable gate arrays for heterodyne millimeter wave interferometer

    Czech Academy of Sciences Publication Activity Database

    Varavin, A.V.; Ermak, G.P.; Vasiliev, A.S.; Fateev, A.V.; Varavin, Mykyta; Žáček, František; Zajac, Jaromír

    2016-01-01

    Roč. 75, č. 11 (2016), s. 1009-1025 ISSN 0040-2508 Institutional support: RVO:61389021 Keywords : AD8302 * Interferometer * Millimeter wave * Phase meter * Programmable gate array * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics

  8. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  9. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  10. 'Chaos' in superregenerative receivers

    International Nuclear Information System (INIS)

    Commercon, Jean-Claude; Badard, Robert

    2005-01-01

    The superregenerative principle has been known since the early 1920s. The circuit is extremely simple and extremely sensitive. Today, superheterodyne receivers generally supplant superregenerative receivers in most applications because there are several undesirable characteristics: poor selectivity, reradiation, etc. Superregenerative receivers undergo a revival in recent papers for wireless systems, where low cost and very low power consumption are relevant: house/building meters (such as water, energy, gas counter), personal computer environment (keyboard, mouse), etc. Another drawback is the noise level which is higher than that of a well-designed superheterodyne receiver; without an antenna input signal, the output of the receiver hears in an earphone as a waterfall noise; this sound principally is the inherent input noise amplified and detected by the circuit; however, when the input noise is negligible with respect of an antenna input signal, we are faced to an other source of 'noise' self-generated by the superregenerative working. The main objective of this paper concerns this self-generated noise coming from an exponential growing followed by a re-injection process for which the final state is a function of the phase of the input signal

  11. Towards a phase-locked superconducting integrated receiver: prospects and limitations

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Dmitriev, P.N.

    2002-01-01

    Presently a Josephson flux flow oscillator (FFO) appears to be the most developed superconducting on-chip local oscillator for integrated submillimeter-wave SIS receivers. The feasibility of phase locking the FFO to an external reference oscillator at all frequencies of interest has to be proven...... compared to theory in order to optimize the FFO design. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field, has been studied. Two integrated receiver concepts with phase...

  12. Smart meter status report from Toronto

    International Nuclear Information System (INIS)

    O'Brien, D.

    2006-01-01

    An update of Toronto Hydro's smart metering program was presented. Electricity demand is expected to keep increasing, and there is presently insufficient generation to match supply needs in Ontario. The smart metering program was introduced to aid in the Ontario government's energy conservation strategy, as well as to address peak supply problems that have led to power outages. It is expected that the smart metering program will reduce provincial peak supply by 5 per cent, as the meters support both time-of-use rates and critical peak pricing. Over 800,000 smart meters will be supplied to customers by 2007, and all 4.3 million homes in Toronto will have a smart meter by 2010. In order to meet targets for 2010, the utility will continue to install more 15,000 meters each month for the next 4 years. While the Ontario government has planned and coordinated the rollout and developed smart metering specifications and standards, Toronto Hydro is responsible for the purchase, installation, operation and maintenance of the meters. Advance testing of each meter is needed to ensure billing accuracy, and customer education on meter use is also. The complexity of the metering program has led the utility to establish a rigid project management process. Customer education pilot program are currently being conducted. Experience gained during the earlier phases of the program have enabled the utility to select appropriate metering systems based on density, topography and physical conditions. Project expenditures have been within budget due to improved project estimating and planning. The metering program has been conducted in tandem with the utility's peakSAVER program, a residential and small commercial load control program that has been successful in reducing summer peak demand by cycling air conditioners without causing discomfort. It was concluded that the utility will continue with its mass deployment of smart meters, and is currently preparing its call center to handled

  13. RFI mitigating receiver back end for radiometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal requests support for Alphacore, Inc. to design and a low power application specific integrated circuit (ASIC) RFI mitigating receiver back...

  14. ATD-2 Surface Scheduling and Metering Concept

    Science.gov (United States)

    Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.

    2017-01-01

    This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage

  15. Advanced Metering Infrastructure based on Smart Meters

    Science.gov (United States)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  16. One-Meter Class Drilling for Planetary Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the proposed effort is to understand and characterize the fundamental limitations of drilling one to three meters into challenging materials which may...

  17. Determining of the phase centre of the real position of GPS receiver antenna

    Directory of Open Access Journals (Sweden)

    Eva Pisoňová

    2007-06-01

    Full Text Available By continued improvement of measurement methods producers of GPS (Global Positioning System apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measurement testing practice with aim of the phase centre real position determining of several in a market available GPS receivers in the paper. Investigation up to what standard the GPS receiver antenna phase centre variation achieves to float in an inaccuracy into GPS measurements. Testing was realized on the temporary testing baseline closely village Badín at Banská Bystrica in the Central Slovak Region. GPS receivers Locus Survey System (Ashtech, ProMark2 (Ashtech were tested.

  18. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  19. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  20. Development of the clamp-on ultrasound flow meter for steam in pipe

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Tsukada, Keisuke; Kikura, Hiroshige; Tanaka, Katsuhiko; Umezawa, Shuichi

    2014-01-01

    Gas flow metering of a pipe flow such as chemical plant, reactors and power stations is one of the significant techniques that enable to diagnose and control the behavior of working fluid, and to govern the entire fluid system in the industrial facilities. In order to operate the aforementioned systems, the precise measurement of the flow rate is required. The conventional flow meter, however, needs the installation of the spool piece that disturbs the stable and continuous operation of the plants. i.e., the destructive set-up process of the measurement section is necessary. In this study, the novel ultrasound gas flow metering technique has been developed by means of the clamp-on ultrasound transmitter and receivers. By the numerical simulation, the ultrasound propagation through the gas and metal pipe was firstly investigated. The effects of the external damping material, applicable vapor pressure range as well as the appropriate shape of the acoustic lens were analyzed that was followed by the feasibility test of the actual measurement system. The pressurized vapor flow was used as a working fluid. Pressure and sensor dimension were varied to compare the efficiency of the ultrasound transmission between transducers. The temperature of the working fluid was beyond 373 K. The ultrasound pulsar-receiver was used that could control the frequency, amplitude and phase of the burst sinusoids. The signal processing algorithm was developed in order to discriminate the direct signal through the gaseous flow from the unwanted circumference noise through the solid stainless pipe. The linear relation between flow rate and ultrasound peak shift was confirmed. (author)

  1. Singularities of construction of static war-hour meters alternating-current

    Directory of Open Access Journals (Sweden)

    М.О. Петрище

    2004-04-01

    Full Text Available  The analysis of construction of static war-hour meters is carried out which are founded on use of specialized tools, which are intended for measurement of a active energy. The shortages of such methods concerning a possibility of unauthorized takeoff of an electric energy are marked through improper phasing of a current. The method is offered which allows to construct static war-hour meters insensitive to improper phasing of a current.

  2. 'Chaos' in superregenerative receivers

    Energy Technology Data Exchange (ETDEWEB)

    Commercon, Jean-Claude [INSA, Department d' Informatiques, Ba-hat t B. Pascal, 20 Avenue Albert Einsten, 69621 Villeurbaune (France)]. E-mail: jean-claude.commercon@insa-lyon.fr; Badard, Robert [INSA, Department d' Informatiques, Bat B. Pascal, 20 Avenue Albert Einsten, 69621 Villeurbaune (France)]. E-mail: robert.badard@insa-lyon.fr

    2005-02-01

    The superregenerative principle has been known since the early 1920s. The circuit is extremely simple and extremely sensitive. Today, superheterodyne receivers generally supplant superregenerative receivers in most applications because there are several undesirable characteristics: poor selectivity, reradiation, etc. Superregenerative receivers undergo a revival in recent papers for wireless systems, where low cost and very low power consumption are relevant: house/building meters (such as water, energy, gas counter), personal computer environment (keyboard, mouse), etc. Another drawback is the noise level which is higher than that of a well-designed superheterodyne receiver; without an antenna input signal, the output of the receiver hears in an earphone as a waterfall noise; this sound principally is the inherent input noise amplified and detected by the circuit; however, when the input noise is negligible with respect of an antenna input signal, we are faced to an other source of 'noise' self-generated by the superregenerative working. The main objective of this paper concerns this self-generated noise coming from an exponential growing followed by a re-injection process for which the final state is a function of the phase of the input signal.

  3. Solar central receiver hybrid power system. Phase I study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-11-01

    A management plan is presented for implementation during the Solar Central Receiver Hybrid Power System - Phase I study project. The project plan and the management controls that will be used to assure technically adequate, timely and cost effective performance of the work required to prepare the designated end products are described. Bechtel in-house controls and those to be used in directing the subcontractors are described. Phase I of the project consists of tradeoff studies, parametric analyses, and engineering studies leading to conceptual definition and evaluation of a commercial hybrid power system that has the potential for supplying economically competitive electric power to a utility grid in the 1985-1990 time frame. The scope also includes the preparation of a development plan for the resolution of technical uncertainties and the preparation of plans and a proposal for Phase II of the program. The technical approach will be based on a central receiver solar energy collection scheme which supplies thermal energy to a combined cycle, generating system, consisting of a gas turbine cycle combined with a steam bottoming cycle by means of a heat recovery steam generator.

  4. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  5. Metering Plan: Intelligent Operational Strategies Through Enhanced Metering Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Jason E.

    2016-07-27

    The Sustainability Program at Pacific Northwest National Laboratory (PNNL) has adopted a “triple-bottom-line” approach of environmental stewardship, social responsibility, and economic prosperity to its operations. Metering at PNNL works in support of all three, specifically to measure and inform building energy use and greenhouse gas emissions and minimize water use. The foundation for metering at PNNL is a core goal set, which consists of four objectives: providing accurate data without interruption, analyzing data while it is still new, providing actionable recommendations to operations management, and ensuring PNNL’s compliance with contract metering requirements. These core objectives guide the decisions that we make during annual planning and as we operate throughout the year. This 2016 edition of the Metering Plan conveys the metering practices for and vision of the Sustainability Program. Changes in this plan from the 2015 edition include updated tables and an enhanced discussion on energy tracking systems used at PNNL. This plan also discusses updated benchmarking strategies using PNNL’s graphics and analytics tool, BuildingOS by Lucid Design Group. This plan presents our progress toward the metering goals shared by all federal agencies and highlights our successful completion of metering requirements. Currently, PNNL is fully compliant with the applicable legislative and Executive Order metering requirements. PNNL’s approach to the installation of new meters will be discussed. Perhaps most importantly, this plan details the analysis techniques utilized at PNNL that rely on the endless streams of data newly available as a result of increased meter deployment over the last several years. Previous Metering Plans have documented specific meter connection schemes as PNNL focused on deploying meters in a first step toward managing energy and water use. This plan serves not only to highlight PNNL’s successful completion of agency metering goals, but

  6. Residual phase noise measurements of the input section in a receiver

    International Nuclear Information System (INIS)

    Mavric, Uros; Chase, Brian; Fermilab

    2007-01-01

    If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier

  7. Effect of the phase change material in a solar receiver on thermal performance of parabolic dish collector

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2017-01-01

    Full Text Available In this work, the use of phase change material in the circular tank solar receiver is proposed for a 16 m2 Scheffler parabolic dish solar concentrator to improve the heat transfer in the receiver. Magnesium chloride hexahydrate with melting temperature of 117°C is selected as the phase change material in the annular space of the receiver with rectangular fins inside the phase change material. Experimental work is carried out to analyze heat transfer from the receiver to heat transfer fluid with and without phase change material in the inner periphery. Energy and exergy efficiency are determined from the measurements of solar radiation intensity, receiver temperature, surroundings temperature, heat transfer fluid inlet and outlet temperatures, storage tank temperature, and wind speed. The experiments were conducted in SRM University, Chennai, India (latitude: 13° 5′ N, longitude: 80°16′ E in April 2014. Use of phase change material in receiver periphery increased energy efficiency by 5.62%, exergy efficiency by 12.8% and decreased time to reach the boiling point of water by 20% when compared with the receiver without phase change material.

  8. Relative position control design of receiver UAV in flying-boom aerial refueling phase.

    Science.gov (United States)

    An, Shuai; Yuan, Suozhong

    2018-02-01

    This paper proposes the design of the relative position-keeping control of the receiver unmanned aerial vehicle (UAV) with the time-varying mass in the refueling phase utilizing an inner-outer loop structure. Firstly, the model of the receiver in the refueling phase is established. And then tank model is set up to analyze the influence of fuel transfer on the receiver. Subsequently, double power reaching law based sliding mode controller is designed to control receiver translational motion relative to tanker aircraft in the outer loop while active disturbance rejection control technique is applied to the inner loop to stabilize the receiver. In addition, the closed-loop stabilities of the subsystems are established, respectively. Finally, an aerial refueling model under various refueling strategies is utilized. Simulations and comparative analysis demonstrate the effectiveness and robustness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Development of the liquid level meters for the PandaX dark matter detector

    International Nuclear Information System (INIS)

    Hu Jie; Gong Haowei; Lin Qing; Ni Kaixuan; Wei Yuehuan; Xiao Mengjiao; Xiao Xiang; Zhao Li; Tan Andi

    2014-01-01

    The two-phase xenon detector is at the frontier of dark matter direct search. This kind of detector uses liquid xenon as the sensitive target and is operated in two-phase (liquid/gas) mode, where the liquid level needs to be monitored and controlled in sub-millimeter precision. In this paper, we present a detailed design and study of two kinds of level meters for the PandaX dark matter detector. The long level meter is used to monitor the overall liquid level while short level meters are used to monitor the inclination of the detector. These level meters are cylindrical capacitors that are custom-made from two concentric metal tubes. Their capacitance values are read out by a universal transducer interface chip and are recorded by the PandaX slow control system. We present the developments that lead to level meters with long-term stability and sub-millimeter precision. Fluctuations (standard deviations) of less than 0.02 mm for the short level meters and less than 0.2 mm for the long level meter were achieved during a few days of test operation. (authors)

  10. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, D.M.

    1992-11-01

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  11. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, D.M.

    1992-11-01

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  12. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  13. Acceptance test procedure, 241-SY-101 Flexible Receiver System, Phase III testing

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1994-01-01

    This Acceptance Test Procedure is for the 241-SY-101 Flexible Receiver System, Phase III Testing. This procedure will test the sealing integrity of the Flexible Receiver System to ensure that release of waste and aerosols will be minimized during the removal of the test mixer pump from tank SY-101

  14. 77 FR 2743 - Recovery Directorate Fact Sheet 9580.213, Residential Electrical Meter Repair-“Power Up”

    Science.gov (United States)

    2012-01-19

    ...] Recovery Directorate Fact Sheet 9580.213, Residential Electrical Meter Repair--``Power Up'' AGENCY: Federal..., Residential Electrical Meter Repair--``Power Up.'' DATES: Comments must be received by February 21, 2012... authority, FEMA may fund the repair of residential electrical meters damaged in a major disaster or...

  15. Setting a price for solar net-metering in California

    OpenAIRE

    Knezevic, Laura M

    2014-01-01

    Net-metering programs are an effective policy tool for promoting investment in solar photovoltaics, yet little attention has been paid to the rate at which excess energy generation is credited until recently. Like most States, California customers who participate in net-metering receive a credit for excess generation at the current retail rate for electricity. This buy-back rate does not take into account the value of solar energy to the utility or the costs to the customer of purchasing an...

  16. Smart metering - energy data management at every meter point; Smart Metering - Energiedatenmanagement an jedem Zaehlpunkt

    Energy Technology Data Exchange (ETDEWEB)

    Keller-Giessbach, D.; Kiel, E. [LogicaCMG, Muenchen (Germany)

    2007-09-15

    The demise of monopolistic structures in the German energy market has also led to a change of perspective on metering. New requirements have to be met. Even in mass processing jobs such as meter reading it is no longer sufficient to simply read consumption data off a technically reliable meter or have customers do this themselves in preparation of billing. Currently used meters were not designed with a mind to demand management, environmental protection through energy conservation, changes in consumer behaviour or new service offers. This has been recognised in many European countries since the beginning of the present decade. The traditional task of metering is developing into a more comprehensive energy data management that takes account of the needs of customers, energy suppliers and regulatory requirements.

  17. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    Science.gov (United States)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  18. Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology

    Science.gov (United States)

    Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan

    2017-11-01

    Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.

  19. Three-phase receiving coil of wireless power transmission system for gastrointestinal robot

    Science.gov (United States)

    Jia, Z. W.; Jiang, T.; Liu, Y.

    2017-11-01

    Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.

  20. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    Science.gov (United States)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  1. Smart Metering. Technological, economic and legal aspects. 2. ed.; Smart Metering. Technologische, wirtschaftliche und juristische Aspekte des Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Koehler-Schute, Christiana (ed.)

    2010-07-01

    Smart metering comprises more than just meter technology, and the use of information and communication technologies is indispensable. Processes, roles and business models must be reconsidered as further challenges arise in the context of smart metering. For one, there is the operator of the metering points. Secondly, there is the end user who is in the role of an active market partner. Further, there is smart metering as a basic technology, e.g. for smart grids and smart homes. In spite of the need for action, many utilities are reluctant to introduce smart metering. Reasons for this are the cost, a lack of defined standards, and an unclear legal situation. On the other hand, smart metering offers potential for grids and distribution that should be made use of. The authors discuss all aspects of the subject. The point out the chances and limitations of smart metering and present their own experience. [German] Smart Metering geht weit ueber die Zaehlertechnologie hinaus und der Einsatz von Informations- und Kommunikationstechnologien ist unabdingbar. Damit einhergehend muessen Prozesse, Rollen und auch Geschaeftsmodelle neu durchdacht werden. Denn weitere Herausforderungen stehen im direkten Zusammenhang mit Smart Metering. Das ist zum einen die Rolle des Messstellenbetreibers / Messdienstleisters. Das ist zum anderen der Endnutzer, dem die Rolle des aktiven Marktpartners zugedacht wird. Das ist des Weiteren das Smart Metering als Basistechnologie beispielsweise fuer Smart Grid und Smart Home. Trotz des Handlungsdrucks stehen viele Unternehmen der Energiewirtschaft dem Smart Metering zurueckhaltend gegenueber. Drei gewichtige Gruende werden ins Feld gefuehrt: die Kostenfrage, nicht definierte Standards und die in vielen Bereichen ungeklaerte Gesetzeslage. Demgegenueber bietet das Smart Metering Potenziale fuer Netz und Vertrieb, die es zu nutzen gilt. Die Autoren setzen sich in ihren Beitraegen mit diesen Themen auseinander, zeigen Chancen, aber auch Grenzen des

  2. Securing Metering Infrastructure of Smart Grid: A Machine Learning and Localization Based Key Management Approach

    Directory of Open Access Journals (Sweden)

    Imtiaz Parvez

    2016-08-01

    Full Text Available In smart cities, advanced metering infrastructure (AMI of the smart grid facilitates automated metering, control and monitoring of power distribution by employing a wireless network. Due to this wireless nature of communication, there exist potential threats to the data privacy in AMI. Decoding the energy consumption reading, injecting false data/command signals and jamming the networks are some hazardous measures against this technology. Since a smart meter possesses limited memory and computational capability, AMI demands a light, but robust security scheme. In this paper, we propose a localization-based key management system for meter data encryption. Data are encrypted by the key associated with the coordinate of the meter and a random key index. The encryption keys are managed and distributed by a trusted third party (TTP. Localization of the meter is proposed by a method based on received signal strength (RSS using the maximum likelihood estimator (MLE. The received packets are decrypted at the control center with the key mapped with the key index and the meter’s coordinates. Additionally, we propose the k-nearest neighbors (kNN algorithm for node/meter authentication, capitalizing further on data transmission security. Finally, we evaluate the security strength of a data packet numerically for our method.

  3. Modelling and calibration of a ring-shaped electrostatic meter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jianyong [University of Teesside, Middlesbrough TS1 3BA (United Kingdom); Zhou Bin; Xu Chuanlong; Wang Shimin, E-mail: zhoubinde1980@gmail.co [Southeast University, Sipailou 2, Nanjing 210096 (China)

    2009-02-01

    Ring-shaped electrostatic flow meters can provide very useful information on pneumatically transported air-solids mixture. This type of meters are popular in measuring and controlling the pulverized coal flow distribution among conveyors leading to burners in coal-fired power stations, and they have also been used for research purposes, e.g. for the investigation of electrification mechanism of air-solids two-phase flow. In this paper, finite element method (FEM) is employed to analyze the characteristics of ring-shaped electrostatic meters, and a mathematic model has been developed to express the relationship between the meter's voltage output and the motion of charged particles in the sensing volume. The theoretical analysis and the test results using a belt rig demonstrate that the output of the meter depends upon many parameters including the characteristics of conditioning circuitry, the particle velocity vector, the amount and the rate of change of the charge carried by particles, the locations of particles and etc. This paper also introduces a method to optimize the theoretical model via calibration.

  4. Polarization speed meter for gravitational-wave detection

    Science.gov (United States)

    Wade, Andrew R.; McKenzie, Kirk; Chen, Yanbei; Shaddock, Daniel A.; Chow, Jong H.; McClelland, David E.

    2012-09-01

    We propose a modified configuration of an advanced gravitational-wave detector that is a speed-meter-type interferometer with improved sensitivity with respect to quantum noise. With the addition of polarization-controlling components to the output of an arm cavity Michelson interferometer, an orthogonal polarization state of the interferometer can be used to store signal, returning it later with opposite phase to cancel position information below the storage bandwidth of the opposite mode. This modification provides an alternative to an external kilometer-scale Fabry-Pérot cavity, as presented in earlier work of Purdue and Chen [Phys. Rev. D 66, 122004 (2002)]. The new configuration requires significantly less physical infrastructure to achieve speed meter operation. The quantity of length and alignment degrees of freedom is also reduced. We present theoretical calculations to show that such a speed meter detector is capable of beating the strain sensitivity imposed by the standard quantum limit over a broad range of frequencies for Advanced Laser Interferometer Gravitational-wave Observatory-like parameters. The benefits and possible difficulties of implementing such a scheme are outlined. We also present results for tuning of the speed meter by adjusting the degree of polarization coupling, a novel possibility that does not exist in previously proposed designs, showing that there is a smooth transition from speed meter operation to that of a signal-recycling Michelson behavior.

  5. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    Science.gov (United States)

    2017-01-16

    hardware. An 8-channel ALSTAR array prototype was constructed and demonstrated to achieve 125.5 dB effective isotropic isolation between broadside...transmit and receive beams over a 100 MHz instantaneous band centered at 2.45 GHz. I. INTRODUCTION A phased array capable of Simultaneous Transmit and...Receive (STAR) could provide significant benefits for many applications including communications, radar, spectral sens- ing, and multifunctional systems

  6. Methodology of calibration for nucleonic multiphase meter technology for SAGD extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, B.; Pechard, P.; Guerra, E. [Schlumberger Canada Ltd., Calgary, AB (Canada); Arendo, V.; Shaffer, M.; Contreras, J. [Total, Paris (France)

    2008-10-15

    The challenges facing bitumen metering in steam assisted gravity drainage operations were discussed with reference to high operating temperatures, steam pressure in the gas phase, foaming, emulsion and small density differences between bitumen and produced water. A metering tool that can deal with these operating constraints was presented. The multiphase meter (MFM) uses a multi-energy gamma ray (nuclear fraction) meter together with a venturi tube to provide accurate monitoring and optimization of oil, water, gas and steam production. This paper presented the specific strengths of the MFM with emphasis on its ability to correctly meter the liquid/gas phases depending on the calibration method and operating measurement range. The paper presented a study of the main parameters which could influence the measurement associated with this technology. The study was based on practical and simulated data and evaluated the impact of changes in each parameter. The purpose of the paper was to improve the understanding of this technology and how to apply it to bitumen metering and provide a guideline of the technology for future users in the oil industry. It described the combination venturi-nucleonic measurement parameters, such as mass flow rate; fraction meter; solution triangle of the fraction meter; primary and secondary output; fluid properties information; and uncertainty associated to any technology. A sensitivity analysis study to identify the dependency to some key fluid parameters was also described. It was concluded that MFM can be used in a stand-alone configuration. 7 refs., 2 tabs., 22 figs.

  7. A BUNCH TO BUCKET PHASE DETECTOR USING DIGITAL RECEIVER TECHNOLOGY

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; HAYES, T.; LE, T.N.; SMITH, K.

    2003-01-01

    Transferring high-speed digital signals to a Digital Signal Processor is limited by the IO bandwidth of the DSP. A digital receiver circuit is used to translate high frequency W signals to base-band. The translated output frequency is close to DC and the data rate can be reduced, by decimation, before transfer to the DSP. By translating both the longitudinal beam (bunch) and RF cavity pick-ups (bucket) to DC, a DSP can be used to measure their relative phase angle. The result can be used as an error signal in a beam control servo loop and any phase differences can be compensated

  8. A superconducting phase-locked local oscillator for a submillimetre integrated receiver

    International Nuclear Information System (INIS)

    Koshelets, V P; Shitov, S V; Filippenko, L V; Dmitriev, P N; Ermakov, A B; Sobolev, A S; Torgashin, M Yu; Pankratov, A L; Kurin, V V; Yagoubov, P; Hoogeveen, R

    2004-01-01

    Comprehensive measurements of the flux flow oscillator (FFO) radiation linewidth are performed using an integrated harmonic SIS mixer; the FFO linewidth and spectral line profile are compared to a theory. An essential dependence of the FFO linewidth on frequency is found; a possible explanation is proposed. The results of the numerical solution of the perturbed sine-Gordon equation qualitatively confirm this assumption. To optimize the FFO design, the influence of the FFO parameters on the radiation linewidth is studied. A novel FFO design at a moderate current density has resulted in a free-running FFO linewidth of about 10 MHz in the flux flow regime up to 712 GHz, limited only by the gap frequency of Nb. This relatively narrow free-running linewidth (along with implementation of a wide-band phase locking loop system) allows continuous phase locking of the FFO in the wide frequency range of 500-710 GHz. These results are the basis for the development of a 550-650 GHz integrated receiver for the terahertz limb sounder (TELIS) intended for atmosphere study and scheduled to fly on a balloon in 2005. We report here also on the design of the second generation of the phase-locked superconducting integrated receiver chip for TELIS

  9. Effects of source and receiver locations in predicting room transfer functions by a phased beam tracing method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2012-01-01

    The accuracy of a phased beam tracing method in predicting transfer functions is investigated with a special focus on the positions of the source and receiver. Simulated transfer functions for various source-receiver pairs using the phased beam tracing method were compared with analytical Green’s...

  10. A reactor/receiver-concept for liquid-phase high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Traub, H.; Hahm, T. [Dortmund Univ. (Germany). Dept. of Chemical Engineering

    1997-12-31

    Besides the conversion of solar light to electricity solar energy can be used directly in photo- and thermochemistry. In the temperature range from 1000 to 2000 K there is a high demand for industrial process heat offering a variety of possibilities for solar thermal applications. Especially in the field of liquid-phase high-temperature processes there are hardly no solar thermal applications which exceed the stage of laboratory experiments. It was therefore the aim of two projects financed by the AG Solar of North Rhine-Westphalia, Germany, to develop concepts for commercial scale solar thermal plants and to judge them economically and ecologically. Some general problems have to be overcome to realize a commercial scale solar thermal plant for liquid-phase processes. The concept developed consists of a heliostat field, a tower reflector and an open receiver with a closed reaction chamber. The feasibility of a solar thermal plant for high-temperature liquid-phase processes has been shown in principle. The projected plant consists of a 4400 m{sup 2} heliostat field, a tower plus reflecting mirrors with a total area of 220 m{sup 2} and an open receiver with a closed annular reaction zone. For temperatures below 1700 K the overall efficiency is high enough to yield energetic amortization times of less than 1 year. For a further improvement and a verification of the calculation a closer look at the reactor/receiver and its heat transfer processes is necessary. This is done by using a mixed strategy of experiments and simulation. First experiments were carried out with a semitransparent salt and an opaque metal. The first stage of the experiments will end during the next weeks and their results have to be compared with the simulation. The simulation will then be extended to transparent melts. The second stage of the experiments which include the reaction chamber will start in 1997. An improvement of the reactor might be achieved using nonimaging concentrators to further

  11. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... conformance test requirements for the firmware upgradeability process for the Advanced Metering Infrastructure...

  12. Cognitive digital receiver for burst mode phase modulated radio over fiber links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso

    2010-01-01

    A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...

  13. Statistical characteristics of L1 carrier phase observations from four low-cost GPS receivers

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2010-01-01

    Statistical properties of L1 carrier phase observations from four low-cost GPS receivers are investigated through a case study. The observations are collected on a zero baseline with a frequency of 1 Hz and processed with a double difference model. The carrier phase residuals from an ambiguity...

  14. Potential radiation doses likely to be received by the radiologists and paramedical staff in typical hospital in Pakistan (GM counter, survey meter measurements) (abstract)

    International Nuclear Information System (INIS)

    Ali, A.; Zeb, J.; Iqbal, S.; Orfi, S.D.

    1998-01-01

    Potential radiation doses likely to be received by the radiologists and para medical staff in a typical hospital in Pakistan have been measured using a very sensitive radiation survey meter (FAG FH40F2) employing a Geiger Muller counter (FHZ120) as a probe which is a probe extend able up to 4 meters in length. These measurements have been compared with internationally accepted Maximum Permissible Radiation Dose Level (MPDL). Radiation dose rates measured on the hands of two radiologists during fluoroscopy examination of the patient were of the order of 1mSv.h/sup -1/ and 540 mu Sv.h/sup -1/ which were 400% to 216% times higher than the MPDL (250 mu Sv.h/sup -1/). Radiation dose rates measured on the chest and neck were 300 and 50 mu Sv.h/sup -1/, which were 3000% to 500% times higher than those of MPDL (10 mu Sv.h/sup -1/. Such high dose rates present a serious situation and deserve attention of the hospital management and of national regulatory authority so as to minimize the potential radiation doses to the radiologists and para medical staff. As Low As Reasonably Achievable (ALARA) concept should be implemented in the health sector. (author)

  15. Measurement of complex RF susceptibility using a series Q-meter

    International Nuclear Information System (INIS)

    Kisselev, Yu.F.; Dulya, C.M.; Niinikoski, T.O.

    1995-01-01

    In this paper we have for the first time derived closed form expressions for the nuclear magnetic susceptibility in terms of the series Q-meter output voltage. We discuss the corrections involved in determining nuclear polarization from NMR signals by using the deuteron and proton spin systems as examples. Deuteron signals are shown to exhibit a false asymmetry, while proton signals have substantial shape distortions. Moreover, for the first time the importance of making a phase correction is demonstrated. We conclude that the series Q-meter with real part detection is not sufficient to produce an output voltage from which the nuclear susceptibility can be determined. An additional phase-sensitive detector is proposed for obtaining the imaginary part of the signal required for unambiguous extraction of the complex RF susceptibility. ((orig.))

  16. Smart meters. Smart metering. A solution module for a future-oriented energy system; Intelligente Zaehler. Smart Metering. Ein Loesungsbaustein fuer ein zukunftsfaehiges Energiesystem

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Nadia; Seidl, Hans [comps.

    2011-12-15

    The German Energy Agency GmbH (Berlin, Federal Republic of Germany) reports on smart metering as a solution module for a future-oriented energy system by means of the following contributions: (1) Key role for smart meters; (2) What is smart metering? (3) Implementation of smart metering in Europe; (4) The market development to date in Germany; (5) Practical experiences with smart metering in Germany; (6) Frequently asked questions; (7) Smart metering in intelligent networks; (8) Legal framework conditions; (9) Data security and data protection in the utilisation of smart meters; (10) Ongoing information; (11) Efficient energy systems.

  17. Cryogen-free dilution refrigerator for ACTPOL polarization- sensitive receiver

    Science.gov (United States)

    Shvarts, V.; Zhao, Z.; Devlin, M. J.; Klein, J.; Lungu, M.; Schmitt, B.; Thornton, R.

    2014-12-01

    We present a new cryogenic receiver for the Atacama Cosmology Telescope (ACT), a six-meter diameter off-axis Gregorian telescope located at an altitude of 5,200 meters (17,000 ft.) on Cerro Toco, in Northern Chile. The focal plane contains 3000 polarization-sensitive transition edge sensor (TES) bolometers, and is cooled to below 100 mK with a removable pulse-tube based customised JDry-100 dilution refrigerator insert. The optical tubes and the rest of the receiver are cooled with a dedicated pulse tube to below 3 K. Details of the receiver- to-telescope integration and first season on-site operation are described, including detector base temperature stability in vertical and tilted position as well as remote operation via Ethernet link.

  18. Cryogen-free dilution refrigerator for ACTPOL polarization- sensitive receiver

    International Nuclear Information System (INIS)

    Shvarts, V; Zhao, Z; Devlin, M J; Klein, J; Lungu, M; Schmitt, B; Thornton, R

    2014-01-01

    We present a new cryogenic receiver for the Atacama Cosmology Telescope (ACT), a six-meter diameter off-axis Gregorian telescope located at an altitude of 5,200 meters (17,000 ft.) on Cerro Toco, in Northern Chile. The focal plane contains 3000 polarization-sensitive transition edge sensor (TES) bolometers, and is cooled to below 100 mK with a removable pulse-tube based customised JDry-100 dilution refrigerator insert. The optical tubes and the rest of the receiver are cooled with a dedicated pulse tube to below 3 K. Details of the receiver- to-telescope integration and first season on-site operation are described, including detector base temperature stability in vertical and tilted position as well as remote operation via Ethernet link

  19. Investigation and Comparison of Separate Meter-In Separate Meter-Out Control Strategies

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Skoubo, Tobias

    2014-01-01

    In the later years, there has been an increased focus on new valve types, which yield the possibility to do Separate Meter-In Separate Meter-Out (SMISMO) control. This includes both digital valves, but proportional valves with separate metering spools and build in pressure sensors are also emerging....... The possibility to independently control the meter-in and meter-out side not only increase the functionality of the system, but also opens up for better performance and/or lowered energy consumption. The focus of the current paper is therefore on investigation and comparison of what may be obtained using...

  20. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.

    Science.gov (United States)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-02-01

    Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  1. Beyond revenue metering -- a new age for automatic meter reading

    Energy Technology Data Exchange (ETDEWEB)

    Chebra, R. J. [RJC Consulting L.L.C., PQ (Canada)

    2002-10-01

    Advanced metering, data management, and communications possibilities of automated meter reading are explored. Applications in the area of demand side management, including load reduction, peak shaving and load shifting, new tariff structures based on the 'time of use incentive/penalty' approach, and information grade metering are emphasized. Based on trends and expectations, it is predicted that AMR will continue to experience rapid growth and deployment as new services are made available to the mass market. For example, technological advances will enable the industry to make 'time of use metering ' more attractive and beneficial to residential consumers, and embedded intelligence will make it possible to achieve more holistic energy environments.

  2. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  3. Assessment of the implementation regulations for smart meters; Beoordeling uitvoeringsregelingen Slimme Meter

    Energy Technology Data Exchange (ETDEWEB)

    Boekema, J.

    2011-03-15

    TNO (Netherlands) assessed whether the smart meter is reliable and future proof. By request of the Dutch Ministry of Economic Affairs, Agriculture and Innovation (ELI) an assessment was conducted of the requirements for smart meters and, as formulated in the Order in Council 'Decree on remotely readable metering devices', based on 48 tests regarding security, privacy and future stability. Taking into account a number of described recommendations, TNO deems the legislation and implementation schemes sufficient to allow for safe, reliable and future proof implementation of smart meters in the Netherlands. [Dutch] TNO heeft beoordeeld of de slimme meter betrouwbaar en toekomstvast is. Ten behoeve van het ministerie van Economische Zaken, Landbouw en Innovatie (ELI) zijn de eisen die aan slimme meters worden gesteld, en zoals verwoord in de AmvB 'Besluit op afstand uitleesbare meetinrichtingen', beoordeeld aan de hand van 48 toetsen over zekerheid (security), persoonlijke levenssfeer (privacy) en toekomstvastheid. Met inachtneming van een aantal omschreven aanbevelingen, vindt TNO wetgeving en uitvoeringsregelingen zodanig dat daarmee een veilige, betrouwbare en toekomstvaste slimme meter geimplementeerd kan worden in Nederland.

  4. Smart metering. Conformance tests for electricity meters; Smart Metering. Konformitaetstests an Stromzaehlern

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Matthias; Pongratz, Siegfried [VDE Pruef- und Zertifizierungsinstitut, Offenbach (Germany)

    2012-07-01

    Introduction of communication technologies into today's energy network enables the interworking between the domains of smart metering, smart grid, smart home and e-mobility as well as the creation and provisioning of new innovative services such as efficient load adjustment. Due to this convergence the new energy networks are becoming increasingly complex. Ensuring the interworking between all network elements (e.g. electricity meters, gateways) in these smart energy networks is of utmost importance. To this end conformance and interoperability tests have to be defined to ensure that services work as expected. (orig.)

  5. Additional functions of remotely read kWh-meters

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P [VTT Energy, Espoo (Finland); Vehvilaeinen, S [Mittrix Oy (Finland); Rantanen, J [Helsinki Energy Board (Finland)

    1998-08-01

    In this chapter the possibilities to include new applications into remotely read smart kWh-meters are considered. New electronic meters can measure various electric quantities and have some extra calculating capacity. So they can be used to provide functions that distribution automation and the customer need and thus share the costs. Some applications like monitoring the state of the distribution network or locating faults are only for the utility, but many applications also need an interface to the customers or their automation systems. Among those are monitoring the quality of electricity, estimating load curves, applying dynamic tariffs and selling electricity and accounting. As a special item, the continuous monitoring of the quality of electricity is discussed. This includes voltage levels, total distortion, asymmetry and so on. If such a kWh-meter indicates quality problems it is possible to go there with a portable quality meter that is suitable for the case and inspect the situation. The poor quality can be detected before it causes harm to equipment owned by the customers or the power distribution company. This article also presents a prototype of such a quality monitoring kWh-meter. Dynamic tariffs and free electricity markets require two way communication with the utility and the customer and measurement of the time variations of the energy consumption. The customers or their energy management system must receive the energy prices from the utility and calculate the energy costs and decide upon the energy consumption control actions. Some alternative ways to meet these customer interface requirements are compared. Remote reading of kWh-meters requires a certain investment in meters and their data communication with the utility. Because smart meters can have some additional memory and calculating capacity and are capable of measuring various electric quantities, it is possible to share the costs with other applications that use the same hardware and data

  6. Potential radiation doses likely to be received by the radiologists and para medical staff in an hospital in Pakistan. (G. M. counter, survey meter measurements )

    International Nuclear Information System (INIS)

    Ali, A.; Zeb, J.; Iqbal, S.; Orfi, S.D.

    1999-01-01

    Potential radiation doses likely to received by the radiologists and paramedical staff in a typical hospital in Pakistan have been measured using a very sensitive radiation survey meter (FAG FH40F2) employing in Geiger Muller counter (FHZ 120] as a role which is extendable up to 4 meters in length. The measurements have been compared with internationally accepted Maximum Permissible Radiation Dos Level (MPDL). Radiation dose rates measured on the hands of two radiologist during fluoroscopy examination of the patient were of the order of 1 m Sv.h/sup -1/ and 540 u Sv. h/sup -1/ which were 400% to 21% higher than the MPDL (250 u Sv. h/sup -1/). Radiation dose rates measured on the chest of the nurses were 300 and 50 u Sv. h/sup -1/, which were 3000% to 500% higher than those of MPDL(10 u Sv. h/sup -1/). Such high dose rates present a serious situation from radiation damage point of view and deserve attention of the hospital management and of national regulatory authority so as to minimize the potential radiation doses to the radiologists and paramedical staff. As Low As Reasonably Achievable (ALARA) concept should be implemented in the health sector. (author)

  7. Micro-gen metering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elland, J.; Dickson, J.; Cranfield, P.

    2003-07-01

    This report summarises the results of a project to investigate the regulation of domestic electricity metering work and identify the most economic options for micro-generator installers to undertake work on electricity meters. A micro-generation unit is defined as an energy conversion system converting non-electrical energy into electrical energy and can include technologies such as photovoltaic systems, small-scale wind turbines, micro-hydroelectric systems, and combined heat and power systems. Details of six tasks are given and cover examination of the existing framework and legal documentation for metering work, the existing technical requirements for meter operators, meter operator personnel accreditation, appraisal of options for meter changes and for micro-generation installation, document change procedures, industry consultation, and a review of the costs implications of the options.

  8. SWITCHED REFERENCE PHASE LOCK LOOP (SRPLL)

    International Nuclear Information System (INIS)

    KERNER, T.

    2001-01-01

    The Brookhaven National Laboratory Relativistic Heavy Ion Collider (RHIC) has two beam synchronous event links (BSL), one for each ring, which use the 28 MHz ring low level rf to distribute event codes synchronously with a precise phase relationship to the beam. During a cogging reset just before injection, the low level rf sine wave is interrupted which causes the BSL receivers to lose lock. Lock loss in turn causes false triggers and other undesirable-effects on the beam position monitors (BPM), ionization profile monitors (IPM), the tune meter and various experiments which use the BSLs. To rectify these problems, a SRPLL has been inserted between the beam synchronous master and the low level rf source. The SRPLL inserts a frequency and phase continuous splice over the dead-band gap in the rf source created during a cogging reset. The splice removes the gap and prevents the distributed BSL receivers from losing lock

  9. Determining of the phase centre of the real position of GPS receiver antenna

    OpenAIRE

    Eva Pisoňová; Jozef Ornth; Vladimír Sedlák

    2007-01-01

    By continued improvement of measurement methods producers of GPS (Global Positioning System) apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measureme...

  10. Conducted interference on smart meters

    NARCIS (Netherlands)

    Keyer, Cornelis H.A.; Leferink, Frank

    2017-01-01

    The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that

  11. Study of the design variables for a wet-chamber gas meter prototype (MGCH)

    International Nuclear Information System (INIS)

    Patino, Carlos Hernando; Romero, Luis Said; Quiroga, Jabid

    2004-01-01

    This paper established the most important variables and their correlation that affect design and operation of wet-chamber gas meter (MGCH), focused on the gas pressure difference along the meter and the sealing-liquid level. In order to study variable behavior a simulation was carried out based on computational systems The mathematical model developed was built taking into account common features in present wet test gas meter as their internal configuration. Therefore, this work can be understood as a general analysis and its conclusions can be extended to whichever meter of this type. Software was developed to facilitate the analysis of the variables involved in this physical process; besides the drum sizing was modeling using CAD software. As a result of this investigation, theoretical basis were established for the analyzing and designing of a MGCH meter, as a previous phase to the construction and evaluation of the prototype. Uncertainty analysis of each variable implicates in this model was beyond the scope of this study

  12. Tapping to a slow tempo in the presence of simple and complex meters reveals experience-specific biases for processing music.

    Directory of Open Access Journals (Sweden)

    Sangeeta Ullal-Gupta

    Full Text Available Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians or a complex meter (familiar only to Indians. A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase. When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters.

  13. Tapping to a slow tempo in the presence of simple and complex meters reveals experience-specific biases for processing music.

    Science.gov (United States)

    Ullal-Gupta, Sangeeta; Hannon, Erin E; Snyder, Joel S

    2014-01-01

    Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters.

  14. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  15. VLBI observations with the Kunming 40-meter radio telescope

    International Nuclear Information System (INIS)

    Hao Longfei; Wang Min; Yang Jun

    2010-01-01

    The Kunming 40-meter radio telescope is situated in the yard of the Yunnan Astronomical Observatory (Longitude: 102.8 0 East, Latitude: 25.0 0 North) and saw its first light in 2006 May. The Kunming station successfully joined the VLBI tracking of China's first lunar probe 'Chang'E-1 together with the other Chinese telescopes: the Beijing Miyun 50-meter radio telescope, Urumqi Nanshan 25-meter radio telescope, and Shanghai Sheshan 25-meter radio telescope, and received the downlinked scientific data together with the Miyun station from October of 2007 to March of 2009. We give an introduction to the new Chinese VLBI facility and investigate its potential applications. Due to its location, the Kunming station can significantly improve the u - v coverage of the European VLBI Network (EVN), in particular, in long baseline observations. We also report the results of the first EVN fringe-test experiment of N09SX1 with the Kunming station. The first fringes in the European telescopes were successfully detected at 2.3 GHz with the ftp-transferred data on 2009 June 17. From scheduling the observations to performing the post correlations, the Kunming station shows its good compatibility to work with the EVN. The imaging result of the extended source 1156+295 further demonstrates that the Kunming station greatly enhances the EVN performance. (research papers)

  16. Optimal Dimensioning of FiWi Networks over Advanced Metering Infrastructure for the Smart Grid

    DEFF Research Database (Denmark)

    Inga, Esteban; Peralta-Sevilla, Arturo; Hincapié, Roberto

    2015-01-01

    —In this paper, we propose a hybrid wireless mesh network infrastructure which connects the smart meters of each consumer with the data aggregation points (DAP). We suppose a set of smart meters that need to send information, and receive information from a central office on electrical enterprises...... through of the meter data management system (MDMS), and so forming the advanced metering infrastructure (AMI) stage of smart grids. We consider a multi-hop system, where information is routed through several nodes which act as DAP. Wireless mesh networks are known to extend coverage and increase...... deployment efficiency, so they could be an alternative for the connection between Home Area Network (HAN) and the Neighborhood Area Network (NAN). However, the NAN data must be send through wider area cabled networks to Metropolitan Area Network (MAN), and based on the WDM-PON architecture. We consider...

  17. Development of quick-response area-averaged void fraction meter. Application to BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    Authors have been developed a practical conductance-type void fraction meter to measure instantaneously area-averaged void fraction in rod bundle. The principle of the meter is based on the fact that the electrical conductance changes with the change of void fraction in gas-liquid two-phase flow. According to air/water two-phase flow experiment, the void fraction was approximated by {alpha}=1-I/I{sub 0}, where {alpha} and I are void fraction and current (I{sub 0} is current at {alpha}=0). Authors investigated the performance of the void fraction meter under high temperature/high pressure conditions (BWR condition; 290degC, 7MPa). The results indicated that the void fraction was approximated by {alpha}=1-I/I{sub 0} even under high temperature/high pressure condition of stem/water flow. However, it is necessary to take account of temperature dependency of water specific conductance. Therefore, authors derived a correction equation for temperature dependency. Further, for applying the void fraction meter to a large-scale facility, it was found to be necessary to reduce the capacitance of the circuit. Then, authors developed the method to reduce the capacitance effect. Finally, authors succeeded to measure the void fraction in 2 x 2 bundle flow path at the range of 0% - 70% in the error of 10% under high temperature/high pressure and mass flux of less than 133 kg/m{sup 2}s. Developed void fraction meter is theoretically not affected by flow rate. Therefore, it can be applied to the condition of oscillating flow. (author)

  18. Wet gas metering with the v-cone and neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, Haluk; Cai, Shiqian; Peters, Robert

    2005-07-01

    The paper presents analysis of extensive measurements taken at NEL, K-Lab and CEESI wet gas test loops. Differential and absolute pressure signals were sampled at high frequency across V-Cone meters. Turbulence characteristics of the flow captured in the sampled signals were characterized by pattern recognition techniques and related to the fractions and flow rates of individual phases. The sensitivity of over-reading to first and higher order features of the high frequency signals were investigated qualitatively. The sensitivities were quantified by means of the saliency test based on back propagating neural nets. A self contained wet gas meter based on neural net characterization of first and higher order features of the pressure, differential pressure and capacitance signals was proposed. Alternatively, a wet gas meter based on a neural net model of just pressure sensor inputs (based on currently available data) and liquid Froude number was shown to offer an accuracy of under 5% if the Froude number could be estimated with 25% accuracy. (author) (tk)

  19. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  20. Fundamental principles of rotary displacement meters

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J. [Schlumberger Industries, Owenton, KY (United States)

    1995-12-01

    The gas meter exists to continually and accurately measure the volume of gas supplied over the complete flow range of the load. In effect the gas meter serves as the {open_quotes}cash register{close_quotes} of the gas industry; its accurate and dependable performance ensures fair dealings for both the supplier and the user. An investment both in and of itself, the gas meter should be chosen as a function of its usefullness both over the short term and the long term. Thus in addition to initial cost, one must take into account various associated factors, costs and benefits, including the following: Design Characteristics Application, suitability, Meter features and options, Operation constraints, Installation, Service and maintenance, Repair and replacement, Life expectancy, Compatibility with complimentary products, Correcting devices, Remote reading capabilities, Data generation and gathering, Upgradeabilty. This paper will look at one positive displacement meter, the Rotary meter, and address the fundamentals principals of the technology as well as looking at some of the benefits derived from its application. Rotary positive displacement meters were introduced at the end of last century. Used primarily for metering transmission sized loads, the meters` measuring capabilities have extended to cover nearly all areas of distribution with exception of domestic applications. Rotary meters are available in rated capacities from 800 cfh to 102,000 cfh and operating pressures from 175 PSIG to 1440 PSIG. The use of rotary meters on load ranges in the 800 to 10,000 cfh category has increased and is replacing the use of diaphragm meters because of the smaller relative size of rotaries, and improvements in rangeabilities in the last few years. Turbine meters are usually the meter of choice on loads over 16,000 cfh unless a meter with high rangeability is required because of varying load characteristics, in which case a large foot mounted rotary might still be selected.

  1. Study of a three-phase flow metering process for oil-water-gas flows; Etude d`un procede de mesure des debits d`un ecoulement triphasique de type eau-huile-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Ch.

    1996-11-01

    We propose a theoretical and experimental study of a three-phase flow metering process for oil-water-gas flows. The selected process is based on a combination of a mixer, a Venturi and ultrasonic methods. To perform an experimental validation of this process an instrumented set-up for three-phase air-oil-water flows has been designed, conceived and adjusted. An original theoretical model have been built to predict three-phase dispersed flows across a contraction. Once validated with two-phase air-water, oil-water and air-oil-water flows data, this model has been used to solve the Venturi metering problems. After a critical review of the available techniques, the ultrasonic propagation velocity has been selected to determine two-phase liquid-liquid flow composition. Two original models have been developed to describe the ultrasonic propagation with the dispersed phase fraction. The comparison with experimental data in oil-water flows show the superiority of one of the two models, the scattering model. For the void fraction determination in air-water flows, the work of Bensler (1990) based on the ultrasonic attenuation measurement has been extended to take into account the multiple scattering effects. Finally these techniques have been combined to determine the different flow rates in air-water, oil-water flows. For two-phase air-water and oil-water flows the problem is solved and the flow rates are measured with a very good accuracy ({+-} 3%). The results quality obtained with three-phase oil-water-gas flows and the secure theoretical bases allowing their interpretation give us the opportunity to strongly recommend the development of an industrial prototype based on the process we studied. (author) 183 refs.

  2. Digital temperature meter

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S

    1982-01-01

    Digital temperature meter for precise temperature measurements is presented. Its parts such as thermostat, voltage-frequency converter and digital frequency meter are described. Its technical parameters such as temperature range 50degC-700degC, measurement precision 1degC, measurement error +-1degC are given. (A.S.).

  3. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  4. Federal Building Metering Guidance (per 42 U.S.C. 8253(e), Metering of Energy Use)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    Guidance defines which federal buildings are appropriate to meter, provides metering prioritization recommendations for agencies with limited resources, and discusses the requirement for agencies to submit metering implementation plans to the U.S. Department of Energy.

  5. Comparing the NIOSH Method 5040 to a Diesel Particulate Matter Meter for Elemental Carbon

    Science.gov (United States)

    Ayers, David Matthew

    Introduction: The sampling of elemental carbon has been associated with monitoring exposures in the trucking and mining industries. Recently, in the field of engineered nanomaterials, single wall and muti-wall carbon nanotubes (MWCNTs) are being produced in ever increasing quantities. The only approved atmospheric sampling for multi-wall carbon nanotubes in NIOSH Method 5040. These results are accurate but can take up to 30 days for sample results to be received. Objectives: Compare the results of elemental carbon sampling from the NIOSH Method 5040 to a Diesel Particulate Matter (DPM) Meter. Methods: MWCNTs were transferred and weighed between several trays placed on a scale. The NIOSH Method 5040 and DPM sampling train was hung 6 inches above the receiving tray. The transferring and weighing of the MWCNTs created an aerosol containing elemental carbon. Twenty-one total samples using both meters type were collected. Results: The assumptions for a Two-Way ANOVA were violated therefore, Mann-Whitney U Tests and a Kruskal-Wallis Test were performed. The hypotheses for both research questions were rejected. There was a significant difference in the EC concentrations obtained by the NIOSH Method 5040 and the DPM meter. There were also significant differences in elemental carbon level concentrations when sampled using a DPM meter versus a sampling pump based upon the three concentration levels (low, medium and high). Conclusions: The differences in the EC concentrations were statistically significant therefore, the two methods (NIOSH Method 5040 and DPM) are not the same. The NIOSH Method 5040 should continue to be the only authorized method of establishing an EC concentration for MWCNTs until a MWCNT specific method or an instantaneous meter is invented.

  6. Streamlining Smart Meter Data Analytics

    OpenAIRE

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, ...

  7. Calibration of reference KAP-meters at SSDL and cross calibration of clinical KAP-meters

    International Nuclear Information System (INIS)

    Hetland, Per O.; Friberg, Eva G.; Oevreboe, Kirsti M.; Bjerke, Hans H.

    2009-01-01

    In the summer of 2007 the secondary standard dosimetry laboratory (SSDL) in Norway established a calibration service for reference air-kerma product meter (KAP-meter). The air-kerma area product, PKA, is a dosimetric quantity that can be directly related to the patient dose and used for risk assessment associated with different x-ray examinations. The calibration of reference KAP-meters at the SSDL gives important information on parameters influencing the calibration factor for different types of KAP-meters. The use of reference KAP-meters calibrated at the SSDL is an easy and reliable way to calibrate or verify the PKA indicated by the x-ray equipment out in the clinics. Material and methods. Twelve KAP-meters were calibrated at the SSDL by use of the substitution method at five diagnostic radiation qualities (RQRs). Results. The calibration factors varied from 0.94 to 1.18. The energy response of the individual KAP-meters varied by a total of 20% between the different RQRs and the typical chamber transmission factors ranged from 0.78 to 0.91. Discussion. It is important to use a calibrated reference KAP-meter and a harmonised calibration method in the PKA calibration in hospitals. The obtained uncertainty in the PKA readings is comparable with other calibration methods if the information in the calibration certificate is correct used, corrections are made and proper positioning of the KAP-chamber is performed. This will ensure a reliable estimate of the patient dose and a proper optimisation of conventional x-ray examinations and interventional procedures

  8. Solid state semiconductor detectorized survey meter

    International Nuclear Information System (INIS)

    Okamoto, Eisuke; Nagase, Yoshiyuki; Furuhashi, Masato

    1987-01-01

    Survey meters are used for measurement of gamma ray dose rate of the space and the surface contamination dencity that the atomic energy plant and the radiation facility etc. We have recently developed semiconductor type survey meter (Commercial name: Compact Survey Meter). This survey meter is a small-sized dose rate meter with excellent function. The special features are using semiconductor type detector which we have developed by our own technique, stablar wide range than the old type, long life, and easy to carry. Now we introduce the efficiency and the function of the survey meter. (author)

  9. Multipath ultrasonic gas flow-meter based on multiple reference waves.

    Science.gov (United States)

    Zhou, Hongliang; Ji, Tao; Wang, Ruichen; Ge, Xiaocheng; Tang, Xiaoyu; Tang, Shizhen

    2018-01-01

    Several technologies can be used in ultrasonic gas flow-meters, such as transit-time, Doppler, cross-correlation and etc. In applications, the approach based on measuring transit-time has demonstrated its advantages and become more popular. Among those techniques which can be applied to determine time-of-flight (TOF) of ultrasonic waves, including threshold detection, cross correlation algorithm and other digital signal processing algorithms, cross correlation algorithm has more advantages when the received ultrasonic signal is severely disturbed by the noise. However, the reference wave for cross correlation computation has great influence on the precise measurement of TOF. In the applications of the multipath flow-meters, selection of the reference wave becomes even more complicated. Based on the analysis of the impact factors that will introduce noise and waveform distortion of ultrasonic waves, an averaging method is proposed to determine the reference wave in this paper. In the multipath ultrasonic gas flow-meter, the analysis of each path of ultrasound needs its own reference wave. In case study, a six-path ultrasonic gas flow-meter has been designed and tested with air flow through the pipeline. The results demonstrate that the flow rate accuracy and the repeatability of the TOF are significantly improved by using averaging reference wave, compared with that using random reference wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 3 testing

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1995-01-01

    This document summarizes the results of the phase 3 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The purpose of this acceptance test is to verify the sealing integrity of the FRS to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at the 306E Facility in the 300 area from January 10, 1995 to January 17, 1995. The Phase 3 test consisted of two parts. Part one was a water leak test of the seal between the blast shield and mock load distribution frame (LDF) to ensure that significant contamination of the pump pit and waste interaction with the aluminum impact-limiting material under the LDF are prevented during the pump removal operation. The second part of this acceptance test was an air leak test of the assembled flexible receiver system. The purpose of this test was to verify that the release of hazardous aerosols will be minimized if the tank dome pressure becomes slightly positive during the decontamination of the mixer pump

  11. Simple meters get smart? Cost benefit analysis of smart metering infrastructure

    International Nuclear Information System (INIS)

    Van Gerwen, R.J.F.; Jaarsma, S.A.; Koenis, F.T.C.

    2005-08-01

    The Dutch Ministry of Economic Affairs requested a cost-benefit analysis of the large scale introduction of a smart meter infrastructure for gas and electricity consumption by small consumers. The questions asked in the study need to be answered in order to enable a well-founded evaluation of the implementation of smart meters. [mk] [nl

  12. Cross-cultural differences in meter perception.

    Science.gov (United States)

    Kalender, Beste; Trehub, Sandra E; Schellenberg, E Glenn

    2013-03-01

    We examined the influence of incidental exposure to varied metrical patterns from different musical cultures on the perception of complex metrical structures from an unfamiliar musical culture. Adults who were familiar with Western music only (i.e., simple meters) and those who also had limited familiarity with non-Western music were tested on their perception of metrical organization in unfamiliar (Turkish) music with simple and complex meters. Adults who were familiar with Western music detected meter-violating changes in Turkish music with simple meter but not in Turkish music with complex meter. Adults with some exposure to non-Western music that was unmetered or metrically complex detected meter-violating changes in Turkish music with both simple and complex meters, but they performed better on patterns with a simple meter. The implication is that familiarity with varied metrical structures, including those with a non-isochronous tactus, enhances sensitivity to the metrical organization of unfamiliar music.

  13. Multitasking metering enhances generation, transmission operations

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, E.

    2008-11-15

    The Dairyland Power Cooperative (DPC) which operates from La Crosse, Wisconsin has the capacity to generate and transmit 1000 MW of power to 25 member cooperatives and 20 municipalities who serve over 500,000 customers. When DPC was experiencing diminished service within its analog cellular-based data communications system, it was presented with an opportunity to install a new automated telecommunications system that would provide secure collection of meter readings from all of its substations. DPC decided to evaluate an advanced multifunctional digital meter from Schweitzer Engineering Laboratories (SEL). The SEL-734 Revenue Metering System offers complete instantaneous metering functions, including voltages, currents, power, energy and power factor. Other capabilities include predictive demand, time-of-use metering, automatic voltage monitoring, harmonics metering and synchrophasor measurement. From a metering perspective, DPC wanted to perform daily load profiles and interval-by-interval metering of their delivery points for billing purposes. They also wanted to provide real-time monitoring of electricity being delivered for both generation and transmission purposes and to make that information available to a distribution SCADA system for their members. The SEL-734 Revenue Meter was well suited to those needs. The SEL-734 provides very high-accuracy energy metering, load profile data collection, instantaneous power measurements, power quality monitoring, and communicates simultaneously over a modem, serial ports, and wide area networks (WAN). The meter is backed with a ten-year warranty as well as field support engineers. 5 figs.

  14. Smart meter incorporating UWB technology

    NARCIS (Netherlands)

    Khan, T.A.; Khan, A.B.; Babar, M.; Taj, T.A.

    2014-01-01

    Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional

  15. Good standards for smart meters

    NARCIS (Netherlands)

    Hoenkamp, R.A.; Huitema, G.B.

    2012-01-01

    This paper examines what lessons can be learned from the rollout of smart meters in the Netherlands to improve the European smart meter standardization. This study is based on the case of the Dutch meter rollout which preparations started in 2005 but finally was delayed until 2011 by governmental

  16. RFID-BASED Prepaid Power Meter

    OpenAIRE

    Teymourzadeh, Rozita

    2013-01-01

    An Electric power meter is an important component in electric energy service. In the past, many consumers have complained about reading inaccurate of the electric meter. This research presents the development of an electrical power meter equipped with RFID reader. The RFID reader reads a valid RFID card and activates the power meter so that it can supply electricity. When the credit is about low or before the electricity is auto cut off, an SMS message will be sent to the user’s handphone to ...

  17. Cancer-meter: measure and cure.

    Science.gov (United States)

    Kashyap, Sunil Kumar; Sharma, Birendra Kumar; Banerjee, Amitabh

    2017-05-01

    This paper presents a theory and system on "Cancer-Meter'. This idea came through the statement that "cancer is curable if it is measurable". The Cancer-Meter proves that it is possible. This paper proposes the cancer-meter in two ways, theoretical and electronically, as per the measurement and treatment. By the mathematics, first part is defined but the second part is based on computer programming, electrical and electronics. Thus, the cancer-meter is a programmed-electrical-electronic device which measures and cures the cancer both.

  18. Privacy friendly aggregation of smart meter readings, even when meters crash

    NARCIS (Netherlands)

    Hoepman, J.H.

    2017-01-01

    A well studied privacy problem in the area of smart grids is the question of how to aggregate the sum of a set of smart meter readings in a privacy friendly manner, i.e., in such a way that individual meter readings are not revealed to the adversary. Much less well studied is how to deal with

  19. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  20. Experimental Investigation of the Performance of Tilt Current Meters in Wave-Dominated Flows

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan

    2017-01-01

    In recent years, tilt current meters (TCMs) have received renewed attention as they provide an inexpensive method for measuring currents in the coastal zone. However, previous studies focused mainly on current dominated flows or the current component of the flow. This study investigates the perfo...

  1. Performance of combination of a Venturi and nuclear fraction meter in SAGD production operations

    Energy Technology Data Exchange (ETDEWEB)

    Hompoth, D.; Khun, N. [Suncor Energy, Calgary, AB (Canada); Pinguet, B.G.; Guerra, E. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    This paper described a multiphase flow meter (MFM) that used a Venturi and nuclear fraction meter combination for steam assisted gravity drainage (SAGD) well production testing. The device was designed by re-engineering a flow model and fluid property package to measure the steam phases. The meter was designed to improve pump monitoring processes in SAGD operations. The technology combined 2 basic measurement steps. The first was a nuclear multi Gamma-ray fraction meters which measured the fraction of each constituent at the Venturi tube's throat at high frequencies. Fractions were then determined from the solution of 3 simultaneous equations related to the Gamma ray attenuation, and a fraction balance equation. Pressure and temperature measurements were used to predict the fluid properties at line conditions. Primary outputs were based on nuclear measurements, gas fractions, water liquid ratios, and mixture densities. Secondary outputs from the meter included volumetric flow rates. Stability, dynamic responses, and reproducibility rates of the MFM were also presented. 9 refs., 6 tabs., 17 figs.

  2. Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning

    Directory of Open Access Journals (Sweden)

    Iker Urrutia

    2013-01-01

    Full Text Available Low Voltage (LV electricity distribution grid operations can be improved through a combination of new smart metering systems’ capabilities based on real time Power Line Communications (PLC and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.

  3. SAGD production optimization : combination of ESP and multiphase metering

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, B.G.; Guerra, E.; Drever, C. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    Many commercial oil reservoirs in Canada are completed using electric submersible pumps (ESP) due to low reservoir pressures and extra heavy oils and bitumens. This paper presented details of an optimization process for steam-assisted gravity drainage (SAGD) wells. The process used ESP and a multiphase flow meter (MFM) based on Vx technology. The MFM was based on a Venturi and nuclear fraction meter combination that was engineered to measure the steam phases during SAGD processes. The technology was designed to measure total mass or total volumetric flow rates as well as oil, water and gas in producing wells. Length fractions of oil, water, and gas were calculated based on the attenuation of Gamma-rays as they passed through the Venturi section. Production was optimized in real time using the frequency control of the pump to improve oil flow rates. The results of field tests showed that the optimization process resulted in longer life cycles for the ESP. It was concluded that use of the meter results in changes to lift system operating parameters at the well site as well as improved monitoring during the workflow process. 3 refs., 1 tab., 11 figs.

  4. Simulation of a ring resonator-based optical beamformer system for phased array receive antennas

    NARCIS (Netherlands)

    Tijmes, M.R.; Meijerink, Arjan; Roeloffzen, C.G.H.; Bentum, Marinus Jan

    2009-01-01

    A new simulator tool is described that can be used in the field of RF photonics. It has been developed on the basis of a broadband, continuously tunable optical beamformer system for phased array receive antennas. The application that is considered in this paper is airborne satellite reception of

  5. Smart metering design and applications

    CERN Document Server

    Weranga, K S K; Chandima, D P

    2013-01-01

    Taking into account the present day trends and the requirements, this Brief focuses on smart metering of electricity for next generation energy efficiency and conservation. The contents include discussions on the smart metering concepts and existing technologies and systems as well as design and implementation of smart metering schemes together with detailed examples.

  6. Economics of "essential use exemptions" for metered-dose inhalers under the Montreal Protocol.

    Science.gov (United States)

    DeCanio, Stephen J; Norman, Catherine S

    2007-10-01

    The Montreal Protocol on Substances that Deplete the Ozone Layer has led to rapid reductions in the use of ozone-depleting substances worldwide. However, the Protocol provides for "essential use exemptions" (EUEs) if there are no "technically and economically feasible" alternatives. An application that might qualify as an "essential use" is CFC-powered medical metered-dose inhalers (MDIs) for the treatment of asthma and chronic obstructive pulmonary disease (COPD), and the US and other nations have applied for exemptions in this case. One concern is that exemptions are necessary to ensure access to medications for low-income uninsureds. We examine the consequences of granting or withholding such exemptions, and conclude that government policies and private-sector programs are available that make it economically feasible to phase out chlorofluorocarbons (CFCs) in this application, thereby furthering the global public health objectives of the Montreal Protocol without compromising the treatment of patients who currently receive medication by means of MDIs.

  7. A Pseudorange Measurement Scheme Based on Snapshot for Base Station Positioning Receivers.

    Science.gov (United States)

    Mo, Jun; Deng, Zhongliang; Jia, Buyun; Bian, Xinmei

    2017-12-01

    Digital multimedia broadcasting signal is promised to be a wireless positioning signal. This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB signal suggests that the existing CMMB signal does not have the meter positioning capability. So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA) estimation method is used in base station positioning receivers. Due to the influence of a complex fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and real data tests show that the proposed algorithm can significantly reduce the TDOA estimation error for base station positioning receivers, and then the modified CMMB system achieves meter positioning accuracy.

  8. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  9. Performance evaluation of domestic prototype dose area product meter SFT-1

    International Nuclear Information System (INIS)

    Lee, Ho Sun; Han, Seong Gyu; Roh, Young Roh; Lim, Hyun Jong; Kim, Jung Min; Kim, Jong Uk; Chae, Hyun Sik; Yoon, Yong Su

    2016-01-01

    The importance of radiation dose display of medical X-ray equipment was emphasized, while third edition of IEC(International Electrotechnical Commission) 60601 started to apply. The existing medical X-ray equipment selected a method for attaching the DAP(Dose Area Product) meter when the dose display. However, because the DAP meter was dependent on all of the income, And it did not yet produced in Korea. So, we received the support of Seoul R and BD Program(Grants No. C1152055) to produce DAP meter prototype of the Domestically technology. In this study, the performance of this prototype was evaluated by comparing the German company's product. Evaluation item was an electronic capture performance, radiation dose dependence, radiation quality dependence, energy transmittance, repeatability, light transmittance of 6 entries. And IEC 60580 was based on this evaluation. Evaluation results were electronic capture performance intrinsic error 9.5%, radiation dose dependence limits of variation 1%, repeatabilit y coefficient of variation 2%, energy transmittance 91% each assessment was passed. However radiation quality dependence limits of variation 29%, light transmittance 55% was less than acceptance criteria

  10. Streamlining Smart Meter Data Analytics

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    2015-01-01

    of the so-called big data possible. This can improve energy management, e.g., help utilities improve the management of energy and services, and help customers save money. As this regard, the paper focuses on building an innovative software solution to streamline smart meter data analytic, aiming at dealing......Today smart meters are increasingly used in worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time interval, e.g., every 15 minutes. The data are very sizable, and might be from different sources, along with the other social......-economic metrics such as the geographic information of meters, the information about users and their property, geographic location and others, which make the data management very complex. On the other hand, data-mining and the emerging cloud computing technologies make the collection, management, and analysis...

  11. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  12. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  13. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  14. Advanced metering policy development and influence structures: The case of Norway

    International Nuclear Information System (INIS)

    Inderberg, Tor Håkon

    2015-01-01

    Responding to a global trend of installing smart meters Norway has taken a route of full governmental and regulatory coordination. The article maps and analyses the main influences on the developments of Norwegian Advanced Metering policy. Based on 12 interviews and extensive document mapping the Norwegian policy developments are traced from about 1990 to 2014, divided into three phases: Before 2000, between 2000 and 2007, and after 2007. It finds that the main influence and push came from an increasingly united industry sector, fronted by the grid utilities with respective interest organizations. Policy change has been boosted by years of constrained supply, creating incentives for political action. Also developments at the EU level have been important for creating attention for smart meters, while consumer groups have been less influential. The national regulator NVE has adapted its policy process to include external expertise, in particular from the grid companies. The findings confirm that influence into policy processes is a matter of financial and organizational resources and expert knowledge. Of particular policy relevance is the weak organization of private consumer interests into these policy streams, which may be important for further policy development for distributed generation and regulation of private generation activities. -- Highlights: •Roll-out of smart meters is in Norway coordinated by national regulation. •Grid companies and related interest organizations has been most influential. •EU has provided informal pressure on smart meter policy. •Consumer interests have been less influential in the policy process

  15. Multi-Antenna Data Collector for Smart Metering Networks with Integrated Source Separation by Spatial Filtering

    Science.gov (United States)

    Quednau, Philipp; Trommer, Ralph; Schmidt, Lorenz-Peter

    2016-03-01

    Wireless transmission systems in smart metering networks share the advantage of lower installation costs due to the expandability of separate infrastructure but suffer from transmission problems. In this paper the issue of interference of wireless transmitted smart meter data with third party systems and data from other meters is investigated and an approach for solving the problem is presented. A multi-channel wireless m-bus receiver was developed to separate the desired data from unwanted interferers by spatial filtering. The according algorithms are presented and the influence of different antenna types on the spatial filtering is investigated. The performance of the spatial filtering is evaluated by extensive measurements in a realistic surrounding with several hundreds of active wireless m-bus transponders. These measurements correspond to the future environment for data-collectors as they took place in rural and urban areas with smart gas meters equipped with wireless m-bus transponders installed in almost all surrounding buildings.

  16. Balanced Flow Meters without Moving Parts

    Science.gov (United States)

    Kelley, Anthony R.; VanBuskirk, Paul

    2008-01-01

    Balanced flow meters are recent additions to an established class of simple, rugged flow meters that contain no moving parts in contact with flow and are based on measurement of pressure drops across objects placed in flow paths. These flow meters are highly accurate, minimally intrusive, easily manufacturable, and reliable. A balanced flow meter can be easily mounted in a flow path by bolting it between conventional pipe flanges. A balanced flow meter can be used to measure the flow of any of a variety of liquids or gases, provided that it has been properly calibrated. Relative to the standard orifice-plate flow meter, the balanced flow meter introduces less turbulence and two times less permanent pressure loss and is therefore capable of offering 10 times greater accuracy and repeatability with less dissipation of energy. A secondary benefit of the reduction of turbulence is the reduction of vibration and up to 15 times less acoustic noise generation. Both the balanced flow meter and the standard orifice-plate flow meter are basically disks that contain holes and are instrumented with pressure transducers on their upstream and downstream faces. The most obvious difference between them is that the standard orifice plate contains a single, central hole while the balanced flow meter contains multiple holes. The term 'balanced' signifies that in designing the meter, the sizes and locations of the holes are determined in an optimization procedure that involves balancing of numerous factors, including volumetric flow, mass flow, dynamic pressure, kinetic energy, all in an effort to minimize such undesired effects as turbulence, pressure loss, dissipation of kinetic energy, and non-repeatability and nonlinearity of response over the anticipated range of flow conditions. Due to proper balancing of these factors, recent testing demonstrated that the balanced flow-meter performance was similar to a Venturi tube in both accuracy and pressure recovery, but featured reduced

  17. How to use your peak flow meter

    Science.gov (United States)

    ... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  18. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    Science.gov (United States)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  19. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  20. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  1. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  2. Hardware Design of a Smart Meter

    OpenAIRE

    Ganiyu A. Ajenikoko; Anthony A. Olaomi

    2014-01-01

    Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and elimina...

  3. Optical cycle power meter

    DEFF Research Database (Denmark)

    2014-01-01

    A bicycle power meter for measuring power generated when riding a bicycle, the power meter comprising a position-sensitive radiation detector (409) attachable to a component of a crank set (404) of bicycle, and a radiation source (408) attachable to the component of the crank set and configured t...

  4. Determination of Multiphase Flow Meter Reliability and Development of Correction Charts for the Prediction of Oilfield Fluid Flow Rates

    Directory of Open Access Journals (Sweden)

    Samuel S. MOFUNLEWI

    2008-06-01

    Full Text Available The aim of field testing of Multiphase Flow Meter (MPFM is to show whether its accuracy compares favourably with that of the Test Separator in accurately measuring the three production phases (oil, gas and water as well as determining meter reliability in field environment. This study evaluates field test results of the MPFM as compared to reference conventional test separators. Generally, results show that MPFM compares favourably with Test Separator within the specified range of accuracy.At the moment, there is no legislation for meter proving technique for MPFM. However, this study has developed calibration charts that can be used to correct and improve meter accuracy.

  5. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  6. Fundamentals of GPS Receivers A Hardware Approach

    CERN Document Server

    Doberstein, Dan

    2012-01-01

    While much of the current literature on GPS receivers is aimed at those intimately familiar with their workings, this volume summarizes the basic principles using as little mathematics as possible, and details the necessary specifications and circuits for constructing a GPS receiver that is accurate to within 300 meters. Dedicated sections deal with the features of the GPS signal and its data stream, the details of the receiver (using a hybrid design as exemplar), and more advanced receivers and topics including time and frequency measurements. Later segments discuss the Zarlink GPS receiver chip set, as well as providing a thorough examination of the TurboRogue receiver, one of the most accurate yet made. Guiding the reader through the concepts and circuitry, from the antenna to the solution of user position, the book’s deployment of a hybrid receiver as a basis for discussion allows for extrapolation of the core ideas to more complex, and more accurate designs. Digital methods are used, but any analogue c...

  7. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    Science.gov (United States)

    Zhang, Zhu; Li, Hongbin; Tang, Dengping; Hu, Chen; Jiao, Yang

    2017-10-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer.

  8. Monitoring the metering performance of an electronic voltage transformer on-line based on cyber-physics correlation analysis

    International Nuclear Information System (INIS)

    Zhang, Zhu; Li, Hongbin; Hu, Chen; Jiao, Yang; Tang, Dengping

    2017-01-01

    Metering performance is the key parameter of an electronic voltage transformer (EVT), and it requires high accuracy. The conventional off-line calibration method using a standard voltage transformer is not suitable for the key equipment in a smart substation, which needs on-line monitoring. In this article, we propose a method for monitoring the metering performance of an EVT on-line based on cyber-physics correlation analysis. By the electrical and physical properties of a substation running in three-phase symmetry, the principal component analysis method is used to separate the metering deviation caused by the primary fluctuation and the EVT anomaly. The characteristic statistics of the measured data during operation are extracted, and the metering performance of the EVT is evaluated by analyzing the change in statistics. The experimental results show that the method successfully monitors the metering deviation of a Class 0.2 EVT accurately. The method demonstrates the accurate evaluation of on-line monitoring of the metering performance on an EVT without a standard voltage transformer. (paper)

  9. Centimeter-Level Positioning Using an Efficient New Baseband Mixing and Despreading Method for Software GNSS Receivers

    Directory of Open Access Journals (Sweden)

    G. Lachapelle

    2007-10-01

    Full Text Available This paper presents an efficient new method for performing the baseband mixing and despreading operations in a software-based GNSS receiver, and demonstrates that the method is capable of providing measurements for centimeter-level positioning accuracy. The method uses a single frequency carrier replica for the baseband mixing process, enabling all satellites to perform mixing simultaneously and yielding considerable computational savings. To compensate for signal-to-noise ratio (SNR losses caused by using a single frequency carrier replica, the integration interval after despreading is divided into subintervals, and the output from each subinterval then compensated for the known frequency error. Using this approach, receiver processing times are shown to be reduced by approximately 21% relative to the next fastest method when tracking seven satellites. The paper shows the mathematical derivation of the new algorithm, discusses practical considerations, and demonstrates its performance using simulations and real data. Results show that the new method is able to generate pseudorange and carrier phase measurements with the same accuracy as traditional methods. Stand-alone positioning accuracy is at the meter level, while differential processing can produce fixed ambiguity carrier phase positions accurate to the centimeter level.

  10. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    Science.gov (United States)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  11. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  12. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  13. A simple reactivity-meter system

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1992-01-01

    This paper describes a new version of a reactivity meter developed at the Institute of Nuclear Energy Research (IPEN) (Brazil). The reactivity meter computes the reactor reactivity utilizing a programmable electrometer that performs the data aquisition. The software commands the main functions of the electrometer, the data acquisition, data transfer, and reactivity calculation. The necessary hardware for this reactivity meter are a programmable electrometer, a microcomputer, and interfaces for the microcomputer to communicate with the electrometer. If it is necessary, it is possible to connect a graphic register to the microcomputer. With this conventional hardware, available in any nuclear reactor facility, one can build a powerful reactivity meter. Adding to these advantages, one can use the microcomputer on-line to analyze the data, store the data on diskettes, or create graphics

  14. Suitable RF spectrum in ISM band for 2-way advanced metering network in India

    Science.gov (United States)

    Mishra, A.; Khan, M. A.; Gaur, M. S.

    2013-01-01

    The ISM (Industrial Scientific and Medical) bands in the radio frequency space in India offer two alternative spectra to implement wireless network for advanced metering infrastructure (AMI). These bands lie in the range of 2.4GHz and sub-GHz frequencies 865 to 867 MHz This paper aims to examine the suitability of both options by designing and executing experiments in laboratory as well as carrying out field trials on electricity meters to validate the selected option. A parameter, communication effectiveness index (CEI2) is defined to measure the effectiveness of 2 way data communication (packet exchange) between two points under different scenarios of buildings and free space. Both 2.4 GHz and Sub-GHz designs were implemented to compare the results. The experiments were conducted across 3 floors of a building. Validation of the selected option was carried out by conducting a field trial by integrating the selected radio frequency (RF) modem into the single phase electricity meters and installing these meters across three floors of the building. The methodology, implementation details, observations and resulting analytical conclusion are described in the paper.

  15. MULTICHANNEL DISTRIBUTION METER: A VERITABLE ...

    African Journals Online (AJOL)

    eobe

    Usually, commercial home owners preferred the installation of one or few .... communication (GSM) based solution were presented. The authors ... meters. The proposed meters in their work uses .... The most probable data entry component to ...

  16. Hydro Ottawa achieves Smart Meter milestone

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    As Ontario's second largest municipal electricity company, Hydro Ottawa serves more than 285,000 residential and business customers in the city of Ottawa and the village of Casselman. Since 2006, the utility has installed more than 230,000 Smart Meters throughout its service territory in an effort to provide better services to its customers. This initiative represents the largest operational advanced metering infrastructure network in Canada. This move was necessary before time-of-use rates can be implemented in Ottawa. The Smart Meters deliver data wirelessly to Hydro Ottawa's Customer Information System for billing and eliminating manual readings. The Smart Meters are designed to promote more efficient use of electricity. The Government of Ontario has passed legislation requiring the installation of Smart Meters throughout the province by the end of 2010

  17. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  18. The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California

    International Nuclear Information System (INIS)

    Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-01-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. - Highlights: → We examine the value of bill savings under net metering to PV owners in California. → Bill savings per kWh of PV generation varies by a factor of four with net metering. The variation is attributable to rate design, the unique inclining block structure. → The median value of bill savings is reduced by 40-67% with MPR feed-in tariff. → The median value of bill savings is reduced by 6-12% with hourly netting.

  19. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  20. Practical speed meter designs for quantum nondemolition gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Purdue, Patricia; Chen Yanbei

    2002-01-01

    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g., LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. A previous paper analyzed a straightforward but impractical design for a speed-meter interferometer that accomplishes this. This paper describes some practical variants of speed-meter interferometers. Like the original interferometric speed meter, these designs in principle can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies. These variants essentially consist of a Michelson interferometer plus an extra 'sloshing' cavity that sends the signal back into the interferometer with opposite phase shift, thereby cancelling the position information and leaving a net phase shift proportional to the relative velocity. In practice, the sensitivity of these variants will be limited by the maximum light power W circ circulating in the arm cavities that the mirrors can support and by the leakage of vacuum into the optical train at dissipation points. In the absence of dissipation and with squeezed vacuum (power squeeze factor e -2R ≅0.1) inserted into the output port so as to keep the circulating power down, the SQL can be beat by h/h SQL ∼√(W circ SQL e -2R /W circ ) at all frequencies below some chosen f opt ≅100 Hz. Here W circ SQL ≅800 kW(f opt /100 Hz) 3 is the power required to reach the SQL in the absence of squeezing. (However, as the power increases in this expression, the speed meter becomes more narrow band; additional power and reoptimization of some parameters are required to maintain the wide band. See Sec. III B.) Estimates are given of the amount by which vacuum leakage at dissipation points will debilitate this sensitivity; these losses are 10% or less over most of the frequency range of interest (f

  1. DOE final report phase one startup, Waste Receiving and Processing Facility (WRAP)

    International Nuclear Information System (INIS)

    Jasen, W.G.

    1998-01-01

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented

  2. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  3. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    Science.gov (United States)

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  4. Intelligent Metering for Urban Water: A Review

    OpenAIRE

    Rodney Stewart; Stuart White; Candice Moy; Ariane Liu; Pierre Mukheibir; Damien Giurco; Thomas Boyle

    2013-01-01

    This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering) has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been ...

  5. Ambiguity effects of rhyme and meter.

    Science.gov (United States)

    Wallot, Sebastian; Menninghaus, Winfried

    2018-04-23

    Previous research has shown that rhyme and meter-although enhancing prosodic processing ease and memorability-also tend to make semantic processing more demanding. Using a set of rhymed and metered proverbs, as well as nonrhymed and nonmetered versions of these proverbs, the present study reveals this hitherto unspecified difficulty of comprehension to be specifically driven by perceived ambiguity. Roman Jakobson was the 1st to propose this hypothesis, in 1960. He suggested that "ambiguity is an intrinsic, inalienable feature" of "parallelistic" diction of which the combination of rhyme and meter is a pronounced example. Our results show that ambiguity indeed explains a substantial portion of the rhyme- and meter-driven difficulty of comprehension. Longer word-reading times differentially reflected ratings for ambiguity and comprehension difficulty. However, the ambiguity effect is not "inalienable." Rather, many rhymed and metered sentences turned out to be low in ambiguity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Properties of cellulose triacetate dose meter

    International Nuclear Information System (INIS)

    Tamura, N.; Tanaka, R.; Mitomo, S.; Matsuda, K.; Nagai, S.

    1981-01-01

    Several clear plastics and dyed plastics are commercially available for dosimetry in intense radiation field, especially for radiation processing applications. Among these dose meters cellulose triacetate (CTA) dose meter has two advantages for routine uses; (1) it has linear response in mega-rad dose region and (2) the main product form is long tape. However, the manufacture of Numelec CTA film so far used had been discontinued, and for this reason we developed a new film for dosimetry uses. To determine the manufacturing conditions of the film, we examined the influence of additives, triphenylphosphate (TPP) and others, and film thickness on the dosimetric properties, since these two conditions remarkably influence the sensitivity of the dose meter. It is necessary for the reliability of plastic dose meters that the radiation induced colorations should be understood as radiation chemical processes. In this paper we describe the determination of the manufacturing conditions of the new film, the feature of the new dose meter, and the coloration mechanism. (author)

  7. 39 CFR 501.15 - Computerized Meter Resetting System.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Computerized Meter Resetting System. 501.15... AND DISTRIBUTE POSTAGE EVIDENCING SYSTEMS § 501.15 Computerized Meter Resetting System. (a) Description. The Computerized Meter Resetting System (CMRS) permits customers to reset their postage meters at...

  8. A Probabilistic Model of Meter Perception: Simulating Enculturation

    Directory of Open Access Journals (Sweden)

    Bastiaan van der Weij

    2017-05-01

    Full Text Available Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis, we present a probabilistic model of meter perception that uses statistical properties of the relation between rhythm and meter to infer meter from quantized rhythms. We show that our model can successfully predict annotated time signatures from quantized rhythmic patterns derived from folk melodies. Furthermore, we show that by inferring meter, our model improves prediction of the onsets of future events compared to a similar probabilistic model that does not infer meter. Finally, as a proof of concept, we demonstrate how our model can be used in a simulation of enculturation. From the results of this simulation, we derive a class of rhythms that are likely to be interpreted differently by enculturated listeners with different histories of exposure to rhythms.

  9. Laser power meter based on the Peltier effect

    International Nuclear Information System (INIS)

    Goldschmid, H.J.; Miller, L.A.; Paul, G.L.

    1984-01-01

    An isothermal power meter, in which the incoming radiation is balanced by thermoelectric cooling, has two substantial advantages: there are no heat losses to the surroundings, and a short response time should result from the smallness of the temperature excursions before balance is achieved. Experiments on prototype devices consisting of thermoelectric modules, made from bismuth telluride alloys, with nominally black-body receivers are reported. Laser powers in the range 100 to 550 mW were measured. In the most favoured arrangement, multijunction modules were used both to provide cooling through the Peltier effect and to detect any temperature excursions through the Seebeck effect. The results justify further work on the system

  10. Radiofrequency energy exposure from the Trilliant smart meter.

    Science.gov (United States)

    Foster, Kenneth R; Tell, Richard A

    2013-08-01

    This paper reviews radiofrequency (RF) field levels produced by electric utility meters equipped with RF transceivers (so-called Smart Meters), focusing on meters from one manufacturer (Trilliant, Redwood City, CA, USA, and Granby, QC, Canada). The RF transmission levels are summarized based on publicly available data submitted to the U.S. Federal Communications Commission supplemented by limited independent measurements. As with other Smart Meters, this meter incorporates a low powered radiofrequency transceiver used for a neighborhood mesh network, in the present case using ZigBee-compliant physical and medium access layers, operating in the 2.45 GHz unlicensed band but with a proprietary network architecture. Simple calculations based on a free space propagation model indicate that peak RF field intensities are in the range of 10 mW m or less at a distance of more than 1-2 m from the meters. However, the duty cycle of transmission from the meters is very low (meter that were consistent with data reported by the vendor to the U.S. Federal Communications Commission. Limited measurements conducted in two houses with the meters were unable to clearly distinguish emissions from the meters from the considerable electromagnetic clutter in the same frequency range from other sources, including Wi-Fi routers and, when it was activated, a microwave oven. These preliminary measurements disclosed the difficulties that would be encountered in characterizing the RF exposures from these meters in homes in the face of background signals from other household devices in the same frequency range. An appendix provides an introduction to Smart Meter technology. The RF transmitters in wireless-equipped Smart Meters operate at similar power levels and in similar frequency ranges as many other digital communications devices in common use, and their exposure levels are very far below U.S. and international exposure limits.

  11. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  12. A Probabilistic Model of Meter Perception: Simulating Enculturation

    NARCIS (Netherlands)

    van der Weij, B.; Pearce, M.T.; Honing, H.

    Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter

  13. Measuring methods in power metering 2013; Elektrizitaetsmesstechnik 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kahmann, Martin; Zayer, Peter (eds.)

    2012-07-01

    The book addresses technical and economic issues of power metering, data communication and data processing. Smart metering is the key issue discussed in all 14 contributions: 1. The perspective of Smart Metering in Europe through 2020; 2. Introduction of Smart Metering in Austria; 3. Metering after the amended EnWG 2011; 4. The FNN project ''MessSystem 2020''; 5. Technological requirements of Smart Grid and Smart Market; 6. DIN Spec 33440 ''Ergonomic Aspects of Smart Grids and Electromobility''; 7. Load management as a key element of energy transition; 8. Added value in Smart Metering as a result of Smart Home applications, 9. The main cost factors of the new metering systems; 10. BSI protection profile: Smart Meter Gateway certification; 11. The influence of new boundary conditions in metering on intercompany processes; 12. Reliable time allotment via internet; 13. Recommendations of the EEG Clearing Authority on metering problems; 14. Outline quality management manual for state-authorized test services for electric power, gas, water, and heat. [German] Dieses Buch richtet seinen Blick sowohl auf technische wie auch auf energiewirtschaftliche Themen rund um das Thema Mess- und Zaehltechnik sowie die inzwischen immer bedeutsamer werdende zugehoerige Datenkommunikations- und Datenverarbeitungstechnik. Eine zunehmende Betrachtung des Smart Metering als einen Teilaspekt des grossen Themas Smart Grid bildet die gemeinsame Klammer um die Beitraege. Die Themen der 14 Beitraege sind: 1. Perspektive Smart Metering in Europa bis 2020; 2. Smart-Meter-Einfuehrung in Oesterreich; 3. Das Messwesen nach der EnWG-Novelle 2011; 4. Das FNN-Projekt ''MessSystem 2020''; 5. Anforderungen durch Smart Grid und Smart Market an die intelligente Messtechnik; 6. DIN Spec 33440 ''Ergonomie-Aspekte zu Smart Grid und Elektromobilitaet''; 7. Lastverschiebung als Baustein der Energiewende; 8. Mehrwerte beim Smart

  14. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    Science.gov (United States)

    2016-02-26

    bandwidths, and with it receiver noise floors , are unavoidable. Figure 1. SNR of a thermally limited receiver based on Friis equation showing the...techniques for RF and photonic integration based on liquid crystal polymer substrates were pursued that would aid in the realization of potential imaging...These models assumed that sufficient LNA gain was used on the antenna to set the noise floor of the imaging receiver, which necessitated physical

  15. 24 CFR 965.401 - Individually metered utilities.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Individual Metering of Utilities for Existing PHA-Owned Projects § 965.401 Individually metered utilities. (a) All utility service shall be... supplier or through the use of checkmeters, unless: (1) Individual metering is impractical, such as in the...

  16. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  17. Influence of solid particles to a coriolis mass flow metering; Einfluss von Feststoffen in einer Fluessigkeitsstroemung auf die Coriolis-Massemessung

    Energy Technology Data Exchange (ETDEWEB)

    Goeke, J.; Steffensen, E. [Fachhochschule Koeln (Germany). Fakultaet Anlagen-, Energie- und Maschinensysteme

    2006-07-01

    Since more than 15 years coriolis mass flow meters could be regarded as an extraordinary metering system. Those old mechanical principle could be enhanced by application of new electronic technique. Today high precise technologies are available for the rough industrial application, which are often distorted from enviromental influences. Nevertheless there exist situations, which the rapid chance of parameters affect the state of the swinging metering system. And the algorithm could not react in an suggestive manner. This problem occurs for example at a two phase flow. Within this paper we present the reaction of a coriolis massflow meter in a liquid flow with little solid particles. The result show small deviations between the experimental results and the thoretical calculations. (orig.)

  18. Performance Analysis of Spectral-Phase-Encoded Optical CDMA System Using Two-Photon-Absorption Receiver Structure for Asynchronous and Slot-Level Synchronous Transmitters

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2007-06-01

    In this paper, we analyze the performance of a nonlinear two-photon-absorption (TPA) receiver and compare its performance with that of a single-photon-absorption (SPA) receiver in the context of spectral-phase-encoded optical code-division multiple access (CDMA) technique. The performances for the above systems are evaluated for two different transmission scenarios, namely, asynchronous and slot-level synchronous transmitters. Performance evaluation includes different sources of degradation such as multiple-access interference, noise due to optical amplification, shot noise, and thermal noise. In obtaining the performance, the mean and variance of the received signal in each of the above techniques are derived, and bit error rate is obtained using Gaussian approximation. In general, it is shown that TPA receivers are superior in performance with respect to SPA receivers when the receiver employs a much slower photodetector in comparison with the laser's transmitted pulse duration. This, indeed, is the reason behind the choice of nonlinear receivers, such as TPA, in most spectral-phase-encoded optical CDMA systems.

  19. Investigation of Separate Meter-In Separate Meter-Out Control Strategies for Systems with Over Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Hansen, Rico Hjerm

    2010-01-01

    to overcome this problem, but it typically implies higher energy consumption and/or decreased control performance. With the development of robust sensors and new valve types with separate meter-in, separate meter-out control it is, however, possible to overcome these stability problems in a much more...... intelligent way, also adding increased functionality to the system. The focus of the current paper is therefore on investigation of different control strategies for Separate Meter-In Separate Meter-Out (SMISMO) control of general single axis hydraulic system with a differential cylinder and an over......-centre valve included. The paper first presents a general model of the system considered, which is experimentally verified. This is followed by a discussion of different control strategies and their implications. For each of the control strategies controllers are described, taking into account the dynamics...

  20. Metering, settlement and export reward options for micro-generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a study carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme to evaluate the costs and benefits of various metering, settlement and export reward opportunities for both renewable and non-renewable forms of microgeneration based on existing projections to 2020. The technologies studied included single and three-phase applications of: solar photovoltaic (rated at 1 kW per installation); small-scale wind generation (rated at 1 kW per installation); micro-CHP (combined heat and power) (rated at 1.1 kW per installation); and micro-hydropower (rated at 3.7 and 6.4 kW per installation). The report outlines a number of different options for metering, settlement and export rewards, and describes the development of an economic model to quantify their costs and benefits. This model is then used to predict the future costs and benefits of the various options. The potential value of the options to the UK economy and any environmental benefits are discussed and a commentary on possible barriers to implementation is provided.

  1. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    suppliers, but they can also play a big role in the control of the Microgrid since the recorded power and energy profiles can be integrated in energy management systems (EMS). In addition, basic power quality (PQ) disturbance can de detected and reported by some advanced metering systems. Thus, this paper...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  2. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  3. Robust Meter Network for Water Distribution Pipe Burst Detection

    OpenAIRE

    Donghwi Jung; Joong Hoon Kim

    2017-01-01

    A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal me...

  4. Versatile operation meter for nuclear information

    International Nuclear Information System (INIS)

    Huang Yong; Xiao Yabin; Wang Shuyuan; Shu Jingfang; Di Shaoliang; Wu Hongbin

    1995-01-01

    This paper states a low-cost, small-volume, multi-function, reproducible and new model intelligent nuclear electronic meter. It's hardware and Software were detailed and the 137 Cs spectrum with this meter was presented

  5. Smart metering - new possibilities for energy distribution in the mass customer sector; Smart Metering - neue Moeglichkeiten fuer den Energievertrieb im Massenkundenbereich

    Energy Technology Data Exchange (ETDEWEB)

    Haller, T. [Simon-Kucher aand Partners GmbH, Wien (Austria); Hoffmann, S.O.; Rentschler, M.D. [Simon-Kucher and Partners Strategy and Marketing Consultants GmbH, Bonn (Germany)

    2008-06-15

    As a result of the liberalisation of gas and electricity metering procedures energy suppliers are more and more turning their attention to innovative and intelligent metering techniques. Smart Metering allows energy suppliers to improve their metering processes while at the same time responding better to their customers' needs. These developments are also opening up new sales opportunities because intelligent meters facilitate the launch of new products in the mass customer sector. There is therefore much in favour of looking at this topic in greater detail.

  6. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.

    2003-01-01

    A Josephson Flux Flow Oscillator (FFO) is the most developed superconducting local oscillator for integration with an SIS mixer in a single-chip submm-wave receiver. Recently, using a new FFO design, a free-running linewidth less than or equal to10 MHz has been measured in the frequency range up...... to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...... have been performed using an integrated SIS harmonic mixer. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field has been studied in order to further optimize the FFO design...

  7. Proceedings of the 2006 smart metering conference and expo

    International Nuclear Information System (INIS)

    2006-01-01

    Ontario's smart metering program was launched as part of a general demand response management strategy to improve energy conservation in the province. Smart metering will help consumers to control their electricity bills through conservation and demand response, and will allow consumers to better manage their energy consumption and use it more effectively during cheaper, off-peak times of day. Smart metering systems measure how much electricity a customer uses on an hourly basis, and data is transferred daily to local electricity distributors. Toronto Hydro will have close to 200,000 smart meters installed by the end of 2006. By 2010, Toronto will be North America's largest urban centre to have made the full transition to smart metering technology across its entire base. This conference provided an update of Toronto Hydro's smart metering project, as well as details of their demand response program. Presentations were given by a variety of experts in information technology as well as electric power industry leaders North American demand and response metering strategies were reviewed, as well as various initiatives in advanced metering infrastructure (AMI). Security risks associated with smart metering environments were reviewed. An evaluation of the current regulatory environment was presented along with a discussion of smart metering standards and compatibility issues. New metering technologies were presented as well as various associated demand side management tools. Smart metering pilot programs and initiatives were discussed, and best practices in smart metering were evaluated. Twenty-nine presentations were given at the conference, 13 of which have been indexed separately for inclusion in this database. refs., tabs., figs

  8. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    Science.gov (United States)

    Morrow, Thomas B [San Antonio, TX; Kelner, Eric [San Antonio, TX; Owen, Thomas E [Helotes, TX

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  9. Arduino based radiation survey meter

    International Nuclear Information System (INIS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee; Muzakkir, Amir

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr −1 ). Conversion factor (CF) value for conversion of CPM to μSvhr −1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  10. FFT analysis of sensible-heat solar-dynamic receivers

    Science.gov (United States)

    Lund, Kurt O.

    The use of solar dynamic receivers with sensible energy storage in single-phase materials is considered. The feasibility of single-phase designs with weight and thermal performance comparable to existing two-phase designs is addressed. Linearized heat transfer equations are formulated for the receiver heat storage, representing the periodic input solar flux as the sum of steady and oscillating distributions. The steady component is solved analytically to produce the desired receiver steady outlet gas temperature, and the FFT algorithm is applied to the oscillating components to obtain the amplitudes and mode shapes of the oscillating solid and gas temperatures. The results indicate that sensible-heat receiver designs with performance comparable to state-of-the-art two-phase receivers are available.

  11. Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters

    Directory of Open Access Journals (Sweden)

    Mahin K. Atiq

    2013-09-01

    Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.

  12. An equation-of-state-meter of quantum chromodynamics transition from deep learning.

    Science.gov (United States)

    Pang, Long-Gang; Zhou, Kai; Su, Nan; Petersen, Hannah; Stöcker, Horst; Wang, Xin-Nian

    2018-01-15

    A primordial state of matter consisting of free quarks and gluons that existed in the early universe a few microseconds after the Big Bang is also expected to form in high-energy heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning with a deep convolutional neural network to identify the EoS employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics. Such EoS-meter is model-independent and insensitive to other simulation inputs including the initial conditions for hydrodynamic simulations.

  13. Automatic ranging circuit for a digital panel meter

    International Nuclear Information System (INIS)

    Mueller, T.R.; Ross, H.H.

    1976-01-01

    This invention relates to a range changing circuit that operates in conjunction with a digital panel meter of fixed sensitivity. The circuit decodes the output of the panel meter and uses that information to change the gain of an input amplifier to the panel meter in order to ensure that the maximum number of significant figures is always displayed in the meter. The circuit monitors five conditions in the meter and responds to any of four combinations of these conditions by means of logic elements to carry out the function of the circuit. The system was designed for readout of a fluorescence analyzer for uranium analysis

  14. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  15. Effects of Net Metering on the Use of Small-Scale Wind Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T. L.; Pedden, M.; Gagliano, T.

    2002-11-01

    Factors such as technological advancements, steadily decreasing costs, consumer demand, and state and federal policies are combining to make wind energy the world's fastest growing energy source. State and federal policies are facilitating the growth of the domestic, large-scale wind power market; however, small-scale wind projects (those with a capacity of less than 100 kilowatts[kW]) still face challenges in many states. Net metering, also referred to as net billing, is one particular policy that states are implementing to encourage the use of small renewable energy systems. Net metering allows individual, grid-tied customers who generate electricity using a small renewable energy system to receive credit from their utility for any excess power they generate beyond what they consume. Under most state rules, residential, commercial, and industrial customers are eligible for net metering; however, some states restrict eligibility to particular customer classes. This paper illustrates how net metering programs in certain states vary considerably in terms of how customers are credited for excess power they generate; the type and size of eligible technologies and whether the utility; the state, or some other entity administers the program. This paper focuses on10 particular states where net metering policies are in place. It analyzes how the different versions of these programs affect the use of small-scale wind technologies and whether some versions are more favorable to this technology than others. The choice of citizens in some states to net meter with photovoltaics is also examined.

  16. Blood glucose monitoring and glycemic control in adolescents with type 1 diabetes: meter downloads versus self-report.

    Science.gov (United States)

    Guilfoyle, Shanna M; Crimmins, Nancy A; Hood, Korey K

    2011-09-01

    Reported frequencies of blood glucose monitoring (BGM) by both adolescents and their caregivers serve as adherence proxies when meter downloads are not available. Yet, correlates of reported BGM frequencies and their predictive utility are understudied. To identify sociodemographic, psychological, and disease-specific correlates of reported BGM frequencies in adolescents with type 1 diabetes and to explore the predictive utility of BGM indices on glycemic control. Study participants included caregivers and adolescents with type 1 diabetes (N=143, 13-18 yr) receiving diabetes treatment at a tertiary care setting. At the initial visit, adolescents and caregivers reported on daily BGM frequencies. A sub-sample provided meter downloads. Adolescents also completed a depression inventory. Three months later, adolescents provided blood sampling for A1c assessment. Multivariate general linear modeling identified that older adolescent age and more depressive symptoms were associated with reports of less frequent BGM. Two stepwise multivariate regression models examined the predictive utility of BGM indices (i.e., adolescent-reported BGM, caregiver-reported BGM, meter download) on glycemic control. Caregiver-reported BGM frequency predicted glycemic control in the absence of meter download data (pmeter download data were the most robust predictor of glycemic control (pMeter downloads have the most robust association with glycemic control when contextual variables are considered. Caregiver-reported BGM frequencies can serve as reliable substitutes in the absence of meter download, but they may not be as reliable in adolescents with depressive symptoms. © 2011 John Wiley & Sons A/S.

  17. EU data protection and smart metering. Legal boundary conditions; EU-Datenschutz und Smart Metering. Rechtliche Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Hladjk, Joerg [Praxisgruppe European Data Protection and Privacy, Hunton and Williams, Bruessel (Belgium)

    2011-07-01

    With the introduction of smart metering, the problem of data protection arises. The independent Article 29 Data Protection Group of the European Commission drew up an expert opinion with the intention of explaining the applicable EU data protection regulations for the smart metering technology in the power supply sector. (orig.)

  18. Your Glucose Meter

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...

  19. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  20. How today's USM diagnostics solve metering problems[Ultrasonic meters

    Energy Technology Data Exchange (ETDEWEB)

    Lansing, John

    2005-07-01

    This paper discusses both basic and advanced diagnostic features of gas ultrasonic meters (USM), and how capabilities built into today's electronics can identify problems that often may not have been identified in the past. It primarily discusses fiscal-quality, multi-path USMs and does not cover issues that may be different with non-fiscal meters. Although USMs basically work the same, the diagnostics for each manufacturer does vary. All brands provide basic features as discussed in AGA 9. However, some provide advanced features that can be used to help identify issues such as blocked flow conditioners and gas compositional errors. This paper is based upon the Daniel USM design and the information presented here may or may not be applicable to other manufacturers. (author) (tk)

  1. De Minimis Thresholds for Federal Building Metering Appropriateness

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry out the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.

  2. Water metering in England and Wales

    Directory of Open Access Journals (Sweden)

    David Zetland

    2016-02-01

    Full Text Available The transformation of water services that began with the privatisation of water companies in 1989 extended to households with the implementation of water metering. Meters 'privatised' water and the cost of provision by allocating to individual households costs that had previously been shared within the community. This (ongoing conversion of common pool to private good has mostly improved economic, environmental and social impacts, but the potential burden of metering on poorer households has slowed the transition. Stronger anti-poverty programmes would be better at addressing this poverty barrier than existing coping mechanisms reliant on subsidies from other water consumers.

  3. 18 CFR 367.9020 - Account 902, Meter reading expenses.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 902, Meter... GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9020 Account 902, Meter reading... customer meters, and determining consumption when performed by employees engaged in reading meters. (b...

  4. Smart Metering. Between technical challenge and societal acceptance - Interdisciplinary status quo; Smart Metering. Zwischen technischer Herausforderung und gesellschaftlicher Akzeptanz - Interdisziplinaerer Status Quo

    Energy Technology Data Exchange (ETDEWEB)

    Westermann, Dirk; Doering, Nicola; Bretschneider, Peter (eds.)

    2013-04-01

    The international research project RESIDENS (more efficient energy utilization by means of system technical integration of the private ultimate consumer) investigates the technology of smart metering that is the utilization of intelligent smart meters in private households. The interdisciplinary character of the RESIDENS project becomes visible by different sub-projects examining different formulations of a question from perspectives of different scientific disciplines: First of all, chapter 2 of the contribution under consideration follows up the question, what impact the media coverage on smart metering has on the perception of this technology in the population at large. Chapter 3 reports on the state of the art of the smart metering. Chapter 4 illustrates how a load control of private consumers can be performed by means of the smart meter technology. Chapter 5 reports on the impacts of the smart metering on the procurement of energy in the liberalised energy market. Chapter 6 investigates the smart metering from the customer's point of view. Concretely, the user-friendliness of an internet portal is evaluated by which the customers may follow up their consumption of electricity by means of an intelligent smart meter continuously. Chapter 7 illustrates legal aspects of smart metering from the perspective of the customer, electricity suppliers and distribution system operators. Chapter 8 presents the conception and implementation of an online gaming operation for the promotion of competency of private power customers: In line with this game, the participants may learn to handle smart metering and flexible electricity tariffs in an entertaining manner. Finally, chapter 9 reports on an expert interview in which the smart metering technology is evaluated by public utilities being involved in this project.

  5. Multiphase flow metering: 4 years on

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B.

    2005-07-01

    Since the authors' last review in 2001 [1], the use of Multiphase Flow Metering (MFM) within the oil and gas industry continues to grow apace, being more popular in some parts of the world than others. Since the early 1990's, when the first commercial meters started to appear, there have been more than 1,600 field applications of MFM for field allocation, production optimisation and mobile well testing. As the authors predicted, wet gas metering technology has improved to such an extent that its use has rapidly increased worldwide. A ''who's who'' of the MFM sector is provided, which highlights the mergers in the sector and gives an insight into the meters and measurement principles available today. Cost estimates, potential benefits and reliability in the field of the current MFM technologies are revisited and brought up to date. Several measurements technologies have resurfaced, such as passive acoustic energy patterns, infrared wavelengths, Nuclear Magnetic Resonance (NMR) and Electrical Capacitance Tomography (ECT), and they are becoming commercial. The concept of ''virtual metering'', integrated with ''classical MFM'', is now widely accepted. However, sometimes the principles of the MFM measurements themselves are forgotten, submerged in the sales and marketing hype. (author) (tk)

  6. Comparison of five portable peak flow meters

    Directory of Open Access Journals (Sweden)

    Glaucia Nency Takara

    2010-01-01

    Full Text Available OBJECTIVE: To compare the measurements of spirometric peak expiratory flow (PEF from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS: Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05, Spearman's correlation test and Bland-Altman's agreement test. RESULTS: The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263-688 L/min, 450 (350-800 L/min, 420 (310-720 L/min, 380 (300-735 L/min, 400 (310-685 L/min and 415 (335-610 L/min, respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001 and Galemed ® (p<0.01 meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS: The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  7. Simulation of a short-cable Q-meter for measuring the deuteron target polarization

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    Simulation of Q-meter with a phase automatic-frequency control of a reception circuit is carried out in the paper. Effect of circuit parameters and connecting cable on Q-meter sensitivity and magnitude of distortions of recorded signal is studied. It is shown that usage of the cable with a length of lambda/12-lambda/10 instead of traditional semiwave one enables to increase essentially the circuit sensitivity at the same distortion rate. Errors conditioned by distortions of the deuteron magnetic resonance (DMR) signal forms in the reception circuit, which can effect essertially on accuracy of deuteron polarization detection by the method of DMR spectrum decomposition, are discussed. It is shown that in the case of utilization of a short cable the polarization error due to spectrum distortions does not exceed 4...5%

  8. Research on Operation Assessment Method for Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  9. PELATIHAN RENANG GAYA DADA 8 KALI 25 METER 4 SET LEBIH MENINGKATKAN KECEPATAN RENANG 100 METER GAYA DADA DARIPADA 4 KALI 50 METER 4 SET PADA RENANG PEMULA PUTRA

    Directory of Open Access Journals (Sweden)

    I Wayan Suarta

    2013-07-01

    Full Text Available Sports pool in Indonesia are well known to the public, which is reduced when driving (after the end of the recovery to begin hand pull another hand, the breaststroke is the style of the most interesting because it does not quickly tiring when compared with other styles, because the process of respiration take place with ease, making them easier use in long-distance swim, at the start to affect the pace to continue this next movement needs to get training and a variety of training models, especially at students aged 10-12 years. Training pool 8 times 25 times 50 meters and 4 meters is one of the training methods that can speed up travel time. The best training model has not been encountered in the data. So do the research to find a model training 25 meter pool 8 times and 4 times 4 sets of 50 meters. The study was conducted with pretest-postes group design. Samples taken from the novice swimmer Toya Ening on Dalung Badung, as many as 26 people were randomly selected simple. Samples were divided into 2 groups each group totaled 13 people. Both groups were equally give training in the first group to pool 8 by 25 feet 4 sets, and 4 times the second group of 4 sets of 50 meters. 0.05 ab. Differences in results were analyzed statistically with  The data analyzed were age, height, weight, leg length and physical fitness.  13.49 seconds.± 107.69, and 126.38 ±The mean test results of the final 100 meter breaststroke swimming in a row 12.14 seconds  F count the results obtained respectively by 0.95 seconds with p = 0.59 and 0.93 seconds with a value of p = 0.34. Data showed significant differences significant (p> 0.05. These results indicate that the training of swimming the breaststroke 8 by 25 feet 4 sets is better than 4 times in 4 sets of 50 meter speed up travel time 100-meter breaststroke swimming novice men (p <0.05. Suggested the use of breaststroke swimming training method 8 by 25 feet 4 sets to be intensified to provide training pool at 100

  10. 10 CFR 451.7 - Metering requirements.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Metering requirements. 451.7 Section 451.7 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.7 Metering requirements. The net electric energy generated and sold (kilowatt-hours) by the owner or operator of a qualified...

  11. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can ...

  12. Multichannel Distribution Meter: A Veritable Solution in Power ...

    African Journals Online (AJOL)

    Partitioned apartments in commercial buildings particularly in congested environments shares energy supply meters among several users. This often leads to disputes and results to power theft in the form of unpaid bills and meter tampering. This paper described how power from a single supply meter can be adequately ...

  13. 40 CFR 1065.245 - Sample flow meter for batch sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Sample flow meter for batch sampling... Sample flow meter for batch sampling. (a) Application. Use a sample flow meter to determine sample flow... difference between a diluted exhaust sample flow meter and a dilution air meter to calculate raw exhaust flow...

  14. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  15. The relationships between common measures of glucose meter performance.

    Science.gov (United States)

    Wilmoth, Daniel R

    2012-09-01

    Glucose meter performance is commonly measured in several different ways, including the relative bias and coefficient of variation (CV), the total error, the mean absolute relative deviation (MARD), and the size of the interval around the reference value that would be necessary to contain a meter measurement at a specified probability. This fourth measure is commonly expressed as a proportion of the reference value and will be referred to as the necessary relative deviation. A deeper understanding of the relationships between these measures may aid health care providers, patients, and regulators in comparing meter performances when different measures are used. The relationships between common measures of glucose meter performance were derived mathematically. Equations are presented for calculating the total error, MARD, and necessary relative deviation using the reference value, relative bias, and CV when glucose meter measurements are normally distributed. When measurements are also unbiased, the CV, total error, MARD, and necessary relative deviation are linearly related and are therefore equivalent measures of meter performance. The relative bias and CV provide more information about meter performance than the other measures considered but may be difficult for some audiences to interpret. Reporting meter performance in multiple ways may facilitate the informed selection of blood glucose meters. © 2012 Diabetes Technology Society.

  16. Wanted: competitive metering infrastructure. Metering must be automated in a high grade; Gesucht: wettbewerbsfaehige Metering-Infrastruktur. Metering muss hochgradig automatisiert werden

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Elschner, C. [T-Systems Enterprise Services GmbH, Bonn (Germany). Business Development und Marketing

    2008-04-21

    Accurate on-time consumption metering and data transmission are increasingly important as energy markets are being deregulated. Measuring and information systems combine measurements with intelligent modules for automatic transmission of consumption information. A meaningful cost-benefit comparision results only when the total system is considered. Telecommunication companies as ICT service systems and service sectors can do a clear contribution to the total system. (orig./GL)

  17. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780 Section 868.1780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the amount...

  18. Analysis of a quantum nondemolition speed-meter interferometer

    International Nuclear Information System (INIS)

    Purdue, Patricia

    2002-01-01

    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g. LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors rather than monitoring their relative position. This paper describes and analyzes the most straightforward design for a speed meter interferometer that accomplishes this--a design (due to Braginsky, Gorodetsky, Khalili and Thorne) that is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and is used to show [in accord with the speed being a quantum nondemolition observable] that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies, and can do so without the use of squeezed vacuum or any auxiliary filter cavities at the interferometer's input or output. However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation. This analysis forms a foundation for ongoing attempts to develop a more practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising LIGO-III/EURO interferometer design that entails low laser power

  19. Metering in the gas supply sector; Metering in der Gasversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wernekinck, U. [RWE Westfalen-Weser-Ems, Recklinghausen (Germany)

    2007-10-15

    The new conditions of competition in the gas supply sector have strongly increased the requirements on gas grid operators. Mainly an exact gas metering and -accouting will become more and more important. The systems and procedures are presented in detail in this contribution. (GL)

  20. Smart Metering. Synergies within medium voltage automation; Synergien durch Smart Metering. Automatisierung auf Mittelspannungsebene

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-11-15

    Transparent interdivisional system solutions are an indispensable and decisive precondition for the optimization of business processes. The implementation of a Smart Metering solution does not only provide data for billing purposes, but also renders important data for network operation. Synergies can be achieved through the use of a common infrastructure which covers both the needs of Smart Metering and network operation. An open architecture of the solution allows for the future integration of further services of the domains Smart Grid and Smart Home. (orig.)

  1. Calibration of dose meters used in radiotherapy

    International Nuclear Information System (INIS)

    1979-01-01

    This manual is a practical guide, not a comprehensive textbook, to the instrumentation and procedures necessary to calibrate a radiation dose meter used in clinical practice against a secondary standard dose meter

  2. [Evaluation of a new electronic handheld meter for measurement of β-hydroxybutyric acid in dairy cows].

    Science.gov (United States)

    Mahrt, A; Burfeind, O; Voigtsberger, R; Müller, A; Heuwieser, W

    2014-01-01

    Subclinical ketosis (SCK), an important disease in lactating dairy cows, is defined as the presence of elevated concentrations of circulating ketone bodies without the development of clinical signs. Therefore, diagnostic methods are limited to the detection of the concentrations of ketone bodies in different body fluids. The objective of this study was to evaluate a recently developed electronic hand- held meter (NovaVet) for the determination of β-hydroxybutyric acid (BHB) in the blood of dairy cows. A total of 155 lactating dairy cows were included in the trial. Blood samples were taken from each cow and analyzed using the BHB meter. The obtained concentrations were compared to the results determined by a commercial laboratory. The Spearman's rank correlation coefficient was determined between the two methods. A Wilcoxon test was performed and a Bland-Altman plot was generated. Test characteristics (sensitivity, specificity, positive and negative predictive value) for established BHB cut points for the diagnosis of SCK were calculated using receiver operating characteristic (ROC) analysis. The two methods were highly correlated (rs = 0.87; p meter (median 1.0 mmol/l; IQR 0.7-1.3 mmol/l) and by the laboratory (median 0.9 mmol/l; IQR 0.7-1.1 mmol/l). Using a cut point of 1.2 mmol/l, sensitivity and specificity of the BHB meter were 97% and 82%, respectively. There was a good agreement between BHB concentrations determined using the BHB meter and the laboratory. Furthermore, the BHB meter displayed good test characteristics. The specificity of 82% results in a number of false-positive results. However, this new device can be recommended for the detection of SCK in cows under practical conditions.

  3. Comparison of five portable peak flow meters.

    Science.gov (United States)

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (pmeters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (pmeters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  4. In-situ calibration of clinical built-in KAP meters with traceability to a primary standard using a reference KAP meter.

    Science.gov (United States)

    Malusek, A; Helmrot, E; Sandborg, M; Grindborg, J-E; Carlsson, G Alm

    2014-12-07

    The air kerma-area product (KAP) is used for settings of diagnostic reference levels. The International Atomic Energy Agency (IAEA) recommends that doses in diagnostic radiology (including the KAP values) be estimated with an accuracy of at least ± 7% (k = 2). Industry standards defined by the International Electrotechnical Commission (IEC) specify that the uncertainty of KAP meter measurements should be less than ± 25% (k = 2). Medical physicists willing to comply with the IAEA's recommendation need to apply correction factors to KAP values reported by x-ray units. The aim of this work is to present and evaluate a calibration method for built-in KAP meters on clinical x-ray units. The method is based on (i) a tandem calibration method, which uses a reference KAP meter calibrated to measure the incident radiation, (ii) measurements using an energy-independent ionization chamber to correct for the energy dependence of the reference KAP meter, and (iii) Monte Carlo simulations of the beam quality correction factors that correct for differences between beam qualities at a standard laboratory and the clinic. The method was applied to the KAP meter in a Siemens Aristos FX plus unit. It was found that values reported by the built-in KAP meter differed from the more accurate values measured by the reference KAP meter by more than 25% for high tube voltages (more than 140 kV) and heavily filtered beams (0.3 mm Cu). Associated uncertainties were too high to claim that the IEC's limit of 25% was exceeded. Nevertheless the differences were high enough to justify the need for a more accurate calibration of built-in KAP meters.

  5. Analysing Smart Metering Systems from a Consumer Perspective

    Science.gov (United States)

    Yesudas, Rani

    Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability

  6. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  7. Technical note: Validation of the BHBCheck blood β-hydroxybutyrate meter as a diagnostic tool for hyperketonemia in dairy cows.

    Science.gov (United States)

    Sailer, K J; Pralle, R S; Oliveira, R C; Erb, S J; Oetzel, G R; White, H M

    2018-02-01

    the receiver operator characteristic curve suggests adequate diagnostic accuracy of both meters. Overall, accuracy, sensitivity, and specificity of the BHBCheck meter was similar to the Precision Xtra meter and laboratory assay, indicating the BHBCheck meter is appropriate for use as a cow-side diagnostic test for hyperketonemia in dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Two laboratory methods for the calibration of GPS speed meters

    International Nuclear Information System (INIS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40–180 km h −1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology. (paper)

  9. Synergisms between smart metering and smart grid; Synergien zwischen Smart Metering und Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-04-15

    With the implementation of a smart metering solution, it is not only possible to acquire consumption data for billing but also to acquire relevant data of the distribution grid for grid operation. There is still a wide gap between the actual condition and the target condition. Synergies result from the use of a common infrastructure which takes account both of the requirements of smart metering and of grid operation. An open architecture also enables the future integration of further applications of the fields of smart grid and smart home. (orig.)

  10. Advanced Metering Installations – A Perspective from Federal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Earni, Shankar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-02

    This report is intended to provide guidance to the United States Department of Energy (DOE) and other federal agencies to highlight some of the existing practices related to advanced building metering systems. This study identified some of the existing actions related to advanced meter data and proposes how advanced metered data can be employed to develop robust cost effective measurement and verification (M&V) strategies. This report proposes an integrated framework on how advanced meter data can be used to identify energy conservation opportunities and to develop proactive M&V strategies to ensure that the savings for energy projects are being realized. This information will help improve metering, feedback, and dashboard implementations for reducing energy use at DOE facilities, based on lessons learned from various advanced metering implementations.

  11. FLOW METERS WITH VERY GOOD PERFORMANCES

    Directory of Open Access Journals (Sweden)

    Mircea Dimitrie CAZACU

    2011-11-01

    Full Text Available We present the theoretical calculus of a patented flow meter, concerning such the thermodynamic and aerodynamic calculus, as well as the offered precision to measure the flow of the air in any meteorological conditions. In the same time we remark that the proposed flow meter, by its positioning, has not loss of head.

  12. The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives

    International Nuclear Information System (INIS)

    Eid, Cherrelle; Reneses Guillén, Javier; Frías Marín, Pablo; Hakvoort, Rudi

    2014-01-01

    Net-metering is commonly known as a practice by which owners of distributed generation (DG) units may offset their electricity consumption from the grid with local generation. The increasing number of prosumers (consumers that both produce and consume electricity) with solar photovoltaic (PV) generation combined with net-metering results in reduced incomes for many network utilities worldwide. Consequently, this pushes utilities to increase charges per kW h in order to recover costs. For non-PV owners, this could result into inequality issues due to the fact that also non-PV owners have to pay higher chargers for their electricity consumed to make up for netted costs of PV-owners. In order to provide insight in those inequality issues caused by net-metering, this study presents the effects on cross-subsidies, cost recovery and policy objectives evolving from different applied netmetering and tariff designs for a residential consumer. Eventually this paper provides recommendations regarding tariffs and metering that will result in more explicit incentives for PV, instead of the current implicit incentives which are present to PV owners due to net-metering. - Highlights: • Network users are frequently charged by energy charging and fixed charging. • Net-metering with energy charging causes potential problems for DSO cost recovery. • Increasing rolling credit timeframes amplify net-metering impacts on cost recovery. • Observed capacity charging can incentivize local storage and self-consumption. • PV owners should receive direct incentives in order to avoid cross subsidization

  13. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  14. Smart Metering: Learning from telecommunication providers. Innovative customized products; Beim Smart Metering von Telekommunikationsanbietern lernen. Innovative Buendelprodukte

    Energy Technology Data Exchange (ETDEWEB)

    Isbrecht, Volker; Sombrutzki, Ingo [Putz und Partner Unternehmensberatung AG, Hamburg (Germany). Strategie- und Projektmanagement - Energiewirtschaft; Hofer, Kristina [Putz und Partner Unternehmensberatung AG, Hamburg (Germany). CRM- und Telekommunikation

    2010-04-06

    Deregulation in the electricity and gas metering has raised interest in smart meters. Experts estimate that in a four-person household, smart meters may reduce electricity consumption by up to 10 percent, i.e. 50 - 90 Euros, and CO2 emissions by 8.5 million tonnes, which amounts to 4 percent of the total CO2 emissions in Germany. These are ideal conditions for utilities to develop innovative products for the mass market of private consumers and to improve their competitive standing in the market by a clearly communicated advantage to both the customers and the climate. By utilizing the experience gained in the telecommunications industry, they will be able to respond quickly to impending challenges. (orig.)

  15. Design and Implementation of Enhanced Smart Energy Metering System

    Directory of Open Access Journals (Sweden)

    Oday A.L.A Ridha

    2017-03-01

    Full Text Available In this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses. Moreover, it sends the switch off command in case of the consumer bill is not paid. For implementation of smart energy meter, the microcontroller (PIC 18F45K22 is used. For communication between billing center and smart energy meters, ZigBee technology is adopted. The necessary program for smart energy meter is written in MicroC PRO, while the program for billing center is written in visual C#.

  16. Design and construction of two phases flow meter

    International Nuclear Information System (INIS)

    Nor Paiza Mohamad Hasan

    2002-01-01

    This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)

  17. A Prediction-based Smart Meter Data Generator

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Nordbjerg, Finn Ebertsen

    2016-01-01

    With the prevalence of cloud computing and In-ternet of Things (IoT), smart meters have become one of the main components of smart city strategy. Smart meters generate large amounts of fine-grained data that is used to provide useful information to consumers and utility companies for decision......, mainly due to privacy issues. This paper proposes a smart meter data generator that can generate realistic energy consumption data by making use of a small real-world dataset as seed. The generator generates data using a prediction-based method that depends on historical energy consumption patterns along......-making. Now-a-days, smart meter analytics systems consist of analytical algorithms that process massive amounts of data. These analytics algorithms require ample amounts of realistic data for testing and verification purposes. However, it is usually difficult to obtain adequate amounts of realistic data...

  18. Bandwidth Analysis of Smart Meter Network Infrastructure

    DEFF Research Database (Denmark)

    Balachandran, Kardi; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2014-01-01

    Advanced Metering Infrastructure (AMI) is a net-work infrastructure in Smart Grid, which links the electricity customers to the utility company. This network enables smart services by making it possible for the utility company to get an overview of their customers power consumption and also control...... devices in their costumers household e.g. heat pumps. With these smart services, utility companies can do load balancing on the grid by shifting load using resources the customers have. The problem investigated in this paper is what bandwidth require-ments can be expected when implementing such network...... to utilize smart meters and which existing broadband network technologies can facilitate this smart meter service. Initially, scenarios for smart meter infrastructure are identified. The paper defines abstraction models which cover the AMI scenarios. When the scenario has been identified a general overview...

  19. New consumer services provided by smart metering

    Directory of Open Access Journals (Sweden)

    Daminov Ildar

    2015-01-01

    Full Text Available This paper focuses on the issues of smart metering market and considers different services provided by smart metering from consumer point of view. Firstly, smart metering deployment challenges emerging and conventional tariffs, which modify a consumer behavior and thus, the entire electric energy market can be optimized since the customer is motivated to consume less energy. Secondly, the authors illustrate changes in electricity quality, which have an impact on consumer relations with utility. Additionally, two main indices of grid resilience – SAIDI and SAIFI – are exemplified to reveal the improvement potential of smart metering implementation in certain regions of Russia that also influence the consumer. Finally, in-home display and privacy problem directly reflect the consumer’s behavior, thus the private life rights should not be violated as they are guaranteed by law.

  20. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Jaco Marais

    2016-01-01

    Full Text Available This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This threshold is at a relatively low number of nodes (50 and the use of network topologies such as tree or mesh helps alleviate this problem and results in lower network delays. Further simulations found that the successful transmission of application layer packets in a 70-end node tree network can be improved by 212% when end nodes only transmit data to their nearest router node. The relationship between packet success rate and different packet sizes was also investigated and reducing the packet size with a factor of 16 resulted in either 156% or 300% increases in the amount of successfully received packets depending on the network setup.

  1. A neutron dose equivalent meter at CAEP

    International Nuclear Information System (INIS)

    Tian Shihai; Lu Yan; Wang Heyi; Yuan Yonggang; Chen Xu

    2012-01-01

    The measurement of neutron dose equivalent has been a widespread need in industry and research. In this paper, aimed at improving the accuracy of neutron dose equivalent meter: a neutron dose counter is simulated with MCNP5, and the energy response curve is optimized. The results show that the energy response factor is from 0.2 to 1.8 for neutrons in the energy range of 2.53×10 -8 MeV to 10 MeV Compared with other related meters, it turns that the design of this meter is right. (authors)

  2. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    Science.gov (United States)

    Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.

  3. Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications

    International Nuclear Information System (INIS)

    Hoffmann, D; Willmann, A; Göpfert, R; Becker, P; Folkmer, B; Manoli, Y

    2013-01-01

    In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced

  4. A micro-controller based wide range survey meter

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2004-01-01

    Wide range survey meters (1μSv/h -10 Sv/h) with the detector(s) mounted at the end of a two-to-four meter-long extendable tube are widely used for radiation protection survey of difficult to reach locations and high dose rate areas, The commercially available survey meters of this type use two GM counters to cover a wide range of dose rate measurement. A new micro-controller based wide range survey meter using two Si diode detectors has been developed. The use of solid state detectors in the survey meter has a number of advantages like low power consumption, lighter battery powered detector probe, elimination of high voltage for the operation of the detectors, etc. The design uses infrared communication between the probe and the readout unit through a light-weight collapsible extension tube for high reliability. The design details and features are discussed in detail. (author)

  5. HJD-I record and analysis meter for nuclear information

    International Nuclear Information System (INIS)

    Di Shaoliang; Huang Yong; Xiao Yanbin

    1992-01-01

    A low-cost, small-volume, multi-function and new model intelligent nuclear electronic meter HJD-I Record and Analysis Meter are stated for Nuclear Information. It's hardware and software were detailed and the 137 Cs spectrum with this meter was presented

  6. Adjustment equipment for reactor radioactivity meter

    International Nuclear Information System (INIS)

    Denisov, V.P.; Malishev, A.N.; Shebanova, L.E.; Kirilyuk, N.A.; Maksimov, Yu.N.; Bessalov, G.G.; Vikhorev, Yu.V.; Lukyanov, M.A.

    1978-01-01

    An activity meter is described movably located in a channel placed in the peripheral biological shielding of a nuclear reactor. It is connected to a weight moving in a second channel by means of a pulley. This arrangement allows locating the radioactivity meter drive on the outer side of the biological shield and vacating space above the reactor body. (Ha)

  7. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  8. Household Classification Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Carroll Paula

    2018-03-01

    Full Text Available This article describes a project conducted in conjunction with the Central Statistics Office of Ireland in response to a planned national rollout of smart electricity metering in Ireland. We investigate how this new data source might be used for the purpose of official statistics production. This study specifically looks at the question of determining household composition from electricity smart meter data using both Neural Networks (a supervised machine learning approach and Elastic Net Logistic regression. An overview of both classification techniques is given. Results for both approaches are presented with analysis. We find that the smart meter data alone is limited in its capability to distinguish between household categories but that it does provide some useful insights.

  9. Water velocity meter

    Science.gov (United States)

    Roberts, C. W.; Smith, D. L.

    1970-01-01

    Simple, inexpensive drag sphere velocity meter with a zero to 6 ft/sec range measures steady-state flow. When combined with appropriate data acquisition system, it is suited to applications where large numbers of simultaneous measurements are needed for current mapping or velocity profile determination.

  10. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    International Nuclear Information System (INIS)

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  11. 49 CFR 192.359 - Customer meter installations: Operating pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meter installations: Operating pressure... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.359 Customer meter installations: Operating pressure...

  12. Calibration of ionization chamber and GM counter survey meters, (1)

    International Nuclear Information System (INIS)

    Bingo, Kazuyoshi; Kajimoto, Yoichi; Suga, Shin-ichi

    1978-01-01

    Three types of ionization chamber survey meters and a type of GM counter survey meter were calibrated for measuring the β-ray absorbed dose rate in a working area. To estimate the β-ray absorbed dose rate, a survey meter was used without and with a filter. A reading of survey meter's indicator measured with the filter was subtracted from a reading measured without the filter, and then the absorbed dose rate was obtained by multiplying this remainder by a conversion coefficient. The conversion coefficients were roughly constant with distance more than 8 cm (ionization chamber survey meters) and with distance more than 5 cm (GM counter survey meter). The conversion coefficient was dependent on β-ray energies. In order to measure the absorbed dose rate of tissue whose epidermal thickness is 40 mg/cm 2 , the constant value, 4 (mrad/h)/(mR/h), was chosen independently of β-ray energies as the conversion coefficient of three types of ionization chamber survey meters. The conversion coefficient of the GM counter survey meter was more energy dependent than that of every type of ionization chamber survey meter. (author)

  13. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    Science.gov (United States)

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  14. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants.

    Science.gov (United States)

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-10-23

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  15. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 1: design and performance analysis

    NARCIS (Netherlands)

    Meijerink, Arjan; Roeloffzen, C.G.H.; Meijerink, Roland; Zhuang, L.; Marpaung, D.A.I.; Bentum, Marinus Jan; Burla, M.; Verpoorte, Jaco; Jorna, Pieter; Huizinga, Adriaan; van Etten, Wim

    2010-01-01

    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband

  16. Effects of the leakage magnetic field from an analog meter on the response of scintillation survey meters

    International Nuclear Information System (INIS)

    Abe, Toshiaki; Yamamoto, Hisao; Norimura, Toshiyuki; Katase, Akira

    2003-01-01

    Effects of the weak leakage magnetic field are studied on the response of two kinds of scintillation survey meters: an ordinary type for γ-rays and that optimized for the detection of low-energy photons from 125 I. In the presence of the magnetic field, the response of the optimized survey meter decreases to the photons from 125 I, and increases considerably to the background radiations. On the other hand, the response of the ordinary survey meter decreases slightly to both the γ-rays from 131 I and the background radiations. From analysis of the pulse-height spectra for the radiations, such variations of the response are ascribed to the reduction of the amplification factor of photomultiplier tubes by the magnetic field. (author)

  17. Model to calculate mass flow rate and other quantities of two-phase flow in a pipe with a densitometer, a drag disk, and a turbine meter

    International Nuclear Information System (INIS)

    Aya, I.

    1975-11-01

    The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model

  18. 49 CFR 192.357 - Customer meters and regulators: Installation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Customer meters and regulators: Installation. 192... SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Customer Meters, Service Regulators, and Service Lines § 192.357 Customer meters and regulators: Installation. (a...

  19. Apparent losses due to domestic water meter under-registration in ...

    African Journals Online (AJOL)

    By combining these results with the average age of meters in South Africa, estimated from the National Water Demand Archive, it was possible to estimate the average meter under-registration due to meter aging. The study concluded that apparent losses due to water meter under-registration are around 5% of consumption ...

  20. Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 1 testing

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1995-01-01

    This document summarizes the results of the Phase 1 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). This acceptance test consisted of a pressure-decay/leak test of the containment bag to verify that the seams along the length of the bag had been adequately sealed. The sealing integrity of the FRS must be verified to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at Lancs Industries in Kirkland, Washington on January 17, 1995. The bag temperature-compensated pressure loss of 575 Pa was below the acceptance criteria of 625 Pa and the test results were therefore found to be acceptable. The bag manufacturer estimates that 80--90% of the pressure loss is attributed to leakage around the bag inflation valve where the pressure gage was connected. A leak detector was applied over the entire bag during the pre-tests and no leakage was found. Furthermore, the leak rate corresponding to this pressure loss is very small when compared to the acceptable leak rate of the completely assembled FRS. The sealing integrity of the assembled FRS is verified in Phase 3 testing

  1. 40 CFR 92.122 - Smoke meter calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Smoke meter calibration. 92.122 Section 92.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... meter calibration. The smokemeter shall be checked according to the following procedure prior to each...

  2. A Method of Evaluating Operation of Electric Energy Meter

    Science.gov (United States)

    Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin

    2018-05-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  3. Characterization of radiofrequency field emissions from smart meters.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert; Mezei, Gabor

    2013-01-01

    This study presents measurement data that describe radiofrequency emission levels and patterns from smart meters (rated nominally at 1 W) currently deployed in Pacific Gas and Electric Company's service territory in northern California. The smart meters in our investigation could not be set to operate continuously and required a Field Service Unit to induce short periods of emitted fields. To obtain peak field data under both laboratory and ambient conditions, a spectrum analyzer scanned across the 83 transmitting channels between 902 and 928 MHz used by the smart meter on a random frequency-hopping basis. To obtain data describing temporal emission patterns, the analyzer operated in scope mode. Duty cycle was estimated using transmit data acquired by the system operator from over 88,000 m. Instantaneous peak fields at 0.3 m in front of the meters were no more than 15% of the US Federal Communications Commission (FCC) exposure limit for the general public, and 99.9% of the meters operated with a duty cycle of 1.12% or less during the sampling period. In a sample of measurements in six single-detached residences equipped with individual smart meters, no interior measurement of peak field exceeded 1% of the FCC's general public exposure limit.

  4. Design of Remote Heat-Meter System Based on Trusted Technology

    Science.gov (United States)

    Yu, Changgeng; Lai, Liping

    2018-03-01

    This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.

  5. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naïm R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  6. Energy saving by smart metering with consumption feedback; Energieeinsparung durch Smart Metering mit Verbrauchs-Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Patrick [Institut fuer ZukunftsEnergieSysteme (IZES), Saarbruecken (Germany); Friedrich, Malte [Institut fuer Soziologische Meinungsforschung (IsoMe), Berlin (Germany); Kerber-Clasen, Stefan [Institut fuer Sozialforschung und Sozialwirtschaft e.V., Saarbruecken (Germany); Frey, Guenther

    2012-08-15

    While the German legislative, e.g. in the EnWG (Power Industry Act) assumes that electricity consumption metering will contribute to energy conservation in any case, many studies have arrived at a different contribution: Only a combination of consumption metering and direct feedback methods will result in significant energy savings. A recent research project (''Moderne Energiesparsysteme fuer Haushalte'') analysed an energy conservation system of this type. The findings will provide socio-economic insight into the background of successful energy conservation, and they will show how feedback methods can be optimised.

  7. Metering: EU policy and implications for fuel poor households

    International Nuclear Information System (INIS)

    Darby, Sarah J.

    2012-01-01

    Fuel poverty is a function of household energy consumption, income, and the cost of delivered energy. The paper discusses ways in which current EU policy on the development of ‘smart’ metering could affect fuel poor households. The main focus is on developments in electricity metering and the development of ‘active demand’ and smart grids, so that demand can be matched closely with available supply. Advances in metering and related technologies open the way to time-of-use charging, easier switching between suppliers and between credit payment and prepayment, direct load control of some end-uses by the utility, greater scope for microgeneration, and improved consumption feedback for customers. These options open up both uncertainties and risks. The paper offers definitions and discussion of various functions of smart metering, summarizes the EU policy background, and considers some possible equity implications of rolling out a new generation of meters. There follows an assessment of potential implications to the fuel poor of changes to metering, based on a review of the literature on energy feedback, tariffing, and supplier–customer relationships. Much of the discussion is based on the UK experience, with examples from other EU member states and, where appropriate, from other parts of the world. - Highlights: ► Smart meters are part of general upgrading of electricity and gas networks. ► EU policy is to roll out the meters to 80%+ of the population by 2020. ► Improved feedback and prepayment metering may benefit the fuel poor. ► Remote disconnection and data privacy are issues for all consumers. ► We need careful assessment of potential gains and losses to the fuel poor.

  8. EMMNet: Sensor Networking for Electricity Meter Monitoring

    Directory of Open Access Journals (Sweden)

    Zhi-Ting Lin

    2010-06-01

    Full Text Available Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  9. EMMNet: sensor networking for electricity meter monitoring.

    Science.gov (United States)

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  10. Look at the Beat, Feel the Meter: Top-Down Effects of Meter Induction on Auditory and Visual Modalities.

    Science.gov (United States)

    Celma-Miralles, Alexandre; de Menezes, Robert F; Toro, Juan M

    2016-01-01

    Recent research has demonstrated top-down effects on meter induction in the auditory modality. However, little is known about these effects in the visual domain, especially without the involvement of motor acts such as tapping. In the present study, we aim to assess whether the projection of meter on auditory beats is also present in the visual domain. We asked 16 musicians to internally project binary (i.e., a strong-weak pattern) and ternary (i.e., a strong-weak-weak pattern) meter onto separate, but analog, visual and auditory isochronous stimuli. Participants were presented with sequences of tones or blinking circular shapes (i.e., flashes) at 2.4 Hz while their electrophysiological responses were recorded. A frequency analysis of the elicited steady-state evoked potentials allowed us to compare the frequencies of the beat (2.4 Hz), its first harmonic (4.8 Hz), the binary subharmonic (1.2 Hz), and the ternary subharmonic (0.8 Hz) within and across modalities. Taking the amplitude spectra into account, we observed an enhancement of the amplitude at 0.8 Hz in the ternary condition for both modalities, suggesting meter induction across modalities. There was an interaction between modality and voltage at 2.4 and 4.8 Hz. Looking at the power spectra, we also observed significant differences from zero in the auditory, but not in the visual, binary condition at 1.2 Hz. These findings suggest that meter processing is modulated by top-down mechanisms that interact with our perception of rhythmic events and that such modulation can also be found in the visual domain. The reported cross-modal effects of meter may shed light on the origins of our timing mechanisms, partially developed in primates and allowing humans to synchronize across modalities accurately.

  11. Look at the Beat, Feel the Meter: Top–Down Effects of Meter Induction on Auditory and Visual Modalities

    Science.gov (United States)

    Celma-Miralles, Alexandre; de Menezes, Robert F.; Toro, Juan M.

    2016-01-01

    Recent research has demonstrated top–down effects on meter induction in the auditory modality. However, little is known about these effects in the visual domain, especially without the involvement of motor acts such as tapping. In the present study, we aim to assess whether the projection of meter on auditory beats is also present in the visual domain. We asked 16 musicians to internally project binary (i.e., a strong-weak pattern) and ternary (i.e., a strong-weak-weak pattern) meter onto separate, but analog, visual and auditory isochronous stimuli. Participants were presented with sequences of tones or blinking circular shapes (i.e., flashes) at 2.4 Hz while their electrophysiological responses were recorded. A frequency analysis of the elicited steady-state evoked potentials allowed us to compare the frequencies of the beat (2.4 Hz), its first harmonic (4.8 Hz), the binary subharmonic (1.2 Hz), and the ternary subharmonic (0.8 Hz) within and across modalities. Taking the amplitude spectra into account, we observed an enhancement of the amplitude at 0.8 Hz in the ternary condition for both modalities, suggesting meter induction across modalities. There was an interaction between modality and voltage at 2.4 and 4.8 Hz. Looking at the power spectra, we also observed significant differences from zero in the auditory, but not in the visual, binary condition at 1.2 Hz. These findings suggest that meter processing is modulated by top–down mechanisms that interact with our perception of rhythmic events and that such modulation can also be found in the visual domain. The reported cross-modal effects of meter may shed light on the origins of our timing mechanisms, partially developed in primates and allowing humans to synchronize across modalities accurately. PMID:27047358

  12. Look at the Beat, Feel the Meter:Top-down Effects of Meter Induction on Auditory and Visual Modalities

    Directory of Open Access Journals (Sweden)

    Alexandre eCelma-Miralles

    2016-03-01

    Full Text Available Recent research has demonstrated top-down effects on meter induction in the auditory modality. However, little is known about these effects in the visual domain, especially without the involvement of motor acts such as tapping. In the present study, we aim to assess whether the projection of meter on auditory beats is also present in the visual domain. We asked sixteen musicians to internally project binary (i.e. a strong-weak pattern and ternary (i.e. a strong-weak-weak pattern meter onto separate, but analogue, visual and auditory isochronous stimuli. Participants were presented with sequences of tones or blinking circular shapes (i.e. flashes at 2.4 Hz while their electrophysiological responses were recorded. A frequency analysis of the elicited steady-state evoked potentials allowed us to compare the frequencies of the beat (2.4 Hz, its first harmonic (4.8 Hz, the binary subharmonic (1.2 Hz, and ternary subharmonic (0.8 Hz within and across modalities. Taking the amplitude spectra into account, we observed an enhancement of the amplitude at 0.8 Hz in the ternary condition for both modalities, suggesting meter induction across modalities. There was an interaction between modality and voltage at 2.4 and 4.8 Hz. Looking at the power spectra, we also observed significant differences from zero in the auditory, but not in the visual, binary condition at 1.2 Hz. These findings suggest that meter processing is modulated by top-down mechanisms that interact with our perception of rhythmic events and that such modulation can also be found in the visual domain. The reported cross-modal effects of meter may shed light on the origins of our timing mechanisms, partially developed in primates and allowing humans to synchronize across modalities accurately.

  13. KVP meter errors induced by plastic wrap

    International Nuclear Information System (INIS)

    Jefferies, D.; Morris, J.W.; White, V.P.

    1991-01-01

    The purpose of this study was to determine whether erroneous kVp meter readings, induced by plastic wrap, affected the actual kVp (output) of a dental X-ray machine. To evaluate the effect of plastic wrap on dental X-ray machine kVp meters, a radiation output device was used to measure output in mR/ma.s. An intraoral dental X-ray unit (S.S. White Model number-sign 90W) was used to make the exposures. First, the kVp meter was not covered with plastic wrap and output readings were recorded at various kVp settings with the milliamperage and time held constant. Secondly, the same kVp settings were selected before the plastic wrap was placed. Milliamperage and time were again held to the same constant. The X-ray console was then covered with plastic wrap prior to measuring the output for each kVp. The wrap possessed a static charge. This charge induced erroneous kVp meter readings. Out-put readings at the various induced kVp settings were then recorded. A kVp of 50 with no wrap present resulted in the same output as a kVp of 50 induced to read 40 or 60 kVp by the presence of wrap. Similar results were obtained at other kVp settings. This indicates that the plastic wrap influences only the kVp meter needle and not the actual kilovoltage of the X-ray machine. Dental X-ray machine operators should select kVp meter readings prior to placing plastic wrap and should not adjust initial settings if the meter is deflected later by the presence of wrap. The use of such a procedure will result in proper exposures, fewer retakes, and less patient radiation. If plastic wrap leads to consistent exposure errors, clinicians may wish to use a 0.5% sodium hypochlorite disinfectant as an alternative to the barrier technique

  14. 21 CFR 868.1860 - Peak-flow meter for spirometry.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Peak-flow meter for spirometry. 868.1860 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1860 Peak-flow meter for spirometry. (a) Identification. A peak-flow meter for spirometry is a device used to measure a patient's...

  15. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  16. Performance of a Modern Glucose Meter in ICU and General Hospital Inpatients: 3 Years of Real-World Paired Meter and Central Laboratory Results.

    Science.gov (United States)

    Zhang, Ray; Isakow, Warren; Kollef, Marin H; Scott, Mitchell G

    2017-09-01

    Due to accuracy concerns, the Food and Drug Administration issued guidances to manufacturers that resulted in Center for Medicare and Medicaid Services stating that the use of meters in critically ill patients is "off-label" and constitutes "high complexity" testing. This is causing significant workflow problems in ICUs nationally. We wished to determine whether real-world accuracy of modern glucose meters is worse in ICU patients compared with non-ICU inpatients. We reviewed glucose results over the preceding 3 years, comparing results from paired glucose meter and central laboratory tests performed within 60 minutes of each other in ICU versus non-ICU settings. Seven ICU and 30 non-ICU wards at a 1,300-bed academic hospital in the United States. A total of 14,763 general medicine/surgery inpatients and 20,970 ICU inpatients. None. Compared meter results with near simultaneously performed laboratory results from the same patient by applying the 2016 U.S. Food and Drug Administration accuracy criteria, determining mean absolute relative difference and examining where paired results fell within the Parkes consensus error grid zones. A higher percentage of glucose meter results from ICUs than from non-ICUs passed 2016 Food and Drug Administration accuracy criteria (p meter results with laboratory results. At 1 minute, no meter result from ICUs posed dangerous or significant risk by error grid analysis, whereas at 10 minutes, less than 0.1% of ICU meter results did, which was not statistically different from non-ICU results. Real-world accuracy of modern glucose meters is at least as accurate in the ICU setting as in the non-ICU setting at our institution.

  17. Guanabara Bay and Pecem LNG flexible metering systems

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Vinicus Roberto C.; Carvalho, Gustavo L.A.; Bruel, Edson L.; Santana, Jose P.C. de; Vidal, Lud C.C.N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    This work presents to the community the metering systems installed in the Liquefied Natural (LNG) Gas Flexible Terminals of the Pecem Port and Guanabara Bay. A brief description of the Terminals facilities and its operation is firstly made to provide a background of the systems discussed. Then, the LNG custody transfer metering system, the operational control metering system, the energy balance of the LNG transferring system and the Natural Gas custody transfer metering system - that are our systems of interest - are described in detail. It is intended to use the philosophy adopted in the Guanabara Bay and Pecem Flexible Terminals design as a standard to future installations, integrated with improvements brought by the operation experience that will be obtained in those terminals. (author)

  18. The disc pasture meter: Possible applications in grazing management.

    African Journals Online (AJOL)

    The disc meter is a simple inexpensive instrument which may be used to make rapid yield estimates of standing forage. Linear regression relationships between meter reading and pasture dry matter yield are usually fairly good, but these may be affected by a number of different factors. The meter should therefore be ...

  19. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  20. Additional functions of remotely read kWh-meters

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland); Vehvilaeinen, S. [Mittrix Oy (Finland); Rantanen, J. [Helsinki Energy Board, Helsinki (Finland)

    1996-12-31

    In this presentation the possibilities to include new applications into remotely read smart kWh-meters are considered. New electronic meters can measure various electric quantities and have some extra calculating capacity. So they can be used to provide functions that distribution automation and the customer need and thus share the costs. Some applications like monitoring the state of the distribution network or locating faults are only for the utility, but many applications also need an interface to the customer or his automation system. Among those are monitoring the quality of electricity, estimating load curves, applying dynamic tariffs and selling electricity and accounting. As a special item, the continuous monitoring of the quality of electricity is discussed. This includes voltage levels, total distortion, asymmetry and so on. If such a kWh-meter indicates quality problems the situation can be detected with a suitable portable quality meter. The poor quality can be detected before it causes harm to equipment owned by the customers or the power distribution company. This presentation also presents a prototype of such a quality monitoring kWh-meter

  1. Additional functions of remotely read kWh-meters

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P [VTT Energy, Espoo (Finland); Vehvilaeinen, S [Mittrix Oy (Finland); Rantanen, J [Helsinki Energy Board, Helsinki (Finland)

    1997-12-31

    In this presentation the possibilities to include new applications into remotely read smart kWh-meters are considered. New electronic meters can measure various electric quantities and have some extra calculating capacity. So they can be used to provide functions that distribution automation and the customer need and thus share the costs. Some applications like monitoring the state of the distribution network or locating faults are only for the utility, but many applications also need an interface to the customer or his automation system. Among those are monitoring the quality of electricity, estimating load curves, applying dynamic tariffs and selling electricity and accounting. As a special item, the continuous monitoring of the quality of electricity is discussed. This includes voltage levels, total distortion, asymmetry and so on. If such a kWh-meter indicates quality problems the situation can be detected with a suitable portable quality meter. The poor quality can be detected before it causes harm to equipment owned by the customers or the power distribution company. This presentation also presents a prototype of such a quality monitoring kWh-meter

  2. The Role of Smart Meters in Enabling Real-Time Energy Services for Households: The Italian Case

    Directory of Open Access Journals (Sweden)

    Alessandro Pitì

    2017-02-01

    Full Text Available The Smart Meter (SM is an essential tool for successful balancing the demand-offer energy curve. It allows the linking of the consumption and production measurements with the time information and the customer’s identity, enabling the substitution of flat-price billing with smarter solutions, such as Time-of-Use or Real-Time Pricing. In addition to sending data to the energy operators for billing and monitoring purposes, Smart Meters must be able to send the same data to customer devices in near-real-time conditions, enabling new services such as instant energy awareness and home automation. In this article, we review the ongoing situation in Europe regarding real-time services for the final customers. Then, we review the architectural and technological options that have been considered for the roll-out phase of the Italian second generation of Smart Meters. Finally, we identify a collection of use cases, along with their functional and performance requirements, and discuss what architectures and communications technologies can meet these requirements.

  3. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  4. Optimization on Measurement Method for Neutron Moisture Meter

    International Nuclear Information System (INIS)

    Gong Yalin; Wu Zhiqiang; Li Yanfeng; Wang Wei; Song Qingfeng; Liu Hui; Wei Xiaoyun; Zhao Zhonghua

    2010-01-01

    When the water in the measured material is nonuniformity, the measured results of the neutron moisture meter in the field may have errors, so the measured errors of the moisture meter associated with the water nonuniformity in material were simulated by Monte Carlo method. A new measurement method of moisture meter named 'transmission plus scatter' was put forward. The experiment results show that the new measurement method can reduce the error even if the water in the material is nonuniformity. (authors)

  5. Characterization of Medication Velocity and Size Distribution from Pressurized Metered-Dose Inhalers by Phase Doppler Anemometry.

    Science.gov (United States)

    Alatrash, Abubaker; Matida, Edgar

    2016-12-01

    Particle size and velocity are two of the most significant factors that impact the deposition of pressurized metered-dose inhaler (pMDI) sprays in the mouth cavity. pMDIs are prominently used around the world in the treatment of patients suffering from a variety of lung diseases such as asthma and chronic obstructive pulmonary disease. Since their introduction in the field, and as a result of their effectiveness and simplicity of usage, pMDIs are considered to be the most widely prescribed medical aerosol delivery system. In the current study, particle velocity and size distribution were measured at three different locations along the centerline of a pMDI spray using Phase Doppler Anemometry. pMDIs from four different pharmaceutical companies were tested, each using salbutamol sulfate as the medication. Measurements along at the pMDI centerline (at 0, 75, and 100 mm downstream of the inhaler mouthpiece) showed that the spray velocities were bimodal in time for all four pMDI brands. The first peak occurred as the spray was leaving the mouthpiece, while the second peak (at the same location, 0 mm) occurred at around 60, 95, 95, and 115 milliseconds later, respectively, for the four tested inhalers, with a drop in the velocity between the two peaks. Three probability density functions (PDFs) were tested, and the Rosin-Rammler PDF best fit the empirical data, as determined using a chi-squared test. These results suggest that there is a difference in the mean particle velocities at the centerline for the tested pMDIs and the diameter of released particles varied statistically for each brand.

  6. Operating experience using venturi flow meters at liquid helium temperature

    International Nuclear Information System (INIS)

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench

  7. Radiofrequency fields associated with the Itron smart meter.

    Science.gov (United States)

    Tell, R A; Sias, G G; Vazquez, A; Sahl, J; Turman, J P; Kavet, R I; Mezei, G

    2012-08-01

    This study examined radiofrequency (RF) emissions from smart electric power meters deployed in two service territories in California for the purpose of evaluating potential human exposure. These meters included transmitters operating in a local area mesh network (RF LAN, ∼250 mW); a cell relay, which uses a wireless wide area network (WWAN, ∼1 W); and a transmitter serving a home area network (HAN, ∼70 mW). In all instances, RF fields were found to comply by a wide margin with the RF exposure limits established by the US Federal Communications Commission. The study included specialised measurement techniques and reported the spatial distribution of the fields near the meters and their duty cycles (typically smart meters as deployed. However, the results are restricted to a single manufacturer's emitters.

  8. Solutions For Smart Metering Under Harsh Environmental Condicions

    Directory of Open Access Journals (Sweden)

    Kunicina N.

    2015-02-01

    Full Text Available The described case study concerns application of wireless sensor networks to the smart control of power supply substations. The solution proposed for metering is based on the modular principle and has been tested in the intersystem communication paradigm using selectable interface modules (IEEE 802.3, ISM radio interface, GSM/GPRS. The solution modularity gives 7 % savings of maintenance costs. The developed solution can be applied to the control of different critical infrastructure networks using adapted modules. The proposed smart metering is suitable for outdoor installation, indoor industrial installations, operation under electromagnetic pollution, temperature and humidity impact. The results of tests have shown a good electromagnetic compatibility of the prototype meter with other electronic devices. The metering procedure is exemplified by operation of a testing company's workers under harsh environmental conditions.

  9. Pulse counting period meter output during startup transients

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1962-12-01

    The time response of a period meter whose input signal comes from a pulse counting channel may be calculated using a Ferranti Mercury autocode programme details of which are given. The period meter considered is the type for which the logarithmic characteristic is approximated by several diode pump circuits. The input excitation is a terminated ramp of reactivity. Other reactivity inputs may be treated. In particular the step change of reactivity may be used as the input excitation. Allowance is made for the effective time constants of the diode pump circuits and the period meter. The programme may be used for instrument assessment and for safety and operations studies on reactors which use this type of period meter. An example of the use of the programme is given. (author)

  10. IMAGE TYPE WATER METER CHARACTER RECOGNITION BASED ON EMBEDDED DSP

    OpenAIRE

    LIU Ying; HAN Yan-bin; ZHANG Yu-lin

    2015-01-01

    In the paper, we combined DSP processor with image processing algorithm and studied the method of water meter character recognition. We collected water meter image through camera at a fixed angle, and the projection method is used to recognize those digital images. The experiment results show that the method can recognize the meter characters accurately and artificial meter reading is replaced by automatic digital recognition, which improves working efficiency.

  11. Privacy-Preserving Smart Metering with Authentication in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Jun Beom Hur

    2015-12-01

    Full Text Available The traditional security objectives of smart grids have been availability, integrity, and confidentiality. However, as the grids incorporate smart metering and load management, user and corporate privacy is increasingly becoming an issue in smart grid networks. Although transmitting current power consumption levels to the supplier or utility from each smart meter at short intervals has an advantage for the electricity supplier’s planning and management purposes, it threatens user privacy by disclosing fine-grained consumption data and usage behavior to utility providers. In this study, we propose a distributed incremental data aggregation scheme where all smart meters on an aggregation path are involved in routing the data from the source meter to the collection unit. User privacy is preserved by symmetric homomorphic encryption, which allows smart meters to participate in the aggregation without seeing any intermediate or final result. Aggregated data is further integrated with an aggregate signature to achieve data integrity and smart meter authentication in such a way that dishonest or fake smart meters cannot falsify data en route. Only the collection unit can obtain the aggregated data and verify its integrity while the individual plain data are not exposed to the collection unit. Therefore, user privacy and security are improved for the smart metering in a smart grid network.

  12. Technique of Hurdle Clearing in 400 Meters Hurdles

    OpenAIRE

    Jakoubek, Jiří

    2018-01-01

    Title: Technique of Hurdle Clearing in 400 Meters Hurdles Authors: Jiří Jakoubek Supervisor: PhDr. Aleš Kaplan, Ph.D. Aims: The aim of this thesis is to describe technique of hurdle clearing in 400 meters hurdle race using study review and to examine this technique at particular athlete during training and racing sessions in 400 meters hurdles race. Methods: Technique was compared and examined at young athlete. Two kinograms were used for analysis, one from training and one from racing sessio...

  13. IMPORTANT: Fluke is recalling Digital Clamp Meters

    CERN Multimedia

    2013-01-01

    Fluke is voluntarily recalling four models of Digital Clamp Meters: Fluke 373, 374, 375 and 376. If you own one of these clamp meters, please stop using it and send it back to Fluke for repair even if you have not experienced problems.   Description of the problem: "The printed circuit assembly may not be properly fastened to the test lead input jack. This may result in inaccurate voltage readings, including a low or no-voltage reading on a circuit energised with a hazardous voltage, presenting a shock, electrocution or thermal burn hazard." To determine if your clamp meter is affected by this recall notice, and for more information, click here.

  14. Ramp Metering Influence on Freeway Operational Safety near On-ramp Exits

    Directory of Open Access Journals (Sweden)

    Chiu Liu, PhD, PE, PTOE

    2013-06-01

    Full Text Available Ramp metering has been widely installed in urban areas where congestion on a freeway or an expressway may occur recurrently during weekday peak periods to enhance mainline throughput and reduce system-wide delay. These operational benefits may also help reduce vehicular emissions and improve air quality in urban areas. However, the impact on traffic safety due to ramp metering hasn't been explored in details before. Supported by physical understanding and arguments, we characterize the ramp metering influence on freeway safety by examining vehicular collisions near on-ramp exits within the ramp meter operating hours before and after the activation of the ramp metering. Collisions for a sample of 19 operating ramp meters along several freeways in northern California were collected and organized to show that ramp metering can help reduce freeway collisions at the vicinity of on-ramp exits. It was found that the average reductions on freeway collisions in the vicinity of an on-ramp exit are around 36%. Although most of the reduced collisions belong to the property damage only category, a 36% reduction shows the significant safety benefit of ramp metering. The traffic congestion induced by each collision, especially during peak hours when ramp metering is in operation, could last for an hour or two. Consequently, ramp metering must be contributing to the reduction of non-recurrent congestion in addition to mitigating recurrent congestion, which is better documented. This study strongly supports the implementation of ramp metering in California.

  15. Some problems in calibrating surface contamination meters

    International Nuclear Information System (INIS)

    Chen Zigen; LI Xingyuan; Shuai Xiaoping.

    1984-01-01

    It is necessary that instruments are calibrated accurately in order to obtain reliable survey data of surface contamination. Some problems in calibrating surface contamination meters are expounded in this paper. Measurement comparison for beta surface contamination meters is organized within limited scope, thus survey quality is understood, questions are discovered, significance of calibration is expounded further. (Author)

  16. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Pirat, P.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  17. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  18. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  19. Interest in smart metering project surprises utility, IBM

    International Nuclear Information System (INIS)

    Horne, D.

    2006-01-01

    This article provided an outline of Hydro Ottawa and IBM's smart metering pilot project, which has resulted in high approval ratings from the public. The project features 375 participants broken down into 3 separate groups to look for potential consumption differences between customers charged according to standard time-of-use pricing; time-of-use with critical peak pricing; and time-of-use with critical peak rebates. The Ontario Smart Price Pilot project will be run for 5 months, and is expected to provide detailed energy information about usage. Past projects have indicated that customers respond quickly to smart metering, as they are able to monitor their energy usage and more effectively manage their energy consumption. Ontario plans to have all homes and small businesses using smart meters by 2010, as high seasonal demand has indicated that conservation and balanced resource use are now top priorities for many utility companies. At least 10 states in the United States have conducted smart metering pilot projects. The California Public Utilities Commissions has recently approved a $1.7 billion statewide plan to replace old meters with smart meters. In Ontario, customers have ordered 10,000 electricity monitors that Hydro One is giving away. It was concluded that research results from an earlier Hydro One demonstration project with 500 Ontario homeowners showed that real time electricity monitors can help homeowners reduce their consumption of electricity by up to 15 per cent. 4 figs

  20. Microprocessor controlled digital period meter

    International Nuclear Information System (INIS)

    Keefe, D.J.; McDowell, W.P.; Rusch, G.K.

    1980-01-01

    A microprocessor controlled digital period meter has been developed and tested operationally on a reactor at Argonne National Laboratory. The principle of operation is the mathematical relationship between asymptotic periods and pulse counting circuitry. This relationship is used to calculate and display the reactor periods over a range of /plus or minus/1 second to /plus or minus/999 seconds. The time interval required to update each measurement automatically varies from 8 seconds at the lowest counting rates to 2 seconds at higher counting rates. The paper will describe hardware and software design details and show the advantages of this type of Period Meter over the conventional circuits. 1 ref

  1. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  2. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    Directory of Open Access Journals (Sweden)

    Woong Go

    2014-01-01

    Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.

  3. Smart Meter Data Analytics: Systems, Algorithms and Benchmarking

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Golab, Lukasz; Golab, Wojciech

    2016-01-01

    the proposed benchmark using five representative platforms: a traditional numeric computing platform (Matlab), a relational DBMS with a built-in machine learning toolkit (PostgreSQL/MADlib), a main-memory column store (“System C”), and two distributed data processing platforms (Hive and Spark/Spark Streaming......Smart electricity meters have been replacing conventional meters worldwide, enabling automated collection of fine-grained (e.g., every 15 minutes or hourly) consumption data. A variety of smart meter analytics algorithms and applications have been proposed, mainly in the smart grid literature......-line feature extraction and model building as well a framework for on-line anomaly detection that we propose. Second, since obtaining real smart meter data is difficult due to privacy issues, we present an algorithm for generating large realistic data sets from a small seed of real data. Third, we implement...

  4. Multi-phase partitioning, ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river: The role of colloids

    International Nuclear Information System (INIS)

    Duan, Yan-Ping; Meng, Xiang-Zhou; Wen, Zhi-Hao; Ke, Run-Hui; Chen, Ling

    2013-01-01

    The occurrence and multi-phase distribution of five pharmaceutical compounds were investigated in an urban wastewater treatment plant (WWTP) receiving river by analysis of pharmaceuticals in sediment, particulate matter, conventional dissolved phase (> 0.7 μm), colloidal phase (5 kDa to 0.7 μm), and truly dissolved phase (< 5 kDa) water. Diclofenac was found in all samples, followed by clofibric acid, ibuprofen, ketoprofen, and naproxen with the decreasing detection frequency. All targets in WWTP outfall site were higher than those in the upstream and downstream, indicating that the WWTP is an important input source of pharmaceuticals in the river. The colloidal phase contributed 10–14% of ketoprofen, 8–26% of naproxen, 17–36% of clofibric acid, 22–33% of diclofenac, and 9–28% of ibuprofen in the aquatic system, suggesting the colloids will play an important role as carrier to contaminants in the aquatic environment. Based on truly dissolved concentrations of pharmaceuticals in water, only the risk quotient (RQ) value for diclofenac towards fish was higher than 1, indicating it poses a potential risk to aquatic organisms. Finally, a Level III fugacity model was used to further assess the environmental fate of the selected pharmaceuticals (exemplified for clofibric acid and diclofenac). Both clofibric acid and diclofenac tend to accumulate in water compartment with the percentage of 99.7% and 60.6%, respectively. Advection in river is a significant loss process for clofibric acid (56.4%) and diclofenac (54.4%). - Highlights: ► WWTP is the main source of pharmaceuticals to the receiving river in Shanghai. ► The colloids contribute 9–36% to the total pharmaceutical concentration in water. ► Truly dissolved diclofenac poses a potential risk to aquatic organisms. ► Clofibric acid and diclofenac tend to accumulate in water compartment

  5. Multi-phase partitioning, ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river: The role of colloids

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yan-Ping [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Meng, Xiang-Zhou, E-mail: xzmeng@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wen, Zhi-Hao [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Ke, Run-Hui [China National Research Institute of Food and Fermentation Industries, Beijing 100027 (China); Chen, Ling [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-03-01

    The occurrence and multi-phase distribution of five pharmaceutical compounds were investigated in an urban wastewater treatment plant (WWTP) receiving river by analysis of pharmaceuticals in sediment, particulate matter, conventional dissolved phase (> 0.7 μm), colloidal phase (5 kDa to 0.7 μm), and truly dissolved phase (< 5 kDa) water. Diclofenac was found in all samples, followed by clofibric acid, ibuprofen, ketoprofen, and naproxen with the decreasing detection frequency. All targets in WWTP outfall site were higher than those in the upstream and downstream, indicating that the WWTP is an important input source of pharmaceuticals in the river. The colloidal phase contributed 10–14% of ketoprofen, 8–26% of naproxen, 17–36% of clofibric acid, 22–33% of diclofenac, and 9–28% of ibuprofen in the aquatic system, suggesting the colloids will play an important role as carrier to contaminants in the aquatic environment. Based on truly dissolved concentrations of pharmaceuticals in water, only the risk quotient (RQ) value for diclofenac towards fish was higher than 1, indicating it poses a potential risk to aquatic organisms. Finally, a Level III fugacity model was used to further assess the environmental fate of the selected pharmaceuticals (exemplified for clofibric acid and diclofenac). Both clofibric acid and diclofenac tend to accumulate in water compartment with the percentage of 99.7% and 60.6%, respectively. Advection in river is a significant loss process for clofibric acid (56.4%) and diclofenac (54.4%). - Highlights: ► WWTP is the main source of pharmaceuticals to the receiving river in Shanghai. ► The colloids contribute 9–36% to the total pharmaceutical concentration in water. ► Truly dissolved diclofenac poses a potential risk to aquatic organisms. ► Clofibric acid and diclofenac tend to accumulate in water compartment.

  6. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    Science.gov (United States)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  7. Development of PIC-based digital survey meter

    International Nuclear Information System (INIS)

    Nor Arymaswati Abdullah; Nur Aira Abdul Rahman; Mohd Ashhar Khalid; Taiman Kadni; Glam Hadzir Patai Mohamad; Abd Aziz Mhd Ramli; Chong Foh Yong

    2006-01-01

    The need of radiation monitoring and monitoring of radioactive contamination in the workplace is very important especially when x-ray machines, linear accelerators, electron beam machines and radioactive sources are present. The appropriate use of radiation detector is significant in order to maintain a radiation and contamination free workplace. This paper reports on the development of a prototype of PIC-based digital survey meter. This prototype of digital survey meter is a hand held instrument for general-purpose radiation monitoring and surface contamination meter. Generally, the device is able to detect some or all of the three major types of ionizing radiation, namely alpha, beta and gamma. It uses a Geiger-Muller tube as a radiation detector, which converts gamma radiation quanta to electric pulses and further processed by the electronic devices. The development involved the design of the controller, counter and high voltage circuit. All these circuit are assembled and enclosed in a plastic casing together with a GM detector and LCD display to form a prototype survey meter. The number of counts of the pulses detected by the survey meter varies due to the random nature of radioactivity. By averaging the reading over a time-period, more accurate and stable reading is achieved. To test the accuracy and the linearity of the design, the prototype was calibrated using standard procedure at the Secondary Standard Dosimetry Laboratory (SSDL) in MINT. (Author)

  8. Status of neutron monitoring meters for radiation protection purpose

    International Nuclear Information System (INIS)

    Li Taosheng

    2003-01-01

    The status of and trends towards the development of neutron monitoring meters, such as dose survey meter, workplace (ambient) spectrometer and individual dosimeters, are discussed in the present paper from the perspectives of workplace and individual dose monitoring. Over the past 4 decades, both neutron dose survey meter and workplace spectrometer have declined to be more reasonable in design of their probes, with more broaden applications. With the development of electronic technology, there is a trend towards being more small-compacted and smart. Although many technical difficulties in the practical measurement, some significant progresses have be made in the development and research of these kinds of meters. (authors)

  9. Downhole multiphase metering in wells by means of soft-sensing

    NARCIS (Netherlands)

    Leskens, M.; Kruif, B. de; Belfroid, S.P.C.; Smeulers, J.P.M.; Gryzlov, A.

    2008-01-01

    Multiphase flow meters are indispensable tools for achieving optimal operation and control of wells as these meters deliver real-time information about their performance. For example, multiphase flow meters located downhole can improve the production of multilateral and multizone wells by timely

  10. Federal metering data analysis needs and existing tools

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Jordan W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fowler, Kimberly M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Agencies have been working to improve their metering data collection, management, and analysis efforts over the last decade (since EPAct 2005) and will continue to address these challenges as new requirements and data needs come into place. Unfortunately there is no “one-size-fits-all” solution. As agencies continue to expand their capabilities to use metered consumption data to reducing resource use and improve operations, the hope is that shared knowledge will empower others to follow suit. This paper discusses the Federal metering data analysis needs and some existing tools.

  11. Deducing Energy Consumer Behavior from Smart Meter Data

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Heick, Rune; Jacobsen, Rune Hylsberg

    2017-01-01

    The ongoing upgrade of electricity meters to smart ones has opened a new market of intelligent services to analyze the recorded meter data. This paper introduces an open architecture and a unified framework for deducing user behavior from its smart main electricity meter data and presenting...... the results in a natural language. The framework allows a fast exploration and integration of a variety of machine learning algorithms combined with data recovery mechanisms for improving the recognition’s accuracy. Consequently, the framework generates natural language reports of the user’s behavior from...

  12. The Value of Advanced Smart Metering in the Management of Urban Water Supply Services

    Science.gov (United States)

    Guardiola, J.; Pulido-Velazquez, M.; Giuliani, M.; Castelletti, A.; Cominola, A.; Arregui de la Cruz, F.; Escriva-Bou, A.; Soriano, J.; Pérez, J. J.; Castillo, J.; Barba, J.; González, V.; Rizzoli, A. E.

    2016-12-01

    This work intends to outline the experience of the implementation and further exploitation of an extensive network of smart meters (SM) in the city of Valencia by Aguas de Valencia, the water utility that offers water supply and sanitation services to the city of Valencia and its metropolitan area. Valencia has become the first large city in Europe fully equipped with a point-to-point fixed network of SM (currently with more than 430,000 units, about 90% of the meters of the city). The shift towards a water supply management system based on SM is a complex process that entails changes and impacts on different management areas of the water supply organization. A new data management and processing platform has been developed and is already proving notable benefits in the operation of the system. For example, a tool allows to automatically issue and manage work orders when abnormalities such as internal leaks (constant consumption) or meter alarms are detected. Another tool has been developed to reduce levels of non-revenue water by continuously balancing supply and demand in district metered areas. Improving leak detection and adjusting pressure levels has significantly increased the efficiency of the water distribution network. Finally, a service of post-meter leak detection has been also implemented. But the SM also contribute to improve demand management. The customers now receive detailed information on their water consumption, valuable for improving household water management and assessing the value of water conservation strategies. SM are also key tools for improving the level of understanding of demand patterns. Users have been categorized into different clusters depending in their consumption patterns characteristics. Within the EU SmartH2O project, a high resolution and frequency monitoring of residential uses has been conducted in a selected sample of households for a precise disaggregation of residential end-uses. The disaggregation of end-uses allows for

  13. Real time Aanderaa current meter data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Aanderaa current meters are widely used for recording the current speed and such other 4 parameters by deploying them over extended period of time. Normally data are recorded on magnetic tape and after recovery of current meters, data are read...

  14. Performance of the tariffs of a single-phase electric energy meter, type electronic, operating with non-linear loads; Desempenho tarifario do medidor monofasico de energia eletrica do tipo eletronico operando com cargas nao-lineares

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.B.; Pinheiro Neto, D.; Lisita, L.R.; Machado, P.C.M.; Oliveira, J.V.M. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Engenharia Eletrica e de Computacao], Emails: guilhermebsantos@gmail.com, daywes@gmail.com, lrlisi-ta@gmail.com, pcesar@eee.ufg.br, joao.eee@gmail.com

    2009-07-01

    This paper analyzes the behavior of a electronic meter of single-phase in the laboratory when it is subjected to a environment with linear loads and nonlinear loads kind residential and commercial. It differs from correlated studies mainly for making use of real loads encountered in day-to-day, rather than as sources of electronic loads how has been observed in the state of the art. The comparison of results is made based on high precision energy pattern developed by virtual instrumentation means.

  15. ORNL Pocket Meter Program: internal operating procedures

    International Nuclear Information System (INIS)

    Berger, C.D.; Miller, J.H.; Dunsmore, M.R.

    1984-12-01

    The ORNL Pocket Meter Program is designed for auditing the approximate photon radiation exposure of Oak Ridge National Laboratory (ORNL) radiation workers. Although pocket meters are considered to be a secondary personnel dosimetry system at ORNL, they are valuable indicators of unplanned exposures if proper procedures are followed for testing, calibrating, deploying, wearing, processing, and recording data. 4 figures, 1 table

  16. Implementation plan for smart meters in Ontario

    International Nuclear Information System (INIS)

    2004-01-01

    This paper presents Ontario Energy Board's implementation plan to install 800,000 smart meters by December 31, 2007. The objective is to help consumers control their electricity bills through conservation and demand response. The three conditions that will change power consumption habits are price changes in response to demand and supply forces; the ability of consumers to see and respond to the price signals; and, a measurement of the response so that consumers get credit for their actions. This paper identifies the mandatory technical requirements for smart meters and the support operations of distributors. It sets priorities, identifies barriers and regulatory mechanisms for cost recovery. It also discusses options for ownership of the meters. 18 refs., 1 tab., 2 figs

  17. Optical position meters analyzed in the noninertial reference frames

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Seleznyov, Alexander A.

    2008-01-01

    In the framework of general relativity we develop a method for the analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are noninertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.

  18. The development of two-phase flow instrumentation at PNC O-arai Engineering Center

    International Nuclear Information System (INIS)

    Obata, T.; Kobori, T.; Hayamizu, Y.

    1975-10-01

    This paper reviews development works on the two-phase flow instrumentation carried out at PNC Oarai Engineering Center for FUGEN safety test. The paper describes heater surface temperature measurement, four types of void meters and two steam quality meters. (auth.)

  19. Smart metering gateway works as Smart Home Energy Manager; Smart Metering Gateway als Smart Home Energy Manager

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Klaus-Dieter [SSV Software Systems GmbH, Hannover (Germany)

    2011-07-01

    The installation of smart meters together with real time consumption data visualization doesn't help to save energy CO2 emissions. With regards to refinancing options, the situation in Germany has been quite different since the middle of last year for buildings equipped with a photovoltaic system. If a heat pump system is also present, intelligent energy use in conjunction with smart meters can save considerable amounts of money. A Smart Home Energy Manager (SHEM) automates the energy saving. (orig.)

  20. Attacks and their Defenses for Advanced Metering Infrastructure

    DEFF Research Database (Denmark)

    Lighari, Sheeraz Niaz; Hussain, Dil Muhammad Akbar; Bak-Jensen, Birgitte

    2014-01-01

    The smart grid is the digitized, modernized, updated version of archaic traditional electric grid. Advanced Metering Infrastructure (AMI) is an imperative part of the smart grid. It has replaced legacy metering, as it reports the energy consumption to the utility automatically through communicati...

  1. Electric Power Substitute Meter Management via Mobile Application

    Directory of Open Access Journals (Sweden)

    Nelson C. Rodelas

    2014-10-01

    Full Text Available EPSMvMA is composed of Digital Sub-Meter connected to different components namely the GSM module, Bluetooth module, Power Analyzer Module, LCD Module, Relay Module and Main Microcontroller module. The connection via Mobile is made possible by the modules mentioned. The software that the proponents will be dealing with in the study is C++ language, which will be used in programming the Main Microcontroller module and Visual Basic Language for the Android Phones. The Bluetooth module can access the Android Phones and connect to the digital sub-meter in a limited distance. The users will be at ease since a code embedded to the microcontroller will make the utility sub-meter produce the desired value of electricity (KWH and wherein the computed Sub-meter reading can be viewed through the LCD. This project is accommodating to those person that is always on the go and prudent.

  2. Radiofrequency fields associated with the Itron smart meter

    International Nuclear Information System (INIS)

    Tell, R. A.; Sias, G. G.; Vazquez, A.; Sahl, J.; Turman, J. P.; Kavet, R. I.; Mezei, G.

    2008-01-01

    This study examined radiofrequency (RF) emissions from smart electric power meters deployed in two service territories in California for the purpose of evaluating potential human exposure. These meters included transmitters operating in a local area mesh network (RF LAN, ∼250 mW); a cell relay, which uses a wireless wide area network (WWAN, ∼1 W); and a transmitter serving a home area network (HAN, ∼70 mW). In all instances, RF fields were found to comply by a wide margin with the RF exposure limits established by the US Federal Communications Commission. The study included specialised measurement techniques and reported the spatial distribution of the fields near the meters and their duty cycles (typically <1 %) whose value is crucial to assessing time-averaged exposure levels. This study is the first to characterise smart meters as deployed. However, the results are restricted to a single manufacturer's emitters. (authors)

  3. Reactor Power Meter type SG-8

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The report describes the principle and electronic circuits of the Reactor Power Meter type SG-8. The gamma radiation caused by the activity of the reactor first cooling circuit affectes the ionization chamber being the detector of the instrument. The output detector signal direct current is converted into the frequency of electric pulses by means of the current-to-frequency converter. The output converter frequency is measured by the digital frequency meter: the number of measured digits in time unit is proportional to the reactor power.

  4. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  5. Chlorophyll meter for estimating nitrogen status of irrigated wheat

    International Nuclear Information System (INIS)

    Schepers, J.S.

    2000-01-01

    Chlorophyll-meter readings, generated from the leaves of irrigated wheat at particular growth stages, were normalized to the data obtained with locally recommended rates of fertilizer N, in Chile China, India and Mexico. Normalizing permitted comparisons of crop-N status across growth stages, locations, cultivars, and years. Relative yields and meter readings at growth-stage Z-50 are presented; they revealed similar trends for India, China, and Chile, however, for Mexico, the combination of soil, wheat cultivar, and climate resulted in much less response to N fertilization in the meter data. The implications are discussed. The SPAD meter proved to be a good tool to monitor and evaluate the N status of irrigated wheat. (author)

  6. How Should Blood Glucose Meter System Analytical Performance Be Assessed?

    Science.gov (United States)

    Simmons, David A

    2015-08-31

    Blood glucose meter system analytical performance is assessed by comparing pairs of meter system and reference instrument blood glucose measurements measured over time and across a broad array of glucose values. Consequently, no single, complete, and ideal parameter can fully describe the difference between meter system and reference results. Instead, a number of assessment tools, both graphical (eg, regression plots, modified Bland-Altman plots, and error grid analysis) and tabular (eg, International Organization for Standardization guidelines, mean absolute difference, and mean absolute relative difference) have been developed to evaluate meter system performance. The strengths and weaknesses of these methods of presenting meter system performance data, including a new method known as Radar Plots, are described here. © 2015 Diabetes Technology Society.

  7. Development of a contour meter

    International Nuclear Information System (INIS)

    Andrada C, F.A.; Sanz, D.E.

    2006-01-01

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  8. Metal Mesh Filters for Terahertz Receivers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of this SBIR program is to develop and demonstrate metal mesh filters for use in NASA's low noise receivers for terahertz astronomy and...

  9. Topology-Based Estimation of Missing Smart Meter Readings

    Directory of Open Access Journals (Sweden)

    Daisuke Kodaira

    2018-01-01

    Full Text Available Smart meters often fail to measure or transmit the data they record when measuring energy consumption, known as meter readings, owing to faulty measuring equipment or unreliable communication modules. Existing studies do not address successive and non-periodical missing meter readings. This paper proposes a method whereby missing readings observed at a node are estimated by using circuit theory principles that leverage the voltage and current data from adjacent nodes. A case study is used to demonstrate the ability of the proposed method to successfully estimate the missing readings over an entire day during which outages and unpredictable perturbations occurred.

  10. Automatic carrier acquisition system for phase-lock-loop receivers

    Science.gov (United States)

    Bunce, R. C.

    1973-01-01

    Programmable oscillator and zero-beat detector acquires phase-lock of carrier by frequency scanning. Generation of high-level dc pulse at instant of zero crossing provides positive trigger for decision gate to stop search and close loop for phase-coherent tracking.

  11. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  12. Integration of auditory and tactile inputs in musical meter perception.

    Science.gov (United States)

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2013-01-01

    Musicians often say that they not only hear but also "feel" music. To explore the contribution of tactile information to "feeling" music, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter-recognition task. Subjects discriminated between two types of sequences, "duple" (march-like rhythms) and "triple" (waltz-like rhythms), presented in three conditions: (1) unimodal inputs (auditory or tactile alone); (2) various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts; and (3) bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70-85 %) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70-90 %) when all of the metrically important notes are assigned to one channel and is reduced to 60 % when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90 %). Performance dropped dramatically when subjects were presented with incongruent auditory cues (10 %), as opposed to incongruent tactile cues (60 %), demonstrating that auditory input dominates meter perception. These observations support the notion that meter perception is a cross-modal percept with tactile inputs underlying the perception of "feeling" music.

  13. Research on data collection key technology of smart electric energy meters

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu

    2018-02-01

    In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.

  14. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture...

  15. A wireless mesh communication protocol for smart-metering

    NARCIS (Netherlands)

    Geelen, D.J.M.; Kempen, van G.M.P.; Hoogstraten, van F.; Liotta, A.

    2012-01-01

    Worldwide there has been increasing interest over the past few years for so-called "Smart Meters", in academia, governments and in industry. Such smart-metering systems need a way to communicate the collected data reliably and cost efficiently to the back-office for analysis. Several competing

  16. 7 CFR 801.6 - Tolerances for moisture meters.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for moisture meters. 801.6 Section 801.6 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.6 Tolerances for moisture meters. (a) The maintenance tolerances...

  17. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  18. Development of a hand-held fast neutron survey meter

    International Nuclear Information System (INIS)

    Yoshida, T.; Tsujimura, N.; Yamano, T.

    2011-01-01

    A neutron survey meter with a ZnS(Ag) scintillator to measure recoil protons was built. The detection probe weighs ∼2 kg, therefore providing us with true portability. Performance tests exhibited satisfactory neutron dosimetry characteristics in unmoderated or lightly moderated fission neutron fields and in particular work environments at a mixed oxide fuel facility. This new survey meter will augment a routine of neutron monitoring that is inconveniently being carried out by moderator-based neutron survey meters. (authors)

  19. Comprehensive evaluation of the Berthold LB1200 survey meter

    International Nuclear Information System (INIS)

    Davis, M.W.

    1986-05-01

    The performance of two Berthod LB1200 survey meters was evaluated under the influence of a range of beta and photon radiation energies and environmental conditions likely to be encountered in the field. The survey meters responded satisfactorily to the range of beta particle and photon radiation energies emitted by most radioisotopes commonly used in Canada. The survey meters performed acceptably under most of the environmental conditions tested here with the exception of radiofrequency interference and electrostatic charge

  20. The British Gas Quantum Metering System for pre-payment customers

    International Nuclear Information System (INIS)

    Williams, P.; Fitzpatrick, B.

    1992-01-01

    The development work leading up to the design of the Quantum Metering System is outlined. The main features of the meter including the reusable tokens, metering equipment, credit charging equipment, central controlling equipment and a portable token reader for field use are described in detail, and the two way communication of information is highlighted. (UK)

  1. What to look for when selecting ANSI protocol meters

    Energy Technology Data Exchange (ETDEWEB)

    York, T.

    2001-09-01

    A large number of major manufacturers now offer American National Standards Institute (ANSI) protocol meters, with ever improving capabilities. It is now time to consider ANSI Protocol Meters (APM). One of the advantages of the industry moving toward APMs is the fact that the eventual exclusion of proprietary technology should accelerate and additional software tools should become available to fully support APMs. The emphasis on the part of suppliers and potential users must now be placed on the acquisition of metering products that provide maximum benefits. The proper evaluation of APM will provide valuable feedback to the meter manufacturers, which in turn will encourage the development of new and improved metering products to increase productivity. The customers should be mindful of the following: insist on end device language files, and look for product flexibility. Other interesting features are: billing data (so it can be presented in standard format), present values (for inclusion of instrumentation measurements for quick retrieval by the customer), interval data recording, security features, user defined tables, logging, and power quality monitoring. 1 fig.

  2. A Study of the Meters of Bidel Dehlavi\\'s Ghazals(Sonnets and their Comparison with the Meters of Ghazals(Sonnets in Persian and Indian-Style Ghazals(Sonnets

    Directory of Open Access Journals (Sweden)

    Mahdi Kamali

    2010-03-01

    Full Text Available Abstract  Bidel Dehlavi ( 1644 A.D./1054 A.H.-1721 A.D./1133 A.H . was one of the most famous Persian poets of India and the greatest poet in Indian branch of a style well-known as Sabk-e Hendi (Indian Style. However, his poems have not sufficiently been studied in Iran .   Meter is one of the basic elements and most effective one in poetry. Therefore, examining the quality of its meter could be one of the basic steps in interpreting and evaluating a poem.   Most of Bidel-readers and Bidel-scholars consider his ghazals as the most valuable product of his wit. Furthermore, according to its history and lyrical nature, ghazal pattern has a closer connection with music and the function of meter in ghazal form is more prominent than that of the others. For this reason, in the present study, first the meters of this poet's ghazals have been introduced and then they are compared with current meters of Persian ghazal and those of the eleventh ( A.H . century. Finally, the metrical features of his ghazals are determined as follows:  Bidel composed 2858 ghazals in 32 different meters, six of which were the most frequent ones in all Persian ghazals and in the eleventh ( A.H . century. In this way, Bidel, whose poems are famous because of their different and unusual quality, significantly conforms four fifth of his ghazals to the standard and thus they are considered "ordinary". But one can see some creativity and experimentation in the meters which are relatively less frequent meters: among the five less frequent meters in Persian poetry, Bidel composed from 1 to 56 ghazals in those meters and 4 ghazals in one meter which, according to the current evidence, there was not such an example known in Persian classical poetry at all.

  3. Status of Net Metering: Assessing the Potential to Reach Program Caps

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Gelman, R.; Bird, L.

    2014-09-01

    Several states are addressing the issue of net metering program caps, which limit the total amount of net metered generating capacity that can be installed in a state or utility service territory. In this analysis, we examine net metering caps to gain perspective on how long net metering will be available in various jurisdictions under current policies. We also surveyed state practices and experience to understand important policy design considerations.

  4. Remote calibration system of a smart electrical energy meter

    Directory of Open Access Journals (Sweden)

    Zakariae Jebroni

    2017-12-01

    Full Text Available The need to control the power grid in real time has opened a new field of research, today researchers are trying to design electrical meters that are completely remote controlled, to create an advanced metering infrastructure. One of the most important processes in the field of measurement is the calibration of measuring instruments. The calibration process of the electrical meters was performed at laboratories. However, the new directives, now, require a regular test of accuracy. Nevertheless, moving each time on site to check the accuracy of a meter can be annoying. To solve this problem our contribution is to propose a new structure of a smart meter that integrates a calibration card, so that, this process is carried out remotely. To be able to calibrate the meter or test its accuracy, we have included an AC-AC converter powered by the electrical grid and that provides a stable voltage independent of the electrical grid in term of frequency and amplitude. The output voltage of the converter is used as the reference signal during calibration or accuracy testing. In this paper, we will present the structure of the calibration card, the study and dimensioning of the converter, as well as the control technique used to eliminate variations of the input voltage. At the end, we will present the results of simulations and experiments.

  5. Additive Manufacturing of Telescope Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase 1 SBIR is to demonstrate feasibility of using selective laser melting (SLM) to produce a 3-meter symmetrical radius of curvature (ROC) isogrid mirror...

  6. A new kind high-reliability digital reactivity meter

    International Nuclear Information System (INIS)

    Shen Feng; Jiang Zongbing

    2001-01-01

    The paper introduces a new kind of high-reliability Digital Reactivity Meter developed by the DRM developing group in designing department of Nuclear Power Institute of China. The meter has two independent measure channels, which can be set as either master-slave structure or working independently. This structure will ensure that the meter can continually fulfill its online measure task under the condition of single failure with it. It provides a solution for the conflict between nuclear station's extreme demand in DRM's reliability and instability of computer's business software platform. The instrument reaches both advance and reliability by covering a lot of kinds of complex functions in data process and display

  7. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)

    High levels of water losses in distribution systems are the main challenge that water utilities in developing countries currently face. The water meter is an essential tool for both the utility and the customers to measure and monitor consumption. When metering is inefficient and coupled with low tariffs, the financial ...

  8. 40 CFR 1065.230 - Raw exhaust flow meter.

    Science.gov (United States)

    2010-07-01

    ... the following cases, you may use a raw exhaust flow meter signal that does not give the actual value... dew and pressure, p total at the flow meter inlet. Use these values in emission calculations according... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.230 Raw exhaust...

  9. An assessment of the Italian smart gas metering program

    International Nuclear Information System (INIS)

    Di Castelnuovo, Matteo; Fumagalli, Elena

    2013-01-01

    The introduction of smart metering is one of the core elements in recent European policies targeting environmental sustainability and competitiveness of energy markets. Following the roll-out of smart electricity meters, in 2008 the Italian regulator designed an ambitious deployment program also for smart gas meters, that was recently modified in both scope and timing. This paper assesses Italy's original and current deployment plans, with a specific focus on the results of its cost–benefit analysis. In light of the evidence derived from the literature, we observe that the case for the roll-out of smart gas meters in Italy was not supported by a strong emphasis on energy savings but rather focused on increasing efficiency of the Italian gas market; in this respect, we argue that options other than smart gas metering should also be considered. Moreover the Italian cost–benefit analysis, which mostly dealt with the potential cost savings for distributors and suppliers, led to ambiguous results in terms of net present values; thus, we believe that an updated assessment would be extremely useful. Finally, in terms of technological choices, our analysis positively evaluates the regulator's recent proposal to consider a dual-fuel solution for the mass market deployment. - Highlights: • This paper assesses Italy's original and current deployment plans for smart gas meters. • The plan was not supported by a strong emphasis on energy savings. • A focus on increasing efficiency of the Italian gas market appears only partly justifiable. • The business case for adopting smart gas meters should be updated. • Our analysis positively evaluates the a dual-fuel solution for the mass market

  10. Revealing household characteristics from smart meter data

    International Nuclear Information System (INIS)

    Beckel, Christian; Sadamori, Leyna; Staake, Thorsten; Santini, Silvia

    2014-01-01

    Utilities are currently deploying smart electricity meters in millions of households worldwide to collect fine-grained electricity consumption data. We present an approach to automatically analyzing this data to enable personalized and scalable energy efficiency programs for private households. In particular, we develop and evaluate a system that uses supervised machine learning techniques to automatically estimate specific “characteristics” of a household from its electricity consumption. The characteristics are related to a household's socio-economic status, its dwelling, or its appliance stock. We evaluate our approach by analyzing smart meter data collected from 4232 households in Ireland at a 30-min granularity over a period of 1.5 years. Our analysis shows that revealing characteristics from smart meter data is feasible, as our method achieves an accuracy of more than 70% over all households for many of the characteristics and even exceeds 80% for some of the characteristics. The findings are applicable to all smart metering systems without making changes to the measurement infrastructure. The inferred knowledge paves the way for targeted energy efficiency programs and other services that benefit from improved customer insights. On the basis of these promising results, the paper discusses the potential for utilities as well as policy and privacy implications. - Highlights: • Many household characteristics can be automatically inferred from smart meter data. • We develop a system to infer employment status and number of occupants, for instance. • We evaluate our system analyzing data collected from 4232 households in Ireland. • The insights enable personalized and scalable efficiency campaigns for utilities. • Energy efficiency measures must be complemented by privacy protection

  11. Smart Metering Guide. Energy Saving and the Customer. Edition 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kester, J.C.P. (ed.) [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Gonzalez Burgos, M.J. (ed.) [Endesa Ingenieria, Madrid (Spain); Parsons, J. (ed.) [British Electrotechnical and Allied Manufacturers Association BEAMA, London (United Kingdom)

    2010-11-15

    Smart metering can provide the foundations for a radically different approach to energy reduction schemes. However, the implementation of smart metering is a complex undertaking and its success depends on getting many factors right, from technology choice to how the information is presented to final customers. Making the expected reduction in energy consumption depends on achieving a positive reaction from final customers. Maintaining and increasing these savings will need the engagement of Energy Retailers, energy agencies and others. This Guide has been produced to bring together the lessons learnt from smart metering systems and trials, targeted on the promotion of End Use Energy Efficiency. The aim is to assist those groups who are considering implementing smart metering for this purpose and to maximise the benefits arising from those implementations. . The main target audience for the Guide are utilities, ESCO's and service providers across Europe. In most countries these are the parties investing in the smart metering systems and providing the smart metering services. In addition to these, governments, regulators, consumer bodies and energy agencies, as well as suppliers and system integrators, will also find valuable information in the Guide. As the subtitle of the Guide indicates, the focus of this Guide is on the application of smart metering for delivering energy saving. Making the expected reduction in energy consumption depends on achieving a positive reaction from final customers. In general, the successful provision of smart metering services is highly dependent on the right involvement of the energy final customer. This guide is not a ready-to-go manual for the installation of a specific type of smart metering system. Rather, the authors have tried to give the reader an insight into some of the complexities of the whole implementation process of smart metering systems. Also the guide is impartial regarding different technologies unless there is

  12. Performance Analysis of Secure and Private Billing Protocols for Smart Metering

    Directory of Open Access Journals (Sweden)

    Tom Eccles

    2017-11-01

    Full Text Available Traditional utility metering is to be replaced by smart metering. Smart metering enables fine-grained utility consumption measurements. These fine-grained measurements raise privacy concerns due to the lifestyle information which can be inferred from the precise time at which utilities were consumed. This paper outlines and compares two privacy-respecting time of use billing protocols for smart metering and investigates their performance on a variety of hardware. These protocols protect the privacy of customers by never transmitting the fine-grained utility readings outside of the customer’s home network. One protocol favors complexity on the trusted smart meter hardware while the other uses homomorphic commitments to offload computation to a third device. Both protocols are designed to operate on top of existing cryptographic secure channel protocols in place on smart meters. Proof of concept software implementations of these protocols have been written and their suitability for real world application to low-performance smart meter hardware is discussed. These protocols may also have application to other privacy conscious aggregation systems, such as electronic voting.

  13. Asthma control in patients receiving inhaled corticosteroid and long-acting beta2-agonist fixed combinations. A real-life study comparing dry powder inhalers and a pressurized metered dose inhaler extrafine formulation

    Directory of Open Access Journals (Sweden)

    Nicolini Gabriele

    2011-07-01

    Full Text Available Abstract Background Although patients have more problems using metered dose inhalers, clinical comparisons suggest they provide similar control to dry powder inhalers. Using real-life situations this study was designed to evaluate asthma control in outpatients with moderate to severe persistent asthma and to compare efficacy of fixed combinations of inhaled corticosteroids (ICS and long acting beta-agonists (LABA. Methods This real-life study had a cross-sectional design. Patients using fixed combinations of ICS and LABA had their asthma control and spirometry assessed during regular visits. Results 111 patients were analyzed: 53 (47.7% received maintenance therapy of extrafine beclomethasone-formoterol (BDP/F pressurized metered dose inhaler (pMDI, 25 (22.5% fluticasone-salmeterol (FP/S dry powder inhaler (DPI, and 33 (29.7% budesonide-formoterol (BUD/F DPI. Severity of asthma at time of diagnosis, assessed by the treating physician, was comparable among groups. Asthma control was achieved by 45.9% of patients; 38.7% were partially controlled and 15.3% were uncontrolled. In the extrafine BDF/F group, asthma control total score, daytime symptom score and rescue medication use score were significantly better than those using fixed DPI combinations (5.8 ± 6.2 vs. 8.5 ± 6.8; 1.4 ± 1.8 vs. 2.3 ± 2.1; 1.8 ± 2.2 vs. 2.6 ± 2.2; p = 0.0160; p = 0.012 and p = 0.025, respectively and the mean daily ICS dose were significantly lower. Conclusions pMDI extrafine BDP/F combination demonstrated better asthma control compared to DPIs formulated with larger particles. This could be due to the improved lung deposition of the dose or less reliance on the optimal inhalation technique or both.

  14. Enhancing physical activity in older adults receiving hospital based rehabilitation: a phase II feasibility study

    Directory of Open Access Journals (Sweden)

    Said Catherine M

    2012-06-01

    Full Text Available Abstract Background Older adults receiving inpatient rehabilitation have low activity levels and poor mobility outcomes. Increased physical activity may improve mobility. The objective of this Phase II study was to evaluate the feasibility of a randomized controlled trial (RCT of enhanced physical activity in older adults receiving rehabilitation. Methods Patients admitted to aged care rehabilitation with reduced mobility were randomized to receive usual care or usual care plus additional physical activity, which was delivered by a physiotherapist or physiotherapy assistant. The feasibility and safety of the proposed RCT protocol was evaluated. The primary clinical outcome was mobility, which was assessed on hospital admission and discharge by an assessor blinded to group assignment. To determine the most appropriate measure of mobility, three measures were trialled; the Timed Up and Go, the Elderly Mobility Scale and the de Morton Mobility Index. Results The protocol was feasible. Thirty-four percent of people admitted to the ward were recruited, with 47 participants randomised to a control (n = 25 or intervention group (n = 22. The rates of adverse events (death, falls and readmission to an acute service did not differ between the groups. Usual care therapists remained blind to group allocation, with no change in usual practice. Physical activity targets were met on weekdays but not weekends and the intervention was acceptable to participants. The de Morton Mobility Index was the most appropriate measure of mobility. Conclusions The proposed RCT of enhanced physical activity in older adults receiving rehabilitation was feasible. A larger multi-centre RCT to establish whether this intervention is cost effective and improves mobility is warranted. Trial registration The trial was registered with the ANZTCR (ACTRN12608000427370.

  15. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  16. Gamma absorption meter

    International Nuclear Information System (INIS)

    Dincklage, R.D. von.

    1984-01-01

    The absorption meter consists of a radiation source, a trough for the absorbing liquid and a detector. It is characterized by the fact that there is a foil between the detector and the trough, made of a material whose binding energy of the K electrons is a little greater than the energy of the photons emitted by the radiation source. The source of radiation and foil are replaceable. (orig./HP) [de

  17. Meters and systems for future. Meters fit for retrofitting with a communication module; Zaehler und Systeme fuer die Zukunft. Mit Kommunikationsmodul nachruestbare Zaehler

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Martin [Itron GmbH, Karlsruhe (Germany). Marketing Gas Germany; Sievers, Marco [Allmess GmbH, Oldenburg (Germany). Marketing und Vertrieb Systeme, Wasser- und Waermewirtschaft

    2011-04-18

    The contribution looks at the situation of smart meters in view of the German government's decision of 2007, which required that smart meters should be installed within a period of six years. However, there is no market-compatible strategy for their introduction, and legal regulations are still lacking. For example, the EnWG demands the obligatory installation of smart meters from 1 January 2010 only in newly constructed or extensively modernized buildings and also on the user's demand.

  18. FUSION OF VENTURI AND ULTRASONIC FLOW METER FOR ENHANCED FLOW METER CHARACTERISTICS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    K.V. Santhosh

    2015-04-01

    Full Text Available This paper proposes a technique for measurement of liquid flow using venturi and ultrasonic flow meter(UFM to have following objectives a to design a multi-sensor data fusion (MSDF architecture for using both the sensors, b improve sensitivity and linearity of venturi and ultrasonic flow meter, and c detect and diagnosis of faults in sensor if any. Fuzzy logic algorithm is used to fuse outputs of both the sensor and train the fuzzy block to produces output which has an improved characteristics in terms of both sensitivity and linearity. For identification of sensor faults a comparative test algorithm is designed. Once trained proposed technique is tested in real life, results show successful implementation of proposed objectives.

  19. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  20. A Study on Watt-hour Meter Data Acquisition Method Based on RFID Technology

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    Considering that traditional watt-hour meter data acquisition was subjected to the influence of distance and occlusion, a watt-hour meter data acquisition method based on RFID technology was proposed in this paper. In detail, RFID electronic tag was embedded in the watt-hour meter to identify the meter and record electric energy information, which made RFID based wireless data acquisition for watt-hour meter come true. Eventually, overall lifecycle management of watt-hour meter is realized.

  1. The Anti-RFI Design of Intelligent Electric Energy Meters with UHF RFID

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    In order to solve the existing artificial meter reading watt-hour meter industry is still slow and inventory of common problems, using the uhf radio frequency identification (RFID) technology and intelligent watt-hour meter depth fusion, which has a one-time read multiple tags, identification distance, high transmission rate, high reliability, etc, while retaining the original asset management functions, in order to ensure the uhf RFID and minimum impact on the operation of the intelligent watt-hour meter, proposed to improve the stability of the electric meter system while working at the same time, this paper designs the uhf RFID intelligent watt-hour meter radio frequency interference resistance, put forward to improve intelligent watt-hour meter electromagnetic compatibility design train of thought, and introduced its power and the hardware circuit design of printed circuit board, etc.

  2. Five training sessions improves 3000 meter running performance.

    Science.gov (United States)

    Riiser, A; Ripe, S; Aadland, E

    2015-12-01

    The primary aim of the present study was to evaluate the effect of two weeks of endurance training on 3000-meter running performance. Secondary we wanted to assess the relationship between baseline running performance and change in running performance over the intervention period. We assigned 36 military recruits to a training group (N.=28) and a control group. The training group was randomly allocated to one of three sub-groups: 1) a 3000 meter group (test race); 2) a 4x4-minutes high-intensity interval group; 3) a continuous training group. The training group exercised five times over a two-week period. The training group improved its 3000 meter running performance with 50 seconds (6%) compared to the control group (P=0.003). Moreover, all sub-groups improved their performance by 37 to 73 seconds (4-8%) compared to the control group (Ptraining group. We conclude that five endurance training sessions improved 3000 meter running performance and the slowest runners achieved the greatest improvement in running performance.

  3. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  4. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid

    2012-09-08

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  5. Low Complexity Receiver Design for MIMO-Radar

    KAUST Repository

    Ahmed, Sajid; Alouini, Mohamed-Slim

    2012-01-01

    In this work, an algorithm for the multiple-input multiple-output (MIMO) radar is proposed. It has low computational complexity compared to the available schemes, and relatively low side-lobe-levels in the receive beampattern compared to the phased-array and MIMO-radar. In the proposed algorithm, the received signal vector of MIMO-radar is divided into sub-vectors, and each sub-vector is multiplied with the corresponding weight vector. The number of sub-vectors and weight vectors are optimally found to maximise the received signal power from the target of interest direction. The proposed scheme can be effectively applied in passive radars to minimise the side-lobe levels and place deep nulls for interferers in the receive beampattern. Simulation results show that the proposed scheme has relatively lower side lobe levels and better detection capabilities compared to MIMO-radar and phased-array.

  6. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  7. Smart meter adoption and deployment strategy for residential buildings in Indonesia

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Gusti Ayu Novi Yutami, I

    2014-01-01

    Highlights: • Limited consumer awareness of smart meters contributes to skepticism. • Data obtained from a survey of energy users are analyzed using SEM. • A CAP index is developed via SEM results to measure consumer propensity for adopting smart meters. • The findings of this study enhance understanding of consumer perceptions and behaviors. • Concrete strategies are proposed to help policy makers and utility companies. - Abstract: For countries pursuing sustainable development and energy efficiency, the use of smart meters is considered a first step in allowing residential consumers to remotely control their energy consumption, and a promising technology for conserving limited energy resources. However, despite the growing interest in smart meters, limited consumer awareness, knowledge, and understanding of these devices contributes to skepticism. This study thus developed an index to measure consumer propensity to adopt smart meters in residential buildings. Data obtained from a survey of energy use by Indonesian households were analyzed using structural equation modeling to determine the interacting factors in consumer acceptance of smart meters. Consumer perceptions, expectations, and intentions regarding the potential use of smart meters in Indonesia were also discussed. The findings of this study enhance understanding of consumer perceptions and behaviors, and can help decision makers and energy utility companies develop policies and strategies for a “one-size-fits-all” program related to smart meter applications in future residential buildings

  8. Designing remote web-based mechanical-volumetric flow meter ...

    African Journals Online (AJOL)

    Today, in water and wastewater industry a lot of mechanical-volumetric flow meters are used for the navigation of the produced water and the data of these flow meters, due to use in a wide geographical range, is done physically and by in person presence. All this makes reading the data costly and, in some cases, due to ...

  9. Exploring the energy benefits of advanced water metering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hans, Liesel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piscopo, Kate [Univ. of California, Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are based on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow

  10. Squid based beam current meter

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1983-01-01

    A SQUID based beam current meter has the capability of measuring the current of a beam with as little as 30 x 155 antiprotons (with a signal to noise ratio of 2). If low noise dc current is used to cancel most of the beam or an up-down counter is used to count auto-resets this sensitivity will be available at any time in the acumulation process. This current meter will therefore be a unique diagnostic tool for optimizing the performance of several Tev I components. Besides requiring liquid helium it seems that its only drawback is not to follow with the above sensitivity a sudden beam change larger than 16 μA, something that could be done using a second one in a less sensitive configuration

  11. The Thirty-Meter Telescope

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The Thirty-Meter Telescope international observatory will enable transformational observations over the full cosmic timeline all the way from the first luminous objects in the Universe to the planets and moons of our own solar system. To realize its full scientific potential, TMT will be equipped with a powerful ...

  12. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  13. Activity meters: Calibration and quality assurance measures by the manufacturer

    International Nuclear Information System (INIS)

    Pychlau, P.

    1992-01-01

    A manufacturer of ionisation chambers gives a general idea of such quality assurance programs as may be implemented after an agreement has been reached at the EC level on a guideline for activity meters. Further issues discussed include the final controls, calibration of activity meters by the manufacturer and the advantages that the participation in cooperate tests would offer over a mandatory calibration of activity meters. (orig./DG) [de

  14. Powering the planet : smart meters : a practitioner's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W. [Siemens Canada Ltd., Burnaby, BC (Canada)

    2006-07-01

    The role of smart metering as an energy solution to increased demand was discussed from the perspective of Siemens Canada Ltd. Global megatrends such as increased urbanization, resource scarcity and a greater focus on environmental issues is changing the energy landscape, and many electricity industry leaders are now recognizing the importance of integrated energy solutions. Electric power supply will need to combine economy with security and environmental concern, particularly as utility operations plan up to 10 years in advance of current peak requirements. It is expected that smart metering can postpone capital investment through supply and demand balancing, and will also be used by utilities to remove subsidy and increase customer accountability. While smart metering may seem to respond to environmental requirements and pressures, it is not yet known whether smart metering will change customer behaviour significantly or reduce energy costs. However, the alignment between retail and distribution may create regional advantages by enabling more advanced product offerings in load management and profiling. While smart metering is a proven technology, market operation and back office processes have yet to be determined. Segmentation may prove to be a critical implementation factor which will require an in-depth evaluation of geography; technology; consumption; conservation; and payback. Data availability must be balanced with communications costs. Low cost, low functionality smart meters will enable centralized control. Low cost online communications can allow remote operation of the meter point including real time functions. It was concluded that a centralized scheme operation will enable all points to be managed within a single portfolio, and create significant cost reduction opportunities in meter operations. Rather than investing in complicated technology that may become obsolete, Siemens will rely instead on the creation of a service model that will allow

  15. Using smart meter to monitor the energy consumption of home appliances

    International Nuclear Information System (INIS)

    Dong, M.; Xu, W.

    2010-01-01

    A smart meter provides the foundation for the smart grid, which represent the future electric system in terms of communications, sensors and automation to improve the flexibility, reliability and efficiency of power systems. Smart meters are installed at the utility-customer interface point to provide real-time power usage and price data to each electricity user. The purpose is to create customer awareness on electricity consumption and help users to conserve energy. Smart meters are being deployed throughout North America to replace most traditional meters. However, this paper discussed a major technical gap of the smart meter. Existing smart meters do not provide households with enough feedback needed to achieve effective energy saving. In order to support the energy conservation effort of a customer, the whole house energy data must be displayed on minute or second basis, and it must also be broken down into individual appliance levels. The data of an appliance's energy usage is the most useful information for users to modify their actions and conserve energy. This paper proposed to make the smart meter capable of reporting the overall consumption of a household, as well as monitoring how individual appliances use electricity. It presented a method on using different appliance signatures to identify appliances and make energy estimations on their respective consumptions. Paired with time-of-use or other real time pricing mechanisms, the method enables customers to save energy. This paper also demonstrated how to implement an algorithm on the smart meter platform. Future work will focus on making the algorithm more accurate and faster, and on integrating the smart meter with an appliance energy monitoring system. 21 refs., 6 tabs., 3 figs.

  16. Mobile metering. Efficient charging infrastructure. Charging stations in the public, semi-public and private room; Mobile Metering. Effiziente Ladeinfrastruktur. Ladepunkte im oeffentlichen, halboeffentlichen und privaten Raum

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, Marcus; Zayer, Peter [Voltaris GmbH, Merzig (Germany); Hechtfischer, Knut; Pawlitschek, Frank [Ubitricity Gesellschaft fuer Verteilte Energiesysteme mbH, Berlin (Germany)

    2013-01-28

    Mobile metering shifts the power metering and data communication from the stationary charging stationary into the charger cable or into the vehicle - and thus creates a mobile metering point. Thus, the charging stations are reduced to technically simple system sockets. These system sockets do not cause current expenses and make the charging infrastructure affordable and economically viable.

  17. Simple, inexpensive computerized rodent activity meters.

    Science.gov (United States)

    Horton, R M; Karachunski, P I; Kellermann, S A; Conti-Fine, B M

    1995-10-01

    We describe two approaches for using obsolescent computers, either an IBM PC XT or an Apple Macintosh Plus, to accurately quantify spontaneous rodent activity, as revealed by continuous monitoring of the spontaneous usage of running activity wheels. Because such computers can commonly be obtained at little or no expense, and other commonly available materials and inexpensive parts can be used, these meters can be built quite economically. Construction of these meters requires no specialized electronics expertise, and their software requirements are simple. The computer interfaces are potentially of general interest, as they could also be used for monitoring a variety of events in a research setting.

  18. High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System

    Science.gov (United States)

    Tewolde, Mahder

    This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.

  19. Korea advanced liquid metal reactor development - Development of measuring techniques of the sodium two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Hwan; Cha, Jae Eun [Pohang University of Science and Technology, Pohang (Korea)

    2000-04-01

    The technology which models and measures the behavior of bubble in liquid sodium is very important to insure the safety of the liquid metal reactor. In this research, we designed/ manufactured each part and loop of experimental facility for sodium two phase flow, and applied a few possible methods, measured characteristic of two phase flow such as bubbly flow. A air-water loop similar to sodium loop on each measuring condition was designed/manufactured. This air-water loop was utilized to acquire many informations which were necessary in designing the two phase flow of sodium and manufacturing experimental facility. Before the manufacture of a electromagnetic flow meter for sodium, the experiment using each electromagnetic flow mete was developed and the air-water loop was performed to understand flow characteristics. Experiments for observing the signal characteristics of flow were performed by flowing two phase mixture into the electromagnetic flow mete. From these experiments, the electromagnetic flow meter was designed and constructed by virtual electrode, its signal processing circuit and micro electro magnet. It was developed to be applicable to low conductivity fluid very successfully. By this experiment with the electromagnetic flow meter, we observed that the flow signal was very different according to void fraction in two phase flow and that probability density function which was made by statistical signal treatment is also different according to flow patterns. From this result, we confirmed that the electromagnetic flow meter could be used to understand the parameters of two phase flow of sodium. By this study, the experimental facility for two phase flow of sodium was constricted. Also the new electromagnetic flow meter was designed/manufactured, and experimental apparatus for two phase flow of air-water. Finally, this study will be a basic tool for measurement of two phase flow of sodium. As the fundamental technique for the applications of sodium at

  20. How big was it? Systematics of 41Ca production in meter-size extraterrestial objects

    International Nuclear Information System (INIS)

    Klein, J.; Dezfouly-Arjomandy, B.; Lawn, B.; Middleton, R.; Fink, D.; Albrecht, A.; Herzog, G.; Vogt, S.

    1992-01-01

    41 Ca, produced in the iron phase of meteorites by high-energy proton initiated nuclear spallation, has a saturation value of ∼24 dpm/kg-Fe and a concentration that varies only slowly with depth. In the stone phase, 41 Ca is produced by thermal neutron capture, 40 Ca(n,γ) 41 Ca, and the saturation value is expected to be ∼2,000 dpm/kg-Ca. Because neutrons are produced at high energy and must pass through about two meters of material to thermalize, 41 Ca concentrations in the stone phase depend critically on the size of the meteorite during irradiation, and vary as function of sample location. Using accelerator mass spectrometry, the authors have measured 41 Ca in the long core from the Moon collected during Apollo 15, in metallic and stone separates in Jilin, and in several mesosiderites. A framework for interpreting these results in terms of the pre-atmospheric sizes of meteorites is presented

  1. ARPANSA preliminary measurements of radiofrequency transmissions from a Mesh Radio Smart meter

    International Nuclear Information System (INIS)

    Wijayasinghe, Don; Karipidis, Ken

    2013-01-01

    Smart meters have been deployed in buildings initially in Victoria and increasingly across other areas of Australia. They utilise radiofrequency (RF) electromagnetic energy (EME) at levels very much below the levels permitted in the RF Standard. Despite the low levels of RF EME, there is some public concern about exposures from smart meters and whether the RF transmissions may cause a variety of health effects. ARPANSA has undertaken some preliminary RF measurements of an installed mesh network smart meter at the home of a staff member in a suburb of Melbourne. It must be emphasised that these measurements by ARPANSA cannot be considered representative of all smart meters. A typical RF pulse from the smart meter had an average intensity of 7 mW/m 2 measured at a distance of half a metre from the smart meter with the door to the meter box open. This is 0.00015% of the instantaneous exposure limit in the Australian RF standard for the general public. The measured level with the meter box door closed, or on the other side of the wall on which the meter was mounted was about 20 times lower. The RF transmissions that were measured were not continuous and occurred less than 0.08% of the time that the measurements took place. The RF electromagnetic energy transmitted in a single pulse from the smart meter is similar to that from a car remote unlocking fob and much less than a single GSM SMS transmission. The measurements do not provide any indication of why smart meter transmissions would provoke symptoms in people otherwise unaffected by other wireless technologies such as mobile phone handsets. Indeed the low levels and short transmission times make any effects highly unlikely.

  2. Justification of the Utility of Introducing Smart Meters in Latvia

    Science.gov (United States)

    Kunickis, M.; Dandens, A.; Bariss, U.

    2015-12-01

    Automatic data reading from smart meters is being developed in many parts of the world, including Latvia. The key drivers for that are developments of smart technologies and economic benefits for consumers. Deployment of smart meters could be launched in a massive scale. Several pilot projects were implemented to verify the feasibility of smart meters for individual consumer groups. Preliminary calculations indicate that installation of smart meters for approximately 23 % of electricity consumers would be economically viable. Currently, the data for the last two years is available for an in-depth mathematical analysis. The continuous analysis of consumption data would be established, when more measurements from smart meters are available. The extent of introduction of smart meters should be specified during this process in order to gain the maximum benefit for the whole society (consumers, grid companies, state authorities), because there are still many uncertain and variable factors. For example, it is necessary to consider statistical load variations by hour, dependence of electricity consumption on temperature fluctuations, consumer behaviour and demand response to market signals to reduce electricity consumption in the short and long term, consumer's ambitions and capability to install home automation for regulation of electricity consumption. To develop the demand response, it is necessary to analyse the whole array of additional factors, such as expected cost reduction of smart meters, possible extension of their functionality, further development of information exchange systems, as well as standard requirements and different political and regulatory decisions regarding the reduction of electricity consumption and energy efficiency.

  3. Usage and conditions of radiation protection of nuclear meters in Brazil

    International Nuclear Information System (INIS)

    Guimarães, E.F.; Silva, F.C.A. da

    2017-01-01

    The industries of mining, pulp, oil, etc. which require a quality control in the processes, use the nuclear meters with sealed radioactive sources coupled to a radiation detector that generate accurate and fast answers regarding the level, thickness, density and humidity of different types of materials. Nuclear meters are classified as fixed or portable and use transmission, backscatter or reactive systems. As they use radioactive sources with various ranges of activities, they are classified by the International Atomic Energy Agency - AIEA as Category 3 and 4, of medium and low radiological risk, and must therefore have a suitable level of radiation protection for safe use in the installation. The Brazilian National Energy Commission - CNEN controls approximately 500 authorized facilities with nuclear meters. The paper technically describes the nuclear meters and the radiological protection procedures that must be followed for the safety of the IOEs (occupationally exposed individuals) and individuals from the public, based on the specific nuclear meter test program for CNEN radiation protection supervisor. The professionals who handle these nuclear meters should be aware of the radiological risk to their own protection and to individuals in the public. For safe operation with nuclear meters, a number of requirements must be observed according to the type and need of the installation

  4. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States.

    Science.gov (United States)

    Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra

    2012-04-23

    The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.

  5. Humidity affects the morphology of particles emitted from beclomethasone dipropionate pressurized metered dose inhalers.

    Science.gov (United States)

    Ivey, James W; Bhambri, Pallavi; Church, Tanya K; Lewis, David A; McDermott, Mark T; Elbayomy, Shereen; Finlay, Warren H; Vehring, Reinhard

    2017-03-30

    The effects of propellant type, cosolvent content, and air humidity on the morphology and solid phase of the particles produced from solution pressurized metered dose inhalers containing the corticosteroid beclomethasone dipropionate were investigated. The active ingredient was dissolved in the HFA propellants 134a and 227ea with varying levels of the cosolvent ethanol and filled into pressurized metered dose inhalers. Inhalers were actuated into an evaporation chamber under controlled temperature and humidity conditions and sampled using a single nozzle, single stage inertial impactor. Particle morphology was assessed qualitatively using field emission scanning electron microscopy and focused ion beam-helium ion microscopy. Drug solid phase was assessed using Raman microscopy. The relative humidity of the air during inhaler actuation was found to have a strong effect on the particle morphology, with solid spheroidal particles produced in dry air and highly porous particles produced at higher humidity levels. Air humidification was found to have no effect on the solid phase of the drug particles, which was predominantly amorphous for all tested formulations. A critical level of air relative humidity was required to generate porous particles for each tested formulation. This critical relative humidity was found to depend on the amount of ethanol used in the inhaler, but not on the type of propellant utilized. The results indicate that under the right circumstances water vapor saturation followed by nucleated water condensation or ice deposition occurs during particle formation from evaporating propellant-cosolvent-BDP droplets. This finding reveals the importance of condensed water or ice as a templating agent for porosity when particle formation occurs at saturated conditions, with possible implications on the pharmacokinetics of solution pMDIs and potential applications in particle engineering for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Arrival metering fuel consumption analysis

    Science.gov (United States)

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  7. Development of a calibration methodology and tests of kerma area product meters

    International Nuclear Information System (INIS)

    Costa, Nathalia Almeida

    2013-01-01

    The quantity kerma area product (PKA) is important to establish reference levels in diagnostic radiology exams. This quantity can be obtained using a PKA meter. The use of such meters is essential to evaluate the radiation dose in radiological procedures and is a good indicator to make sure that the dose limit to the patient's skin doesn't exceed. Sometimes, these meters come fixed to X radiation equipment, which makes its calibration difficult. In this work, it was developed a methodology for calibration of PKA meters. The instrument used for this purpose was the Patient Dose Calibrator (PDC). It was developed to be used as a reference to check the calibration of PKA and air kerma meters that are used for dosimetry in patients and to verify the consistency and behavior of systems of automatic exposure control. Because it is a new equipment, which, in Brazil, is not yet used as reference equipment for calibration, it was also performed the quality control of this equipment with characterization tests, the calibration and an evaluation of the energy dependence. After the tests, it was proved that the PDC can be used as a reference instrument and that the calibration must be performed in situ, so that the characteristics of each X-ray equipment, where the PKA meters are used, are considered. The calibration was then performed with portable PKA meters and in an interventional radiology equipment that has a PKA meter fixed. The results were good and it was proved the need for calibration of these meters and the importance of in situ calibration with a reference meter. (author)

  8. Advanced Metering Implementations - A Perspective from Federal Sector

    Energy Technology Data Exchange (ETDEWEB)

    Eaarni, Shankar

    2014-08-11

    Federal mandate (EPACT 2005) requires that federal buildings install advanced electrical meters-meters capable of providing data at least daily and measuring the consumption of electricity at least hourly. This work presents selected advanced metering implementations to understand some of the existing practices related to data capture and to understand how the data is being translated into information and knowledge that can be used to improve building energy and operational performance to meet federal energy reduction mandates. This study highlights case studies to represent some of the various actions that are being taken based on the data that are being collected to improve overall energy performance of these buildings. Some of these actions include- individualized tenant billing and energy forecasting, benchmarking, identifying energy conservation measures, measurement and verification.

  9. The Early Diffusion of Smart Meters in the US Electric Power Industry

    Science.gov (United States)

    Strong, Derek Ryan

    The impact of new technologies within and across industries is only felt through their widespread diffusion, yet studies of technology diffusion are scarce compared to other aspects of the innovation process. The electric power industry is one industry that is currently undergoing substantial change as a result of both technological and institutional innovations. In this dissertation I examine the economic rationale for the adoption of smart meters by electric power utilities and the relationship between smart meters and the evolving electric power industry. I contribute to empirical research on technology diffusion by studying the early diffusion of smart meters in the US electric power industry. Using a panel dataset and econometric models, I analyze the determinants of both the interfirm and intrafirm diffusion of smart meters in the United States. The empirical findings suggest multiple drivers of smart meter diffusion. Policy and regulatory support have had a significant, positive impact on adoption but have not been the only relevant determinants. The findings also suggest that utility characteristics and some combination of learning, cost reductions, and technology standards have been important determinants affecting smart meter diffusion. I also explore the policy implications resulting from this analysis for enhancing the diffusion of smart meters. The costs and benefits of adopting smart meters have been more uncertain than initially thought, suggesting that some policy support for adoption was premature. The coordination of policies is also necessary to achieve the full benefits of using smart meters.

  10. Non-intrusive appliance load monitoring system based on a modern kWh-meter

    Energy Technology Data Exchange (ETDEWEB)

    Pihala, H. [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-01

    Non-intrusive appliance load monitoring (NIALM) is a fairly new method to estimate load profiles of individual electric appliances in a small building, like a household, by monitoring the whole load at a single point with one recording device without sub-meters. Appliances have special electrical characteristics, the positive and negative active and reactive power changes during the time they are switched on or off. These changes are called events and are detected with a monitoring device called an event recorder. Different NIALM-concepts developed in Europe and in the United States are generally discussed. The NIALM-concept developed in this study is based on a 3-phase, power quality monitoring kWh-meter and unique load identification algorithms. This modern kWh-meter with a serial data bus to a laptop personal computer is used as die event recorder. The NIALM-concept of this presentation shows for the first time how a kWh-meter can be used at the same time for billing, power quality and appliance end-use monitoring. An essential part of the developed NIALM-system prototype is the software of load identification algorithms which runs in an off-line personal computer. These algorithms are able to identify, with a certain accuracy, both two-state and multi-state appliances. This prototype requires manual-setup in which the naming of appliances is performed. The results of the prototype NIALMS were verified in a large, single family detached house and they were compared to the results of other prototypes in France and the United States, although this comparison is difficult because of different supply systems, appliance stock and number of tested sites. Different applications of NIALM are discussed. Gathering of load research data, verification of DSM-programs, home automation, failure analysis of appliances and security surveillance of buildings are interesting areas of NIALM. Both utilities and customers can benefit from these applications. It is possible to

  11. Development and applications of new type isotope level-meters for cement factories

    International Nuclear Information System (INIS)

    Yang Shiqing; Min Hainian; Zhang Zhaoqing; Fu Heping; Dang Congjun; Wang Jingmin; Xia Junming

    1998-01-01

    According to the situation of current domestic switch isotope level-meters used for the level measurement and control in cement factories, a new type isotope level-meter is developed. The level-meter includes digit display circuit, count detection and control circuit and two ways control export, its response time is less than 1 second. The quenching circuit in the detector lengthens the using lifespan of G-M counter. The application in the factories indicates that the level-meter has the advantages of sensitive, strong anti-disturbance, reliable and adjustment simplicity. The use of the level-meter can make the better economy benefit and society benefit

  12. The Research on Metrological Characteristics of House Water Meters during Transitional Flow Regimes

    Directory of Open Access Journals (Sweden)

    Inga Briliūtė

    2011-04-01

    Full Text Available The purpose of this research is to find the influence of transitional flow regimes on inlet water meters. Four construction types of mechanical inlet water meters (each capacity Q = 10 m3/h were investigated. The biggest additional volume 0,12–0,26% when Q = 0,2…2 m3/h shows single-jet vane wheel meter. This additional volume is less 0,06–0,13% for the multi-jet concentric water meter. The minimum influence of transitional flow regimes was for turbine water meters till 0,1% for all flow range. The volumetric meters are not sensitive for this effect.Article in Lithuanian

  13. Metering revisited - innovative concepts for electrical monitoring and reporting systems

    International Nuclear Information System (INIS)

    Stebbins, W.L.

    1993-01-01

    For the first three-quarters of this century, the monitoring of electrical power and energy has been dominated by conventional electromechanical voltmeters, ammeters, and watthour meters. Only in the last decade have solid state microprocessor-based distal devices become available for application in the commercial and industrial marketplace. These new devices perform the tasks of up to 24 conventional indicating meters for about the price of three. Communication via a RS-485 data link to a PC allows monitoring of up to 70 values including times and dates, min/max history, temperature indications, and energy management alarms. Complex waveform analysis can also be carried out for harmonic problems typically associated with adjustable speed drives that have been installed on fans and pumps for energy management savings. Since metering systems are absolutely essential to a successful Energy Management Process, consideration should be given to applying the latest in metering technology. It should be noted that meters by themselves do not save money, they only cost money to install and maintain. Proper monitoring, recording, and analysis lead to corrective actions which produce the desired result of reducing energy per unit of production or per service performed. Experience has shown that a 1 to 2% reduction can be achieved after meters are installed just by letting the users know that they are being monitored. Up to a 5% reduction can occur when the users then become proactive toward better managing of their energy. Ultimately up to 10% reduction can be achieved when metering is tied directly to the process through a PLC or DCS, in a closed loop automated process control arrangement

  14. Advanced digital counting rate meter for gamma ray logging

    International Nuclear Information System (INIS)

    Kannan, S.; Meenakshi Sundari, A.; Rai, A.K.

    2013-01-01

    A compact, hand held controller based Advanced Digital Count Rate Meter (ADCRM) as a replacement of bulky Count Rate (analog) Meters (SBL-2A) was designed, developed and fabricated to carry out Gamma-Ray borehole logging with Geiger Muller (GM) tubes and Scintillation (SC) detectors. In the hardware the functionality of analog meter simulation, digital counting of gamma events and auto reference adjustment to use different length of armour cable winches were implemented. The in-built software evaluates grade in ppm and at the end of logging, the reports are prepared automatically. ADCRM was developed in-house to assist the uranium mineral exploration in AMD. (author)

  15. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  16. Energy and rate dependence of diagnostic x-ray exposure meters

    International Nuclear Information System (INIS)

    Wagner, L.K.; Cerra, F.; Conway, B.; Fewell, T.R.; Ohlhaber, T.R.

    1988-01-01

    Variations in x-ray exposure measurements among a variety of contemporary diagnostic exposure meters are investigated. Variations may result from systematic errors due to calibration, beam-quality dependence and exposure-rate dependence. It is concluded that the majority of general purpose diagnostic meters will agree to within 10% of each other if exposure rates are below 1.3 mC kg-1S-1 of air (5 R s-1) and beam qualities are typical for general purpose radiology, excluding mammography. For exposure rates comparable to those in barium enema radiography the variations can range up to 25% or more. Variations up to 40% were observed among general purpose exposure meters at mammographic beam qualities. In the mammographic range, mammographic (thin window) exposure meters varied by no more than 2%

  17. Strategies for Power Line Communications Smart Metering Network Deployment

    Directory of Open Access Journals (Sweden)

    Alberto Sendin

    2014-04-01

    Full Text Available Smart Grids are becoming a reality all over the world. Nowadays, the research efforts for the introduction and deployment of these grids are mainly focused on the development of the field of Smart Metering. This emerging application requires the use of technologies to access the significant number of points of supply (PoS existing in the grid, covering the Low Voltage (LV segment with the lowest possible costs. Power Line Communications (PLC have been extensively used in electricity grids for a variety of purposes and, of late, have been the focus of renewed interest. PLC are really well suited for quick and inexpensive pervasive deployments. However, no LV grid is the same in any electricity company (utility, and the particularities of each grid evolution, architecture, circumstances and materials, makes it a challenge to deploy Smart Metering networks with PLC technologies, with the Smart Grid as an ultimate goal. This paper covers the evolution of Smart Metering networks, together with the evolution of PLC technologies until both worlds have converged to project PLC-enabled Smart Metering networks towards Smart Grid. This paper develops guidelines over a set of strategic aspects of PLC Smart Metering network deployment based on the knowledge gathered on real field; and introduces the future challenges of these networks in their evolution towards the Smart Grid.

  18. The AGS Ggamma Meter and Calibrating the Gauss Clock

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Leif [Brookhaven National Laboratory (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  19. Canadian consumer issues in accurate and fair electricity metering

    International Nuclear Information System (INIS)

    2000-07-01

    The Public Interest Advocacy Centre (PIAC), located in Ottawa, participates in regulatory proceedings concerning electricity and natural gas to support public and consumer interest. PIAC provides legal representation, research and policy support and public advocacy. A study aimed toward the determination of the issues at stake for residential electricity consumers in the provision of fair and accurate electricity metering, was commissioned by Measurement Canada in consultation with Industry Canada's Consumer Affairs. The metering of electricity must be carried out in a fair and efficient manner for all residential consumers. The Electricity, Gas and Inspection Act was developed to ensure compliance with standards for measuring instrumentation. The accurate metering of electricity through the distribution systems for electricity in Canada represents the main focus of this study and report. The role played by Measurement Canada and the increased efficiencies of service delivery by Measurement Canada or the changing of electricity market conditions are of special interest. The role of Measurement Canada was explained, as were the concerns of residential consumers. A comparison was then made between the interests of residential consumers and those of commercial and industrial electricity consumers in electricity metering. Selected American and Commonwealth jurisdictions were reviewed in light of their electricity metering practices. A section on compliance and conflict resolution was included, in addition to a section on the use of voluntary codes for compliance and conflict resolution

  20. The AGS Ggamma Meter and Calibrating the Gauss Clock

    International Nuclear Information System (INIS)

    Ahrens, Leif

    2014-01-01

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle's Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  1. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration

    DEFF Research Database (Denmark)

    Nikolaidis, Pantelis T.; Ingebrigtsen, Jørgen; Jeffreys, Ian

    2016-01-01

    Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginn......Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice......, in the beginning and in the end of competitive season, for anthropometric characteristics, countermovement jump and 20-meter acceleration (split 0-10 meters and 10-20 meters, indices of drive and transition, respectively). The soccer players were grouped according to seasonal changes in 20-meter acceleration (δacc...

  3. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  4. Flow meter fault isolation in building central chilling systems using wavelet analysis

    International Nuclear Information System (INIS)

    Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei

    2006-01-01

    This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters

  5. Developing an area-wide system for coordinated ramp meter control.

    Science.gov (United States)

    2008-12-01

    Ramp metering has been broadly accepted and deployed as an effective countermeasure : against both recurrent and non-recurrent congestion on freeways. However, many current ramp : metering algorithms tend to improve only freeway travels using local d...

  6. Technique of Hurdle Clearing in 400 Meters Hurdles (Study Review)

    OpenAIRE

    Jakoubek, Jiří

    2017-01-01

    Title: Technique of Hurdle Clearing in 400 Meters Hurdles (Study Review) Authors: Jiří Jakoubek Supervisor: PhDr. Aleš Kaplan, Ph.D. Aims: The aim of this thesis is to describe technique of hurdle clearing in 400 meters hurdle race using study review and to examine this technique at particular athlete during training and racing sessions in 400 meters hurdles race. Methods: Technique was compared and examined at young athlete. Two kinograms were used for analysis, one from training and one fro...

  7. Reciprocity and its utilization in ultrasonic flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Vestrheim, Magne; Boe, Reidar; Smoergrav, Skule; Abrahamsen, Atle K.

    2005-07-01

    irrespective of whether the transducers are equal or not. Thus, ''dry calibration'' may be simplified, since reciprocal operation may provide possibilities for {sup a}uto-zeroing'' of the USM. However, reciprocal operation is not an ''obvious'' property of an USM. Even though the USM measurement system consisting of two transducers, electronics, etc. (e.g. an acoustic path), may be reciprocal, it may not necessarily be reciprocally operated. Control and careful design is essential to realize reciprocal operation at no-flow conditions in an acoustical measurement system such as a USM. In the present paper, reciprocal operation of USMs is discussed on basis of general electro acoustical principles, and related to utilization in ultrasonic flow metering of gas and liquid. Criteria for ''sufficient reciprocal operation'' of a USM are developed. It extends earlier works by (a) taking into account finite-valued electrical impedances of the electronics and the transducers employed in the meter, (b) deriving specific design criteria for ''sufficient reciprocal operation'' of a USM, in terms of requirements for the electrical impedances of the electronics and transducers, and (c) giving criteria for transducer manufacturing reproducibility, in terms of bounds for variations of the phase of the transducer impedances. In addition, use of the transducer input signal as the reference for the transit time measurements is discussed in this respect, which is shown to provide reduced requirements for achieving ''sufficient reciprocal operation''. Laboratory measurements and USM ''dry calibration'' measurements made over a range of pressures, temperatures and signal levels (''firing voltages''), in combination with theoretical calculations, are used to demonstrate reciprocal operation and validity of the theoretical results, also for transducers

  8. Electricity Consumption Clustering Using Smart Meter Data

    Directory of Open Access Journals (Sweden)

    Alexander Tureczek

    2018-04-01

    Full Text Available Electricity smart meter consumption data is enabling utilities to analyze consumption information at unprecedented granularity. Much focus has been directed towards consumption clustering for diversifying tariffs; through modern clustering methods, cluster analyses have been performed. However, the clusters developed exhibit a large variation with resulting shadow clusters, making it impossible to truly identify the individual clusters. Using clearly defined dwelling types, this paper will present methods to improve clustering by harvesting inherent structure from the smart meter data. This paper clusters domestic electricity consumption using smart meter data from the Danish city of Esbjerg. Methods from time series analysis and wavelets are applied to enable the K-Means clustering method to account for autocorrelation in data and thereby improve the clustering performance. The results show the importance of data knowledge and we identify sub-clusters of consumption within the dwelling types and enable K-Means to produce satisfactory clustering by accounting for a temporal component. Furthermore our study shows that careful preprocessing of the data to account for intrinsic structure enables better clustering performance by the K-Means method.

  9. A glucose meter evaluation co-designed with both health professional and consumer input.

    Science.gov (United States)

    Thompson, Harmony; Chan, Huan; Logan, Florence J; Heenan, Helen F; Taylor, Lynne; Murray, Chris; Florkowski, Christopher M; Frampton, Christopher M A; Lunt, Helen

    2013-11-22

    Health consumer's input into assessment of medical device safety is traditionally given either as part of study outcome (trial participants) or during post marketing surveillance. Direct consumer input into the methodological design of device assessment is less common. We discuss the difference in requirements for assessment of a measuring device from the consumer and clinician perspectives, using the example of hand held glucose meters. Around 80,000 New Zealanders with diabetes recently changed their glucose meter system, to enable ongoing access to PHARMAC subsidised meters and strips. Consumers were most interested in a direct comparison of their 'old' meter system (Accu-Chek Performa) with their 'new' meter system (CareSens brand, including the CareSens N POP), rather than comparisons against a laboratory standard. This direct comparison of meter/strip systems showed that the CareSens N POP meter read around 0.6 mmol/L higher than the Performa system. Whilst this difference is unlikely to result in major errors in clinical decision making such as major insulin dosing errors, this information is nevertheless of interest to consumers who switched meters so that they could maintain access to PHARMAC subsidised meters and strips. We recommend that when practical, the consumer perspective be incorporated into study design related to medical device assessment.

  10. Rate meter design and construction

    International Nuclear Information System (INIS)

    Peon Aguirre, R.; Fonseca Araujo, W.H.

    1989-01-01

    An electric diagram is proposed to build a geiger detector Rate Meter, to count gamma radiation and X ray. This idea was made up with the prototype construction which has a five scales analogue display (100, 300, 1000, 3000 and 10000 c/s). (Author)

  11. Next generation GNSS single receiver cycle slip reliability

    NARCIS (Netherlands)

    Teunissen, P.J.G.; De Bakker, P.F.

    2009-01-01

    In this contribution we study the multi-frequency, carrier-phase slip detection capabilities of a single receiver. Our analysis is based on an analytical expression that we present for themulti-frequencyminimal detectable carrier phase cycle slip.

  12. Apparent losses due to domestic water meter under-registration in South Africa

    OpenAIRE

    Couvelis, FA; van Zyl, JE

    2015-01-01

    This study investigated the extent of apparent losses due to water meter under-registration in South Africa. This was done by first estimating the under-registration of new meters due to on-site leakage, and then the additional under-registration due to meter aging. The extent and flow distributions of on-site leakage were determined through field studies in Cape Town, Mangaung and Johannesburg, by measuring the flow through new water meters when no legitimate consumption occurred on the prop...

  13. Arrival-Time Detection and Ultrasonic Flow-Meter Applications

    International Nuclear Information System (INIS)

    Willatzen, Morten; Soendergaard, Peter; Latino, Carl; Voss, Frands; Andersen, Niels Lervad; Brokate, Martin; Bounaim, Aicha

    2006-01-01

    The Danfoss problem on ultrasonic flow measurement has been separated into three parts each handled by a subgroup of the authors listed above. The first subgroup deals with a presentation of modelling equations describing the physics of ultrasonic flow meters employing reciprocal ultrasonic transducer systems. The mathematical model presented allows the electrical output signal to be determined corresponding to any time-dependent electrical input signal. The transducers modelled consist of a piezoceramic material layer and a passive acoustic matching layer. The second subgroup analyzes the possibility of coding the input signal so as to simplify arrival-time detection by re.nding the coded input sequence in the received signal. The narrow-band nature of the transducers makes this problem non-trivial but suggestions for improvement are proposed. The analysis given is based on traditional autoand cross-correlation techniques. The third subgroup attempts to improve existing correlation methods in determining arrival-time detection of signals. A mathematical formulation of the problem is given and the application to a set of real signals provided by Danfoss A/S is performed with good results

  14. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  15. FibroMeters: a family of blood tests for liver fibrosis.

    Science.gov (United States)

    Calès, P; Boursier, J; Oberti, F; Hubert, I; Gallois, Y; Rousselet, M-C; Dib, N; Moal, V; Macchi, L; Chevailler, A; Michalak, S; Hunault, G; Chaigneau, J; Sawadogo, A; Lunel, F

    2008-09-01

    FibroMeters are blood tests for liver fibrosis with several specificities: two main diagnostic targets (fibrosis stage and area of fibrosis); adaptation to specific causes; and results confirmed by an expert system. Thus, FibroMeters comprise six different tests: one for staging and one for quantitation of liver fibrosis in each of the three main causes of chronic liver disease-chronic viral hepatitis, alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). FibroMeters display a high overall diagnostic accuracy and are the only tests to correctly classify 100% of HCV patients without fibrosis or with cirrhosis. They have 90% predictive values in a higher proportion of patients than with other usual blood tests. A 90% correct classification is available in 100% of HCV patients with the following reliable diagnostic intervals: F0/1, F1/2, F2+/-1, F3+/-1. In real-life conditions, the reproducibility of FibroMeters is higher than that of liver biopsy or ultrasonographic elastometry. FibroMeters are robust tests with the most stable diagnostic performance across different centers. Optional tests are also available, such as a specific one for cirrhosis, which has a diagnostic accuracy of 93.0% (AUROC: 0.92) and a 100% positive predictive value for diagnosis of HCV cirrhosis. Determination by FibroMeters of the area of fibrosis - the only direct, non-invasive, quantitative measurement of liver fibrosis - are especially useful for following-up cirrhosis as it correlates well with clinical events. FibroMeters are also very accurate in HVB or HIV-HCV co-infected patients. The tests specific for ALD and NAFLD also have a high diagnostic accuracy (AUROCs: 0.96 and 0.94, respectively, for significant fibrosis).

  16. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  17. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States

    Directory of Open Access Journals (Sweden)

    Cook Brendan

    2012-04-01

    Full Text Available Abstract The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed “smart grid” contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household’s electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.

  18. Smart meter data: Balancing consumer privacy concerns with legitimate applications

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Richardson, Ian; Thomson, Murray

    2012-01-01

    Smart meters are being rolled out in large numbers throughout the world, with proponents claiming they are a critical step in the transition to a low-carbon economy. Yet there are significant unresolved negative reactions to smart meters, principally based on the concern that smart meters might be used to infer the private activities that occur within a dwelling. Though smart meter data is classified as personal data, and as such protected under existing data protection frameworks in the EU, there are relevant exceptions, notably where the data is required for legitimate applications associated with the performance of 'regulated duties'. This paper contributes to this debate by examining the data requirements for some of the proposed applications of smart meter data within the electricity supply industry, and investigates whether the use of personal data can be minimized or even avoided. The discussion includes system balancing, demand reduction, demand response and distribution network operation and planning, and indicates that, for most of these applications, the requirements for personal data can indeed be minimized. 'Privacy friendly' alternatives are discussed. - Highlights: ▶ Current smart meter systems provide a strong indication of occupancy. ▶ This will have important implications for external and internal home privacy. ▶ Personal data requirements within legitimate applications are discussed. ▶ 'Privacy friendly' techniques are suggested that minimize the use of personal data. ▶ Distribution network operator has strongest claim for data from each household.

  19. Screening for hypoglycemia at the bedside in the neonatal intensive care unit (NICU with the Abbott PCx glucose meter

    Directory of Open Access Journals (Sweden)

    Ismaila Afisi

    2006-11-01

    Full Text Available Abstract Background Point of care (POC glucose meters are routinely used as a screening tool for hypoglycemia in a neonatal setting. Glucose meters however, lack the same accuracy as laboratory instruments for glucose measurement. In this study we investigated potential reasons for this inaccuracy and established a cut off value for confirmatory testing. Methods In this prospective study, all patients in the neonatal intensive care unit who had a plasma glucose test ordered were eligible to participate. Demographic information, sample collection information (nine variables and a recent hematocrit value were recorded for each sample. Glucose measurements were taken at the bedside on the glucose meter (RN PCx as well as in the laboratory on both the glucose meter (LAB PCx and the laboratory analyzer (PG. Data were analyzed by simple and mixed-effects regression analysis and by analysis of a receiver operator characteristics (ROC curve. Results There were 475 samples analyzed from 132 patients. RN PCx values were higher than PG values (mean = 4.9%, while LAB PCx results were lower (mean = -5.2% than PG values. Only 31% of the difference between RN PCx – PG and 46% of the difference for LAB PCx – PG could be accounted for by the variables tested. The largest proportion of variance between PCx and PG measurements was explained by hematocrit (about 30% with a greater effect seen at glucose concentrations ≤4.0 mmol/L (≤72 mg/dL(48% and 40% for RN PCx and LAB PCx, respectively. The ROC analysis showed that for detection of all cases of hypoglycemia (PG Conclusion The large difference between glucose results obtained by PCx glucose meter compared to the laboratory analyzer can be explained in part by hematocrit and low glucose concentration. These results emphasize that the glucose meter is useful only as a screening device for neonatal hypoglycemia and that a screening cut off value must be established.

  20. Screening for hypoglycemia at the bedside in the neonatal intensive care unit (NICU) with the Abbott PCx glucose meter.

    Science.gov (United States)

    Balion, Cynthia; Grey, Vijaylaxmi; Ismaila, Afisi; Blatz, Susan; Seidlitz, Wendy

    2006-11-03

    Point of care (POC) glucose meters are routinely used as a screening tool for hypoglycemia in a neonatal setting. Glucose meters however, lack the same accuracy as laboratory instruments for glucose measurement. In this study we investigated potential reasons for this inaccuracy and established a cut off value for confirmatory testing. In this prospective study, all patients in the neonatal intensive care unit who had a plasma glucose test ordered were eligible to participate. Demographic information, sample collection information (nine variables) and a recent hematocrit value were recorded for each sample. Glucose measurements were taken at the bedside on the glucose meter (RN PCx) as well as in the laboratory on both the glucose meter (LAB PCx) and the laboratory analyzer (PG). Data were analyzed by simple and mixed-effects regression analysis and by analysis of a receiver operator characteristics (ROC) curve. There were 475 samples analyzed from 132 patients. RN PCx values were higher than PG values (mean = 4.9%), while LAB PCx results were lower (mean = -5.2%) than PG values. Only 31% of the difference between RN PCx--PG and 46% of the difference for LAB PCx--PG could be accounted for by the variables tested. The largest proportion of variance between PCx and PG measurements was explained by hematocrit (about 30%) with a greater effect seen at glucose concentrations LAB PCx, respectively). The ROC analysis showed that for detection of all cases of hypoglycemia (PG < 2.6 mmol/L)(PG < 47 mg/dL) the PCx screening cut off value would need to be set at 3.8 mmol/L (68 mg/dL) requiring 20% of all samples to have confirmatory analysis by the laboratory method. The large difference between glucose results obtained by PCx glucose meter compared to the laboratory analyzer can be explained in part by hematocrit and low glucose concentration. These results emphasize that the glucose meter is useful only as a screening device for neonatal hypoglycemia and that a screening

  1. Measuring set: Reactor Power Meter (type of SG-8), Reactor Energy Meter (type of SG-11) and Digital Dose Meter (type of SG-9) for reactor rigs operation. Zestaw pomiarowy: miernik mocy reaktora (typ SG-8), miernik energii reaktora (typ SG-11) oraz cyfrowy miernik dawki (typ SG-9) dla potrzeb eksploatacji sond reaktorowych

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1982-01-01

    A measuring set consisting of the Reactor Power Meter, Reactor Energy Meter and Digital Dose Meter is described. The gamma radiation of water in the reactor primary cooling circuit reaches the ionisation chamber and involves the output current, driving the Reactor Power Meter and Reactor Energy Meter. The Digital Dose Meter is controlled by the output current of the self-powered detector mounted inside the reactor rig.

  2. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  3. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  4. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  5. Flow measurement of liquid hydrocarbons with positive displacement meters: the correction for slippage

    International Nuclear Information System (INIS)

    García-Berrocal, Agustín; Montalvo, Cristina; Balbás, Miguel; Blázquez, Juan

    2013-01-01

    In the oil industry, the economical and fiscal impact of the measurements accuracy on the custody transfer operations implies fulfilling strict requirements of legal metrology. In this work, we focus on the positive displacement meters (PD meters) for refined liquid hydrocarbons. The state of the art of the lack of accuracy due to slippage flow in these meters is revised. The slippage flow due to the pressure drop across the device has been calculated analytically by applying the Navier–Stokes equation. No friction with any wall of the slippage channel has been neglected and a more accurate formula than the one found in the literature has been obtained. PD meters are calibrated against a bidirectional prover in order to obtain their meter factor which allows correction of their indications. Instead of the analytical model, an empirical one is proposed to explain the variation of the meter factor of the PD meters with flow rate and temperature for a certain hydrocarbon. The empirical model is based on the historical calibration data, of 9 years on average, of 25 m with four types of refined hydrocarbon. This model has been statistically validated by linear least-squares fitting. By using the model parameters, we can obtain the meter factor corresponding to different conditions of temperature and flow rate from the conditions in which the devices were calibrated. The flow parameter is such that a 10% flow rate variation implies a meter factor variation lower than 0.01%. A rule of thumb value for the temperature parameter is 0.005% per degree Celsius. The model residuals allow surveillance of the device drift and quantifying its contribution to the meter factor uncertainty. The observed drift is 0.09% at 95% confidence level in the analyzed population of meters. (paper)

  6. The Gemini 8-Meter Telescopes Project

    Science.gov (United States)

    Boroson, Todd A.

    1995-05-01

    The Gemini 8-Meter Telescopes Project is an international partnership to build and operate two 8-meter telescopes, one on Mauna Kea, Hawaii, and one on Cerro Pachon, Chile. The telescopes will be international facilities, open to the scientific communities of the six member countries, the United States (50%), the United Kingdom (25%), Canada (15%), Chile (5%), Argentina (2.5%), and Brazil (2.5%). The telescopes are designed to exploit the best atmospheric conditions at these excellent sites. Near diffraction limited performance will be delivered at 2.2 microns and longward, with minimal degradation of the best seeing conditions at shorter wavelengths. The telescopes and facilities are designed to achieve emissivity opportunity. First light for the Mauna Kea telescope is expected in late 1998, and for the Cerro Pachon telescope in mid-2000. This talk will report on construction progress, the instrumental capabilities, and operations strategies being considered. The Gemini 8-meter Telescopes Project is managed by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation which serves as executive agency for the Gemini partner countries. U.S. participation in the project is through the U.S. Gemini Program, a division of the National Optical Astronomy Observatories. NOAO is operated by AURA, Inc. under cooperative agreement with the National Science Foundation.

  7. Voltage Harmonics Monitoring in a Microgrid Based on Advanced Metering Infrastructure (AMI)

    DEFF Research Database (Denmark)

    Firoozabadi, Mehdi Savaghebi; Guan, Yajuan; Quintero, Juan Carlos Vasquez

    2015-01-01

    Smart meters are the main part of Advanced Metering Infrastructure (AMI) and are usually able to provide detailed information on customers’ energy consumptions, voltage variations and interruptions. In addition, these meters are potentially able to provide more information about power quality (PQ......) disturbances. This paper will address the monitoring of voltage harmonics utilizing the features of smart meters and AMI system. To do this, the first step is to select proper indices to quantify the distortion. An important point which should be considered in this regard is the limited processing power...

  8. The Solar Energy Trifecta: Solar + Storage + Net Metering | State, Local,

    Science.gov (United States)

    and Tribal Governments | NREL The Solar Energy Trifecta: Solar + Storage + Net Metering The Solar Energy Trifecta: Solar + Storage + Net Metering February 12, 2018 by Benjamin Mow Massachusetts (DPU) seeking an advisory ruling on the eligibility of pairing solar-plus-storage systems with current

  9. Moisture meter calibration for untreated and ACQ-treated southern yellow pine plywood

    Science.gov (United States)

    Samuel V. Glass; Charles G. Carll

    2009-01-01

    Conductance moisture meter readings using stainless steel screws as electrodes were compared with gravimetric moisture content for 1) southern yellow pine (SYP) dimensioned lumber, 2) untreated (underlayment grade) SYP plywood, and 3) SYP plywood treated with alkaline copper quaternary. Meter readings were taken with the meter set to the manufacturer-provided species...

  10. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  11. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  12. Ninth international conference on metering and tariffs for energy supply. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    Contributions to the ninth international conference on Metering and Tariffs for Energy Supply are presented. Topics reviewed include legal metrology, regulation and the commercial framework (3 papers); metering in a competitive supply (7 papers); interactive papers (13 papers); standardisation (5 papers); equipment design (5 papers); equipment manufacture and testing (5 papers); data collection and processing (6 papers); securing and enhancing revenue (5 papers); prepayment systems (5 papers); and metering as a business (4 papers). (UK)

  13. Results of a phase I dose escalation study of eltrombopag in patients with advanced soft tissue sarcoma receiving doxorubicin and ifosfamide

    International Nuclear Information System (INIS)

    Chawla, Sant P; Staddon, Arthur; Hendifar, Andrew; Messam, Conrad A; Patwardhan, Rita; Kamel, Yasser Mostafa

    2013-01-01

    The objective of this Phase I dose escalation study was to explore the safety and tolerability of eltrombopag, an oral, nonpeptide, thrombopoietin receptor agonist, in patients with advanced soft tissue sarcoma (STS) and thrombocytopenia due to treatment with doxorubicin and ifosfamide (AI) combination chemotherapy. Patients aged 18 or older with histologically confirmed, locally advanced or metastatic STS were treated with 1 cycle of AI followed by AI with eltrombopag starting at Cycle 2, using 2 different dosing schedules. The study design included an eltrombopag dose escalation phase starting at 75 mg daily to determine the optimal biological dose (OBD). Eighteen patients were enrolled and 15 received at least 1 dose of chemotherapy; 3 patients withdrew prior to receiving eltrombopag. Seven, 4, and 1 patients received 75 mg, 100 mg, and 150 mg eltrombopag daily, respectively. No dose-limiting toxicities were reported. Due to slow recruitment, the study was closed prior to identifying an OBD. The most common hematologic adverse events (AEs) were thrombocytopenia (80%), neutropenia (73%), and anemia (67%). The most common nonhematologic AEs were fatigue (53%), alanine aminotransferase increased, constipation, and nausea (47% each). Eleven of 12 patients who received eltrombopag completed at least 2 chemotherapy cycles; all had increased platelet counts on Day 1 of Cycle 2 (cycle with eltrombopag) compared to Day 1 of Cycle 1 (cycle without eltrombopag). Although data are limited, safety data were consistent with the known toxicities of AI combination chemotherapy or the side effect profile of eltrombopag seen in other studies. Available data suggest a potential pre- and post-chemotherapy dosing scheme for eltrombopag when administered with AI chemotherapy, and support further investigation of eltrombopag treatment in patients with chemotherapy-induced thrombocytopenia

  14. Wide Range Portable Radiation Survey Meter for Emergency Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gangadharan, P.; Bhave, D. G.; Gokarn, R. S.; Khadake, R. G. [Directorate Of Radiation Protection, Bhabha Atomic Research Centre, Trombay, Bombay (India)

    1969-05-15

    The paper describes a portable battery-operated radiation survey meter for monitoring a wide range of X- and gamma-ray exposure rates from 1 mR/h to 100 R/h. The instrument Incorporates a halogen GM tube as the detector and a count-rate meter for indication. A transistorized d.c. -d.c. converter supplies the necessary high voltage to the GM counter. The instrument response has been made energy independent in the energy range 80 keV to 1.25 MeV. Further, the response is linear over the entire range of exposure rates. Suitable extension rods have been designed to provide sufficient separation between the probe and the meter in cases where remote monitoring is necessary because of high fields. (author)

  15. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography

    International Nuclear Information System (INIS)

    Malusek, A.; Sandborg, M.; Alm Carlsson, G.

    2016-01-01

    Modern X-ray units register the air kerma-area product, PKA, with a built-in KAP meter. Some KAP meters show an energy-dependent bias comparable with the maximum uncertainty articulated by the IEC (25 %), adversely affecting dose-optimisation processes. To correct for the bias, a reference KAP meter calibrated at a standards laboratory and two calibration methods described here can be used to achieve an uncertainty of <7 % as recommended by IAEA. A computational model of the reference KAP meter is used to calculate beam quality correction factors for transfer of the calibration coefficient at the standards laboratory, Q 0 , to any beam quality, Q, in the clinic. Alternatively, beam quality corrections are measured with an energy-independent dosemeter via a reference beam quality in the clinic, Q 1 , to beam quality, Q. Biases up to 35 % of built-in KAP meter readings were noted. Energy-dependent calibration factors are needed for unbiased PKA. Accurate KAP meter calibration as a prerequisite for optimisation in projection radiography. (authors)

  16. Alteration in Business Models of Electricity Distribution Companies - A Case of Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Trygg, P.

    2013-09-01

    Smart metering is currently implemented in many countries. The change from traditional metering is significant and impacts many of the Distribution system operator's (DSO's) activities. This dissertation aims to provide a structured model for analysing the impacts of Smart metering on a DSO's business. Research was conducted by gathering a theoretical framework for understanding how the business operates. The concept of business model has been presented. It is used as a framework of metering business. Detailed studies on specific parts of the business model have been carried out. These concentrate on finding a theoretical background of what Smart metering can provide. Cost analyses were conducted to better understand resources required by Smart metering. Problems related to ICT resources have also been studied based on the DSO's experiences. Partner network was studied based on DSO's experiences related to service purchasing and finally experiences in working with IT services provided to the DSOs has been presented. This dissertation presents a development trend that has taken place regarding Smart metering in implementation and operation. Results are presented in a business model framework to provide a more structured view on issues related to Smart metering. Also non-technical issues should be analysed to fully understand the extent of the changes taking place when implementing Smart metering. The information presented can be utilized when significant change factors to the DSO's business models can be recognized. (orig.)

  17. GARUSO - Version 1.0. Uncertainty model for multipath ultrasonic transit time gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Froeysa, Kjell-Eivind; Vestrheim, Magne

    1997-09-01

    This report describes an uncertainty model for ultrasonic transit time gas flow meters configured with parallel chords, and a PC program, GARUSO Version 1.0, implemented for calculation of the meter`s relative expanded uncertainty. The program, which is based on the theoretical uncertainty model, is used to carry out a simplified and limited uncertainty analysis for a 12`` 4-path meter, where examples of input and output uncertainties are given. The model predicts a relative expanded uncertainty for the meter at a level which further justifies today`s increasing tendency to use this type of instruments for fiscal metering of natural gas. 52 refs., 15 figs., 11 tabs.

  18. Meeting current requirements. Data security in the smart metering; Den heutigen Anforderungen gerecht werden. Datensicherheit im Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Zayer, Peter [VOLTARIS GmbH, Maxdorf (Germany); Wolf, Frank [VOLTARIS GmbH, Merzig (Germany)

    2012-09-15

    The requirements for the smart metering are extremely complex. On the one hand, the network operators and the suppliers need unadulterated data on consumption or supply. On the other hand, consumers see their privacy jeopardized because the individual user behavior can be read from the specific energy profile. Furthermore, according to the will of the legislator the smart meter or the measuring system is an active component of a smart grid and smart-market system. Right here it is important to eliminate the threat of hacker attacks. For the industry this results in the task of guaranteeing both the maximum data security as well as to provide a maximum nutritive value to the customer.

  19. Critical review of directional neutron survey meters

    International Nuclear Information System (INIS)

    Balmer, Matthew J.I.; Gamage, Kelum A.A.; Taylor, Graeme C.

    2014-01-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of the neutron work place field. The impact of not taking this into account has led to overly conservative estimates of dose in neutron workplace fields. This paper provides a critical review of this existing research into directional survey meters which could improve these estimates of dose. Instruments which could be adapted for use as directional neutron survey meters are also considered within this review. Using Monte-Carlo techniques, two of the most promising existing designs are evaluated; a boron-doped liquid scintillator and a multi-detector directional spectrometer. As an outcome of these simulations, possible adaptations to these instruments are suggested with a view to improving the portability of the instrument. -- Highlights: • We critically review the existing literature into directional survey meters. • Instruments which could be adapted for this purpose are also reviewed. • Investigate the potential of much lighter portable real-time instrument. • Improvements to existing instruments are suggested to improve their design. • Boron-Doped liquid scintillator design is the most promising, but needs further work

  20. Study of the indirect calibration of clinical air kerma-area meters

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Herdade, Silvio B.

    2011-01-01

    Kerma-area product (P KA ) is a quantity which is independent of the distance to the X-ray tube focal spot and that can be used to assess the effective dose in patients. Clinical P KA meters are usually calibrated on-site by measuring the air kerma with an ion chamber and evaluating the irradiated area by means of a radiographic image. This work presents a preliminary metrological evaluation of the calibration of a device marketed recently (PDC, Patient Dose Calibrator, Radcal), designed for calibrating clinical P KA meters. Results are also shown of applying the PDC to the cross calibration of a clinical P KA meter from a radiology equipment. Results confirm a lower energy dependence of the PDC relative to the tested clinical meter. (author)

  1. Reconsidering the smart metering data collection frequency for distribution state estimation

    OpenAIRE

    Chen, Qipeng; Kaleshi, Dritan; Armour, Simon; Fan, Zhong

    2015-01-01

    The current UK Smart Metering Technical Specification requires smart meter readings to be collected once a day, primarily to support accurate billing without violating users' privacy. In this paper we consider the use of Smart Metering data for Distribution State Estimation (DSE), and compare the effectiveness of daily data collection strategy with a more frequent, half-hourly SM data collection strategy. We first assess the suitability of using the data for load forecasting at Low Voltage (L...

  2. Justification of the Utility of Introducing Smart Meters in Latvia

    Directory of Open Access Journals (Sweden)

    Kunickis M.

    2015-12-01

    Full Text Available Automatic data reading from smart meters is being developed in many parts of the world, including Latvia. The key drivers for that are developments of smart technologies and economic benefits for consumers. Deployment of smart meters could be launched in a massive scale.

  3. Performance of a Tilt Current Meter in the Surf Zone

    DEFF Research Database (Denmark)

    Hansen, Asger Bendix; Carstensen, Stefan; Christensen, Drude Fritzbøger

    2017-01-01

    Tilt Current Meters (TCM’s) are relatively simple and inexpensive instruments for measuring currents in rivers and inthe sea. Their low cost and easy deployment means that a relatively large number of TCM’s can be deployed comparedto more conventional current meters such as Acoustic Doppler...

  4. Knowledge of spacer device, peak flow meter and inhaler technique ...

    African Journals Online (AJOL)

    Background: Metered dose inhalers are cornerstone in effective management of bronchial asthma when correctly used. Most studies hitherto have focused on assessing patient's knowledge of inhaler technique. We sought to assess the knowledge of inhaler technique, spacer device and peak flow meter among doctors and ...

  5. The effects of competitive electricity supply in the UK on metering equipment

    International Nuclear Information System (INIS)

    Dick, A.

    1996-01-01

    Requirements for metering of competitive supply, following privatisation of the UK Electricity Industry in 1989, have driven the design of metering equipment in a way which was not foreseen at that time. Metering equipment used for implementing the competitive market so far has been designed to new uniform national specifications and has used commercially available communications systems to automatically collect data. In order to implement full competition down to the domestic level as from 1998, a new approach is thought to be necessary. The major influences on meter design, equipment now being used, are described, future equipment and communications options, are considered. (author)

  6. Integrative solutions for intelligent energy management. Smart metering, smart home, smart grid; Integrative Loesungsansaetze fuer ein intelligentes Energiemanagement. Smart Metering, Smart Home and Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Achim [Hager Vertriebsgesellschaft mbH und Co. KG, Blieskastel (Germany). Marketing

    2011-07-01

    Smart Metering, Smart Home, Smart Grid - these key words significantly determine the current debate about intelligent energy management, or new energy concepts. The author of the contribution under consideration describes the interactions between Smart Metering, Smart Home and Smart Grids and the technical connection of these interactions. Thus, the compact tebis KNX demovea server connects Windows computer and the Internet with the building automation based on KNX. The technically simple combination of smart metering and smart home via Hager radio tower of the building automation provides an access to key energy data for an intelligent load management.

  7. Privacy-Preserving Meter Report Protocol of Isolated Smart Grid Devices

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2017-01-01

    Full Text Available Smart grid aims to improve the reliability, efficiency, and security of the traditional grid, which allows two-way transmission and efficiency-driven response. However, a main concern of this new technique is that the fine-grained metering data may leak the personal privacy information of the customers. Thus, the data aggregation mechanism for privacy protection is required for the meter report protocol in smart grid. In this paper, we propose an efficient privacy-preserving meter report protocol for the isolated smart grid devices. Our protocol consists of an encryption scheme with additively homomorphic property and a linearly homomorphic signature scheme, where the linearly homomorphic signature scheme is suitable for privacy-preserving data aggregation. We also provide security analysis of our protocol in the context of some typical attacks in smart grid. The implementation of our protocol on the Intel Edison platform shows that our protocol is efficient enough for the physical constrained devices, like smart meters.

  8. INFLUENCE OF FUNCTIONAL ABILITY IN RUNNING 400 AND 800 METERS

    Directory of Open Access Journals (Sweden)

    Abdulla Elezi

    2013-07-01

    Full Text Available Goal of the research was to assess on the grounds of data collected that were used to assess the functional ability of the cardio-respiratory system and the results of running to determine the relation of these sum of variables. Basic statistical indicators of the physiological variables and results of running were calculated. For determining the relation, the regression analysis was used in the manifested space. Criterion variable (running for 100 meters did not demonstrate statistically significant coefficient of multiple variation with predictor variables. The time span in running 400 meters is short in order to engage mechanisms that supply and transform the energy for oxidative processes. Criterion variable (of running 800 meters has demonstrated statistically significant coefficient of multiple correlations with predictor variable and its value was 0.377 tested through F-test. This is understandable given that the time effect of engagement of systems responsible for transfer and transformation of energy compared to time needed for running 400 meters.

  9. Development and evaluation of an automated system for testing current meters

    Directory of Open Access Journals (Sweden)

    Ezequiel Saretta

    2016-02-01

    Full Text Available ABSTRACT Current meters are equipment widely used for estimating flow velocity in rivers and streams. Periodic calibrations of current meters are important to ensure the quality of measurements, but the required testing facilities are complex and only available in a few institutions. However, advances in electronics and automation may contribute to developing simple and reliable calibration systems. Thus, this study aimed to develop an automated system for testing current meters, which consisted of a trapezoidal channel, a step motor, a tow car and a management system, composed of a supervisory application and microprocessed modules to control the motor and the data acquisition. Evaluations of the displacement velocity showed that it matched the reference value up to 1.85 m s-1 for a vertical-axis current meter and 2.3 m s-1 for a horizontal-axis one. The developed system showed reliability during tests, for both current meter movement and data acquisition. The management of the system based on the developed modules and the supervisory application improved its user interface, turning all the procedure into a simple task.

  10. New type of nonglossy image-receiving sheet

    Science.gov (United States)

    Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada

    1990-07-01

    We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.

  11. Opportunities for smart meters in Germany

    International Nuclear Information System (INIS)

    Wolff, J.

    2010-10-01

    Germany has the ambitious goal of lowering its CO2 emission with 80 percent until 2050 as compared to 1990. Sustainable energy and the deployment of smart meters are starting to play increasingly important roles. [nl

  12. [Development and test of a wheat chlorophyll, nitrogen and water content meter].

    Science.gov (United States)

    Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen

    2011-08-01

    A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.

  13. Electricity as (Big Data: Metering, spatiotemporal granularity and value

    Directory of Open Access Journals (Sweden)

    Mette Kragh-Furbo

    2018-02-01

    Full Text Available Electricity is hidden within wires and networks only revealing its quantity and flow when metered. The making of its properties into data is therefore particularly important to the relations that are formed around electricity as a produced and managed phenomenon. We propose approaching all metering as a situated activity, a form of quantification work in which data is made and becomes mobile in particular spatial and temporal terms, enabling its entry into data infrastructures and schemes of evaluation and value production. We interrogate the transition from the pre-digital into the making of bigger, more spatiotemporally granular electricity data, through focusing on those actors selling and materialising new metering technologies, data infrastructures and services for larger businesses and public sector organisations in the UK. We examine the claims of truth and visibility that accompany these shifts and their enrolment into management techniques that serve to more precisely apportion responsibility for, and evaluate the status of, particular patterns and instances of electricity use. We argue that whilst through becoming Big Data electricity flow is now able to be known and given identity in significantly new terms, enabling new relations to be formed with the many heterogeneous entities implicated in making and managing energy demand, it is necessary to sustain some ambivalence as to the performative consequences that follow for energy governance. We consider the wider application of our conceptualisation of metering, reflecting on comparisons with the introduction of new metering systems in domestic settings and as part of other infrastructural networks.

  14. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Graduate School of China Academy of Engineering Physics, Beijing 100088 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Chang, Yan; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Li Qun [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  15. Accuracy Improvement of Boron Meter Adopting New Fitting Function and Multi-Detector

    Directory of Open Access Journals (Sweden)

    Chidong Kong

    2016-12-01

    Full Text Available This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  16. Accuracy improvement of boron meter adopting new fitting function and multi-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chidong; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); KIm, Si Hwan; Lyou, Seok Jean [Users Incorporated Company, Hansin S-MECA, Daejeon (Korea, Republic of)

    2016-12-15

    This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs) in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

  17. Relative accuracy of the BD Logic and FreeStyle blood glucose meters.

    Science.gov (United States)

    2007-04-01

    The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.

  18. Predicting Extubation Outcome by Cough Peak Flow Measured Using a Built-in Ventilator Flow Meter.

    Science.gov (United States)

    Gobert, Florent; Yonis, Hodane; Tapponnier, Romain; Fernandez, Raul; Labaune, Marie-Aude; Burle, Jean-François; Barbier, Jack; Vincent, Bernard; Cleyet, Maria; Richard, Jean-Christophe; Guérin, Claude

    2017-12-01

    Successful weaning from mechanical ventilation depends on the patient's ability to cough efficiently. Cough peak flow (CPF) could predict extubation success using a dedicated flow meter but required patient disconnection. We aimed to predict extubation outcome using an overall model, including cough performance assessed by a ventilator flow meter. This was a prospective observational study conducted from November 2014 to October 2015. Before and after a spontaneous breathing trial, subjects were encouraged to cough as strongly as possible before freezing the ventilator screen to assess CPF and tidal volume (V T ) in the preceding inspiration. Early extubation success rate was defined as the proportion of subjects not re-intubated 48 h after extubation. Diagnostic performance of CPF and V T was assessed by using the area under the curve of the receiver operating characteristic curve. Cut-off values for CPF and V T were defined according to median values and used to describe the performance of a predictive test combining them with risk factors of early extubation failure. Among 673 subjects admitted, 92 had a cough assessment before extubation. For the 81 subjects with early extubation success, the median CPF was -67.7 L/min, and median V T was 0.646 L. For the 11 subjects with early extubation failure, the median CPF was -57.3 L/min, and median V T was 0.448 L. Area under the curve was 0.61 (95% CI 0.37-0.83) for CPF and 0.64 (95% CI 0.42-0.84) for CPF/V T combined. After dichotomization (CPF 0.55 L), there was a synergistic effect to predict early extubation success ( P meter of an ICU ventilator was able to predict extubation success and to build a composite score to predict extubation failure. The results were close to that found in previous studies that used a dedicated flow meter. This could help to identify high-risk subjects to prevent extubation failure. (ClinicalTrials.gov registration NCT02847221.). Copyright © 2017 by Daedalus Enterprises.

  19. Development of a novel vortex flow meter for downhole use

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.

    2008-01-01

    Due to the increasing complexity of oil and gas wells, the demand for instrumentation to measure conditions inside well tubing below the surface is growing rapidly. A robust meter was designed to measure liquid flows at downhole conditions. The meter is based on a specially-designed bluff body to

  20. Established Designs For Advanced Ground Based Astronomical Telescopes In The 1-meter To 4-meter Domain

    Science.gov (United States)

    Hull, Anthony B.; Barentine, J.; Legters, S.

    2012-01-01

    The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.

  1. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    Science.gov (United States)

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes

  2. β-ray scintillation survey meter for small-sized pipes

    International Nuclear Information System (INIS)

    Yamano, Toshiya; Suzuki, Toshikazu; Yoshida, Yoshiteru; Higashidate, Takamichi; Yonemura, Kenji; Fujita, Michio.

    1990-01-01

    The outer surface of the small-sized pipes used as scaffolding is measured by beta/gamma survey meter when they are carried out from the controlled area in nuclear facilities. But, the measurement of the radioactive contamination on the inner surface, when it is needed, is done indirectly using the smear method. To improve these vexatious works, Fuji Electric Co., Ltd. and Chubu Electric Power Co., Inc. jointly developed a beta-ray scintillation survey meter which, when inserted directly into pipes, can detect radioactive contamination on the inner surface. This detector is made of cylindrical plastic scintillator and it can measure low energy beta-ray by using the coincidence method which reduces random noise. A field test carried out with this prototype survey meter brought favorable results for designing its final version. (author)

  3. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  4. Monitoring of prestressed concrete pressure vessels. 1. An overview of concrete embedment strain instrumentation and calibration test results for selected concrete embedment strain meters

    International Nuclear Information System (INIS)

    Naus, D.J.; Hurtt, C.C.

    1978-01-01

    The report presents results of calibration tests on strain meters. The approach was divided into two phases: (1) an overview of meter performance criteria for PCPV applications and techniques for strain measurements in concrete and (2) procurement of commercially available gages and their evaluation to assess the reliability of manufacturer-supplied calibration factors. Calibration test results for gages embedded in 15.2-cm-diam by 54-cm cylindrical concrete specimens indicated that calibration factors should be determined (verified) by embedding samples of the gages in test specimens fabricated using a representative mix and that further research should be conducted on other measurement techniques based on inductance, capacitance, semiconductors, and fluidic principles

  5. Evaluation of the apparent losses caused by water meter under-registration in intermittent water supply.

    Science.gov (United States)

    Criminisi, A; Fontanazza, C M; Freni, G; Loggia, G La

    2009-01-01

    Apparent losses are usually caused by water theft, billing errors, or revenue meter under-registration. While the first two causes are directly related to water utility management and may be reduced by improving company procedures, water meter inaccuracies are considered to be the most significant and hardest to quantify. Water meter errors are amplified in networks subjected to water scarcity, where users adopt private storage tanks to cope with the intermittent water supply. The aim of this paper is to analyse the role of two variables influencing the apparent losses: water meter age and the private storage tank effect on meter performance. The study was carried out in Palermo (Italy). The impact of water meter ageing was evaluated in laboratory by testing 180 revenue meters, ranging from 0 to 45 years in age. The effects of the private water tanks were determined via field monitoring of real users and a mathematical model. This study demonstrates that the impact on apparent losses from the meter starting flow rapidly increases with meter age. Private water tanks, usually fed by a float valve, overstate meter under-registration, producing additional apparent losses between 15% and 40% for the users analysed in this study.

  6. Calibration methodology application of kerma area product meters in situ: Preliminary results

    Science.gov (United States)

    Costa, N. A.; Potiens, M. P. A.

    2014-11-01

    The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.

  7. The accuracy of self monitoring blood glucose meter systems in ...

    African Journals Online (AJOL)

    Many patients were referred to Kololo polyclinic laboratory to have their blood glucose checked because the values obtained on the patients' glucose meter systems did not tally with familiar clinical signs and symptoms. This prompted an experimental set up to check glucose meter systems using a larger number of patients.

  8. Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor

    Science.gov (United States)

    Landry, Steven J.; Farley, Todd; Hoang, Ty

    2005-01-01

    Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.

  9. Testing and performance of electrolytic oxygen meters for use in liquid sodium

    International Nuclear Information System (INIS)

    Taylor, R.G.; Thompson, R.

    1983-01-01

    The performance of yttria-doped thoria ceramic electrochemical oxygen meters in liquid sodium is described. Tests were carried out using laboratory loops. Temperature coefficients of the oxygen meters have been measured between 380 0 C and 480 0 C, and the response to changes in oxygen level using cold-trap temperatures from 125 0 C to 250 0 C was determined. The ceramic has been shown to give good performance over lifetimes exceeding 400 days in some cases. The temperature coefficients and response to oxygen level changes are in good agreement with thermodynamic predictions. The effect of running the meters in high-oxygen sodium has been studied and a general mode of failure has been shown to be grain-boundary attack by oxygen/sodium solutions. The effect of #betta#-radiation on the meters has been studied. The meters with a metal/metal oxide reference electrode were unaffected by dose rates up to 52860 mGy h - 1 . Meters with an air reference electrode do show an effect as a voltage reduction at levels down to 2420 mGy h - 1 . This effect was temperature-dependent and was insignificant at 500 0 C. (orig.)

  10. A final report on the Phase 1 testing of a molten-salt cavity receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J M [ed.; Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

    1992-05-01

    This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

  11. Hazards in smart grids. Smart meters can open the door to hackers; Gefahren im intelligenten Stromnetz. Smart Meter als Einfallstor fuer Hacker-Angriffe

    Energy Technology Data Exchange (ETDEWEB)

    Gerretz, Dirk [Covisint Emea Compuware GmbH, Neu-Isenburg (Germany)

    2011-10-31

    Smart grid, smart meter, smart home: Increasingly, intelligent technologies are introduced in the energy sector. The merging of power grids and data grids is costly and requires high investments in areas that are far from the key business and key competence of public utilities. Reliable protection of smart meters is a particular challenge as unauthorized access or manipulation may result in great financial and reputational damage. Prior to introducting smart meters, utilities should decide if they want to introduce the necessary safety technologies themselves, including hardware, software, and know-how, or if they want to rely on solutions provided by experienced market partners. They offer open, expandable and scalable platforms for comprehensive identity management and safe data exchange that have been tested in practice in several branches of industry.

  12. Aesthetic and emotional effects of meter and rhyme in poetry.

    Science.gov (United States)

    Obermeier, Christian; Menninghaus, Winfried; von Koppenfels, Martin; Raettig, Tim; Schmidt-Kassow, Maren; Otterbein, Sascha; Kotz, Sonja A

    2013-01-01

    Metrical patterning and rhyme are frequently employed in poetry but also in infant-directed speech, play, rites, and festive events. Drawing on four line-stanzas from nineteenth and twentieth German poetry that feature end rhyme and regular meter, the present study tested the hypothesis that meter and rhyme have an impact on aesthetic liking, emotional involvement, and affective valence attributions. Hypotheses that postulate such effects have been advocated ever since ancient rhetoric and poetics, yet they have barely been empirically tested. More recently, in the field of cognitive poetics, these traditional assumptions have been readopted into a general cognitive framework. In the present experiment, we tested the influence of meter and rhyme as well as their interaction with lexicality in the aesthetic and emotional perception of poetry. Participants listened to stanzas that were systematically modified with regard to meter and rhyme and rated them. Both rhyme and regular meter led to enhanced aesthetic appreciation, higher intensity in processing, and more positively perceived and felt emotions, with the latter finding being mediated by lexicality. Together these findings clearly show that both features significantly contribute to the aesthetic and emotional perception of poetry and thus confirm assumptions about their impact put forward by cognitive poetics. The present results are explained within the theoretical framework of cognitive fluency, which links structural features of poetry with aesthetic and emotional appraisal.

  13. Phase III trial of casopitant, a novel neurokinin-1 receptor antagonist, for the prevention of nausea and vomiting in patients receiving moderately emetogenic chemotherapy

    DEFF Research Database (Denmark)

    Herrstedt, Jørn; Apornwirat, Wichit; Shaharyar, Ahmed

    2009-01-01

    PURPOSE: The purpose of this phase III trial was to evaluate the efficacy and safety of regimens containing casopitant, a novel neurokinin-1 receptor antagonist, for the prevention of chemotherapy-induced nausea and vomiting during the first cycle in patients receiving moderately emetogenic chemo...

  14. Evaluation of methods to calibrate radiation survey meters

    International Nuclear Information System (INIS)

    Robinson, R.C.; Arbeau, N.D.

    1987-04-01

    Calibration requirements for radiation survey meters used in industrial radiography have been reviewed. Information obtained from a literature search, discussions with CSLD inspectors and firms performing calibrations has been considered. Based on this review a set of minimum calibration requirements was generated which, when met, will determine that the survey meter is suited for measurements described in the current AEC Regulations that apply to industrial radiography equipment. These requirements are presented in this report and may be used as guidelines for evaluating calibration methods proposed or in use in industry. 39 refs

  15. Nine steps towards a better water meter management.

    Science.gov (United States)

    Arregui, F J; Soriano, J; Cabrera, E; Cobacho, R

    2012-01-01

    The paper provides a comprehensive perspective of the critical aspects to be taken into account when planning the long-term management of water meters in a utility. In order to facilitate their quick understanding and practical implementation, they have been structured into nine steps. Ranging from an initial audit up to the final periodic meter replacement planning, these steps cover three aspects of the problem - field work, laboratory work and management tasks; and each one is developed in detail paying attention to the particular data needed and noting the practical outcome it will yield.

  16. Infants prefer the musical meter of their own culture: a cross-cultural comparison.

    Science.gov (United States)

    Soley, Gaye; Hannon, Erin E

    2010-01-01

    Infants prefer native structures such as familiar faces and languages. Music is a universal human activity containing structures that vary cross-culturally. For example, Western music has temporally regular metric structures, whereas music of the Balkans (e.g., Bulgaria, Macedonia, Turkey) can have both regular and irregular structures. We presented 4- to 8-month-old American and Turkish infants with contrasting melodies to determine whether cultural background would influence their preferences for musical meter. In Experiment 1, American infants preferred Western over Balkan meter, whereas Turkish infants, who were familiar with both Western and Balkan meters, exhibited no preference. Experiments 2 and 3 presented infants with either a Western or Balkan meter paired with an arbitrary rhythm with complex ratios not common to any musical culture. Both Turkish and American infants preferred Western and Balkan meter to an arbitrary meter. Infants' musical preferences appear to be driven by culture-specific experience and a culture-general preference for simplicity. Copyright 2009 APA, all rights reserved.

  17. Current meter and temperature profile data from moored current meter casts in the TOGA area - Atlantic Ocean from 10 September 1970 - 27 October 1980 (NODC Accession 8600320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and temperature profile data were collected using moored current meter - PCM casts in the TOGA area - Atlantic Ocean from September 10, 1970 to October...

  18. BH5047 type depth sand moisture-meter of high sensitivity

    International Nuclear Information System (INIS)

    Ji Changsong; Xie Liangnian; Zhang Shulan; Zhang Shuheng

    2000-01-01

    A new depth neutron moisture meter BH5047 has been developed. BH5047 neutron moisture meter is characterised by it is high sensitivity and used for sand water content measurement at concrete mixer. Calibration function is obtained by the Method of Least Squares. Linear correlation efficiency is as good as 0.9977

  19. Feeling music: integration of auditory and tactile inputs in musical meter perception.

    Science.gov (United States)

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2012-01-01

    Musicians often say that they not only hear, but also "feel" music. To explore the contribution of tactile information in "feeling" musical rhythm, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter recognition task. Subjects discriminated between two types of sequences, 'duple' (march-like rhythms) and 'triple' (waltz-like rhythms) presented in three conditions: 1) Unimodal inputs (auditory or tactile alone), 2) Various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts, and 3) Simultaneously presented bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70%-85%) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70%-90%) when all of the metrically important notes are assigned to one channel and is reduced to 60% when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90%). Performance drops dramatically when subjects were presented with incongruent auditory cues (10%), as opposed to incongruent tactile cues (60%), demonstrating that auditory input dominates meter perception. We believe that these results are the first demonstration of cross-modal sensory grouping between any two senses.

  20. From Policy to Implementation. The Status of Europe's Smart Metering Market

    International Nuclear Information System (INIS)

    Shargal, M.

    2009-04-01

    In the last five years there has been a major policy shift from keeping the electricity price as low as possible in a free and competitive market to reducing carbon emissions. This shift has also resulted in decisions to look at the deployment of smart meters to help customers understand when they use electricity and to help them plan savings. Today, smart metering and smart grid initiatives are forcing another major transformation in the utility industry. Many utilities are rethinking their business models and business processes as a result of the shift in the way energy is generated, delivered and consumed. The state of the regulation and implementation of smart metering varies across Europe on a country by country basis. This results in wide a difference as to which is leading the smart meters rollout - the government or the industry. The variance leads to different players taking the initiative - regulatory pull to utilities push. To a large extent the adoption of smart metering in Europe is driven by regulation. National concerns over the future energy situation and European initiatives such as EU Energy Efficiency have led several countries to define mandatory requirements for the deployment of smart metering within a set timeframe. But the reality is that the compliance-based industry in which utilities operate does not offer enough incentive for consumers, regulators or utilities to take the difficult steps necessary to make electrical energy markets operate efficiently.

  1. Smart meter deployment optimisation and its analysis for appliance load monitoring

    Directory of Open Access Journals (Sweden)

    Ahmed Shaharyar Khwaja

    2015-04-01

    Full Text Available In this study, the authors study the problem of smart meter deployment optimisation for appliance load monitoring, that is, to monitor a number of devices without any ambiguity using the minimum number of low-cost smart meters. The importance of this problem is due to the fact that the number of meters should be reduced to decrease the deployment cost, improve reliability and decrease congestion. In this way, in future, smart meters can provide additional information about the type and number of distinct devices connected, besides their normal functionalities concerned with providing overall energy measurements and their communication. The authors present two exact smart meter deployment optimisation algorithms, one based on exhaustive search and the other based on efficient implementation of the exhaustive search. They formulate the problem mathematically and present computational complexity analysis of their algorithms. Simulation scenarios show that for a typical number of home appliances, the efficient search method is significantly faster compared to the exhaustive search and can provide the same optimal solution. The authors also show the dependency of their method on the distribution of the load pattern that can potentially be in a typical household.

  2. A Randomized Response Model For Privacy Preserving Smart Metering

    Science.gov (United States)

    Cui, Lijuan; Que, Jialan; Choi, Dae-Hyun; Jiang, Xiaoqian; Cheng, Samuel; Xie, Le

    2012-01-01

    The adoption of smart meters may bring new privacy concerns to the general public. Given the fact that metering data of individual homes/factories is accumulated every 15 minutes, it is possible to infer the pattern of electricity consumption of individual users. In order to protect the privacy of users in a completely de-centralized setting (i.e., individuals do not communicate with one another), we propose a novel protocol, which allows individual meters to report the true electricity consumption reading with a pre-determinted probability. Load serving entities (LSE) can reconstruct the total electricity consumption of a region or a district through inference algorithm, but their ability of identifying individual users’ energy consumption pattern is significantly reduced. Using simulated data, we verify the feasibility of the proposed method and demonstrate performance advantages over existing approaches. PMID:23243488

  3. Current meter observations near the Sellafield pipeline, 1984-1986

    International Nuclear Information System (INIS)

    Jones, S.R.; Norris, S.

    1988-01-01

    Low-level liquid radioactive wastes are discharged into the north-east Irish Sea, under authorization, from the Sellafield reprocessing plant run by British Nuclear Fuels (BNFL). The effluent contains a range of radionuclides including caesium-137. The discharges are monitored and assessed by the Aquatic Environment Protection Division which is part of the Ministry of agriculture, Food and Fisheries. The results from the Sellafield current meter mooring in the Irish Sea from December 1983 to December 1986 are presented. The aim was to assess long-term tidal and residual current conditions under a variety of wind and current combinations as part of the assessment of the distribution of discharged radionuclides. The instrumentation is described briefly. Periods of data loss (due to meter failure or loss) and the data processing are explained. The results of the current metering are presented. (U.K.)

  4. IEEE Committee on Man and Radiation--COMAR technical information statement radiofrequency safety and utility Smart Meters.

    Science.gov (United States)

    Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A

    2015-03-01

    This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.

  5. Statewide evaluation of pay-for-use metering; Evaluation a l'echelle nationale du comptage en pre-paiement

    Energy Technology Data Exchange (ETDEWEB)

    D' Zurko, D C [New York Gas Group, (United States); Landsberg, D [Landsberg Engineering, P.C., (United States)

    2000-07-01

    To gain a better understanding of how best to deploy Pay-for-Use Metering technology in New York State, a consortium of eight natural gas and electric utilities conducted a feasibility study through their natural gas trade association, the New York Gas Group (NYGAS). As a result of the completed study and ongoing dialogue among utility service providers and regulators, benefits, challenges and test scenarios have been identified. During the transition to fully deregulated gas and electric industries, the regulated Local Distribution Companies (LDCs) must continue to provide service to the low-margin customers and those that are less profitable as the 'Supplier of Last Resort' (SOLR). PFU Metering has demonstrated that the consumer can save energy ranging from 5% to 20% based on the greater awareness of energy usage and associated costs. It can also turn a payment troubled customer into a good customer, making him attractive to all energy providers. For some residents who are no longer entitled to utility service due to default on deposit requirements or payment arrangements, it provides an alternative to receive energy that otherwise would not be possible. The goal of a multi-utility pilot test is to verify in varying conditions the reported benefits, change in consumer payment behavior, and projected economics. Based on evaluation during the pilot test and continuing interaction with the NYS regulators, it is likely that new procedures will be developed for full and successful implementation of PFU metering by regulated LDCs. (authors)

  6. Anatomy of a digital coherent receiver

    DEFF Research Database (Denmark)

    Borkowski, Robert; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    , orthonormaliation, chromatic dispersion compensation/nonlinear compensation, resampling a nd timing recovery, polarization demultiplexing and equalization, frequency and phase recovery, digital demodulation. We also describe novel subsystems of a digital coherent receiver: modulation format recognition......Digital coherent receivers have gained significant attention in the last decade. The reason for this is that coherent detection, along with digital signal processing (DSP) allows for substantial increase of the channel capacity by employing advanced detection techniques. In this paper, we first...

  7. Advanced Utility Metering; Period of Performance: April 23, 2002 - September 22, 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    In support of federal agencies considering the approach to utility metering appropriate for their facilities, the U.S. Department of Energy Federal Energy Management Program offers this publication as an overview of options in metering technology, system architecture, implementation, and relative costs. It provides advanced metering systems information to help potential users specify, acquire, use, and expand systems. It also addresses basic security issues and provides case studies and information resources.

  8. Interference studies with two hospital-grade and two home-grade glucose meters.

    Science.gov (United States)

    Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry

    2009-10-01

    Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was

  9. Dance and Music in "Gangnam Style": How Dance Observation Affects Meter Perception.

    Science.gov (United States)

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT's at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy's "Gangnam Style" in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with

  10. Now that we have smart meters, what do we do with them?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    For years, electric utilities have been dreaming about the day when they would have smart meters on customers' premises. However, there have always been lingering doubts among some consumer advocates and critics of the smart metering schemes about their cost-effectiveness. An issue that is beginning to become noticed is that installing smart meters and introducing variable pricing will accomplish very little unless the price signals are communicated to consumers and -- more important -- to energy-using devices beyond the meter. Since consumers are unlikely to sit around watching variable prices and adjusting consumption or thermostat settings, ways must be found for the price signals to automatically and directly communicate with devices,.

  11. Smart wavelength meter for integrated photonics

    NARCIS (Netherlands)

    Benelajla, Meryem; Taballione, Caterina; Boller, Klaus J.

    2017-01-01

    Thermally tunable SiN waveguide microring resonators in connection with neural network readout algorithms appear promising for use as integrated optical wavelength meters. So far, we have observed long-term reliability and a temperature immunity of the readout across several degrees of ambient

  12. Design and development of drag-disc flow meter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1989-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 6 figs

  13. Radio-controlled automatic gas meter-reading system; Releve automatique de compteur par radio

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, M. [Osaka Gas Co., Ltd (Japan); Ishikawa, K.; Fujiwara, J. [Tokyo Gas Co., Ltd. (Japan); Ichihashi, T. [Toho Gas Co., Ltd. (Japan)

    2000-07-01

    In Japan, an automatic gas meter-reading system is in operation, also incorporating the functions of monitoring for abnormalities in gas use and remote-controlled emergency gas supply shutoff. This system has been realized by linking microcomputer-controlled gas meters(It's called 'Intelligent gas mater') equipped with automatic shutoff mechanism to the gas utility company operation center via communication lines. While the present system uses cable communication lines, we of Tokyo Gas Co., Ltd., Osaka Gas Co., Ltd. and Toho Gas Co., Ltd., have jointly developed a new system based on radio communication. This paper introduces this new system. While radio-controlled meter-reading systems are used in many countries around the world solely for automatic meter reading, our recently developed system is also capable of monitoring for abnormalities in gas use and remote-controlled emergency gas supply shutoff, thanks to its almost real-time two-way communication function. The new system can serve for a period of ten years without recharging. It is also characterized by its applicability as different systems according to purposes: 1) conventional automatic meter-reading system (terminal network control unit or T-NCU), 2) large-scale radio-controlled meter-reading system, and 3) portable terminal-type radio-controlled meter-reading system. (authors)

  14. Design and development of a digital phase ratio meter

    Energy Technology Data Exchange (ETDEWEB)

    Majee, B C [Reactor Control Division, Bhabha Atomic Research Centre, Mumbai (India); Roy, S B; Meghal, A M [Uranium Extraction Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Uranium purification at Uranium Metal Plant is being carried out using solvent extraction process. The feed is aqueous uranyl nitrate solution with 2-4% insoluble silica particles. The solvent is tri-butyl phosphate diluted with commercial grade kerosene. Extraction is conducted in a slurry extractor equipment using compressed air as mixing and solution-interstage transferring medium. To ensure the organic continuous mode in the mixer and to avoid stable emulsion formation, organic to aqueous ratio maintained in each mixer is 10 to 12 whereas optimum extraction process requires an overall organic to aqueous ratio of 2. Therefore, a high volume of internal recirculation of organic is being arranged by the air-lift in mixers. For a smooth, continuous efficient extraction, mixer organic to aqueous ratio is a very critical parameter and it is required to be monitored periodically to take corrective actions during the operation by controlling the compressed air flow rate. Trials were conducted to select a suitable method of autocontrol of this phase ratio and a system has been designed for this purpose. (author). 3 figs., 1 tab.

  15. Quality control of the activity meter

    International Nuclear Information System (INIS)

    Rodrigues, Marlon da Silva Brandão; Sá, Lídia Vasconcelos de

    2017-01-01

    Objective: To carry out a comparative analysis of national and international standards regarding the quality control of the activity meter used in Nuclear Medicine Services in Brazil. Material and methods: Quality control protocols from the International Atomic Energy Agency (IAEA), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC) were pointed out and compared with requirements from both regulatory Brazilian agencies, National Surveillance Agency (ANVISA) and National Nuclear Energy Commission (CNEN). Results: The daily routine tests recommended by the regulatory agencies do not have significant differences; in contrast the tests with higher periodicities like (accuracy, linearity and precision) have differences discrepant. Conclusion: In view of the comparative analysis carried out, it is suggested that the national recommendations for the quality control tests of the activity meter should be checked and evaluated, with emphasis on the semiannual and annual periodicity tests. (author)

  16. Effects of varying hydraulics on the calibration of eight path chordal ultrasonic meters

    International Nuclear Information System (INIS)

    Hauser, E.; Estrada, H.; Regan, J.

    2003-01-01

    Eight path transit time ultrasonic meters are being used in the US, Europe and Japan to support measurement uncertainty power uprates of nuclear power plants. Power uprates rely on the demonstration of improved power accuracy to justify a reduction in the traditional 2% margin between operating power and the power at which loss of coolant accidents and other transients have been analyzed. The flow, density and enthalpy of the feedwater are key elements in the power calculation, and the eight path ultrasonic meters measure the flow and temperature from which these elements are derived. A key element in the uncertainty analysis for these meters is an allowance for the uncertainties that the feedwater flow profiles introduce in the meters' flow calibrations. To minimize and bound this uncertainty calibration tests are performed on each eight path element to be used in an uprate application. This paper describes extensive testing of a prototype eight path meter, results of which have be used to define the sensitivity of 8 path meters to broad variations in flow profiles, both axial and transverse and to establish a methodology whereby the impact of these changes on the uncertainty of the meters can be minimized. This testing confirms the general insensitivity of 8 path chordal systems to axial and transverse fluid velocity profiles. An 8 path chordal system provides a quantitative measurement of the flatness of the axial profile, which allows a quantitative assessment of the differences in hydraulic profile seen by a meter in a plant versus the hydraulic profile seen by that same meter in the calibration lab. Since the sensitivity of the meter's calibration can be established as a function of profile flatness in the lab through parametric testing, the profile flatness in the plant can be used to confirm or to adapt as necessary the calibration coefficient measured in the lab for use in the plant. (author)

  17. Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland

    International Nuclear Information System (INIS)

    Kaufmann, Simon; Künzel, Karoline; Loock, Moritz

    2013-01-01

    Implementing smart metering is an important field for energy policy to successfully meet energy efficiency targets. From an integrated social acceptance and customer-perceived value theory perspective we model the importance of customer value of smart metering in this regard. We further shape the model on a choice-based conjoint experiment with Swiss private electricity customers. The study finds that overall customers perceive a positive value from smart metering and are willing to pay for it. Further, based on a cluster analysis of customers’ value perceptions, we identify four customer segments, each with a distinct value perception profile for smart metering. We find that energy policy and management should integrate a solid understanding of customer value for smart metering in their initiatives and consider different smart metering market segments within their measures. - Highlights: ► We model the importance of customer value of smart metering. ► We shape the model on a choice-based conjoint experiment. ► Overall customers perceive a positive value from smart metering. ► Customers are willing to pay for smart metering. ► There are four distinct customer segments with different value perceptions.

  18. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  19. Combining smart metering with successful marketing; Smart Metering mit erfolgreichem Marketing verbinden

    Energy Technology Data Exchange (ETDEWEB)

    Luckhardt, Sina [EVB Energie AG, Velbert (Germany)

    2009-07-15

    Smart metering can be implemented in various ways. Apart from data transmission via powerline cables, also teletransmission via GPRS may be advantageous. A current project investigates both communication strategies which can also be used in parallel, especially by major utilities with the appropriate infrastructure. In the case of concrete implementation, it has been found that the communication with users must be clear in order to give them an idea of the advantages of the new technologies, and that an appropriate marketing strategy must be developed for successful rollout. (orig.)

  20. Smart meters and routers radiofrequency disturbances study with pacemakers and implantable cardiac defibrillators.

    Science.gov (United States)

    Ostiguy, Geneviève; Black, Tom; Bluteau, Louis-Jean; Dupont, Louis; Dyrda, Katia; Girard, Guillaume; Nguyen, Duc-Hai; Plante, Michel; Thibault, Bernard

    2013-11-01

    There is no scientific literature that examines radiofrequency (RF) interference from Smart Meters with cardiac implantable electronic devices (CIEDs). The objective of this in vitro study was to assess any potential interference with Medtronic CIEDs (Medtronic Inc., Minneapolis, MN, USA). In the Quebec testing, five models of Medtronic CIEDs were placed in an acrylic cylinder filled with a saline solution and faced a Landis+Gyr Smart Meter or Router (Landis+Gyr AG, Zug, Switzerland). The distance between CIEDs and the meter casing or router antenna was 10 cm. The Meter's normal operating conditions were modified to artificially set the number of impulsions at an abnormally high level (one, two, and three impulses per second). Each scenario was repeated one to five times, for 1 minute each. In the U.S. testing, 6 cm and 15 cm (∼2.25' and ∼6') separated the six models of Medtronic CIEDs from the Schlumberger Smart Meter (Itron Inc., Liberty Lake, WA, USA), which generally sent out a 96-bit Standard Consumption Message over 3 seconds. The transmission varied in frequencies along with the interval between cycles. A total of 6,966 RF transmissions were completed during the 34 tests conducted in Quebec. In the United States, the CIED was exposed to the meter for 10 minutes to provide a minimum of 200 completed RF transmissions. No interference was observed in worst-case scenarios (testing of meters and CIEDs at their performance limits). Landis+Gyr Smart Meters/Routers and Schlumberger Smart Meters do not interfere with the functioning of the Medtronic CIEDs tested, when placed, respectively, 10 cm and 6 cm and 15 cm apart. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.