WorldWideScience

Sample records for realistic density dependent

  1. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    Science.gov (United States)

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  2. Level density from realistic nuclear potentials

    International Nuclear Information System (INIS)

    Calboreanu, A.

    2006-01-01

    Nuclear level density of some nuclei is calculated using a realistic set of single particle states (sps). These states are derived from the parameterization of nuclear potentials that describe the observed sps over a large number of nuclei. This approach has the advantage that one can infer level density for nuclei that are inaccessible for a direct study, but are very important in astrophysical processes such as those close to the drip lines. Level densities at high excitation energies are very sensitive to the actual set of sps. The fact that the sps spectrum is finite has extraordinary consequences upon nuclear reaction yields due to the leveling-off of the level density at extremely high excitation energies wrongly attributed so far to other nuclear effects. Single-particle level density parameter a parameter is extracted by fitting the calculated densities to the standard Bethe formula

  3. Neutron star models with realistic high-density equations of state

    International Nuclear Information System (INIS)

    Malone, R.C.; Johnson, M.B.; Bethe, H.A.

    1975-01-01

    We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar

  4. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  5. The time-dependent density matrix renormalisation group method

    Science.gov (United States)

    Ma, Haibo; Luo, Zhen; Yao, Yao

    2018-04-01

    Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.

  6. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    Science.gov (United States)

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent

  7. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  8. Development and application of a density dependent matrix ...

    Science.gov (United States)

    Ranging along the Atlantic coast from US Florida to the Maritime Provinces of Canada, the Atlantic killifish (Fundulus heteroclitus) is an important and well-studied model organism for understanding the effects of pollutants and other stressors in estuarine and marine ecosystems. Matrix population models are useful tools for ecological risk assessment because they integrate effects across the life cycle, provide a linkage between endpoints observed in the individual and ecological risk to the population as a whole, and project outcomes for many generations in the future. We developed a density dependent matrix population model for Atlantic killifish by modifying a model developed for fathead minnow (Pimephales promelas) that has proved to be extremely useful, e.g. to incorporate data from laboratory studies and project effects of endocrine disrupting chemicals. We developed a size-structured model (as opposed to one that is based upon developmental stages or age class structure) so that we could readily incorporate output from a Dynamic Energy Budget (DEB) model, currently under development. Due to a lack of sufficient data to accurately define killifish responses to density dependence, we tested a number of scenarios realistic for other fish species in order to demonstrate the outcome of including this ecologically important factor. We applied the model using published data for killifish exposed to dioxin-like compounds, and compared our results to those using

  9. Density dependence triggers runaway selection of reduced senescence.

    Directory of Open Access Journals (Sweden)

    Robert M Seymour

    2007-12-01

    Full Text Available In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra and extended lifespans (e.g., Bristlecone Pine. Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  10. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  11. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  12. Realistic nuclear shell theory and the doubly-magic 132Sn region

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    After an introduction discussing the motivation and interest in results obtained with isotope separators, the fundamental problem in realistic nuclear shell theory is posed in the context of renormalization theory. Then some of the important developments that have occurred over the last fifteen years in the derivation of the effective Hamiltonian and application of realistic nuclear shell theory are briefly reviewed. Doubly magic regions of the periodic table and the unique advantages of the 132 Sn region are described. Then results are shown for the ground-state properties of 132 Sn as calculated from the density-dependent Hartree-Fock approach with the Skyrme Hamiltonian. A single theoretical Hamiltonian for all nuclei from doubly magic 132 Sn to doubly magic 208 Pb is presented; single-particle energies are graphed. Finally, predictions of shell-model level-density distributions obtained with spectral distribution methods are discussed; calculated level densities are shown for 136 Xe. 10 figures

  13. Detection of density dependence requires density manipulations and calculation of lambda.

    Science.gov (United States)

    Fowler, N L; Overath, R Deborah; Pease, Craig M

    2006-03-01

    To investigate density-dependent population regulation in the perennial bunchgrass Bouteloua rigidiseta, we experimentally manipulated density by removing adults or adding seeds to replicate quadrats in a natural population for three annual intervals. We monitored the adjacent control quadrats for 14 annual intervals. We constructed a population projection matrix for each quadrat in each interval, calculated lambda, and did a life table response experiment (LTRE) analysis. We tested the effects of density upon lambda by comparing experimental and control quadrats, and by an analysis of the 15-year observational data set. As measured by effects on lambda and on N(t+1/Nt in the experimental treatments, negative density dependence was strong: the population was being effectively regulated. The relative contributions of different matrix elements to treatment effect on lambda differed among years and treatments; overall the pattern was one of small contributions by many different life cycle stages. In contrast, density dependence could not be detected using only the observational (control quadrats) data, even though this data set covered a much longer time span. Nor did experimental effects on separate matrix elements reach statistical significance. These results suggest that ecologists may fail to detect density dependence when it is present if they have only descriptive, not experimental, data, do not have data for the entire life cycle, or analyze life cycle components separately.

  14. Density-dependent growth in invasive Lionfish (Pterois volitans).

    Science.gov (United States)

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  15. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  16. Density dependence of the nuclear energy-density functional

    Science.gov (United States)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic

  17. density-dependent selection revisited

    Indian Academy of Sciences (India)

    Unknown

    is a more useful way of looking at density-dependent selection, and then go on ... these models was that the condition for maintenance of ... In a way, their formulation may be viewed as ... different than competition among species, and typical.

  18. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  19. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  20. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  1. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    Science.gov (United States)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  2. Density dependent effective interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1994-01-01

    An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs

  3. Founder takes all: density-dependent processes structure biodiversity.

    Science.gov (United States)

    Waters, Jonathan M; Fraser, Ceridwen I; Hewitt, Godfrey M

    2013-02-01

    Density-dependent processes play a key role in the spatial structuring of biodiversity. Specifically, interrelated demographic processes, such as gene surfing, high-density blocking, and competitive exclusion, can generate striking geographic contrasts in the distributions of genes and species. Here, we propose that well-studied evolutionary and ecological biogeographic patterns of postglacial recolonization, progressive island colonization, microbial sectoring, and even the 'Out of Africa' pattern of human expansion, are fundamentally similar, underpinned by a 'founder takes all' density-dependent principle. Additionally, we hypothesize that older historic constraints of density-dependent processes are seen today in the dramatic biogeographic shifts that occur in response to human-mediated extinction events, whereby surviving lineages rapidly expand their ranges to replace extinct sister taxa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  5. Computation of Surface Laplacian for tri-polar ring electrodes on high-density realistic geometry head model.

    Science.gov (United States)

    Junwei Ma; Han Yuan; Sunderam, Sridhar; Besio, Walter; Lei Ding

    2017-07-01

    Neural activity inside the human brain generate electrical signals that can be detected on the scalp. Electroencephalograph (EEG) is one of the most widely utilized techniques helping physicians and researchers to diagnose and understand various brain diseases. Due to its nature, EEG signals have very high temporal resolution but poor spatial resolution. To achieve higher spatial resolution, a novel tri-polar concentric ring electrode (TCRE) has been developed to directly measure Surface Laplacian (SL). The objective of the present study is to accurately calculate SL for TCRE based on a realistic geometry head model. A locally dense mesh was proposed to represent the head surface, where the local dense parts were to match the small structural components in TCRE. Other areas without dense mesh were used for the purpose of reducing computational load. We conducted computer simulations to evaluate the performance of the proposed mesh and evaluated possible numerical errors as compared with a low-density model. Finally, with achieved accuracy, we presented the computed forward lead field of SL for TCRE for the first time in a realistic geometry head model and demonstrated that it has better spatial resolution than computed SL from classic EEG recordings.

  6. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  7. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  8. Density dependence of reactor performance with thermal confinement scalings

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1992-03-01

    Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research

  9. The dependence of stellar properties on initial cloud density

    Science.gov (United States)

    Jones, Michael O.; Bate, Matthew R.

    2018-05-01

    We investigate the dependence of stellar properties on the initial mean density of the molecular cloud in which stellar clusters form using radiation hydrodynamical simulations that resolve the opacity limit for fragmentation. We have simulated the formation of three star clusters from the gravitational collapse of molecular clouds whose densities vary by a factor of a hundred. As with previous calculations including radiative feedback, we find that the dependence of the characteristic stellar mass, Mc, on the initial mean density of the cloud, ρ, is weaker than the dependence of the thermal Jeans mass. However, unlike previous calculations, which found no statistically significant variation in the median mass with density, we find a weak dependence approximately of the form Mc∝ρ-1/5. The distributions of properties of multiple systems do not vary significantly between the calculations. We compare our results to the result of observational surveys of star-forming regions, and suggest that the similarities between the properties of our lowest density calculation and the nearby Taurus-Auriga region indicate that the apparent excess of solar-type stars observed may be due to the region's low density.

  10. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried

  11. Watching excitons move: the time-dependent transition density matrix

    Science.gov (United States)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  12. Maitra-Burke example of initial-state dependence in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Holas, A.; Balawender, R.

    2002-01-01

    In a recent paper, Maitra and Burke [Phys. Rev. A 63, 042501 (2001); 64, 039901(E) (2001)] have given an interesting and instructive example that illustrates a specific feature of the time-dependent density-functional theory--the dependence of the reconstructed time-dependent potential not only on the electron density, but also on the initial state of the system. However, a concise form of its presentation by these authors is insufficient to reveal all its peculiarities. Our paper represents a very detailed study of this valuable example, intended to facilitate a better understanding and appreciation

  13. Experimental evidence for density-dependent reproduction in a cooperatively breeding passerine

    NARCIS (Netherlands)

    Brouwer, Lyanne; Tinbergen, Joost M.; Both, Christiaan; Bristol, Rachel; Richardson, David S.; Komdeur, Jan; Sauer, J.R.

    Temporal variation in survival, fecundity, and dispersal rates is associated with density-dependent and density-independent processes. Stable natural populations are expected to be regulated by density-dependent factors. However, detecting this by investigating natural variation in density is

  14. Computational complexity of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Whitfield, J D; Yung, M-H; Tempel, D G; Aspuru-Guzik, A; Boixo, S

    2014-01-01

    Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)

  15. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  16. Prevalence and strength of density-dependent tree recruitment

    Science.gov (United States)

    Kai Zhu; Christopher W. Woodall; Joao V.D. Monteiro; James S. Clark

    2015-01-01

    Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most...

  17. Intercohort density dependence drives brown trout habitat selection

    Science.gov (United States)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat

  18. The Attentional Demand of Automobile Driving Revisited: Occlusion Distance as a Function of Task-Relevant Event Density in Realistic Driving Scenarios.

    Science.gov (United States)

    Kujala, Tuomo; Mäkelä, Jakke; Kotilainen, Ilkka; Tokkonen, Timo

    2016-02-01

    We studied the utility of occlusion distance as a function of task-relevant event density in realistic traffic scenarios with self-controlled speed. The visual occlusion technique is an established method for assessing visual demands of driving. However, occlusion time is not a highly informative measure of environmental task-relevant event density in self-paced driving scenarios because it partials out the effects of changes in driving speed. Self-determined occlusion times and distances of 97 drivers with varying backgrounds were analyzed in driving scenarios simulating real Finnish suburban and highway traffic environments with self-determined vehicle speed. Occlusion distances varied systematically with the expected environmental demands of the manipulated driving scenarios whereas the distributions of occlusion times remained more static across the scenarios. Systematic individual differences in the preferred occlusion distances were observed. More experienced drivers achieved better lane-keeping accuracy than inexperienced drivers with similar occlusion distances; however, driving experience was unexpectedly not a major factor for the preferred occlusion distances. Occlusion distance seems to be an informative measure for assessing task-relevant event density in realistic traffic scenarios with self-controlled speed. Occlusion time measures the visual demand of driving as the task-relevant event rate in time intervals, whereas occlusion distance measures the experienced task-relevant event density in distance intervals. The findings can be utilized in context-aware distraction mitigation systems, human-automated vehicle interaction, road speed prediction and design, as well as in the testing of visual in-vehicle tasks for inappropriate in-vehicle glancing behaviors in any dynamic traffic scenario for which appropriate individual occlusion distances can be defined. © 2015, Human Factors and Ergonomics Society.

  19. Anthropogenically-Mediated Density Dependence in a Declining Farmland Bird.

    Directory of Open Access Journals (Sweden)

    Jenny C Dunn

    Full Text Available Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats, high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity, nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.

  20. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  1. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  2. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  3. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Science.gov (United States)

    Reyes, Elijah; Thrasher, Patsy; Bonsall, Michael B; Klug, Hope

    2016-01-01

    Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation) and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1) egg survival is density dependent or 2) adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  4. and density-dependent quark mass model

    Indian Academy of Sciences (India)

    Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].

  5. Temperature and carrier density dependence of anisotropy in supercurrent density in layered cuprate superconductors

    International Nuclear Information System (INIS)

    Singh, M.P.; Tewari, B.S.; Ajay

    2006-01-01

    In the present work, we have studied the effect of temperature and carrier density on anisotropy in supercurrent density in bilayer cuprate superconductors. Here, we have considered a tight binding bilayered Hubbard Hamiltonian containing intra and interlayer attractive interactions. The situation considered here is similar to a SIS junction. We have got the expressions for the superconducting order parameters, carrier density and anisotropy in superconducting density (I ab /I c ) for such SIS junction. The numerical analysis show that the anisotropy in the supercurrent density depends on temperature and carrier density in layered high T c cuprates. (author)

  6. Population-Level Density Dependence Influences the Origin and Maintenance of Parental Care.

    Directory of Open Access Journals (Sweden)

    Elijah Reyes

    Full Text Available Parental care is a defining feature of animal breeding systems. We now know that both basic life-history characteristics and ecological factors influence the evolution of care. However, relatively little is known about how these factors interact to influence the origin and maintenance of care. Here, we expand upon previous work and explore the relationship between basic life-history characteristics (stage-specific rates of mortality and maturation and the fitness benefits associated with the origin and the maintenance of parental care for two broad ecological scenarios: the scenario in which egg survival is density dependent and the case in which adult survival is density dependent. Our findings suggest that high offspring need is likely critical in driving the origin, but not the maintenance, of parental care regardless of whether density dependence acts on egg or adult survival. In general, parental care is more likely to result in greater fitness benefits when baseline adult mortality is low if 1 egg survival is density dependent or 2 adult mortality is density dependent and mutant density is relatively high. When density dependence acts on egg mortality, low rates of egg maturation and high egg densities are less likely to lead to strong fitness benefits of care. However, when density dependence acts on adult mortality, high levels of egg maturation and increasing adult densities are less likely to maintain care. Juvenile survival has relatively little, if any, effect on the origin and maintenance of egg-only care. More generally, our results suggest that the evolution of parental care will be influenced by an organism's entire life history characteristics, the stage at which density dependence acts, and whether care is originating or being maintained.

  7. Does density-dependent diversification mirror ecological competitive exclusion?

    Directory of Open Access Journals (Sweden)

    Melanie J Monroe

    Full Text Available Density-dependence is a term used in ecology to describe processes such as birth and death rates that are regulated by the number of individuals in a population. Evolutionary biologists have borrowed the term to describe decreasing rates of species accumulation, suggesting that speciation and extinction rates depend on the total number of species in a clade. If this analogy with ecological density-dependence holds, diversification of clades is restricted because species compete for limited resources. We hypothesize that such competition should not only affect numbers of species, but also prevent species from being phenotypically similar. Here, we present a method to detect whether competitive interactions between species have ordered phenotypic traits on a phylogeny, assuming that competition prevents related species from having identical trait values. We use the method to analyze clades of birds and mammals, with body size as the phenotypic trait. We find no sign that competition has prevented species from having the same body size. Thus, since body size is a key ecological trait and competition does not seem to be responsible for differences in body size between species, we conclude that the diversification slowdown that is prevalent in these clades is unlikely due to the ecological interference implied by the term density dependence.

  8. Evolution of density-dependent movement during experimental range expansions.

    Science.gov (United States)

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Density dependence in a recovering osprey population: demographic and behavioural processes.

    Science.gov (United States)

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  10. Density-dependence as a size-independent regulatory mechanism

    NARCIS (Netherlands)

    De Vladar, H.P.

    2006-01-01

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which

  11. Time-dependent density functional theory for multi-component systems

    International Nuclear Information System (INIS)

    Tiecheng Li; Peiqing Tong

    1985-10-01

    The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)

  12. Density-dependent feedbacks can mask environmental drivers of populations

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter

    I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats, an...

  13. Density-dependent cladogenesis in birds.

    Directory of Open Access Journals (Sweden)

    Albert B Phillimore

    2008-03-01

    Full Text Available A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57% that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.

  14. Effects of Density-Dependent Bag Constant and Strange Star Rotation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qiao-Er; GUO Hua

    2003-01-01

    With the emphasis on the effects of the density-dependent bag constant and the rotation of strange star the limiting mass of strange star is calculated. The obtained results show that the limiting mass and the corresponding radius of strange star increase as the rotation frequency increases, and tend to be lowered when the density-dependent bag constant is considered.

  15. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  16. Cuticular antifungals in spiders: density- and condition dependence.

    Science.gov (United States)

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  17. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, C.

    1998-01-01

    1. Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  18. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  19. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    Science.gov (United States)

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  20. Experimental evidence for density dependence of reproduction in great tits

    NARCIS (Netherlands)

    Both, Christiaan

    1998-01-01

    1.  Density dependence of avian reproduction has often been analysed using correlations between annual mean reproductive output and population density. Experiments are necessary to prove that density is the cause of the observed patterns, but so far, three out of four experimental studies do not

  1. Excitation energy and angular momentum dependence of the nuclear level densities

    International Nuclear Information System (INIS)

    Razavi, R.; Kakavand, T.; Behkami, A. N.

    2007-01-01

    We have investigated the excitation energy (E) dependence of nuclear level density for Bethe formula and constant temperature model. The level density parameter aa nd the back shifted energy from the Bethe formula are obtained by fitting the complete level schemes. Also the level density parameters from the constant temperature model have been determined for several nuclei. we have shown that the microscopic theory provides more precise information on the nuclear level densities. On the other hand, the spin cut-off parameter and effective moment of inertia are determined by studying of the angular momentum (J) dependence of the nuclear level density, and effective moment of inertia is compared with rigid body value.

  2. Time-dependent density-functional tight-binding method with the third-order expansion of electron density.

    Science.gov (United States)

    Nishimoto, Yoshio

    2015-09-07

    We develop a formalism for the calculation of excitation energies and excited state gradients for the self-consistent-charge density-functional tight-binding method with the third-order contributions of a Taylor series of the density functional theory energy with respect to the fluctuation of electron density (time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation energy is based on the existing time-dependent density functional theory and the older TD-DFTB2 formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to calculate the third-order derivative of the total energy with respect to density matrix elements due to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows that the inclusion of the third-order contributions does not affect excitation energies significantly. A different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adiabatic excitation energies statistically. The application of TD-DFTB for the prediction of absorption and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental fluorescence energy quite well.

  3. Model dependence of isospin sensitive observables at high densities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-07

    Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.

  4. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  5. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  6. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  7. Statistical density of nuclear excited states

    Directory of Open Access Journals (Sweden)

    V. M. Kolomietz

    2015-10-01

    Full Text Available A semi-classical approximation is applied to the calculations of single-particle and statistical level densities in excited nuclei. Landau's conception of quasi-particles with the nucleon effective mass m* < m is used. The approach provides the correct description of the continuum contribution to the level density for realistic finite-depth potentials. It is shown that the continuum states does not affect significantly the thermodynamic calculations for sufficiently small temperatures T ≤ 1 MeV but reduce strongly the results for the excitation energy at high temperatures. By use of standard Woods - Saxon potential and nucleon effective mass m* = 0.7m the A-dependency of the statistical level density parameter K was evaluated in a good qualitative agreement with experimental data.

  8. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    Science.gov (United States)

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described

  9. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  11. Decay of hollow states in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Wismarsche Str. 43-45, Universitaet Rostock, Rostock-18051 (Germany)

    2012-07-01

    Hollow or multiply excited states are inaccessible in time dependent density functional theory (TDDFT) using adiabatic Kohn-Sham potentials. We determine the exact Kohn Sham (KS) potential for doubly excited states in an exactly solvable model Helium atom. The exact single-particle density corresponds to the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose origin is traced back to phase of the exact KS orbital. The potential controls the barrier height and width in order for the density to tunnel out and decay with the same rate as the doubly excited state in the ab initio time-dependent Schroedinger calculation. Instead, adiabatic KS potentials only show direct photoionization but no autoionization. A frequency-dependent linear response kernel would be necessary in order to capture the decay of autoionizing states.

  12. Solution of the atmospheric diffusion equation with a realistic diffusion coefficient and time dependent mixing height

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1997-01-01

    One dimensional model for the dispersion of a passive atmospheric contaminant (neglecting chemical reactions) in the atmospheric boundary layer is introduced. The differential equation representing the dispersion of pollutants is solved on the basis of gradient-transfer theory (K- theory). The present approach deals with a more appropriate and realistic profile for the diffusion coefficient K, which is expressed in terms of the friction velocity U, the vertical coordinate z and the depth of the mixing layer h, which is taken time dependent. After some mathematical simplification, the equation analytic obtained solution can be easily applied to case study concerning atmospheric dispersion of pollutants

  13. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Intraspecific density dependence and a guild of consumers coexisting on one resource.

    Science.gov (United States)

    McPeek, Mark A

    2012-12-01

    The importance of negative intraspecific density dependence to promoting species coexistence in a community is well accepted. However, such mechanisms are typically omitted from more explicit models of community dynamics. Here I analyze a variation of the Rosenzweig-MacArthur consumer-resource model that includes negative intraspecific density dependence for consumers to explore its effect on the coexistence of multiple consumers feeding on a single resource. This analysis demonstrates that a guild of multiple consumers can easily coexist on a single resource if each limits its own abundance to some degree, and stronger intraspecific density dependence permits a wider variety of consumers to coexist. The mechanism permitting multiple consumers to coexist works in a fashion similar to apparent competition or to each consumer having its own specialized predator. These results argue for a more explicit emphasis on how negative intraspecific density dependence is generated and how these mechanisms combine with species interactions to shape overall community structure.

  15. Any realistic theory must be computationally realistic: a response to N. Gisin's definition of a Realistic Physics Theory

    OpenAIRE

    Bolotin, Arkady

    2014-01-01

    It is argued that the recent definition of a realistic physics theory by N. Gisin cannot be considered comprehensive unless it is supplemented with requirement that any realistic theory must be computationally realistic as well.

  16. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  17. Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Directory of Open Access Journals (Sweden)

    Kranenbarg Sander

    2010-10-01

    Full Text Available Abstract Background Articular cartilage (AC is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn and maturity (72 weeks. In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks. Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48 at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46 at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48 at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46 at 72 weeks. Most collagen density profiles at 0 weeks (85% show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest

  18. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  19. Experimental examination of intraspecific density-dependent competition during the breeding period in monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    D T Tyler Flockhart

    Full Text Available A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism.

  20. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    Our approach represents a full solid-state calculation, allowing for polarization ef- fects while still capable of capturing inter-molecular dis...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S

  1. Density-dependence as a size-independent regulatory mechanism.

    Science.gov (United States)

    de Vladar, Harold P

    2006-01-21

    The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.

  2. Density-dependent selection on mate search and evolution of Allee effects.

    Science.gov (United States)

    Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M

    2018-01-01

    Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness

  3. Density Dependence and Growth Rate: Evolutionary Effects on Resistance Development to Bt (Bacillus thuringiensis).

    Science.gov (United States)

    Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A

    2018-02-09

    It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  5. Realistic searches on stretched exponential networks

    Indian Academy of Sciences (India)

    We consider navigation or search schemes on networks which have a degree distribution of the form () ∝ exp(−). In addition, the linking probability is taken to be dependent on social distances and is governed by a parameter . The searches are realistic in the sense that not all search chains can be completed.

  6. Color-flavor locked strange quark matter in a mass density-dependent model

    International Nuclear Information System (INIS)

    Chen Yuede; Wen Xinjian

    2007-01-01

    Properties of color-flavor locked (CFL) strange quark matter have been studied in a mass-density-dependent model, and compared with the results in the conventional bag model. In both models, the CFL phase is more stable than the normal nuclear matter for reasonable parameters. However, the lower density behavior of the sound velocity in this model is completely opposite to that in the bag model, which makes the maximum mass of CFL quark stars in the mass-density-dependent model larger than that in the bag model. (authors)

  7. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  8. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  9. d-Wave density waves in high Tc cuprates and CeCoIn5

    International Nuclear Information System (INIS)

    Maki, Kazumi; Dora, Balazs; Vanyolos, Andras; Virosztek, Attila

    2007-01-01

    Unconventional density waves (UDW) have a long history starting with the speculation of Halperin and Rice in 1968. However, a more realistic approach started around 1999 in order to clarify the nature of the pseudogap in the underdoped region of hole-doped high T c cuprates. Also d-wave density waves (dDW) evolved from early unrealistic 2D model with Z 2 symmetry to more realistic 3D mean-field condensate with U(1) gauge symmetry. More recently, the giant Nernst effect and the angle dependent magnetoresistance in LSCO, YBCO, Bi2212 and CeCoIn 5 are successfully described in terms of dDW, where the Landau quantization of the quasiparticle spectrum in dDW in a magnetic field (the Nersesyan effect) plays the crucial role

  10. Realistic molecular model of kerogen's nanostructure.

    Science.gov (United States)

    Bousige, Colin; Ghimbeu, Camélia Matei; Vix-Guterl, Cathie; Pomerantz, Andrew E; Suleimenova, Assiya; Vaughan, Gavin; Garbarino, Gaston; Feygenson, Mikhail; Wildgruber, Christoph; Ulm, Franz-Josef; Pellenq, Roland J-M; Coasne, Benoit

    2016-05-01

    Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.

  11. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  12. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    formers, we study the variation of relaxation dynamics with density, rather than temperature, as a control ... stronger behaviour, the use of scaled variables involving temperature and ... of the temperature dependence of B as written defines.

  13. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  14. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    Science.gov (United States)

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  15. A systematic study of the octupole correlations in the lanthanides with realistic forces

    International Nuclear Information System (INIS)

    Egido, J.L.; Robledo, L.M.

    1992-01-01

    We have performed a systematic study of the octupole degree of freedom in the nuclei 140 Ba, 142-150 deg Ce, 144-152 Nd and 146-154 Sm. The static properties (ground state deformations, energy gaps, dipole moments, etc.) have been analyzed within the Hartree-Fock plus BCS approximation (HFBCS); for the dynamical ones (energy splittings, transition probabilities, etc.) the adiabatic time-dependent Hartree-Fock plus zero point energy in the cranking approximation (ATDHF+ZPE) has been applied. In both approximations the realistic density-dependent Gogny force has been used. In our parameter-free calculations we are able to describe very well the whole experimental systematic of energy splittings and B(E1), among others. The flatness of the whole experimental systematic of energy splittings and B(E1), among others. The flatness of the potential energy of some nuclei makes the mean field approach unreliable for such nuclei. (orig.)

  16. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)

  17. Density dependence, density independence, and recruitment in the American shad (Alosa sapidissima) population of the Connecticut River

    International Nuclear Information System (INIS)

    Leggett, W.C.

    1977-01-01

    The role of density-dependent and density-independent factors in the regulation of the stock-recruitment relationship of the American shad (Alosa sapidissima) population of the Connecticut River was investigated. Significant reductions in egg-to-adult survival and juvenile growth rates occurred in the Holyoke--Turners Falls region in response to increases in the intensity of spawning in this area. For the Connecticut River population as a whole, egg-to-adult survival was estimated to be 0.00056 percent at replacement levels, and 0.00083 percent at the point of maximum population growth. Density-independent factors result in significant annual deviations from recruitment levels predicted by the density-dependent model. Temperature and flow regimes during spawning and early larval development are involved, but they explain only a small portion (less than 16 percent) of the total variation. In spite of an extensive data base, the accuracy of predictions concerning the potential effects of additional mortality to pre-recruit stages is low. The implications of these findings for environmental impact assessment are discussed

  18. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  19. How can we model selectively neutral density dependence in evolutionary games.

    Science.gov (United States)

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  20. Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ellithi, A. Y.; Botros, M. M.; Mellik, A. E.

    2007-01-01

    The azimuthal angle (φ) variation of the Coulomb and nuclear heavy ion (HI) potentials is studied in the framework of the double folding model, which is derived from realistic nuclear density distributions and a nucleon-nucleon (NN) interaction. The present calculation shows that the variation of HI potentials with the azimuthal angle depends strongly on the range of the NN forces. For the long-range Coulomb force, the maximum variation with φ is about 0.9%, and for HI potential derived from zero-range NN interaction the φ-variation can reach up to 90.0%. Our calculations are compared with the recent φ-dependence of the HI potential derived from proximity method. The present realistic φ-dependence calculations of the HI potential is completely different from the results of the proximity calculations

  1. Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions

    International Nuclear Information System (INIS)

    Li Qingfeng; Li Zhuxia; Soff, Sven; Gupta, Raj K; Bleicher, Marcus; Stoecker, Horst

    2005-01-01

    Based on the ultrarelativistic quantum molecular dynamics model, the effects of the density-dependent symmetry potential for baryons and of the Coulomb potential for produced mesons are investigated for neutron-rich heavy ion collisions at intermediate energies. The calculated results of the Δ - /Δ ++ and π - /π + production ratios show a clear beam-energy dependence on the density-dependent symmetry potential, which is stronger for the π - /π + ratio close to the pion production threshold. The Coulomb potential of the mesons changes the transverse momentum distribution of the π - /π + ratio significantly, though it alters only slightly the π - and π + total yields. The π - yields, especially at midrapidity or at low transverse momenta and the π - /π + ratios at low transverse momenta are shown to be sensitive probes of the density-dependent symmetry potential in dense nuclear matter. The effect of the density-dependent symmetry potential on the production of both K 0 and K + mesons is also investigated

  2. Angular momentum dependence of the nuclear level density parameter

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2010-01-01

    Dependence of nuclear level density parameter on the angular momentum and temperature is investigated in a theoretical framework using the statistical theory of hot rotating nuclei. The structural effects are incorporated by including shell correction, shape, and deformation. The nuclei around Z≅50 with an excitation energy range of 30 to 40 MeV are considered. The calculations are in good agreement with the experimentally deduced inverse level density parameter values especially for 109 In, 113 Sb, 122 Te, 123 I, and 127 Cs nuclei.

  3. Density dependence of avian clutch size in resident and migrant species: is there a constraint on the predictability of competitor density?

    NARCIS (Netherlands)

    Both, C.

    2000-01-01

    The presence of density dependence of clutch size is tested in 57 long-term population studies of 10 passerine bird species. In about half of the studies of tit species Parus spp. density dependence of clutch size was found, while none was found in studies of two flycatcher species Ficedula spp. One

  4. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  5. Quorum sensing and density-dependent dispersal in an aquatic model system.

    Directory of Open Access Journals (Sweden)

    Simon Fellous

    Full Text Available Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i the number of cells per microcosm and (ii the origin of their culture medium (supernatant from high- or low-density populations. We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density - and as a result, the decision to disperse - in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.

  6. Density dependence of SOL power width in ASDEX upgrade L-Mode

    Directory of Open Access Journals (Sweden)

    B. Sieglin

    2017-08-01

    A recent study [4] with an open divertor configuration found an asymmetry of the power fall-off length between inner and outer target with a smaller power fall-off length λq,i on the inner divertor target. Measurements with a closed divertor configuration find a similar asymmetry for low recycling divertor conditions. It is found, in the experiment, that the in/out asymmetry λq,i/λq,o is strongly increasing with increasing density. Most notably the heat flux density at the inner divertor target is reducing with increasing λq,i whilst the total power onto each divertor target stays constant. It is found that λq,o exhibits no significant density dependence for hydrogen and deuterium but increases with about the square root of the electron density for helium. The difference between H,D and He could be due to the different recycling behaviour in the divertor. These findings may help current modelling attempts to parametrize the density dependence of the widening of the power channel and thus allow for detailed comparison to both divertor effects like recycling or increased upstream SOL cross field transport.

  7. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  8. Fatigue - determination of a more realistic usage factor

    International Nuclear Information System (INIS)

    Lang, H.

    2001-01-01

    The ability to use a suitable counting method for determining the stress range spectrum in elastic and simplified elastic-plastic fatigue analyses is of crucial importance for enabling determination of a realistic usage factor. Determination of elastic-plastic strain range using the K e factor from fictitious elastically calculated loads is also important in the event of elastic behaviour being exceeded. This paper thus examines both points in detail. A fatigue module with additional options, which functions on this basis is presented. The much more realistic determination of usage factor presented here offers various economic benefits depending on the application

  9. Nuclear level density parameter 's dependence on angular momentum

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Kailas, S.

    2009-01-01

    Nuclear level densities represent a very important ingredient in the statistical Model calculations of nuclear reaction cross sections and help to understand the microscopic features of the excited nuclei. Most of the earlier experimental nuclear level density measurements are confined to low excitation energy and low spin region. A recent experimental investigation of nuclear level densities in high excitation energy and angular momentum domain with some interesting results on inverse level density parameter's dependence on angular momentum in the region around Z=50 has motivated us to study and analyse these experimental results in a microscopic theoretical framework. In the experiment, heavy ion fusion reactions are used to populate the excited and rotating nuclei and measured the α particle evaporation spectra in coincidence with ray multiplicity. Residual nuclei are in the range of Z R 48-55 with excitation energy range 30 to 40 MeV and angular momentum in 10 to 25. The inverse level density parameter K is found to be in the range of 9.0 - 10.5 with some exceptions

  10. Level-density parameter of nuclei at finite temperature

    International Nuclear Information System (INIS)

    Gregoire, C.; Kuo, T.T.S.; Stout, D.B.

    1991-01-01

    The contribution of particle-particle (hole-hole) and of particle-hole ring diagrams to the nuclear level-density parameter at finite temperature is calculated. We first derive the correlated grand potential with the above ring diagrams included to all orders by way of a finite temperature RPA equation. An expression for the correlated level-density parameter is then obtained by differentiating the grand potential. Results obtained for the 40 Ca nucleus with realistic matrix elements derived from the Paris potential are presented. The contribution of the RPA correlations is found to be important, being significantly larger than typical Hartree-Fock results. The temperature dependence of the level-density parameter derived in the present work is generally similar to that obtained in a schematic model. Comparison with available experimental data is discussed. (orig.)

  11. Thermodynamics of excited nuclei and nuclear level densities

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.

    1977-01-01

    A review has been made of the different approaches that are being used for a theoretical calculation of nuclear level densities. It is pointed out that while the numerical calculations based on the partition function approach and shell model single particle level schemes have shed important insight into the influence of nuclear shell effects on level densities and its excitation energy dependence and have brought out the inadequacy of the conventional Bethe Formula, these calculations are yet to reach a level where they can be directly used for quantitative comparisons. Some of the important drawbacks of the numerical calculations are also discussed. In this context, a new semi-empirical level density formula is described which while retaining the simplicity of analytical formulae, takes into account nuclear shell effects in a more realistic manner. (author)

  12. Density-dependent effects on physical condition and reproduction in North American elk: an experimental test.

    Science.gov (United States)

    Kelley M. Stewart; R. Terry Bowyer; Brian L. Dick; Bruce K. Johnson; John G. Kie

    2005-01-01

    Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density...

  13. Nuclear density distributions of 40,42,44,48Ca from elastic scattering of 104 MeV alpha particles

    International Nuclear Information System (INIS)

    Gils, H.J.; Friedman, E.; Majka, Z.

    1979-12-01

    The elastic scattering of 104 MeV α particles from 40 , 42 , 44 , 48 Ca has been analyzed by a single folding model with a density dependent effective interaction. Nuclear density distributions have been extracted using various descriptions including Fourier-Bessel series which distinctly reduces the model dependence of the results and enables realistic estimates of errors. Differences of the density shapes of the Ca-isotopes are well determined showing evidence for a neutron skin in 48 Ca. The resulting root mean square radii are compared to the results obtained from other methods. The sensitivity and limitations of various methods are discussed. (orig.) 891 KBE/orig. 892 BRE

  14. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  15. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  16. Density-Dependent Phase Polyphenism in Nonmodel Locusts: A Minireview

    Directory of Open Access Journals (Sweden)

    Hojun Song

    2011-01-01

    Full Text Available Although the specific mechanisms of locust phase transformation are wellunderstood for model locust species such as the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, the expressions of density-dependent phase polyphenism in other nonmodel locust species are not wellknown. The present paper is an attempt to review and synthesize what we know about these nonmodel locusts. Based on all available data, I find that locust phase polyphenism is expressed in many different ways in different locust species and identify a pattern that locust species often belong to large taxonomic groups which contain mostly nonswarming grasshopper species. Although locust phase polyphenism has evolved multiple times within Acrididae, I argue that its evolution should be studied from a phylogenetic perspective because I find similar density-dependent phenotypic plasticity among closely related species. Finally, I emphasize the importance of comparative analyses in understanding the evolution of locust phase and propose a phylogeny-based research framework.

  17. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  18. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...

  19. Density dependence governs when population responses to multiple stressors are magnified or mitigated.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S

    2017-10-01

    Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.

  20. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  1. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  2. Nuclear ``pasta'' phase within density dependent hadronic models

    Science.gov (United States)

    Avancini, S. S.; Brito, L.; Marinelli, J. R.; Menezes, D. P.; de Moraes, M. M. W.; Providência, C.; Santos, A. M.

    2009-03-01

    In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.

  3. Nuclear 'pasta' phase within density dependent hadronic models

    International Nuclear Information System (INIS)

    Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W. de; Brito, L.; Providencia, C.; Santos, A. M.

    2009-01-01

    In the present paper, we investigate the onset of the 'pasta' phase with different parametrizations of the density dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations

  4. Is contextual-potentiated eating dependent on caloric density of food?

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Aranda

    2009-01-01

    Full Text Available One experiment tested whether a specific context could elicit eating in rats as a result of Pavlovian conditioning and whether this effect depended on the caloric density of food. Thirty two deprived rats experienced two contexts. They had access to food in context A, but no food was available in context B. During conditioning, half of the animals received high density caloric food (HD groups whereas the other half, low density caloric food (LD groups. Then, half of the rats in each type of food group was tested in context A and the other half in context B. The results demonstrated an effect of context conditioning only in HD groups. These findings suggest the relevance of both contextual conditioning and caloric density of food in eating behaviour. Implications for the aetiology of binge eating will be discussed.

  5. Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests

    Science.gov (United States)

    Faith Inman-Narahari; Rebecca Ostertag; Stephen P. Hubbell; Christian P. Giardina; Susan Cordell; Lawren Sack; Andrew MacDougall

    2016-01-01

    Conspecific density may contribute to patterns of species assembly through negative density dependence (NDD) as predicted by the Janzen-Connell hypothesis, or through facilitation (positive density dependence; PDD). Conspecific density effects are expected to be more negative in darker and wetter environments due to higher pathogen abundance and...

  6. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  7. Realistic page-turning of electronic books

    Science.gov (United States)

    Fan, Chaoran; Li, Haisheng; Bai, Yannan

    2014-01-01

    The booming electronic books (e-books), as an extension to the paper book, are popular with readers. Recently, many efforts are put into the realistic page-turning simulation o f e-book to improve its reading experience. This paper presents a new 3D page-turning simulation approach, which employs piecewise time-dependent cylindrical surfaces to describe the turning page and constructs smooth transition method between time-dependent cylinders. The page-turning animation is produced by sequentially mapping the turning page into the cylinders with different radii and positions. Compared to the previous approaches, our method is able to imitate various effects efficiently and obtains more natural animation of turning page.

  8. Time-dependent internal density functional theory formalism and Kohn-Sham scheme for self-bound systems

    International Nuclear Information System (INIS)

    Messud, Jeremie

    2009-01-01

    The stationary internal density functional theory (DFT) formalism and Kohn-Sham scheme are generalized to the time-dependent case. It is proven that, in the time-dependent case, the internal properties of a self-bound system (such as an atomic nuclei or a helium droplet) are all defined by the internal one-body density and the initial state. A time-dependent internal Kohn-Sham scheme is set up as a practical way to compute the internal density. The main difference from the traditional DFT formalism and Kohn-Sham scheme is the inclusion of the center-of-mass correlations in the functional.

  9. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  10. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    , but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...

  11. Fundamentals of time-dependent density functional theory

    International Nuclear Information System (INIS)

    Marques, Miguel A.L.; Rubio, Angel

    2012-01-01

    There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. (orig.)

  12. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    Science.gov (United States)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  13. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  14. Similarity of dependences of thermal conductivity and density of uranium and tungsten hexafluorides on desublimation conditions

    International Nuclear Information System (INIS)

    Barkov, V.A.

    1989-01-01

    Consideration is given to results of investigations of the dependence of thermal conductivity and density of UF 6 and WF 6 desublimates on volume content of hexafluoride in initial gaseous mixture. Similarity of these dependences, as well as the dependences of thermal conductivity of desublimates on their density was revealed. Generalized expressions, relating thermal conductivity and density of desublimates among each ofter and with volume content of hexafluoride in gaseous mixture were derived. Possibility of applying the generalized relations for calculation of thermal conductivity and density of other compounds of MeF 6 type under prescribed desublimation conclitions is shown. 15 refs.; 6 figs

  15. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    International Nuclear Information System (INIS)

    Furusawa, S; Togashi, H; Nagakura, H; Sumiyoshi, K; Yamada, S; Suzuki, H; Takano, M

    2017-01-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  16. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  17. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  18. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    International Nuclear Information System (INIS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-01-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  19. Nuclear giant resonances in coordinate space. A semiclassical density functional approach

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Meyer, J.; Quentin, P.

    1987-01-01

    We discuss the semiclassical description of nuclear giant resonances (GR) using a realistic Skyrme force (SkM*) and complete ETF density functionals. We present monopole (0 + ) eigenmodes of isoscalar (I=0) and isovector (I=1) type, which are in good agreement with experiment, and the corresponding m 1 and m 3 sum rules. We also present the temperature dependence of some typical GR energies (0 + , I=0,1; 1 - , I=1; 2 + , I=0) in 208 Pb

  20. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting

  1. Modelling the effect of autotoxicity on density-dependent phytotoxicity.

    Science.gov (United States)

    Sinkkonen, A

    2007-01-21

    An established method to separate resource competition from chemical interference is cultivation of monospecific, even-aged stands. The stands grow at several densities and they are exposed to homogenously spread toxins. Hence, the dose received by individual plants is inversely related to stand density. This results in distinguishable alterations in dose-response slopes. The method is often recommended in ecological studies of allelopathy. However, many plant species are known to release autotoxic compounds. Often, the probability of autotoxicity increases as sowing density increases. Despite this, the possibility of autotoxicity is ignored when experiments including monospecific stands are designed and when their results are evaluated. In this paper, I model mathematically how autotoxicity changes the outcome of dose-response slopes as different densities of monospecific stands are grown on homogenously phytotoxic substrata. Several ecologically reasonable relations between plant density and autotoxin exposure are considered over a range of parameter values, and similarities between different relations are searched for. The models indicate that autotoxicity affects the outcome of density-dependent dose-response experiments. Autotoxicity seems to abolish the effects of other phytochemicals in certain cases, while it may augment them in other cases. Autotoxicity may alter the outcome of tests using the method of monospecific stands even if the dose of autotoxic compounds per plant is a fraction of the dose of non-autotoxic phytochemicals with similar allelopathic potential. Data from the literature support these conclusions. A faulty null hypothesis may be accepted if the autotoxic potential of a test species is overlooked in density-response experiments. On the contrary, if test species are known to be non-autotoxic, the method of monospecific stands does not need fine-tuning. The results also suggest that the possibility of autotoxicity should be investigated in

  2. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    Science.gov (United States)

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  3. Rethinking Mathematics Teaching in Liberia: Realistic Mathematics Education

    Science.gov (United States)

    Stemn, Blidi S.

    2017-01-01

    In some African cultures, the concept of division does not necessarily mean sharing money or an item equally. How an item is shared might depend on the ages of the individuals involved. This article describes the use of the Realistic Mathematics Education (RME) approach to teach division word problems involving money in a 3rd-grade class in…

  4. Isotope effect with energy-dependent density of states and impurities

    International Nuclear Information System (INIS)

    Williams, P.J.; Carbotte, J.P.

    1992-01-01

    We have calculated the total isotope coefficient β in a model where there is energy-dependent structure in the electronic density of states. We model the structure with a simple Lorentzian. In our calculation, doping has the effect of shifting the Fermi level and broadening the structure in the density of states. We have treated the dopants both as normal and as magnetic impurities. The asymmetry observed in the experimental data is found in our results. However, the complete range of values observed is difficult to reproduce. We question also whether the shifts in Fermi level required in such models are reasonable

  5. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  6. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  7. The impacts of marijuana dispensary density and neighborhood ecology on marijuana abuse and dependence

    Science.gov (United States)

    Mair, Christina; Freisthler, Bridget; Ponicki, William R.; Gaidus, Andrew

    2015-01-01

    Background As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001–2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. Methods We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. Results An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Conclusions Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. PMID:26154479

  8. Wildlife disease elimination and density dependence

    KAUST Repository

    Potapov, A.

    2012-05-16

    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent (DD) transmission, is ineffective for controlling diseases that are subject to frequency-dependent (FD) transmission. We investigate control for horizontally transmitted diseases with FD transmission where the control is via culling or harvest that is non-selective with respect to infection and the population can compensate through DD recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are FD. Eradication can be achieved under FD transmission when DD birth or recruitment induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination, and there is high enough transmission coefficient, application of both controls may be less efficient than vaccination alone. We illustrate the effects of these control approaches on disease prevalence for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment.

  9. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  10. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-01-01

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7  cm/s at a low sheet charge density of 7.8 × 10 11  cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs

  11. Momentum and density dependence of the nuclear mean field

    International Nuclear Information System (INIS)

    Behera, B.; Routray, T.R.

    1999-01-01

    The purpose of this is to analyse the momentum, density and temperature dependence of the mean field in nuclear matter derived from finite range effective interactions and to examine the influence of the functional form of the interaction on the high momentum behaviour of the mean field. Emphasis will be given to use very simple parametrizations of the effective interaction with a minimum number of adjustable parameters and yet capable of giving a good description of the mean field in nuclear matter over a wide range of momentum, density and temperature. As an application of the calculated equation of state of nuclear matter, phase transitions to quark-gluon plasma is studied where the quark phase is described by a zeroth order bag model equation of state

  12. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  13. Dependence of the Spin Transfer Torque Switching Current Density on the Exchange Stiffness Constant

    OpenAIRE

    You, Chun-Yeol

    2012-01-01

    We investigate the dependence of the switching current density on the exchange stiffness constant in the spin transfer torque magnetic tunneling junction structure with micromagnetic simulations. Since the widely accepted analytic expression of the switching current density is based on the macro-spin model, there is no dependence of the exchange stiffness constant. When the switching is occurred, however, the spin configuration forms C-, S-type, or complicated domain structures. Since the spi...

  14. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  15. Determining the functional form of density dependence: deductive approaches for consumer-resource systems having a single resource.

    Science.gov (United States)

    Abrams, Peter A

    2009-09-01

    Consumer-resource models are used to deduce the functional form of density dependence in the consumer population. A general approach to determining the form of consumer density dependence is proposed; this involves determining the equilibrium (or average) population size for a series of different harvest rates. The relationship between a consumer's mortality and its equilibrium population size is explored for several one-consumer/one-resource models. The shape of density dependence in the resource and the shape of the numerical and functional responses all tend to be "inherited" by the consumer's density dependence. Consumer-resource models suggest that density dependence will very often have both concave and convex segments, something that is impossible under the commonly used theta-logistic model. A range of consumer-resource models predicts that consumer population size often declines at a decelerating rate with mortality at low mortality rates, is insensitive to or increases with mortality over a wide range of intermediate mortalities, and declines at a rapidly accelerating rate with increased mortality when mortality is high. This has important implications for management and conservation of natural populations.

  16. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  17. Long-term persistence, density dependence and effects of climate change on rosyside dace (Cyprinidae)

    Science.gov (United States)

    Gary D. Grossman; Gary Sundin; Robert E. Ratajczak

    2016-01-01

    SummaryWe used long-term population data for rosyside dace (Clinostomus funduloides), a numerically dominant member of a stochastically organised fish assemblage, to evaluate the relative importance of density-dependent and density-independent processes to population...

  18. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  19. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  20. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  1. Critique of the foundations of time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Schirmer, J.; Dreuw, A.

    2007-01-01

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion

  2. Nuclear spectroscopy with density dependent effective interactions

    International Nuclear Information System (INIS)

    Krewald, S.

    1976-07-01

    The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de

  3. Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes.

    Science.gov (United States)

    Eikeset, Anne Maria; Dunlop, Erin S; Heino, Mikko; Storvik, Geir; Stenseth, Nils C; Dieckmann, Ulf

    2016-12-27

    The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.

  4. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  5. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  6. Density and geometry of single component plasmas

    International Nuclear Information System (INIS)

    Speck, A.; Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W.S.; McConnell, R.; Wrubel, J.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; George, M.C.; Hessels, E.A.; Storry, C.H.; Weel, M.; Walz, J.

    2007-01-01

    The density and geometry of p-bar and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H-bar) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials

  7. Density and geometry of single component plasmas

    CERN Document Server

    Speck, A; Larochelle, P; Le Sage, D; Levitt, B; Kolthammer, W S; McConnell, R; Wrubel, J; Grzonka, D; Oelert, W; Sefzick, T; Zhang, Z; Comeau, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Walz, J

    2007-01-01

    The density and geometry of p¯ and e+ plasmas in realistic trapping potentials are required to understand and optimize antihydrogen (H¯) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.

  8. Single particle level density in a finite depth potential well

    International Nuclear Information System (INIS)

    Shlomo, S.; Kolomietz, V.M.; Dejbakhsh, H.

    1997-01-01

    We consider the single particle level density g(ε) of a realistic finite depth potential well, concentrating on the continuum (ε>0) region. We carry out quantum-mechanical calculations of the partial level density g l (ε), associated with a well-defined orbital angular momentum l≤40, using the phase-shift derivative method and the Greens-function method and compare the results with those obtained using the Thomas-Fermi approximation. We also numerically calculate g(ε) as a l sum of g l (ε) up to a certain value of scr(l) max ≤40 and determine the corresponding smooth level densities using the Strutinsky smoothing procedure. We demonstrate, in accordance with Levinson close-quote s theorem, that the partial contribution g l (ε) to the single particle level density from continuum states has positive and negative values. However, g(ε) is nonnegative. We also point out that this is not the case for an energy-dependent potential well. copyright 1997 The American Physical Society

  9. BONE-DENSITY IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS - THE ROTTERDAM STUDY

    NARCIS (Netherlands)

    VANDAELE, PLA; STOLK, RP; BURGER, H; ALGRA, D; GROBBEE, DE; HOFMAN, A; BIRKENHAGER, JC; POLS, HAP

    1995-01-01

    Objective: To investigate the relation between noninsulin-dependent diabetes mellitus and bone mineral density at the lumbar spine and hip. Design: Population-based study with a cross-sectional survey, Setting: A district of Rotterdam, the Netherlands. Participants: 5931 residents (2481 men, 3450

  10. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  11. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  12. The dependence of the counting efficiency of Marinelli beakers for environmental samples on the density of the samples

    International Nuclear Information System (INIS)

    Alfassi, Z.B.; Lavi, N.

    2005-01-01

    The effect of the density of the radioactive material packed in a Marinelli beaker on the counting efficiency was studied. It was found that for all densities (0.4-1.7g/cm 3) studied the counting efficiency (ε) fits the linear log-log dependence on the photon energy (E) above 200keV, i.e. obeying the equation ε=αE β (α, β-parameters). It was found that for each photon energy the counting efficiency is linearly dependent on the density (ρ) of the matrix. ε=a-bρ (a, b-parameters). The parameters of the linear dependence are energy dependent (linear log-log dependence), leading to a final equation for the counting efficiency of Marinelli beaker involving both density of the matrix and the photon energy: ε=α 1 .E β 1 -α 2 E β 2 ρ

  13. Equation of state at finite net-baryon density using Taylor coefficients up to sixth order

    International Nuclear Information System (INIS)

    Huovinen, Pasi; Petreczky, Péter; Schmidt, Christian

    2014-01-01

    We employ the lattice QCD data on Taylor expansion coefficients up to sixth order to construct an equation of state at finite net-baryon density. When we take into account how hadron masses depend on lattice spacing and quark mass, the coefficients evaluated using the p4 action are equal to those of hadron resonance gas at low temperature. Thus the parametrised equation of state can be smoothly connected to the hadron resonance gas equation of state. We see that the equation of state using Taylor coefficients up to second order is realistic only at low densities, and that at densities corresponding to s/n B ≳40, the expansion converges by the sixth order term

  14. Operator representation for effective realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Dennis; Feldmeier, Hans; Neff, Thomas [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2013-07-01

    We present a method to derive an operator representation from the partial wave matrix elements of effective realistic nucleon-nucleon potentials. This method allows to employ modern effective interactions, which are mostly given in matrix element representation, also in nuclear many-body methods requiring explicitly the operator representation, for example ''Fermionic Molecular Dynamics'' (FMD). We present results for the operator representation of effective interactions obtained from the Argonne V18 potential with the Uenitary Correlation Operator Method'' (UCOM) and the ''Similarity Renormalization Group'' (SRG). Moreover, the operator representation allows a better insight in the nonlocal structure of the potential: While the UCOM transformed potential only shows a quadratic momentum dependence, the momentum dependence of SRG transformed potentials is beyond such a simple polynomial form.

  15. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  16. A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-01-01

    Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.

  17. Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    2005-01-01

    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method

  18. Colony Development and Density-Dependent Processes in Breeding Grey Herons

    Directory of Open Access Journals (Sweden)

    Takeshi Shirai

    2013-01-01

    Full Text Available The density-dependent processes that limit the colony size of colonially breeding birds such as herons and egrets remain unclear, because it is difficult to monitor colonies from the first year of their establishment, and the most previous studies have considered mixed-species colonies. In the present study, single-species colonies of the Grey Heron (Ardea cinerea were observed from the first year of their establishment for 16 years in suburban Tokyo. Colony size increased after establishment, illustrating a saturation curve. The breeding duration (days from nest building to fledging by a pair increased, but the number of fledglings per nest decreased, with colony size. The reproductive season in each year began earlier, and there was greater variation in the timing of individual breeding when the colony size was larger. The prolonged duration until nestling feeding by early breeders of the colony suggests that herons at the beginning of the new breeding season exist in an unsteady state with one another, likely owing to interactions with immigrant individuals. Such density-dependent interference may affect reproductive success and limit the colony size of Grey Herons.

  19. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    Science.gov (United States)

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  20. Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.

    An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to

  1. Knock-on type exchange and the density dependence of an effective interaction

    International Nuclear Information System (INIS)

    Jeukenne, J.P.; Mahaux, C.

    1981-01-01

    We investigate the origin of the density-dependence of the strength of an effective interaction previously derived from a Brueckner-Hartree-Fock calculation of the optical-model potential in nuclear matter. From the analysis of a model based on the Hartree-Fock approximation and on a Yukawa interaction with a Majorana exchange component, we study to what extent this dependence derives from the momentum-dependence of the exchange contribution of the knock-on type. The model is also used to discuss zero-range pseudopotential methods for including this knock-on contribution. (orig.)

  2. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  3. Effect of deformation and orientation on spin orbit density dependent nuclear potential

    Science.gov (United States)

    Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.

    2017-11-01

    Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β220. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.

  4. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  5. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  6. Detection of density-dependent effects on caribou numbers from a series of census data

    Directory of Open Access Journals (Sweden)

    Francois Messier

    1991-10-01

    Full Text Available The main objective of this paper is to review and discuss the applicability of statistical procedures for the detection of density dependence based on a series of annual or multi-annual censuses. Regression models for which the statistic value under the null hypothesis of density independence is set a priori (slope = 0 or 1, generate spurious indications of density dependence. These tests are inappropriate because low sample sizes, high variance, and sampling error consistently bias the slope when applied to a finite number of population estimates. Two distribution-free tests are reviewed for which the rejection region for the hypothesis of density independence is derived intrinsically from the data through a computer-assisted permutation process. The "randomization test" gives the best results as the presence of a pronounced trend in the sequence of population estimates does not affect test results. The other non-parametric test, the "permutation test", gives reliable results only if the population fluctuates around a long-term equilibrium density. Both procedures are applied to three sets of data (Pukaskwa herd, Avalon herd, and a hypothetical example that represent quite divergent population trajectories over time.

  7. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  8. Tables of density dependent effective interactions between 122 and 800 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1996-01-01

    Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs

  9. Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices

    International Nuclear Information System (INIS)

    Kioupakis, Emmanouil; Yan, Qimin; Steiauf, Daniel; Van de Walle, Chris G

    2013-01-01

    Nitride light-emitting diodes are a promising solution for efficient solid-state lighting, but their performance at high power is affected by the efficiency-droop problem. Previous experimental and theoretical work has identified Auger recombination, a three-particle nonradiative carrier recombination mechanism, as the likely cause of the droop. In this work, we use first-principles calculations to elucidate the dependence of the radiative and Auger recombination rates on temperature, carrier density and quantum-well confinement. Our calculated data for the temperature dependence of the recombination coefficients are in good agreement with experiment and provide further validation on the role of Auger recombination in the efficiency reduction. Polarization fields and phase-space filling negatively impact device efficiency because they increase the operating carrier density at a given current density and increase the fraction of carriers lost to Auger recombination. (paper)

  10. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  11. Natural excitation orbitals from linear response theories : Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory

    NARCIS (Netherlands)

    Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2017-01-01

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In

  12. Nuclear densities of 1fsub(7/2) nuclei from elastic alpha-particle scattering

    International Nuclear Information System (INIS)

    Friedman, E.; Gils, H.J.; Rebel, H.

    1983-12-01

    The elastic scattering of 104 MeV α particles by sup(40,42,43,44,48)Ca, 50 Ti, 51 V, 52 Cr has been analyzed by phenomenological and semimicroscopic optical potentials in order to get information on isotopic and isotonic differences of the α particle optical potentials and of nuclear matter densities. The phenomenological optical potentials based on a Fourier-Bessel description of the real part reveal different behaviour in size and shape for the isotonic chain as compared to the isotopic chain. Odd-even effects are also indicated to be different for isotones and isotopes. The semi-microscopic analyses use a single-folding model with a density-dependent effective αN-interaction including a realistic local density approximation. The calculated potentials are fully consistent with the phenomenological ones. Isopotic and isotonic differences of the nuclear matter densities obtained from the folding model in general show a similar behavior as the optical potential differences. The results on matter densities are compared to other investigations. (orig.) [de

  13. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  14. Sensitivity and uncertainty analysis for functionals of the time-dependent nuclide density field

    International Nuclear Information System (INIS)

    Williams, M.L.; Weisbin, C.R.

    1978-04-01

    An approach to extend the present ORNL sensitivity program to include functionals of the time-dependent nuclide density field is developed. An adjoint equation for the nuclide field was derived previously by using generalized perturbation theory; the present derivation makes use of a variational principle and results in the same equation. The physical significance of this equation is discussed and compared to that of the time-dependent neutron adjoint equation. Computational requirements for determining sensitivity profiles and uncertainties for functionals of the time-dependent nuclide density vector are developed within the framework of the existing FORSS system; in this way the current capability is significantly extended. The development, testing, and use of an adjoint version of the ORIGEN isotope generation and depletion code are documented. Finally, a sample calculation is given which estimates the uncertainty in the plutonium inventory at shutdown of a PWR due to assumed uncertainties in uranium and plutonium cross sections. 8 figures, 4 tables

  15. Hydrodynamic perspective on memory in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Thiele, M.; Kuemmel, S.

    2009-01-01

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  16. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The correlations of electrolyte viscosity and SOC are obtained. • Effect of SOC-dependent electrolyte viscosity is considered in this model. • This model enables a more realistic simulation of variable distributions. • It provides accurate estimations of pumping work and system efficiency. - Abstract: The viscosity of the electrolyte in vanadium redox flow batteries (VRFBs) varies during charge and discharge as the concentrations of acid and vanadium ions in the electrolyte continuously change with the state of charge (SOC). In previous VRFB models, however, the electrolyte has been treated as a constant-viscosity solution. In this work, a mass-transport and electrochemical model taking account of the effect of SOC-dependent electrolyte viscosity is developed. The comparison between the present model and the model with the constant-viscosity simplification indicates that the consideration of the SOC-dependent electrolyte viscosity enables (i) a more realistic simulation of the distributions of overpotential and current density in the electrodes, and (ii) more accurate estimations of pumping work and the system efficiency of VRFBs

  17. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  18. Perspective: Fundamental aspects of time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2016-06-14

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  19. Modes of competition: adding and removing brown trout in the wild to understand the mechanisms of density-dependence.

    Directory of Open Access Journals (Sweden)

    Rasmus Kaspersson

    Full Text Available While the prevalence of density-dependence is well-established in population ecology, few field studies have investigated its underlying mechanisms and their relative population-level importance. Here, we address these issues, and more specifically, how differences in body-size influence population regulation. For this purpose, two experiments were performed in a small coastal stream on the Swedish west coast, using juvenile brown trout (Salmo trutta as a study species. We manipulated densities of large and small individuals, and observed effects on survival, migration, condition and individual growth rate in a target group of intermediate-sized individuals. The generality of the response was investigated by reducing population densities below and increasing above the natural levels (removing and adding large and small individuals. Reducing the density (relaxing the intensity of competition had no influence on the response variables, suggesting that stream productivity was not a limiting factor at natural population density. Addition of large individuals resulted in a negative density-dependent response, while no effect was detected when adding small individuals or when maintaining the natural population structure. We found that the density-dependent response was revealed as reduced growth rate rather than increased mortality and movement, an effect that may arise from exclusion to suboptimal habitats or increased stress levels among inferior individuals. Our findings confirm the notion of interference competition as the primary mode of competition in juvenile salmonids, and also show that the feedback-mechanisms of density-dependence are primarily acting when increasing densities above their natural levels.

  20. Temperature- and density-dependent x-ray scattering in a low-Z plasma

    International Nuclear Information System (INIS)

    Brown, R.T.

    1976-06-01

    A computer program is described which calculates temperature- and density-dependent differential and total coherent and incoherent x-ray scattering cross sections for a low-Z scattering medium. Temperature and density are arbitrary within the limitations of the validity of local thermodynamic equilbrium, since ionic populations are calculated under this assumption. Scattering cross sections are calculated in the form factor approximation. The scattering medium may consist of any mixure of elements with Z less than or equal to 8, with this limitation imposed by the availability of atomic data

  1. Realistic Visualization of Virtual Views

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    that can be impractical and sometime impossible. In addition, the artificial nature of data often makes visualized virtual scenarios not realistic enough. Not realistic in the sense that a synthetic scene is easy to discriminate visually from a natural scene. A new field of research has consequently...... developed and received much attention in recent years: Realistic Virtual View Synthesis. The main goal is a high fidelity representation of virtual scenarios while easing modeling and physical phenomena simulation. In particular, realism is achieved by the transfer to the novel view of all the physical...... phenomena captured in the reference photographs, (i.e. the transfer of photographic-realism). An overview of most prominent approaches in realistic virtual view synthesis will be presented and briefly discussed. Applications of proposed methods to visual survey, virtual cinematography, as well as mobile...

  2. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  3. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    Science.gov (United States)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  4. Magnetic field dependence of the critical current density in YBa2Cu3Ox ceramics

    International Nuclear Information System (INIS)

    Zhukov, A.A.; Moshchalkov, V.V.; Komarkov, D.A.; Shabatin, V.P.; Gordeev, S.N.; Shelomov, D.V.

    1989-01-01

    Three magnetic field ranges corresponding to different critical current density j c behavior have been found out. They correlate with grain magnetization changes. The inverse critical current density is shown to depend linearly on the sample cross-section due to the magnetic field induced by the flowing current

  5. Temperature dependent spin momentum densities in Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Ahuja, B L; Dashora, Alpa; Vadkhiya, L; Heda, N L; Priolkar, K R; Lobo, Nelson; Itou, M; Sakurai, Y; Chakrabarti, Aparna; Singh, Sanjay; Barman, S R

    2010-01-01

    The spin-dependent electron momentum densities in Ni 2 MnIn and Ni 2 Mn 1.4 In 0.6 shape memory alloy using magnetic Compton scattering with 182.2 keV circularly polarized synchrotron radiation are reported. The magnetic Compton profiles were measured at different temperatures ranging between 10 and 300 K. The profiles have been analyzed mainly in terms of Mn 3d electrons to determine their role in the formation of the total spin moment. We have also computed the spin polarized energy bands, partial and total density of states, Fermi surfaces and spin moments using full potential linearized augmented plane wave and spin polarized relativistic Korringa-Kohn-Rostoker methods. The total spin moments obtained from our magnetic Compton profile data are explained using both the band structure models. The present Compton scattering investigations are also compared with magnetization measurements.

  6. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.

  7. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  8. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisa; Lopes, Ilidio, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-09-20

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  9. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    International Nuclear Information System (INIS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-01-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  10. Electron distribution in polar heterojunctions within a realistic model

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Nguyen Thanh, E-mail: thanhtienctu@gmail.com [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Thao, Dinh Nhu [Center for Theoretical and Computational Physics, College of Education, Hue University, 34 Le Loi Street, Hue City (Viet Nam); Thao, Pham Thi Bich [College of Natural Science, Can Tho University, 3-2 Road, Can Tho City (Viet Nam); Quang, Doan Nhat [Institute of Physics, Vietnamese Academy of Science and Technology, 10 Dao Tan Street, Hanoi (Viet Nam)

    2015-12-15

    We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by a triangular quantum well with a finite potential barrier and a bent band figured by all confinement sources. Therein, interface polarization charges take a double role: they induce a confining potential and, furthermore, they can make some change in other confinements, e.g., in the Hartree potential from ionized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy disorder) becomes paramount in a polar modulation-doped HJ.

  11. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  12. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    Science.gov (United States)

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  13. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2014-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating

  14. Demonstrating the Temperature Dependence of Density via Construction of a Galilean Thermometer

    Science.gov (United States)

    Priest, Marie A.; Padgett, Lea W.; Padgett, Clifford W.

    2011-01-01

    A method for the construction of a Galilean thermometer out of common chemistry glassware is described. Students in a first-semester physical chemistry (thermodynamics) class can construct the Galilean thermometer as an investigation of the thermal expansivity of liquids and the temperature dependence of density. This is an excellent first…

  15. Exponential Extinction of Nicholson's Blowflies System with Nonlinear Density-Dependent Mortality Terms

    Directory of Open Access Journals (Sweden)

    Wentao Wang

    2012-01-01

    Full Text Available This paper presents a new generalized Nicholson’s blowflies system with patch structure and nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some criteria to guarantee the exponential extinction of this system. Moreover, we give two examples and numerical simulations to demonstrate our main results.

  16. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  17. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  18. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  19. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  20. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  1. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  2. On the applicability of the Natori formula to realistic multi-layer quantum well III-V FETs

    Science.gov (United States)

    Gili, A.; Xanthakis, J. P.

    2017-10-01

    We investigated the validity of the Natori formalism for realistic multi-layer quantum well FETs. We show that the assumption of a single layer (the channel) carrying all of the current density is far from reality in the sub-threshold region, where in fact most of the current density resides below the channel. Our analysis is based on comparing results of Natori calculations with experimental ones and on comparing with other first-principles calculations. If the Natori calculations are employed in the subthreshold region then a misleadingly small subthreshold slope would be obtained. We propose a way to remedy this inefficiency of this formulation so that it can be applicable to realistic many-layer devices. In particular we show that if the 1-dimensional quantum well of the Natori method enclosing the electron gas is expanded to include the supply layer-usually below the channel- and a proper ab initio potential is used to obtain its eigenvalues, then the Natori formula regains its validity.

  3. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  4. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  5. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  6. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries

    International Nuclear Information System (INIS)

    Mahfouz, Z.; Verloock, L.; Joseph, W.; Tanghe, E.; Gati, A.; Wiart, J.; Lautru, D.; Hanna, V. F.; Martens, L.

    2013-01-01

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed down-link packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days. (authors)

  7. Comparison of temporal realistic telecommunication base station exposure with worst-case estimation in two countries.

    Science.gov (United States)

    Mahfouz, Zaher; Verloock, Leen; Joseph, Wout; Tanghe, Emmeric; Gati, Azeddine; Wiart, Joe; Lautru, David; Hanna, Victor Fouad; Martens, Luc

    2013-12-01

    The influence of temporal daily exposure to global system for mobile communications (GSM) and universal mobile telecommunications systems and high speed downlink packet access (UMTS-HSDPA) is investigated using spectrum analyser measurements in two countries, France and Belgium. Temporal variations and traffic distributions are investigated. Three different methods to estimate maximal electric-field exposure are compared. The maximal realistic (99 %) and the maximal theoretical extrapolation factor used to extrapolate the measured broadcast control channel (BCCH) for GSM and the common pilot channel (CPICH) for UMTS are presented and compared for the first time in the two countries. Similar conclusions are found in the two countries for both urban and rural areas: worst-case exposure assessment overestimates realistic maximal exposure up to 5.7 dB for the considered example. In France, the values are the highest, because of the higher population density. The results for the maximal realistic extrapolation factor at the weekdays are similar to those from weekend days.

  8. Electron percolation in realistic models of carbon nanotube networks

    International Nuclear Information System (INIS)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-01-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models

  9. Electron percolation in realistic models of carbon nanotube networks

    Science.gov (United States)

    Simoneau, Louis-Philippe; Villeneuve, Jérémie; Rochefort, Alain

    2015-09-01

    The influence of penetrable and curved carbon nanotubes (CNT) on the charge percolation in three-dimensional disordered CNT networks have been studied with Monte-Carlo simulations. By considering carbon nanotubes as solid objects but where the overlap between their electron cloud can be controlled, we observed that the structural characteristics of networks containing lower aspect ratio CNT are highly sensitive to the degree of penetration between crossed nanotubes. Following our efficient strategy to displace CNT to different positions to create more realistic statistical models, we conclude that the connectivity between objects increases with the hard-core/soft-shell radii ratio. In contrast, the presence of curved CNT in the random networks leads to an increasing percolation threshold and to a decreasing electrical conductivity at saturation. The waviness of CNT decreases the effective distance between the nanotube extremities, hence reducing their connectivity and degrading their electrical properties. We present the results of our simulation in terms of thickness of the CNT network from which simple structural parameters such as the volume fraction or the carbon nanotube density can be accurately evaluated with our more realistic models.

  10. Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices

    International Nuclear Information System (INIS)

    Yang Gui; Zhang Fengying; Li Yuanhong; Li Yuqi

    2012-01-01

    A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes. (semiconductor physics)

  11. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  12. Correlation analysis between bone density measured by quantitative CT and blood sugar level of aged patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Wang Guizhi; Liang Ping; Qiao Junhua; Liu Chunyan

    2008-01-01

    Objective: To approach the correlation between the bone density measured by quantitative CT and the blood sugar level of the aged patients with non-insulin-dependent diabetes mellitus, and observe the effects of the blood sugar level on the bone density. Methods: The lumbar bone densities and the blood sugar levels of 160 aged patients with non-insulin-dependent diabetes mellitus (hyperglycemia group 80 cases, euglycemia group 80 cases ) and the healthy aged people (80 cases) were detected by quantitative CT and serum biochemical detection; the correlation between the blood sugar level and the bone density and the osteoporosis occurrence status of aged people in various groups were analyzed. Results: The bone density in the non-insulin-dependent diabetes and hyperglycemia group was lower than those in normal (control) group and non-insulin-dependent diabetes and euglycemia group (P<0.05); the morbility of osteoporosis in the non-insulin-dependent diabetes and hyperglycemia group was higher than those in normal (control) group and non-insulin-dependent diabetes and euglycemia group (P<0.05); negative correlation was found between the bone density and the blood sugar level (aged male group: r=-0.7382, P=0.0013; aged female group: r=-0.8343, P=0.0007). Conclusion: The blood sugar level affects the bone density of the aged patients with non-insulin-dependent diabetes mellitus; the higher the blood sugar level, the lower the bone density. The non-insulin-dependent diabetes aged patients with hyperglycemia have the liability of osteoporosis. (authors)

  13. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    International Nuclear Information System (INIS)

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-01-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP

  14. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  15. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  16. Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for 125I brachytherapy seeds.

    Science.gov (United States)

    Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M

    2017-06-01

    To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  18. Ultra-realistic 3-D imaging based on colour holography

    International Nuclear Information System (INIS)

    Bjelkhagen, H I

    2013-01-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  19. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    International Nuclear Information System (INIS)

    Cherednikov, Igor O.

    2017-01-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  20. Parton densities in quantum chromodynamics. Gauge invariance, path-dependence, and Wilson lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor O. [Antwerpen Univ. (Belgium). Dept. Fysica; Veken, Frederik F. van der [CERN, Geneva (Switzerland)

    2017-05-01

    The purpose of this book is to give a systematic pedagogical exposition of the quantitative analysis of Wilson lines and gauge-invariant correlation functions in quantum chromodynamics. Using techniques from the previous volume (Wilson Lines in Quantum Field Theory, 2014), an ab initio methodology is developed and practical tools for its implementation are presented. Emphasis is put on the implications of gauge invariance and path-dependence properties of transverse-momentum dependent parton density functions. The latter are associated with the QCD factorization approach to semi-inclusive hadronic processes, studied at currently operating and planned experimental facilities.

  1. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  2. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  3. Real and imaginary part of the potential between two nuclei and the realistic nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Trefz, M.

    1985-01-01

    Starting from a realistic nucleon-nucleon interaction (Reid soft-core) in the model of two infinitely extended confusing nuclear matter complex energy densities are calculated by means of a G matrix. By means of a generalized local-density approximation the results are transferred to finite nuclei. In the framework of the frozen-density approximation in the energy-density formalism a complex potential between two nuclei is calculated. The potential calculated so contains not the contribution of 1-particle-1-hole states to the optical potential. The contribution of these states is therefore calculated in the Feshbach formalism, respectively these states are explicitely regarded in coupled-channel calculations. The model is applied to light (for instance 12 C+ 12 C), medium heavy (for instance 48 Ca+ 48 Ca), and heavy (for instance 40 Ar+ 208 Pb) systems. Potentials for incident energies of 5-84 MeV per projectile nucleon are calculated. By means of these potentials differential cross sections and reaction cross sections are determined and compared with the experimental data. The energy dependence of the reaction cross section is discussed. It is shown that at higher energies (40 MeV/N) the differential cross sections can be quantitatively reproduced. For the reaction cross section in the whole energy range good agreement with the experiment is obtained. Contrarily to current theoretical models it is proved that at low energies the excitation of collective states yields a large contribution to the reaction cross section and therefore must not be neglected. (orig.) [de

  4. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    Science.gov (United States)

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  5. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1986-10-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for a Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasmas and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  6. Time dependent density functional theory of light absorption in dense plasmas: application to iron-plasma

    International Nuclear Information System (INIS)

    Grimaldi, F.; Grimaldi-Lecourt, A.; Dharma-Wardana, M.W.C.

    1985-02-01

    The objective of this paper is to present a simple time-dependent calculation of the light absorption cross section for a strongly coupled partially degenerate plasma so as to transcend the usual single-particle picture. This is achieved within the density functional theory (DFT) of plasmas by generalizing the method given by Zangwill and Soven for atomic calculations at zero temperature. The essential feature of the time dependent DFT is the correct treatment of the relaxation of the system under the external field. Exploratory calculations for an Fe-plasma at 100 eV show new features in the absorption cross section which are absent in the usual single particle theory. These arise from inter-shell correlations, channel mixing and self-energy effects. These many-body effects introduce significant modifications to the radiative properties of plasma and are shown to be efficiently calculable by time dependent density functional theory (TD-DFT)

  7. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    Science.gov (United States)

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  8. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  9. Calculations of the response functions of Bonner spheres with a spherical 3He proportional counter using a realistic detector model

    International Nuclear Information System (INIS)

    Wiegel, B.; Alevra, A.V.; Siebert, B.R.L.

    1994-11-01

    A realistic geometry model of a Bonner sphere system with a spherical 3 He-filled proportional counter and 12 polyethylene moderating spheres with diameters ranging from 7,62 cm (3'') to 45,72 cm (18'') is introduced. The MCNP Monte Carlo computer code is used to calculate the responses of this Bonner sphere system to monoenergetic neutrons in the energy range between 1 meV to 20 MeV. The relative uncertainties of the responses due to the Monte Carlo calculations are less than 1% for spheres up to 30,48 cm (12'') in diameter and less than 2% for the 15'' and 18'' spheres. Resonances in the carbon cross section are seen as significant structures in the response functions. Additional calculations were made to study the influence of the 3 He number density and the polyethylene mass density on the response as well as the angular dependence of the Bonner sphere system. The calculated responses can be adjusted to a large set of calibration measurements with only a single fit factor common to all sphere diameters and energies. (orig.) [de

  10. Relativistic time-dependent local-density approximation theory and applications to atomic physics

    International Nuclear Information System (INIS)

    Parpia, F.Z.

    1984-01-01

    A time-dependent linear-response theory appropriate to the relativistic local-density approximation (RLDA) to quantum electrodynamics (QED) is developed. The resulting theory, the relativistic time-dependent local-density approximation (RTDLDA) is specialized to the treatment of electric excitations in closed-shell atoms. This formalism is applied to the calculation of atomic photoionization parameters in the dipole approximation. The static-field limit of the RTDLDA is applied to the calculation of dipole polarizabilities. Extensive numerical calculations of the photoionization parameters for the rare gases neon, argon, krypton, and xenon, and for mercury from the RTDLDA are presented and compared in detail with the results of other theories, in particular the relativistic random-phase approximation (RRPA), and with experimental measurements. The predictions of the RTDLDA are comparable with the RRPA calculations made to date. This is remarkable in that the RTDLDA entails appreciably less computational effort. Finally, the dipole polarizabilities predicted by the static-field RTDLDA are compared with other determinations of these quantities. In view of its simplicity, the static-field RTDLDA demonstrates itself to be one of the most powerful theories available for the calculation of dipole polarizabilities

  11. Symmetry energy of the nucleus in the relativistic Thomas-Fermi approach with density-dependent parameters

    Science.gov (United States)

    Haddad, S.

    2017-11-01

    The symmetry energy of a nucleus is determined in a local density approximation and integrating over the entire density distribution of the nucleus, calculated utilizing the relativistic density-dependent Thomas-Fermi approach. The symmetry energy is found to decrease with increasing neutron excess in the nucleus. The isovector coupling channel reduces the symmetry energy, and this effect increases with increased neutron excess. The isovector coupling channel increases the symmetry energy integral in ^{40}Ca and reduces it in ^{48}Ca, and the interplay between the isovector and the isoscalar channels of the nuclear force explains this isotope effect.

  12. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  13. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  14. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  15. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    Science.gov (United States)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  16. Parametric dependence of density limits in the Tokamak Experiment for Technology Oriented Research (TEXTOR): Comparison of thermal instability theory with experiment

    International Nuclear Information System (INIS)

    Kelly, F.A.; Stacey, W.M.; Rapp, J.

    2001-01-01

    The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n(bar sign) and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots

  17. Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate

    Directory of Open Access Journals (Sweden)

    Li Yingke

    2011-01-01

    Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.

  18. Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model

    Science.gov (United States)

    James H. Roberds; James F. Selgrade

    2000-01-01

    A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...

  19. Time-dependent occupation numbers in reduced-density-matrix-functional theory: Application to an interacting Landau-Zener model

    International Nuclear Information System (INIS)

    Requist, Ryan; Pankratov, Oleg

    2011-01-01

    We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.

  20. The ideal free distribution as an evolutionarily stable state in density-dependent population games

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2010-01-01

    Roč. 119, č. 8 (2010), s. 1231-1242 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : density-dependent population games Subject RIV: EH - Ecology, Behaviour Impact factor: 3.393, year: 2010

  1. Sequential double excitations from linear-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)

    2016-05-28

    Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.

  2. Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality. Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle, a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube. In this study, we investigated the bandstructure fluctuations caused by the nanotube strain, which depends on both the vacancy density and the tube chirality. These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism.

    Directory of Open Access Journals (Sweden)

    Derek W Cain

    Full Text Available Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of "emergency" granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis.

  4. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  5. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  6. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    Science.gov (United States)

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  7. Thermodynamics of strange quark matter with the density-dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The thermodynamics of strange quark matter with density dependent bag constant are studied self-consistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that in the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.

  8. Thermodynamics of strange quark matter with the density-dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    ZHU MingFeng; LIU GuangZhou; YU Zi; XU Yan; SONG WenTao

    2009-01-01

    The thermodynamics of strange quark matter with density dependent bag constant are studied selfconsistently in the framework of the general ensemble theory and the MIT bag model.In our treatment,an additional term Is found in the expression of pressure.With the additional term,the zero pressure locates exactly at the lowest energy state,Indicating that our treatment is a self-consistently thermodynamic treatment.The self-consistent equations of state of strange quark matter in both the normal and color-flavor-locked phase are derived.They are both softer than the inconsistent ones.Strange stars in both the normal and color-flavor locked phase have smaller masses and radii in our treatment.It is also interesting to find that the energy density at a star surface in our treatment is much higher than that In the inconsistent treatment for both phases.Consequently,the surface properties and the corresponding observational properties of strange stars in our treatment are different from those in the inconsistent treatment.

  9. Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications

    International Nuclear Information System (INIS)

    Lehmann, Christoph; Beckert, Steffen; Gläser, Roger; Kolditz, Olaf; Nagel, Thomas

    2017-01-01

    Highlights: • Characteristic curves fit for binderless Zeolite 13XBFK. • Detailed comparison of adsorbate density models for Dubinin’s adsorption theory. • Predicted heat storage densities robust against choice of density model. • Use of simple linear density models sufficient. - Abstract: The study of water sorption in microporous materials is of increasing interest, particularly in the context of heat storage applications. The potential-theory of micropore volume filling pioneered by Polanyi and Dubinin is a useful tool for the description of adsorption equilibria. Based on one single characteristic curve, the system can be extensively characterised in terms of isotherms, isobars, isosteres, enthalpies etc. However, the mathematical description of the adsorbate density’s temperature dependence has a significant impact especially on the estimation of the energetically relevant adsorption enthalpies. Here, we evaluate and compare different models existing in the literature and elucidate those leading to realistic predictions of adsorption enthalpies. This is an important prerequisite for accurate simulations of heat and mass transport ranging from the laboratory scale to the reactor level of the heat store.

  10. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian; Zhang, Yong; Suo, Bingbing

    2011-04-07

    The excited states of open-shell systems calculated by unrestricted Kohn-Sham-based time-dependent density functional theory (U-TD-DFT) are often heavily spin-contaminated and hence meaningless. This is solved ultimately by the recently proposed spin-adapted time-dependent density functional theory (TD-DFT) (S-TD-DFT) [J. Chem. Phys. 133, 064106 (2010)]. Unlike the standard restricted open-shell Kohn-Sham-based TD-DFT (R-TD-DFT) which can only access the singlet-coupled single excitations, the S-TD-DFT can capture both the singlet- and triplet-coupled single excitations with the same computational effort as the U-TD-DFT. The performances of the three approaches (U-TD-DFT, R-TD-DFT, and S-TD-DFT) are compared for both the spin-conserving and spin-flip excitations of prototypical open-shell systems, the nitrogen (N(2)(+)) and naphthalene (C(10)H(8)(+)) cations. The results show that the S-TD-DFT gives rise to balanced descriptions of excited states of open-shell systems.

  11. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  12. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.

    OpenAIRE

    Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E

    1989-01-01

    Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...

  13. Size-dependent error of the density functional theory ionization potential in vacuum and solution.

    Science.gov (United States)

    Sosa Vazquez, Xochitl A; Isborn, Christine M

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  14. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  15. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  16. Time dependentdensity functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat; Aziz, Saadullah G.; Osman, Osman I.; Bredas, Jean-Luc

    2017-01-01

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD

  17. Tuukka Kaidesoja on Critical Realist Transcendental Realism

    Directory of Open Access Journals (Sweden)

    Groff Ruth

    2015-09-01

    Full Text Available I argue that critical realists think pretty much what Tukka Kaidesoja says that he himself thinks, but also that Kaidesoja’s objections to the views that he attributes to critical realists are not persuasive.

  18. Temperature dependence of single-particle properties in nuclear matter

    International Nuclear Information System (INIS)

    Zuo, W.; Lu, G.C.; Li, Z.H.; Lombardo, U.; Schulze, H.-J.

    2006-01-01

    The single-nucleon potential in hot nuclear matter is investigated in the framework of the Brueckner theory by adopting the realistic Argonne V 18 or Nijmegen 93 two-body nucleon-nucleon interaction supplemented by a microscopic three-body force. The rearrangement contribution to the single-particle potential induced by the ground state correlations is calculated in terms of the hole-line expansion of the mass operator and provides a significant repulsive contribution in the low-momentum region around and below the Fermi surface. Increasing temperature leads to a reduction of the effect, while increasing density makes it become stronger. The three-body force suppresses somewhat the ground state correlations due to its strong short-range repulsion, increasing with density. Inclusion of the three-body force contribution results in a quite different temperature dependence of the single-particle potential at high enough densities as compared to that adopting the pure two-body force. The effects of three-body force and ground state correlations on the nucleon effective mass are also discussed

  19. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  20. Parental care masks a density-dependent shift from cooperation to competition among burying beetle larvae.

    Science.gov (United States)

    Schrader, Matthew; Jarrett, Benjamin J M; Kilner, Rebecca M

    2015-04-01

    Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density-dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  1. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus)

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e. distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g. resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation. PMID:26657240

  2. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus).

    Science.gov (United States)

    Vas, Judit; Andersen, Inger Lise

    2015-01-01

    Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus) in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance) and activity budgets (e.g., resting, feeding, social activities) were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period). The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  3. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Judit Vas

    Full Text Available Very little is known about the spacing behaviour in social groups of domestic goats (Capra hircus in the farm environment. In this experiment, we studied interindividual distances, movement patterns and activity budgets in pregnant goats housed at three different densities. Norwegian dairy goats were kept in stable social groups of six animals throughout pregnancy at 1, 2 or 3 m2 per individual and their spacing behaviours (i.e., distance travelled, nearest and furthest neighbour distance and activity budgets (e.g., resting, feeding, social activities were monitored. Observations were made in the first, second and last thirds of pregnancy in the mornings, at noon and in the afternoons of each of these phases (4.5 hours per observation period. The findings show that goats held at animal densities of 2 and 3 m2 moved longer distances when they had more space per animal and kept larger nearest and furthest neighbour distances when compared to the 1 m2 per animal density. Less feeding activity was observed at the high animal density compared to the medium and low density treatments. The phase of gestation also had an impact on almost all behavioural variables. Closer to parturition, animals moved further distances and the increase in nearest and furthest neighbour distance was more pronounced at the lower animal densities. During the last period of gestation, goats spent less time feeding and more on resting, social behaviours and engaging in other various activities. Our data suggest that more space per goat is needed for goats closer to parturition than in the early gestation phase. We concluded that in goats spacing behaviour is density-dependent and changes with stages of pregnancy and activities. Finally, the lower density allowed animals to express individual preferences regarding spacing behaviour which is important in ensuring good welfare in a farming situation.

  4. Implications of late-in-life density-dependent growth for fishery size-at-entry leading to maximum sustainable yield

    DEFF Research Database (Denmark)

    van Gemert, Rob; Andersen, Ken Haste

    2018-01-01

    -in-life density-dependent growth: North Sea plaice (Pleuronectes platessa), Northeast Atlantic (NEA) mackerel (Scomber scombrus), and Baltic sprat (Sprattus sprattus balticus). For all stocks, the model predicts exploitation at MSY with a large size-at-entry into the fishery, indicating that late-in-life density...

  5. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper

    2014-01-01

    the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...

  6. Temperature-dependence of Threshold Current Density-Length Product in Metallization Lines: A Revisit

    International Nuclear Information System (INIS)

    Duryat, Rahmat Saptono; Kim, Choong-Un

    2016-01-01

    One of the important phenomena in Electromigration (EM) is Blech Effect. The existence of Threshold Current Density-Length Product or EM Threshold has such fundamental and technological consequences in the design, manufacture, and testing of electronics. Temperature-dependence of Blech Product had been thermodynamically established and the real behavior of such interconnect materials have been extensively studied. The present paper reviewed the temperature-dependence of EM threshold in metallization lines of different materials and structure as found in relevant published articles. It is expected that the reader can see a big picture from the compiled data, which might be overlooked when it was examined in pieces. (paper)

  7. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  8. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  9. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    Science.gov (United States)

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Mundt, Michael; Kuemmel, Stephan

    2006-01-01

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential is analyzed

  11. Development of a realistic human airway model.

    Science.gov (United States)

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.

  12. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  13. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  14. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  15. Time-dependent density functional theory description of total photoabsorption cross sections

    Science.gov (United States)

    Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga

    2018-02-01

    The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.

  16. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  17. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    International Nuclear Information System (INIS)

    Betzinger, Markus

    2011-01-01

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  18. Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.

  19. Kuhn: Realist or Antirealist?

    Directory of Open Access Journals (Sweden)

    Michel Ghins

    1998-06-01

    Full Text Available Although Kuhn is much more an antirealist than a realist, the earlier and later articulations of realist and antirealist ingredients in his views merit close scrutiny. What are the constituents of the real invariant World posited by Kuhn and its relation to the mutable paradigm-related worlds? Various proposed solutions to this problem (dubbed the "new-world problem" by Ian Hacking are examined and shown to be unsatisfactory. In The Structure of Scientific Revolutions, the stable World can reasonably be taken to be made up of ordinary perceived objects, whereas in Kuhn's later works the transparadigmatic World is identified with something akin to the Kantian world-in-itself. It is argued that both proposals are beset with insuperable difficulties which render Kuhn's earlier and later versions of antirealism implausible.

  20. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  1. Dependence of the critical current density on the history of magnetic field and temperature

    International Nuclear Information System (INIS)

    Kuepfer, H.

    1976-08-01

    The dependence of the volume pinning force on different paths taken to arrive at a state (H,T) is investigated. The local magnetic induction is measured by means of an ac technique on samples with different Hsub(c), kappa, pinning centres and densities. Line pinning and a distorted flux line lattice are properties of those samples which show the above mentioned history dependence. Using the model of E.J. Kramer it is deduced the reason of the history effect is the dependence of the shear modulus on the defect structure of the flux line lattice. The differences occur in the lower field region and are also observed in materials with kappa approximately = 40 and large volume pinning forces. (orig.) [de

  2. Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes

    Directory of Open Access Journals (Sweden)

    Le Novère Nicolas

    2010-03-01

    Full Text Available Abstract Background Most cellular signal transduction mechanisms depend on a few molecular partners whose roles depend on their position and movement in relation to the input signal. This movement can follow various rules and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes. Results Meredys allows for the simulation of multi-component, multi-feature state molecular species in two and three dimensions. Several compartments can be defined with different diffusion and boundary properties. The software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level, based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML input file. The simulation volume can be split in subvolumes to speed up run-time. Conclusions Meredys provides a powerful and versatile way to run accurate simulations of molecular and sub-cellular systems, that complement existing multi-agent simulation systems. Meredys is a Free Software and the source code is available at http://meredys.sourceforge.net/.

  3. Dependence of radar auroral scattering cross section on the ambient electron density and the destabilizing electric field

    International Nuclear Information System (INIS)

    Haldoupis, C.; Nielsen, E.; Schlegel, K.

    1990-01-01

    By using a data set that includes simultaneous STARE and EISCAT measurements made at a common magnetic flux tube E region in the ionosphere, we investigate the dependence of relative scattering cross section of 1-meter auroral irregularities on the destabilizing E x B electron drift, or alternatively the electric field, and the E region ambient electron density. The analysis showed that both, the E field and mean electron density are the decisive factors in determining the strength of radar auroral echoes at magnetic aspect angles near perpendicularity. We have found that at instability threshold, i.e., when the E field strength is in the 15 to 20 mV/m range, the backscatter power level is affected strongly by the mean electron density. Above threshold, the wave saturation amplitudes are determined mainly by the combined action of electron drift velocity magnitude, V d , and mean electron density, N e , in a way that the scattering cross section, or the electron density fluctuation level, increases with electric field magnitude but at a rate which is larger when the ambient electron density is lower. The analysis enabled us to infer an empirical functional relationship which is capable of predicting reasonably well the intensity of STARE echoes from EISCAT E field and electron density data. In this functional relationship, the received power at threshold depends on N e 2 whereas, from threshold to perhaps more than 50 mV/m, the power increases nonlinearly with drift velocity as V d n where the exponent n is approximately proportional to N e -1/2 . The results support the Farley-Bunemann instability as the primary instability mechanism, but the existing nonlinear treatment of the theory, which includes wave-induced cross field diffusion, cannot account for the observed role of electron density in the saturation of irregularity amplitudes

  4. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rüger, Robert, E-mail: rueger@scm.com [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Lenthe, Erik van [Scientific Computing & Modelling NV, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Heine, Thomas [Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig (Germany); Visscher, Lucas [Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  5. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes

    DEFF Research Database (Denmark)

    Thorson, James T.; Rindorf, Anna; Gao, Jin

    2016-01-01

    among taxa and regions. The average relationship is weak but significant (0.6% increase in area for a 10% increase in abundance), whereas only a small proportion of species–region combinations show a negative relationship (i.e. shrinking area when abundance increases). Approximately one...... for every 10% abundance increase) followed by Pleuronectiformes and Scorpaeniformes, and the Eastern Bering Sea shows a strong relationship between abundance and area occupied relative to other regions. We conclude that the BM explains a small but important portion of spatial dynamics for sea......The spatial distribution of marine fishes can change for many reasons, including density-dependent distributional shifts. Previous studies show mixed support for either the proportional-density model (PDM; no relationship between abundance and area occupied, supported by ideal-free distribution...

  6. THE TURBULENCE SPECTRUM OF MOLECULAR CLOUDS IN THE GALACTIC RING SURVEY: A DENSITY-DEPENDENT PRINCIPAL COMPONENT ANALYSIS CALIBRATION

    International Nuclear Information System (INIS)

    Roman-Duval, Julia; Jackson, James; Federrath, Christoph; Klessen, Ralf S.; Brunt, Christopher; Heyer, Mark

    2011-01-01

    Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA pseudo-structure function, α PCA , on intermittency, on the turbulence velocity (β v ) and density (β n ) spectral indexes, and on density dispersion. We find that PCA is insensitive to β n and to the log-density dispersion σ s , provided σ s ≤ 2. For σ s > 2, α PCA increases with σ s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBm structures with σ s ≤ 2 and apply it to 367 13 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, (α PCA ) = 0.62 ± 0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent of (β v ) = 2.06 ± 0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests β v ≅ 1.9, consistent with both Burgers and compressible intermittent turbulence.

  7. Magnetic exchange at realistic CoO/Ni interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2012-07-30

    We study the CoO/Ni interface by first principles calculations. Because the lattice mismatch is large, a realistic description requires a huge supercell. We investigate two interface configurations: in interface 1 the coupling between the Ni and Co atoms is mediated by O, whereas in interface 2 the Ni and Co atoms are in direct contact. We find that the magnetization (including the orbital moment) in interface 1 has a similar value as in bulk Ni but opposite sign, while in interface 2 it grows by 164%. The obtained magnetic moments can be explained by the local atomic environments. In addition, we find effects of charge transfer between the interface atoms. The Co 3d local density of states of interface 2 exhibits surprisingly small deviations from the corresponding bulk result, although the first coordination sphere is no longer octahedral. © Springer-Verlag 2012.

  8. Magnetic exchange at realistic CoO/Ni interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Cossu, Fabrizio; Schwingenschlö gl, Udo

    2012-01-01

    We study the CoO/Ni interface by first principles calculations. Because the lattice mismatch is large, a realistic description requires a huge supercell. We investigate two interface configurations: in interface 1 the coupling between the Ni and Co atoms is mediated by O, whereas in interface 2 the Ni and Co atoms are in direct contact. We find that the magnetization (including the orbital moment) in interface 1 has a similar value as in bulk Ni but opposite sign, while in interface 2 it grows by 164%. The obtained magnetic moments can be explained by the local atomic environments. In addition, we find effects of charge transfer between the interface atoms. The Co 3d local density of states of interface 2 exhibits surprisingly small deviations from the corresponding bulk result, although the first coordination sphere is no longer octahedral. © Springer-Verlag 2012.

  9. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  10. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  11. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    Science.gov (United States)

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  12. Temperature Dependence on Density, Viscosity, and Electrical Conductivity of Ionic Liquid 1-Ethyl-3-Methylimidazolium Fluoride

    Directory of Open Access Journals (Sweden)

    Fengguo Liu

    2018-03-01

    Full Text Available Ionic liquids are considered environmentally friendly media for various industrial applications. Basic data on physicochemical properties are significant for a new material, in terms of developing its potential applications. In this work, 1-ethyl-3-methylimidazolium fluoride ([EMIm]F ionic liquid was synthesized via an anion metathesis process. Physical properties including the density, viscosity, electrical conductivity, and thermal stability of the product were measured. The results show that the density of [EMIm]F decreases linearly with temperature increases, while dynamic viscosity decreases rapidly below 320 K and the temperature dependence of electrical conductivity is in accordance with the VFT (Vogel–Fulcher–Tammann equation. The temperature dependence of the density, conductivity, and viscosity of [EMIm]F can be expressed via the following equations: ρ = 1.516 − 1.22 × 10−3 T, σm = 4417.1exp[−953.17/(T − 166.65] and η = 2.07 × 10−7exp(−5.39 × 104/T, respectively. [EMIm]F exhibited no clear melting point. However, its glass transition point and decomposition temperature are −71.3 °C and 135 °C, respectively.

  13. Stocking density affects the growth performance of broilers in a sex-dependent fashion.

    Science.gov (United States)

    Zuowei, S; Yan, L; Yuan, L; Jiao, H; Song, Z; Guo, Y; Lin, H

    2011-07-01

    The effects of stocking density, sex, and dietary ME concentration on live performance, footpad burns, and leg weakness of broilers were investigated. A total of 876 male and 1,020 female 1-d-old chicks were placed in 24 pens to simulate final stocking density treatments of 26 kg (LSD; 10 males or 12 females/m(2)) and 42 kg (HSD; 16 males or 18 females/m(2)) of BW/m(2) floor space. Two series of experimental diets with a 150 kcal/kg difference in ME concentration (2,800, 2,900, and 3,000 or 2,950, 3,050, and 3,150 kcal of ME/kg) were compared in a 3-phase feeding program. The HSD treatment significantly decreased BW gain and feed conversion ratio (FCR). The HSD chickens consumed less feed by 35 d of age; thereafter, the reverse was true. Male chickens had significantly higher feed intake (FI), BW gain, and FCR compared with females. A significant interaction was found of stocking density and age for FI, BW gain, and FCR. Compared with LSD treatment, HSD broilers had a higher FI and a lower FCR from 36 to 42 d of age. Stocking density, sex, and age had a significant interaction for BW gain and FCR. Female broilers had worse BW gain and FCR when stocked at high density from 36 to 42 d of age. Stocking density had no significant influence on breast, thigh, or abdominal fat yield. Female broilers had significantly higher breast yield and abdominal fat. Male broilers and HSD treatment had high footpad burn and gait scores. A low ME diet increased footpad burn score but had no effect on gait score. The result indicated that stocking density had a more severe effect on the growth of male broilers before 35 d of age. Female broilers need more space than males at similar BW per square meter near marketing age. The incidence and severity of leg weakness are associated with sex, diet, and stocking density. This result suggests that the deteriorated effect of high stocking density is sex and age dependent.

  14. Density dependent forces and large basis structure models in the analyses of 12C(p,p') reactions at 135 MeV

    International Nuclear Information System (INIS)

    Bauhoff, W.; Collins, S.F.; Henderson, R.S.

    1983-01-01

    Differential cross-sections have been measured for the elastic and inelastic scattering of 135 MeV protons from 12 C. The data from the transitions to 9 select states up to 18.3 MeV in excitation have been analysed using a distorted wave approximation with various microscopic model nuclear structure transition densities and free and density dependent two nucleon t-matrices. Clear signatures of the density dependence of the t-matrix are defined and the utility of select transitions to test different attributes of that t-matrix when good nuclear structure models are used is established

  15. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  16. Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Adrian Pullin

    2018-04-01

    Full Text Available A mobile ad hoc network (MANET is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR, destination-sequenced distance-vector routing (DSDV, and ad hoc n-demand distance vector routing (AODV. The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To

  17. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  18. An investigation on the bone density of patients with non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Guo Yan; Huang Zhaomin; Meng Quanfei; Da Rengrong; Zhang Suidong; Weng Jianping

    1999-01-01

    Objective: To investigate the morbidity and pattern of osteoporosis in the patients with non-insulin-dependent diabetes mellitus (NIDDM). Methods: Bone density of lumbar vertebra, hip and whole body were measured in 48 patients with NIDDM and in 35 health people aged 30-35 years. All the patients were diagnosed by the standards introduced by the WHO committee in 1985. Outcome were measured by using t text, analysis of variance and coefficient of multiple correlation. Results: Bone density decreased in all the 48 patients with NIDDM, in which 25 (52.1%) patients were diagnosed as osteoporosis. In the patients with NIDDM and osteoporosis, there was a higher rate of the decrease of the bone density of hip (14.1% in male and 15.6% in female respectively) than that of lumbar vertebra. Conclusions: There is a higher morbidity of osteoporosis in the patients with NIDDM. The loss of the bone density might start at the hip. The bone mineral content of whole body lose markedly. And the longer the NIDDM and the menopause exist, the more obvious the decrease of the bone density is. The mechanism of the phenomena is considered as a result of not only the increased loss of calcium and absorption of the bone tissue induced by the secondary hyperparathyroidism, but also the decreased level of the serum insulin-like growth factor, which inhibits the bone formation

  19. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  20. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  1. Calculation of the structural properties of a strange quark star in the presence of a strong magnetic field using a density dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Hajar Bahri; Fatemeh Kayanikhoo

    2012-01-01

    We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field.To this end,we use the MITbag model with a density dependent bag constant.To parameterize the density dependence of the bag constant,we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter.By calculating the equation of state of strange quark matter,we have shown that the pressure of this system increases by increasing both density and magnetic field.Finally,we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.

  2. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  3. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    Energy Technology Data Exchange (ETDEWEB)

    Geerkens, A.; Frenck, H.J.; Ewert, S. [Technical Univ. of Cottbus (Germany)] [and others

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  4. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  5. Establishing Upper Limits for Item Ratings for the Angoff Method: Are Resulting Standards More 'Realistic'?

    Science.gov (United States)

    Reid, Jerry B.

    This report investigates an area of uncertainty in using the Angoff method for setting standards, namely whether or not a judge's conceptualizations of borderline group performance are realistic. Ratings are usually made with reference to the performance of this hypothetical group, therefore the Angoff method's success is dependent on this point.…

  6. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  7. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  8. Multiply gapped density of states in a normal metal in contact with a superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Reutlinger, Johannes; Belzig, Wolfgang [Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Nazarov, Yuli V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2628 CJ Delft (Netherlands); Glazman, Leonid I. [Department of Physics, Yale University, New Haven CT 06511-8499 (United States)

    2012-07-01

    The spectral properties of a normal metal adjacent to a superconductor are strongly dependent on the characteristic mesoscopic energy scale - the Thouless energy E{sub Th} - and the strength of the connection. In this work, we predict that the local density of states (LDOS), besides the well know minigap {proportional_to}E{sub Th}, can exhibit a multiple gap structure, which strongly depends on the type of the contact. For ballistic contacts we calculate these secondary gaps analytically in the framework of quantum circuit theory of mesoscopic transport. The secondary gaps are absent in the case of tunnel contacts. In the general case the equations are solved numerically for more realistic contacts, like for example diffusive connectors or dirty interfaces, which are characterized by continuous distributions of transmission eigenvalues between 0 and 1. We find that the gap vanishes in these cases, but the density of states is still suppressed around the superconducting gap edge. Distribution functions with a stronger weight at higher transmissions can be modeled through asymmetric ballistic double junctions, which even exhibit multiple gaps. Such spectral signatures are fundamental to disordered nanoscopic conductors and experimentally accessible.

  9. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based...

  10. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  11. Adapting realist synthesis methodology: The case of workplace harassment interventions.

    Science.gov (United States)

    Carr, Tracey; Quinlan, Elizabeth; Robertson, Susan; Gerrard, Angie

    2017-12-01

    Realist synthesis techniques can be used to assess complex interventions by extracting and synthesizing configurations of contexts, mechanisms, and outcomes found in the literature. Our novel and multi-pronged approach to the realist synthesis of workplace harassment interventions describes our pursuit of theory to link macro and program level theories. After discovering the limitations of a dogmatic approach to realist synthesis, we adapted our search strategy and focused our analysis on a subset of data. We tailored our realist synthesis to understand how, why, and under what circumstances workplace harassment interventions are effective. The result was a conceptual framework to test our theory-based interventions and provide the basis for subsequent realist evaluation. Our experience documented in this article contributes to an understanding of how, under what circumstances, and with what consequences realist synthesis principles can be customized. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    Science.gov (United States)

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  14. Heterogeneous Deployment to Meet Traffic Demand in a Realistic LTE Urban Scenario

    DEFF Research Database (Denmark)

    Coletti, Claudio; Hu, Liang; Nguyen, Huan Cong

    2012-01-01

    growth of mo-bile broadband traffic. Emphasis is put on how to optimally as-sign the spectrum for the different networks layers in an evolved HetNet including outdoor and indoor small cells. The study is conducted for a “Hot-Zone” scenario, i.e. a high-traffic area within a realistic dense urban...... performance with a minimum user data rate of 1 Mbps is achieved when deploying small cells on dedicated channels rather than co-channel deployment. Fur-thermore, the joint pico and femto deployment turns out to be the right trade-off between increased base station density and en-hanced network capacity....

  15. Evaluation of photovoltaic panel temperature in realistic scenarios

    International Nuclear Information System (INIS)

    Du, Yanping; Fell, Christopher J.; Duck, Benjamin; Chen, Dong; Liffman, Kurt; Zhang, Yinan; Gu, Min; Zhu, Yonggang

    2016-01-01

    Highlights: • The developed realistic model captures more reasonably the thermal response and hysteresis effects. • The predicted panel temperature is as high as 60 °C under a solar irradiance of 1000 W/m"2 in no-wind weather. • In realistic scenarios, the thermal response normally takes 50–250 s. • The actual heating effect may cause a photoelectric efficiency drop of 2.9–9.0%. - Abstract: Photovoltaic (PV) panel temperature was evaluated by developing theoretical models that are feasible to be used in realistic scenarios. Effects of solar irradiance, wind speed and ambient temperature on the PV panel temperature were studied. The parametric study shows significant influence of solar irradiance and wind speed on the PV panel temperature. With an increase of ambient temperature, the temperature rise of solar cells is reduced. The characteristics of panel temperature in realistic scenarios were analyzed. In steady weather conditions, the thermal response time of a solar cell with a Si thickness of 100–500 μm is around 50–250 s. While in realistic scenarios, the panel temperature variation in a day is different from that in steady weather conditions due to the effect of thermal hysteresis. The heating effect on the photovoltaic efficiency was assessed based on real-time temperature measurement of solar cells in realistic weather conditions. For solar cells with a temperature coefficient in the range of −0.21%∼−0.50%, the current field tests indicated an approximate efficiency loss between 2.9% and 9.0%.

  16. Ecological change points: The strength of density dependence and the loss of history.

    Science.gov (United States)

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    2001-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  18. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    1999-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  19. Diameter dependent failure current density of gold nanowires

    International Nuclear Information System (INIS)

    Karim, S; Maaz, K; Ali, G; Ensinger, W

    2009-01-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 x 10 12 A m -2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  20. Time-dependent density functional theory for open quantum systems with unitary propagation.

    Science.gov (United States)

    Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán

    2010-01-29

    We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.

  1. Realist synthesis: illustrating the method for implementation research

    Directory of Open Access Journals (Sweden)

    Rycroft-Malone Jo

    2012-04-01

    Full Text Available Abstract Background Realist synthesis is an increasingly popular approach to the review and synthesis of evidence, which focuses on understanding the mechanisms by which an intervention works (or not. There are few published examples of realist synthesis. This paper therefore fills a gap by describing, in detail, the process used for a realist review and synthesis to answer the question ‘what interventions and strategies are effective in enabling evidence-informed healthcare?’ The strengths and challenges of conducting realist review are also considered. Methods The realist approach involves identifying underlying causal mechanisms and exploring how they work under what conditions. The stages of this review included: defining the scope of the review (concept mining and framework formulation; searching for and scrutinising the evidence; extracting and synthesising the evidence; and developing the narrative, including hypotheses. Results Based on key terms and concepts related to various interventions to promote evidence-informed healthcare, we developed an outcome-focused theoretical framework. Questions were tailored for each of four theory/intervention areas within the theoretical framework and were used to guide development of a review and data extraction process. The search for literature within our first theory area, change agency, was executed and the screening procedure resulted in inclusion of 52 papers. Using the questions relevant to this theory area, data were extracted by one reviewer and validated by a second reviewer. Synthesis involved organisation of extracted data into evidence tables, theming and formulation of chains of inference, linking between the chains of inference, and hypothesis formulation. The narrative was developed around the hypotheses generated within the change agency theory area. Conclusions Realist synthesis lends itself to the review of complex interventions because it accounts for context as well as

  2. How important is self-consistency for the dDsC density dependent dispersion correction?

    Energy Technology Data Exchange (ETDEWEB)

    Brémond, Éric; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Golubev, Nikolay [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Steinmann, Stephan N., E-mail: sns25@duke.edu [Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-14

    The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term summed over all atom pairs to standard density functional approximations. These corrections were originally based on atom pairwise parameters and, hence, had a strong touch of empiricism. To overcome such limitations, we recently proposed a robust system-dependent dispersion correction, dDsC, that is computed from the electron density and that provides a balanced description of both weak inter- and intramolecular interactions. From the theoretical point of view and for the sake of increasing reliability, we here verify if the self-consistent implementation of dDsC impacts ground-state properties such as interaction energies, electron density, dipole moments, geometries, and harmonic frequencies. In addition, we investigate the suitability of the a posteriori scheme for molecular dynamics simulations, for which the analysis of the energy conservation constitutes a challenging tests. Our study demonstrates that the post-SCF approach in an excellent approximation.

  3. Sotsialistlik realist Keskküla

    Index Scriptorium Estoniae

    1998-01-01

    Londonis 1998. a. ilmunud inglise kunstikriitiku Matthew Cullerne Bowni monograafias "Socialist Realist Painting" on eesti kunstnikest Enn Põldroos, Nikolai Kormashov, Ando Keskküla, Kormashovi ja Keskküla maalide reproduktsioonid

  4. Are there realistically interpretable local theories?

    International Nuclear Information System (INIS)

    d'Espagnat, B.

    1989-01-01

    Although it rests on strongly established proofs, the statement that no realistically interpretable local theory is compatible with some experimentally testable predictions of quantum mechanics seems at first sight to be incompatible with a few general ideas and clear-cut statements occurring in recent theoretical work by Griffiths, Omnes, and Ballentine and Jarrett. It is shown here that in fact none of the developments due to these authors can be considered as a realistically interpretable local theory, so that there is no valid reason for suspecting that the existing proofs of the statement in question are all flawed

  5. The effect of a realistic thermal diffusivity on numerical model of a subducting slab

    Science.gov (United States)

    Maierova, P.; Steinle-Neumann, G.; Cadek, O.

    2010-12-01

    A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the

  6. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  7. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  8. Improving the accuracy of S02 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account

    Science.gov (United States)

    Kern, Christoph; Deutschmann, Tim; Werner, Cynthia; Sutton, A. Jeff; Elias, Tamar; Kelly, Peter J.

    2012-01-01

    Sulfur dioxide (SO2) is monitored using ultraviolet (UV) absorption spectroscopy at numerous volcanoes around the world due to its importance as a measure of volcanic activity and a tracer for other gaseous species. Recent studies have shown that failure to take realistic radiative transfer into account during the spectral retrieval of the collected data often leads to large errors in the calculated emission rates. Here, the framework for a new evaluation method which couples a radiative transfer model to the spectral retrieval is described. In it, absorption spectra are simulated, and atmospheric parameters are iteratively updated in the model until a best match to the measurement data is achieved. The evaluation algorithm is applied to two example Differential Optical Absorption Spectroscopy (DOAS) measurements conducted at Kilauea volcano (Hawaii). The resulting emission rates were 20 and 90% higher than those obtained with a conventional DOAS retrieval performed between 305 and 315 nm, respectively, depending on the different SO2 and aerosol loads present in the volcanic plume. The internal consistency of the method was validated by measuring and modeling SO2 absorption features in a separate wavelength region around 375 nm and comparing the results. Although additional information about the measurement geometry and atmospheric conditions is needed in addition to the acquired spectral data, this method for the first time provides a means of taking realistic three-dimensional radiative transfer into account when analyzing UV-spectral absorption measurements of volcanic SO2 plumes.

  9. 'Semi-realistic'F-term inflation model building in supergravity

    International Nuclear Information System (INIS)

    Kain, Ben

    2008-01-01

    We describe methods for building 'semi-realistic' models of F-term inflation. By semi-realistic we mean that they are built in, and obey the requirements of, 'semi-realistic' particle physics models. The particle physics models are taken to be effective supergravity theories derived from orbifold compactifications of string theory, and their requirements are taken to be modular invariance, absence of mass terms and stabilization of moduli. We review the particle physics models, their requirements and tools and methods for building inflation models

  10. Generating realistic images using Kray

    Science.gov (United States)

    Tanski, Grzegorz

    2004-07-01

    Kray is an application for creating realistic images. It is written in C++ programming language, has a text-based interface, solves global illumination problem using techniques such as radiosity, path tracing and photon mapping.

  11. Field dependence of the current density of superconductors at high temperatures

    International Nuclear Information System (INIS)

    Hiergeist, R.; Hergt, R.; Erb, A.; Kummeth, P.; Winzer, K.

    1993-01-01

    An essential drawback of the high-T c superconductors (HTS) with respect to technical applications at liquid nitrogen temperature is the large degradation of their pinning properties in magnetic fields. For the field dependence of the volume pinning force often a high field tail due to thermally activated flux flow is observed. An exponential decay of the irreversible magnetization with increasing field was reported in the case of sintered material (YBCO) for the intergranular part of the magnetization while a power law decay was found for the intragranular part. Song et al. observed an exponential field dependence of the critical current density for proton-irradiated material which before irradiation showed a power law decay. Gladun et al. found an exponential decay for BSCCO-2223 tapes. The high field behaviour of BSCCO was shown to be governed by thermally activated flux creep with a logarithmic pinning barrier, which may result in an exponential decrease of the current with the external magnetic field, as argued recently by Ries et al. We will show in the present paper that the different HTS substance classes (YBCO, BSCCO, TBCCO) behave qualitatively in a similar way. (orig.)

  12. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    condition. Density-dependent habitat selection for shelter and individual growth dynamics were therefore interdependent ecological processes that help to explain how patchy reef habitat sustains gag production. Moreover, gag selected shelter at the expense of maximizing their growth. Thus, mobile reef fishes could experience density-dependent effects on growth, survival, and/or reproduction (i.e., demographic parameters) despite reduced stock sizes as a consequence of fishing.

  13. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  14. The Effects of Text Density Levels and the Cognitive Style of Field Dependence on Learning from a CBI Tutorial

    Science.gov (United States)

    Ipek, Ismail

    2011-01-01

    The purpose of this study was to investigate the effects of variations in text density levels and the cognitive style of field dependence on learning from a CBI tutorial, based on the dependent measures of achievement, reading comprehension, and reading rate, and of lesson completion time. Eighty college undergraduate students were randomly…

  15. Thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Dominguez, Dany S.; Mazaira, Leorlen Y. Rojas; Hernandez, Carlos R.G.; Lira, Carlos Alberto Brayner de Oliveira

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal–hydraulic characteristics. In this article, it was performed the thermal–hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a column of FCC (Face Centered Cubic) cells, with 41 layers and 82 pebbles. The input data used were taken from the thermohydraulic IAEA Benchmark (TECDOC-1694). The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  16. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Thomsen Lene

    2004-11-01

    Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.

  17. CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). III. THE DEPENDENCE OF ATOMIC AND MOLECULAR GAS SURFACE DENSITIES ON GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Wong, Tony; Xue, Rui; Bolatto, Alberto D.; Fisher, David B.; Vogel, Stuart N.; Leroy, Adam K.; Blitz, Leo; Rosolowsky, Erik; Bigiel, Frank; Ott, Jürgen; Rahman, Nurur; Walter, Fabian

    2013-01-01

    We investigate the correlation between CO and H I emission in 18 nearby galaxies from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) at sub-kpc and kpc scales. Our sample, spanning a wide range in stellar mass and metallicity, reveals evidence for a metallicity dependence of the H I column density measured in regions exhibiting CO emission. Such a dependence is predicted by the equilibrium model of McKee and Krumholz, which balances H 2 formation and dissociation. The observed H I column density is often smaller than predicted by the model, an effect we attribute to unresolved clumping, although values close to the model prediction are also seen. We do not observe H I column densities much larger than predicted, as might be expected were there a diffuse H I component that did not contribute to H 2 shielding. We also find that the H 2 column density inferred from CO correlates strongly with the stellar surface density, suggesting that the local supply of molecular gas is tightly regulated by the stellar disk

  18. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    Science.gov (United States)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  19. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  20. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  1. Density dependence in flower visitation rates of cockroach-pollinated Clusia blattophila on the Nouragues inselberg, French Guiana

    Czech Academy of Sciences Publication Activity Database

    Vlasáková, Blanka

    2015-01-01

    Roč. 31, Part 1 (2015), s. 95-98 ISSN 0266-4674 R&D Projects: GA ČR GPP505/12/P039 Institutional support: RVO:67985939 Keywords : Clusia * ockroach * density dependence Subject RIV: EF - Botanics Impact factor: 0.975, year: 2015

  2. Toward realistic pursuit-evasion using a roadmap-based approach

    KAUST Repository

    Rodriguez, Samuel; Denny, Jory; Burgos, Juan; Mahadevan, Aditya; Manavi, Kasra; Murray, Luke; Kodochygov, Anton; Zourntos, Takis; Amato, Nancy M.

    2011-01-01

    be applied to more realistic scenarios than are typically studied in most previous work, including agents moving in 3D environments such as terrains, multi-story buildings, and dynamic environments. We also support more realistic three-dimensional visibility

  3. On Realistically Attacking Tor with Website Fingerprinting

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2016-10-01

    Full Text Available Website fingerprinting allows a local, passive observer monitoring a web-browsing client’s encrypted channel to determine her web activity. Previous attacks have shown that website fingerprinting could be a threat to anonymity networks such as Tor under laboratory conditions. However, there are significant differences between laboratory conditions and realistic conditions. First, in laboratory tests we collect the training data set together with the testing data set, so the training data set is fresh, but an attacker may not be able to maintain a fresh data set. Second, laboratory packet sequences correspond to a single page each, but for realistic packet sequences the split between pages is not obvious. Third, packet sequences may include background noise from other types of web traffic. These differences adversely affect website fingerprinting under realistic conditions. In this paper, we tackle these three problems to bridge the gap between laboratory and realistic conditions for website fingerprinting. We show that we can maintain a fresh training set with minimal resources. We demonstrate several classification-based techniques that allow us to split full packet sequences effectively into sequences corresponding to a single page each. We describe several new algorithms for tackling background noise. With our techniques, we are able to build the first website fingerprinting system that can operate directly on packet sequences collected in the wild.

  4. A moving finite element model of the high density z-pinch

    International Nuclear Information System (INIS)

    Glasser, A.H.

    1989-01-01

    This paper presents the results of computations of the behavior of the fiber-initiated high density Z-pinch (HDZP). It purpose is twofold. One is to study the behavior of the physical system itself as an interesting controlled fusion experiment. The main result of this study is a demonstration of the relaxation of the full inertial behavior of the pinch to simplified self-similar behavior in which the forces on the system are in near balance. The moving free boundary and violent initial behavior of this configuration require carful treatment. This leads to the other purpose of the work, to use this realistic physical system as a test-bed for a general-purpose 1-dimensional code based on moving finite elements. A key step in accomplishing this goal has been the recognition that numerical stability of the discretized equations has required the use of nonconservative quantities as the fundamental dependent variables to be discretized. The main result of this work is a code which is capable of treating a very general class of nonlinear, time-dependent fluid equations. copyright 1989 Academic Press, Inc

  5. Iterated interactions method. Realistic NN potential

    International Nuclear Information System (INIS)

    Gorbatov, A.M.; Skopich, V.L.; Kolganova, E.A.

    1991-01-01

    The method of iterated potential is tested in the case of realistic fermionic systems. As a base for comparison calculations of the 16 O system (using various versions of realistic NN potentials) by means of the angular potential-function method as well as operators of pairing correlation were used. The convergence of genealogical series is studied for the central Malfliet-Tjon potential. In addition the mathematical technique of microscopical calculations is improved: new equations for correlators in odd states are suggested and the technique of leading terms was applied for the first time to calculations of heavy p-shell nuclei in the basis of angular potential functions

  6. The effects of density dependent resource limitation on size of wild reindeer.

    Science.gov (United States)

    Skogland, Terje

    1983-11-01

    A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body

  7. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  8. Realistic Material Appearance Modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Hatka, Martin

    2010-01-01

    Roč. 2010, č. 81 (2010), s. 13-14 ISSN 0926-4981 R&D Projects: GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : bidirectional texture function * texture modelling Subject RIV: BD - Theory of Information http:// library .utia.cas.cz/separaty/2010/RO/haindl-realistic material appearance modelling.pdf

  9. A Radiosity Approach to Realistic Image Synthesis

    Science.gov (United States)

    1992-12-01

    AD-A259 082 AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE SYNTHESIS THESIS Richard L. Remington Captain, USAF fl ECTE AFIT/GCE/ENG/92D...09 SJANl 1993U 93-00134 Approved for public release; distribution unlimited 93& 1! A -A- AFIT/GCE/ENG/92D-09 A RADIOSITY APPROACH TO REALISTIC IMAGE...assistance in creating the input geometry file for the AWACS aircraft interior. Without his assistance, a good model for the diffuse radiosity implementation

  10. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    Science.gov (United States)

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  11. Modelisation of synchrotron radiation losses in realistic tokamak plasmas

    International Nuclear Information System (INIS)

    Albajar, F.; Johner, J.; Granata, G.

    2000-08-01

    Synchrotron radiation losses become significant in the power balance of high-temperature plasmas envisaged for next step tokamaks. Due to the complexity of the exact calculation, these losses are usually roughly estimated with expressions derived from a plasma description using simplifying assumptions on the geometry, radiation absorption, and density and temperature profiles. In the present article, the complete formulation of the transport of synchrotron radiation is performed for realistic conditions of toroidal plasma geometry with elongated cross-section, using an exact method for the calculation of the absorption coefficient, and for arbitrary shapes of density and temperature profiles. The effects of toroidicity and temperature profile on synchrotron radiation losses are analyzed in detail. In particular, when the electron temperature profile is almost flat in the plasma center, as for example in ITB confinement regimes, synchrotron losses are found to be much stronger than in the case where the profile is represented by its best generalized parabolic approximation, though both cases give approximately the same thermal energy contents. Such an effect is not included in present approximate expressions. Finally, we propose a seven-variable fit for the fast calculation of synchrotron radiation losses. This fit is derived from a large database, which has been generated using a code implementing the complete formulation and optimized for massively parallel computing. (author)

  12. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  13. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants*

    International Nuclear Information System (INIS)

    Li Chang-Sheng; Ma Lei; Guo Jie-Rong

    2017-01-01

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density. (paper)

  14. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, David N. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Asher, Jason C. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Fischer, Sean A. [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA; Cramer, Christopher J. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Govind, Niranjan [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  15. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.

    Science.gov (United States)

    Habershon, Scott

    2013-09-14

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  16. Path integral density matrix dynamics: A method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems

    International Nuclear Information System (INIS)

    Habershon, Scott

    2013-01-01

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency

  17. Short-range correlations in an extended time-dependent mean-field theory

    International Nuclear Information System (INIS)

    Madler, P.

    1982-01-01

    A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated

  18. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    Science.gov (United States)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  19. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  20. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  1. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    Science.gov (United States)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  2. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  3. Survey of Approaches to Generate Realistic Synthetic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.

  4. A unified model of density limit in fusion plasmas

    Science.gov (United States)

    Zanca, P.; Sattin, F.; Escande, D. F.; Pucella, G.; Tudisco, O.

    2017-05-01

    In this work we identify by analytical and numerical means the conditions for the existence of a magnetic and thermal equilibrium of a cylindrical plasma, in the presence of Ohmic and/or additional power sources, heat conduction and radiation losses by light impurities. The boundary defining the solutions’ space having realistic temperature profile with small edge value takes mathematically the form of a density limit (DL). Compared to previous similar analyses the present work benefits from dealing with a more accurate set of equations. This refinement is elementary, but decisive, since it discloses a tenuous dependence of the DL on the thermal transport for configurations with an applied electric field. Thanks to this property, the DL scaling law is recovered almost identical for two largely different devices such as the ohmic tokamak and the reversed field pinch. In particular, they have in common a Greenwald scaling, linearly depending on the plasma current, quantitatively consistent with experimental results. In the tokamak case the DL dependence on any additional heating approximately follows a 0.5 power law, which is compatible with L-mode experiments. For a purely externally heated configuration, taken as a cylindrical approximation of the stellarator, the DL dependence on transport is found stronger. By adopting suitable transport models, DL takes on a Sudo-like form, in fair agreement with LHD experiments. Overall, the model provides a good zeroth-order quantitative description of the DL, applicable to widely different configurations.

  5. A Low-cost System for Generating Near-realistic Virtual Actors

    Science.gov (United States)

    Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.

    2015-06-01

    Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.

  6. Problem Posing with Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Mahendra, R.; Slamet, I.; Budiyono

    2017-09-01

    One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.

  7. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  8. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  9. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  10. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  11. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  12. Density limit experiments on FTU

    International Nuclear Information System (INIS)

    Pucella, G.; Tudisco, O.; Apicella, M.L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Boncagni, L.; Botrugno, A.; Buratti, P.; Calabrò, G.; Castaldo, C.; Cianfarani, C.; Cocilovo, V.; Dimatteo, L.; Esposito, B.; Frigione, D.; Gabellieri, L.; Giovannozzi, E.; Bin, W.; Granucci, G.

    2013-01-01

    One of the main problems in tokamak fusion devices concerns the capability to operate at a high plasma density, which is observed to be limited by the appearance of catastrophic events causing loss of plasma confinement. The commonly used empirical scaling law for the density limit is the Greenwald limit, predicting that the maximum achievable line-averaged density along a central chord depends only on the average plasma current density. However, the Greenwald density limit has been exceeded in tokamak experiments in the case of peaked density profiles, indicating that the edge density is the real parameter responsible for the density limit. Recently, it has been shown on the Frascati Tokamak Upgrade (FTU) that the Greenwald density limit is exceeded in gas-fuelled discharges with a high value of the edge safety factor. In order to understand this behaviour, dedicated density limit experiments were performed on FTU, in which the high density domain was explored in a wide range of values of plasma current (I p = 500–900 kA) and toroidal magnetic field (B T = 4–8 T). These experiments confirm the edge nature of the density limit, as a Greenwald-like scaling holds for the maximum achievable line-averaged density along a peripheral chord passing at r/a ≃ 4/5. On the other hand, the maximum achievable line-averaged density along a central chord does not depend on the average plasma current density and essentially depends on the toroidal magnetic field only. This behaviour is explained in terms of density profile peaking in the high density domain, with a peaking factor at the disruption depending on the edge safety factor. The possibility that the MARFE (multifaced asymmetric radiation from the edge) phenomenon is the cause of the peaking has been considered, with the MARFE believed to form a channel for the penetration of the neutral particles into deeper layers of the plasma. Finally, the magnetohydrodynamic (MHD) analysis has shown that also the central line

  13. Progress in realistic LOCA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Young, M Y; Bajorek, S M; Ohkawa, K [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    1994-12-31

    While LOCA is a complex transient to simulate, the state of art in thermal hydraulics has advanced sufficiently to allow its realistic prediction and application of advanced methods to actual reactor design as demonstrated by methodology described in this paper 6 refs, 5 figs, 3 tabs

  14. Should scientific realists be platonists?

    DEFF Research Database (Denmark)

    Busch, Jacob; Morrison, Joe

    2015-01-01

    an appropriate use of the resources of Scientific Realism (in particular, IBE) to achieve platonism? (§2) We argue that just because a variety of different inferential strategies can be employed by Scientific Realists does not mean that ontological conclusions concerning which things we should be Scientific...

  15. Density dependence of a positron annihilation and positronium formation in H2 gas at temperatures between 77 and 297 K

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Positron lifetime experiments have been performed on H 2 gas at temperatures between 77 and 297 K and in the density range from 12-160 Amagat. The extracted parameters are discussed in terms of current models. In the case of the positronium fraction it has been found that the observed density dependence can, in part, be interpreted using a combined Ore and spur model. (author)

  16. Bone mineral density in patients with noninsulin-dependent diabetes mellitus by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Kao, C.H.; Tsou, C.T.; Chen, C.C.; Wang, S.J.

    1993-01-01

    Bone mineral density (BMD) in 38 male patients with noninsulin-dependent diabetes mellitus (NIDDM) was measured by dual photon absorptiometry (DPA) using a M and SE Osteo Tech 300 scanner. The BMD of the second to fourth lumbar vertebrae was measured and the mean density was presented as g cm -2 . The patients were distinguished according to the following three criteria: (1) blood sugar control was good or poor; (2) the duration of diabetes was long or short; (3) renal function was evaluated by effective renal plasma flow (ERPF) as good or poor. The results showed about half the cases of NIDDM had lower BMD. The patients with poor blood sugar control, longer disease duration and poor renal function had lower BMD. However, the difference between any two groups distinguished by the three criteria is not significant. We think that the causes of osteoporosis in patients with NIDDM may not be explained by only a single factor. (author)

  17. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  18. Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots

    International Nuclear Information System (INIS)

    Norris, T B; Kim, K; Urayama, J; Wu, Z K; Singh, J; Bhattacharya, P K

    2005-01-01

    We have used two- and three-pulse femtosecond differential transmission spectroscopy to study the dependence of quantum dot carrier dynamics on temperature. At low temperatures and densities, the rates for relaxation between the quantum dot confined states and for capture from the barrier region into the various dot levels could be directly determined. For electron-hole pairs generated directly in the quantum dot excited state, relaxation is dominated by electron-hole scattering, and occurs on a 5 ps time scale. Capture times from the barrier into the quantum dot are of the order of 2 ps (into the excited state) and 10 ps (into the ground state). The phonon bottleneck was clearly observed in low-density capture experiments, and the conditions for its observation (namely, the suppression of electron-hole scattering for nongeminately captured electrons) were determined. As temperature increases beyond about 100 K, the dynamics become dominated by the re-emission of carriers from the lower dot levels, due to the large density of states in the wetting layer and barrier region. Measurements of the gain dynamics show fast (130 fs) gain recovery due to intradot carrier-carrier scattering, and picosecond-scale capture. Direct measurement of the transparency density versus temperature shows the dramatic effect of carrier re-emission for the quantum dots on thermally activated scattering. The carrier dynamics at elevated temperature are thus strongly dominated by the high density of the high energy continuum states relative to the dot confined levels. Deleterious hot carrier effects can be suppressed in quantum dot lasers by resonant tunnelling injection

  19. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  20. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  1. A Room to Grow: The Residential Density-dependence of Childbearing in Europe and the United States

    Directory of Open Access Journals (Sweden)

    Nathanael Lauster

    2010-01-01

    Full Text Available I argue that cultural processes linked to the demographic transition produce new density-dependent fertility dynamics. In particular, childbearing becomes dependent upon residential roominess. This relationship is culturally specific, and I argue that the cultural nature of this relationship means that professional and managerial classes are likely to be particularly influenced by residential roominess, while immigrants are less likely to be influenced. I test hypotheses linking residential roominess to the presence of an “own infant” in the household using census data from the Austria, Greece, Portugal, Spain, and the United States. Roominess predicts fertility in all countries, but to differing degrees.

  2. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, Kenneth; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad Masoodi, A; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, S; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Ban, Jaroslav; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdermann, Eleni; Berdnikov, Yaroslav; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biolcati, Emanuele; Blanc, Aurelien Joseph; Blanco, F; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Bombonati, Carlo; Book, Julian; Borel, Herve; Bortolin, Claudio; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braun-Munzinger, Peter; Bravina, Larisa; Bregant, Marco; Breitner, Timo Gunther; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Caselle, Michele; Castillo Castellanos, Javier Ernesto; Catanescu, Vasile; Cavicchioli, Costanza; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Coffin, Jean-Pierre Michel; Coli, S; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Azevedo Moregula, Andrea; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Remigis, R; de Rooij, Raoul Stefan; Delagrange, Hugues; Delgado Mercado, Ydalia; Dellacasa, Giuseppe; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Dryha, Olha; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evrard, Sebastien; Eyyubova, Gyulnara; Fabjan, Christian; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Fekete, Vladimir; Felea, Daniel; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figueredo, Marcel; Filchagin, Sergey; Fini, Rosa Anna; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furano, Fabrizio; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gadrat, Sebastien Gabriel; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Ganoti, Paraskevi; Garabatos, Jose; Gemme, Roberto; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Girard, Martin Robert; Giraudo, G; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Santos, Humberto; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Grabski, Varlen; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Hartig, Matthias; Hasch, Delia; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heide, Markus Ansgar; Heinz, Mark Thomas; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Hernandez, C; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Huber, Sebastian Bernd; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Innocenti, Pier Giorgio; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Rudolf; Jayarathna, S P; Jena, Satyajit; Jirden, Lennart; Jones, Goronwy Tudor; Jones, Peter Graham; Jovanovic, P.; Jung, Hyung Taik; Jung, Won Woong; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kamermans, Rene; Kanaki, Kalliopi; Kang, Eunggil; Kang, Ju Hwan; Kaplin, Vladimir; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Dong Jo; Kim, Dong Soo; Kim, Do Won; Kim, Hyang Nam; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Klovning, Arne; Kluge, Alexander; Knichel, Michael Linus; Koch, Kathrin; Kohler, Markus; Kolevatov, Rodion; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kornas, Ewelina; Kottachchi Kankanamge Don, Chamath; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kozlov, Konstantin; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Kretz, Matthias; Krivda, Marian; Krumbhorn, Dirk Uwe Wilhelm; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Rocca, Paola; Ladron de Guevara, Pedro; Lafage, Vincent Claude; Lara, Camilo Ernesto; Larsen, Dag Toppe; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Li, Xiaomei; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, C; Lopez, Xavier Bernard; Lopez Noriega, Mercedes; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mazza, G; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mendez Lorenzo, Patricia; Mercado Perez, Jorge; Mereu, P; Miake, Yasuo; Midori, Jumpei; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Muller, Hans; Munhoz, Marcelo; Munoz, Jose Lorenzo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navach, Franco; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nendaz, Fabien; Newby, Jason Robert; Nicassio, Maria; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Obayashi, Hideyuki; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otterlund, Ingvar; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Pappalardo, Giuseppe; Park, Woo Jin; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Peters, Andreas Joachim; Petracek, Vojtech; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Platt, Richard John; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rademakers, Ornella; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Rammler, Markus; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Ricaud, Helene; Riccati, Lodovico; Ricci, Renato Angelo; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, A; Rodriguez Cahuantzi, Mario; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosinsky, Peter; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Rousseau, Sylvain Jean Henry; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Rusanov, Ivan Rusalinov; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saiz, Pablo; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Samanta, Tapas; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Saturnini, Pierre; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siemiarczuk, Teodor; Silenzi, Alessandro; Silvermyr, David Olle Rickard; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soloviev, Andrey; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Emil; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Stenlund, Evert Anders; Steyn, Gideon Francois; Stocco, Diego; Stock, Reinhard; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sumbera, Michal; Susa, Tatjana; Swoboda, Detlef; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tavlet, Marc; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Thomas, Jim; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Tosello, Flavio; Traczyk, Tomasz; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tumkin, Alexandr; Turrisi, Rosario; Turvey, Andrew John; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vacchi, A; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, G; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yuan, Xianbao; Yushmanov, Igor; Zabrodin, Evgeny; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zenin, Anton; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhou, Daicui; Zhu, Xiangrong; Zichichi, Antonino; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2011-01-01

    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

  3. Time management: a realistic approach.

    Science.gov (United States)

    Jackson, Valerie P

    2009-06-01

    Realistic time management and organization plans can improve productivity and the quality of life. However, these skills can be difficult to develop and maintain. The key elements of time management are goals, organization, delegation, and relaxation. The author addresses each of these components and provides suggestions for successful time management.

  4. Triangulating and guarding realistic polygons

    NARCIS (Netherlands)

    Aloupis, G.; Bose, P.; Dujmovic, V.; Gray, C.M.; Langerman, S.; Speckmann, B.

    2008-01-01

    We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards in the interior of the object. In this abstract, we describe a simple algorithm for triangulating k-guardable polygons. Our algorithm, which is easily implementable, takes

  5. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983-1984 mass mortality.

    Science.gov (United States)

    Levitan, Don R; Edmunds, Peter J; Levitan, Keeha E

    2014-05-01

    A potential consequence of individuals compensating for density-dependent processes is that rare or infrequent events can produce profound and long-term shifts in species abundance. In 1983-1984 a mass mortality event reduced the numbers of the abundant sea urchin Diadema antillarum by 95-99% throughout the Caribbean and western Atlantic. Following this event, the abundance of macroalgae increased and the few surviving D. antillarum responded by increasing in body size and fecundity. These initial observations suggested that populations of D. antillarum could recover rapidly following release from food limitation. In contrast, published studies of field manipulations indicate that this species had traits making it resistant to density-dependent effects on offspring production and adult mortality; this evidence raises the possibility that density-independent processes might keep populations at a diminished level. Decadal-scale (1983-2011) monitoring of recruitment, mortality, population density and size structure of D. antillarum from St John, US Virgin Islands, indicates that population density has remained relatively stable and more than an order of magnitude lower than that before the mortality event of 1983-1984. We detected no evidence of density-dependent mortality or recruitment since this mortality event. In this location, model estimates of equilibrium population density, assuming density-independent processes and based on parameters generated over the first decade following the mortality event, accurately predict the low population density 20 years later (2011). We find no evidence to support the notion that this historically dominant species will rebound from this temporally brief, but spatially widespread, perturbation.

  6. Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).

    Science.gov (United States)

    Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2016-08-01

    Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.

  7. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    International Nuclear Information System (INIS)

    Appel, H.

    2007-05-01

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation

  8. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  9. Density-dependent growth and metamorphosis in the larval bronze ...

    Indian Academy of Sciences (India)

    Effects of density and kinship on growth and metamorphosis in tadpoles of Rana temporalis were studied in a 2 × 4 factorial experiment. Fifteen egg masses were collected from streams in the Western Ghat region of south India. The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz ...

  10. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields

    International Nuclear Information System (INIS)

    Fenwick, John D; Kumar, Sudhir; Scott, Alison J D; Nahum, Alan E

    2013-01-01

    The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a detector located within a water phantom depends on the density of the sensitive volume. Here this effect is explained using cavity theory, and analysed using Monte Carlo data calculated for schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density and atomic composition of the sensitive volume on its response is represented as a ratio, F w,det , of doses absorbed by equal volumes of unit density water and detector material co-located within a unit density water phantom. The impact of density alone is characterized through a similar ratio, P ρ− , of doses absorbed by equal volumes of unit and modified density water. The cavity theory is developed by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons liberated in photon interactions occurring inside and outside the volume. Using this theory a simple model is obtained that links P ρ− to the degree of electronic equilibrium, s ee , at the centre of a field via a parameter I cav determined by the density and geometry of the sensitive volume. Following the scheme of Bouchard et al (2009 Med. Phys. 36 4654–63) F w,det can be written as the product of P ρ− , the water-to-detector stopping power ratio [L-bar Δ /ρ] ω det , and an additional factor P fl− . In small fields [L-bar Δ /ρ] ω det changes little with field-size; and for the schematic diamond and Pinpoint detectors P fl− takes values close to one. Consequently most of the field-size variation in F w,det originates from the P ρ− factor. Relative changes in s ee and in the phantom scatter factor s p are similar in small fields. For the diamond detector, the variation of P ρ− with s ee (and thus field-size) is described well by the simple cavity model using an I cav parameter in line with independent Monte Carlo estimates. The model also captures the overall field

  11. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  13. On the numerical simulation of population dynamics with density-dependent migrations and the Allee effects

    International Nuclear Information System (INIS)

    Sweilam, H N; Khader, M M; Al-Bar, F R

    2008-01-01

    In this paper, the variational iteration method (VIM) and the Adomian decomposition method (ADM) are presented for the numerical simulation of the population dynamics model with density-dependent migrations and the Allee effects. The convergence of ADM is proved for the model problem. The results obtained by these methods are compared to the exact solution. It is found that these methods are always converges to the right solutions with high accuracy. Furthermore, VIM needs relative less computational work than ADM

  14. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  15. Non-linear density-dependent effects of an intertidal ecosystem engineer.

    Science.gov (United States)

    Harley, Christopher D G; O'Riley, Jaclyn L

    2011-06-01

    Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate.

  16. Stopping of deuterium in warm dense deuterium from Ehrenfest time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, R.J.; Shulenburger, L.; Baczewski, A.D. [Sandia National Laboratories - Multi-scale Physics 1444 MS 1322, Albuquerque, NM (United States)

    2016-06-15

    In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Communication: satisfying fermionic statistics in the modeling of open time-dependent quantum systems with one-electron reduced density matrices.

    Science.gov (United States)

    Head-Marsden, Kade; Mazziotti, David A

    2015-02-07

    For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.

  18. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  19. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  20. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  1. Separable expansion for realistic multichannel scattering problems

    International Nuclear Information System (INIS)

    Canton, L.; Cattapan, G.; Pisent, G.

    1987-01-01

    A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions

  2. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  3. Realistic nurse-led policy implementation, optimization and evaluation: novel methodological exemplar.

    Science.gov (United States)

    Noyes, Jane; Lewis, Mary; Bennett, Virginia; Widdas, David; Brombley, Karen

    2014-01-01

    To report the first large-scale realistic nurse-led implementation, optimization and evaluation of a complex children's continuing-care policy. Health policies are increasingly complex, involve multiple Government departments and frequently fail to translate into better patient outcomes. Realist methods have not yet been adapted for policy implementation. Research methodology - Evaluation using theory-based realist methods for policy implementation. An expert group developed the policy and supporting tools. Implementation and evaluation design integrated diffusion of innovation theory with multiple case study and adapted realist principles. Practitioners in 12 English sites worked with Consultant Nurse implementers to manipulate the programme theory and logic of new decision-support tools and care pathway to optimize local implementation. Methods included key-stakeholder interviews, developing practical diffusion of innovation processes using key-opinion leaders and active facilitation strategies and a mini-community of practice. New and existing processes and outcomes were compared for 137 children during 2007-2008. Realist principles were successfully adapted to a shorter policy implementation and evaluation time frame. Important new implementation success factors included facilitated implementation that enabled 'real-time' manipulation of programme logic and local context to best-fit evolving theories of what worked; using local experiential opinion to change supporting tools to more realistically align with local context and what worked; and having sufficient existing local infrastructure to support implementation. Ten mechanisms explained implementation success and differences in outcomes between new and existing processes. Realistic policy implementation methods have advantages over top-down approaches, especially where clinical expertise is low and unlikely to diffuse innovations 'naturally' without facilitated implementation and local optimization. © 2013

  4. Level density parameter dependence of the fission cross sections of some subactinide nuclei induced by protons with the incident energy up to 250 MeV

    International Nuclear Information System (INIS)

    Aydin, A.; Yalim, H.A.; Tel, E.; Sarer, B.; Unal, R.; Sarpuen, I.H.; Kaplan, A.; Dag, M.

    2009-01-01

    This study aims to show the dependence on the choice of the ratio of the level density parameters a f and a n corresponding to the saddle point of fission and equilibrium deformation of nucleus, respectively, of the proton induced fission cross sections of some subactinide targets. The method was employed using different level density parameter ratios for each fission cross section calculation in ALICE/ASH computer code. The ALICE/ASH code calculations were compared both with the available experimental data and with the Prokofiev systematics data. It is found that the fission cross sections dependent heavily on the choice of level density parameter ratio in the fission and neutron emission channels, a f /a n , for some subactinide nuclei. To get a good description of the measured fission cross sections for subactinide nuclei, we used a ratio of the level density parameters in the fission and neutron emission channels, a f /a n , depending both on the target-nucleus and on the energy of the projectile, in agreement with results published in literature.

  5. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  6. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  7. Field, temperature, and angle dependent critical current density Jc(H,T, ) in coated conductors obtained via contact-free methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James R [ORNL; Sinclair IV, John W [ORNL; Christen, David K [ORNL; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Applications of coated conductors based on high-Tc superconductors often require detailed knowledge of their critical current density Jc as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods to obtain the angularly dependent Jc using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  8. Single-particle energies and density of states in density functional theory

    Science.gov (United States)

    van Aggelen, H.; Chan, G. K.-L.

    2015-07-01

    Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.

  9. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  10. Scattering of ECRF waves by edge density fluctuations and blobs

    Directory of Open Access Journals (Sweden)

    Ram Abhay K.

    2015-01-01

    Full Text Available The scattering of electron cyclotron waves by density blobs embedded in the edge region of a fusion plasma is studied using a full-wave model. The full-wave theory is a generalization of the usual approach of geometric optics ray scattering by blobs. While the latter allows for only refraction of waves, the former, more general formulation, includes refraction, reflection, and diffraction of waves. Furthermore, the geometric optics, ray tracing, model is limited to blob densities that are slightly different from the background plasma density. Observations in tokamak experiments show that the fluctuating density differs from the background plasma density by 20% or more. Thus, the geometric optics model is not a physically realistic model of scattering of electron cyclotron waves by plasma blobs. The differences between the ray tracing approach and the full-wave approach to scattering are illustrated in this paper.

  11. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

    Science.gov (United States)

    Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-05-10

    Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. RenderGAN: Generating Realistic Labeled Data

    Directory of Open Access Journals (Sweden)

    Leon Sixt

    2018-06-01

    Full Text Available Deep Convolutional Neuronal Networks (DCNNs are showing remarkable performance on many computer vision tasks. Due to their large parameter space, they require many labeled samples when trained in a supervised setting. The costs of annotating data manually can render the use of DCNNs infeasible. We present a novel framework called RenderGAN that can generate large amounts of realistic, labeled images by combining a 3D model and the Generative Adversarial Network framework. In our approach, image augmentations (e.g., lighting, background, and detail are learned from unlabeled data such that the generated images are strikingly realistic while preserving the labels known from the 3D model. We apply the RenderGAN framework to generate images of barcode-like markers that are attached to honeybees. Training a DCNN on data generated by the RenderGAN yields considerably better performance than training it on various baselines.

  13. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  14. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  15. Bell Operator Method to Classify Local Realistic Theories

    International Nuclear Information System (INIS)

    Nagata, Koji

    2010-01-01

    We review the historical fact of multipartite Bell inequalities with an arbitrary number of settings. An explicit local realistic model for the values of a correlation function, given in a two-setting Bell experiment (two-setting model), works only for the specific set of settings in the given experiment, but cannot construct a local realistic model for the values of a correlation function, given in a continuous-infinite settings Bell experiment (infinite-setting model), even though there exist two-setting models for all directions in space. Hence, the two-setting model does not have the property that the infinite-setting model has. Here, we show that an explicit two-setting model cannot construct a local realistic model for the values of a correlation function, given in an M-setting Bell experiment (M-setting model), even though there exist two-setting models for the M measurement directions chosen in the given M-setting experiment. Hence, the two-setting model does not have the property that the M-setting model has. (general)

  16. Local density approximation for exchange in excited-state density functional theory

    OpenAIRE

    Harbola, Manoj K.; Samal, Prasanjit

    2004-01-01

    Local density approximation for the exchange energy is made for treatment of excited-states in density-functional theory. It is shown that taking care of the state-dependence of the LDA exchange energy functional leads to accurate excitation energies.

  17. Performance Analysis of Relays in LTE for a Realistic Suburban Deployment Scenario

    DEFF Research Database (Denmark)

    Coletti, Claudio; Mogensen, Preben; Irmer, Ralf

    2011-01-01

    Relays are likely to play an important role in the deployment of Beyond 3G networks, such as LTE-Advanced, thanks to the possibility of effectively extending Macro network coverage and fulfilling the expected high data-rate requirements. Up until now, the relay technology potential and its cost......-effectiveness have been widely investigated in the literature, considering mainly statistical deployment scenarios, like regular networks with uniform traffic distribution. This paper is envisaged to illustrate the performances of different relay technologies (In-Band/Out-band) in a realistic suburban network...... scenario with real Macro site positions, user density map and spectrum band availability. Based on a proposed heuristic deployment algorithm, results show that deploying In-band relays can significantly reduce the user outage if high backhaul link quality is ensured, whereas Out-band relaying and the usage...

  18. Density dependence of the fine-differential disturbed gamma-gamma-spatial correlation in gaseous 111InI-sources

    International Nuclear Information System (INIS)

    Schuetter, K.

    1985-01-01

    An instrument for measuring a time-differential disturbed angular correlation was developed. Using this instrument the disturbance of the spatial correlation of the γ-quanta of the 171-245 keV γ-γ-cascade in 111 Cd was examined in dependence of the density of the gaseous 111 InI-systems and the time difference between the emission of the both γ-quanta. (BBOE)

  19. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Ganesh, E-mail: ghegde@purdue.edu; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard, E-mail: gekco@purdue.edu [Network for Computational Nanotechnology (NCN), Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Boykin, Timothy [Department of Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama (United States)

    2014-03-28

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  20. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    International Nuclear Information System (INIS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard; Boykin, Timothy

    2014-01-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales

  1. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    Science.gov (United States)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  2. Local realistic theories and quantum mechanics for the two-neutral-kaon system

    International Nuclear Information System (INIS)

    Dalitz, R.H.; Garbarino, G.

    2001-01-01

    The predictions of local realistic theories for the observables concerning the evolution of a K 0 K-bar 0 quantum entangled pair (created in the decay of the phi-meson) are discussed. It is shown, in agreement with Bell's theorem, that the most general local hidden-variable model fails in reproducing the whole set of quantum-mechanical joint probabilities. We achieve these conclusion by employing two different approaches. In the first approach, the local realistic observables are deduced from the most general premises concerning locality and realism, and Bell-like inequalities are not employed. The other approach makes use of Bell's inequalities. In the first approach, under particular conditions for the detection times, the discrepancy between quantum mechanics and local realism for the time-dependent asymmetry turns out to be not less than 20%. A similar incompatibility can be made evident by means of a Bell-type test by employing both Wigner's and (once properly normalized probabilities are used) Clauser-Horne-Shimony-Holt's inequalities. Because of its relatively low experimental accuracy, the data obtained by the CPLEAR collaboration for the asymmetry parameter do not yet allow a decisive test of local realism. Such a test, both with and without the use of Bell's inequalities, should be feasible in the future at the Frascati PHI-factory

  3. Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy

    KAUST Repository

    Pham, Kara

    2012-01-01

    Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.

  4. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  5. Possibility of ΛΛ pairing and its dependence on background density in a relativistic Hartree-Bogoliubov model

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2003-01-01

    We calculate a ΛΛ pairing gap in binary mixed matter of nucleons and Λ hyperons within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density ρ N =2.5ρ 0 the ΛΛ pairing gap is very small, and that a denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker ΛΛ attraction on the gap is also examined in connection with the revised information of the ΛΛ interaction

  6. Approximate spin projected spin-unrestricted density functional theory method: Application to diradical character dependences of second hyperpolarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Masayoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Minami, Takuya, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Fukui, Hitoshi, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Yoneda, Kyohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Shigeta, Yasuteru, E-mail: mnaka@cheng.es.osaka-u.ac.jp; Kishi, Ryohei, E-mail: mnaka@cheng.es.osaka-u.ac.jp [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Champagne, Benoît; Botek, Edith [Laboratoire de Chimie Théorique, Facultés Universitaires Notre-Dame de la Paix (FUNDP), rue de Bruxelles, 61, 5000 Namur (Belgium)

    2015-01-22

    We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.

  7. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  8. Gauge invariance and anomalous theories at finite fermionic density

    International Nuclear Information System (INIS)

    Roberge, A.

    1990-01-01

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well

  9. Density-dependent microbial turnover improves soil carbon model predictions of long-term litter manipulations

    Science.gov (United States)

    Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret

    2017-04-01

    Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.

  10. Blend Shape Interpolation and FACS for Realistic Avatar

    Science.gov (United States)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Basori, Ahmad Hoirul; Saba, Tanzila

    2015-03-01

    The quest of developing realistic facial animation is ever-growing. The emergence of sophisticated algorithms, new graphical user interfaces, laser scans and advanced 3D tools imparted further impetus towards the rapid advancement of complex virtual human facial model. Face-to-face communication being the most natural way of human interaction, the facial animation systems became more attractive in the information technology era for sundry applications. The production of computer-animated movies using synthetic actors are still challenging issues. Proposed facial expression carries the signature of happiness, sadness, angry or cheerful, etc. The mood of a particular person in the midst of a large group can immediately be identified via very subtle changes in facial expressions. Facial expressions being very complex as well as important nonverbal communication channel are tricky to synthesize realistically using computer graphics. Computer synthesis of practical facial expressions must deal with the geometric representation of the human face and the control of the facial animation. We developed a new approach by integrating blend shape interpolation (BSI) and facial action coding system (FACS) to create a realistic and expressive computer facial animation design. The BSI is used to generate the natural face while the FACS is employed to reflect the exact facial muscle movements for four basic natural emotional expressions such as angry, happy, sad and fear with high fidelity. The results in perceiving the realistic facial expression for virtual human emotions based on facial skin color and texture may contribute towards the development of virtual reality and game environment of computer aided graphics animation systems.

  11. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    Science.gov (United States)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  12. Nuclear level densities with pairing and self-consistent ground-state shell effects

    CERN Document Server

    Arnould, M

    1981-01-01

    Nuclear level density calculations are performed using a model of fermions interacting via the pairing force, and a realistic single particle potential. The pairing interaction is treated within the BCS approximation with different pairing strength values. The single particle potentials are derived in the framework of an energy-density formalism which describes self-consistently the ground states of spherical nuclei. These calculations are extended to statistically deformed nuclei, whose estimated level densities include rotational band contributions. The theoretical results are compared with various experimental data. In addition, the level densities for several nuclei far from stability are compared with the predictions of a back-shifted Fermi gas model. Such a comparison emphasizes the possible danger of extrapolating to unknown nuclei classical level density formulae whose parameter values are tailored for known nuclei. (41 refs).

  13. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  14. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L

    2012-06-13

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  15. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  16. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  17. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    International Nuclear Information System (INIS)

    Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L

    2012-01-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)

  18. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  19. Spin theory of the density functional: reduced matrices and density functions

    International Nuclear Information System (INIS)

    Pavlov, R.; Delchev, Y.; Pavlova, K.; Maruani, J.

    1993-01-01

    Expressions for the reduced matrices and density functions of N-fermion systems of arbitrary order s (1<=s<=N) are derived within the frame of rigorous spin approach to the density functional theory (DFT). Using the local-scale transformation method and taking into account the particle spin it is shown that the reduced matrices and density functions are functionals of the total one-fermion density. Similar dependence is found for the distribution density of s-particle aggregates. Generalization and applicability of DFT to the case of s-particle ensembles and aggregates is discussed. 14 refs

  20. Spatio-temporal dependence of the signaling response in immune-receptor trafficking networks regulated by cell density: a theoretical model.

    Directory of Open Access Journals (Sweden)

    Pilar García-Peñarrubia

    Full Text Available Cell signaling processes involve receptor trafficking through highly connected networks of interacting components. The binding of surface receptors to their specific ligands is a key factor for the control and triggering of signaling pathways. In most experimental systems, ligand concentration and cell density vary within a wide range of values. Dependence of the signal response on cell density is related with the extracellular volume available per cell. This dependence has previously been studied using non-spatial models which assume that signaling components are well mixed and uniformly distributed in a single compartment. In this paper, a mathematical model that shows the influence exerted by cell density on the spatio-temporal evolution of ligands, cell surface receptors, and intracellular signaling molecules is developed. To this end, partial differential equations were used to model ligand and receptor trafficking dynamics through the different domains of the whole system. This enabled us to analyze several interesting features involved with these systems, namely: a how the perturbation caused by the signaling response propagates through the system; b receptor internalization dynamics and how cell density affects the robustness of dose-response curves upon variation of the binding affinity; and c that enhanced correlations between ligand input and system response are obtained under conditions that result in larger perturbations of the equilibrium ligand + surface receptor [Please see text] ligand - receptor complex. Finally, the results are compared with those obtained by considering that the above components are well mixed in a single compartment.

  1. Realistic rhetoric and legal decision

    Directory of Open Access Journals (Sweden)

    João Maurício Adeodato

    2017-06-01

    Full Text Available The text aims to lay the foundations of a realistic rhetoric, from the descriptive perspective of how the legal decision actually takes place, without normative considerations. Aristotle's rhetorical idealism and its later prestige reduced rhetoric to the art of persuasion, eliminating important elements of sophistry, especially with regard to legal decision. It concludes with a rhetorical perspective of judicial activism in complex societies.

  2. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  3. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  4. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    Science.gov (United States)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-03-13

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.

  5. State and level densities for 23<=A<=40

    International Nuclear Information System (INIS)

    Beckerman, M.

    1975-01-01

    State and level density parameters are deduced for nuclei in the mass range 23<=A<=40 by combining low energy experimental data with high energy numerical calculations. Low energy experimental information is obtained from direct level counting, s and p-wave neutron resonance measurements, charged particle resonance measurements and stripping and pickup reaction data. Numerical calculations are performed for excitation energies of from 45 to 50 MeV using realistic single particle energies deduced from experimental data. (author)

  6. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandro S., E-mail: alexandrossilva@ifba.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil); Mazaira, Leorlen Y.R., E-mail: leored1984@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Dominguez, Dany S.; Hernandez, Carlos R.G., E-mail: alexandrossilva@gmail.com, E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Programa de Pos-Graduacao em Modelagem Computacional; Lira, Carlos A.B.O., E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  7. Recent advances on thermohydraulic simulation of HTR-10 nuclear reactor core using realistic CFD approach

    International Nuclear Information System (INIS)

    Silva, Alexandro S.; Mazaira, Leorlen Y.R.; Dominguez, Dany S.; Hernandez, Carlos R.G.

    2015-01-01

    High-temperature gas-cooled reactors (HTGRs) have the potential to be used as possible energy generation sources in the near future, owing to their inherently safe performance by using a large amount of graphite, low power density design, and high conversion efficiency. However, safety is the most important issue for its commercialization in nuclear energy industry. It is very important for safety design and operation of an HTGR to investigate its thermal-hydraulic characteristics. In this article, it was performed the thermal-hydraulic simulation of compressible flow inside the core of the pebble bed reactor HTR (High Temperature Reactor)-10 using Computational Fluid Dynamics (CFD). The realistic approach was used, where every closely packed pebble is realistically modelled considering a graphite layer and sphere of fuel. Due to the high computational cost is impossible simulate the full core; therefore, the geometry used is a FCC (Face Centered Cubic) cell with the half height of the core, with 21 layers and 95 pebbles. The input data used were taken from the thermal-hydraulic IAEA Bechmark. The results show the profiles of velocity and temperature of the coolant in the core, and the temperature distribution inside the pebbles. The maximum temperatures in the pebbles do not exceed the allowable limit for this type of nuclear fuel. (author)

  8. Seed yield and protein content in sunflower depending on stand density

    Directory of Open Access Journals (Sweden)

    Balalić Igor M.

    2016-01-01

    Full Text Available The aim of this research was to investigate the effect of stand density on seed yield and protein content in sunflower hybrids. The field experiment was carried out at Rimski Šančevi location. Six NS sunflower hybrids were examined. Five hybrids are confectionery (NS Goliat, NS Slatki, NS Gricko, Vranac and Cepko, and one is used for bird food (NS-H-6485. The trial was arranged as randomized complete block design (RCBD with four replications. Sowing was done with six different densities (from 20,000 to 70,000 plants per hectare, with an increment of 10,000 plants per hectare. Analysis of variance (ANOVA showed that the effect of hybrid, stand density and hybrid × stand density interation were highly significant for seed yield and protein content. The highest seed yield, on the basis of average for all densities, was found in NS-H-6485 (4.77 t ha-1 and in NS Gricko (4.43 t ha-1. Average seed yield of hybrids significantly increased up to 50,000 plants per ha-1, when it reached the value of 4.50 t ha-1, and then decreased. Significantly higher protein content, taking into account all stand densities, showed hybrid Cepko (16.94%. Protein content, above the overall average value, was achieved in hybrid Vranac (16.11%. The high­est protein content in the average for all six hybrids was at the lowest stand density (20,000 plants per ha-1, and then decreased up to higher densities. The results showed that stand density had significant effect on seed yield and protein content in sunflower hybrids. [Projekat Ministarstva nauke Republike Srbije, br. TR31025: The development of new cultivars and improving the technology of producing oil plant species for different purposes

  9. Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

    OpenAIRE

    Kuisma, Mikael; Sakko, Arto; Rossi, Tuomas P.; Larsen, Ask H.; Enkovaara, Jussi; Lehtovaara, Lauri; Rantala, Tapio T.

    2015-01-01

    We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabat...

  10. Collision dynamics of H+ + N2 at low energies based on time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Gao, C.-Z.; Wei, B.

    2018-02-01

    Using time-dependent density-functional theory at the level of local density approximation augmented by a self-interaction correction and coupled non-adiabatically to molecular dynamics, we study, from a theoretical perspective, scattering dynamics of the proton in collisions with the N2 molecule at 30 eV. Nine different collision configurations are employed to analyze the proton energy loss spectra, electron depletion, scattering angles and self-interaction effects. Our results agree qualitatively with the experimental data and previous theoretical calculations. The discrepancies are ascribed to the limitation of the theoretical models in use. We find that self-interaction effects can significantly influence the electron capture and the excited diatomic vibrational motion, which is in consistent with other calculations. In addition, it is found that the molecular structure can be readily retrieved from the proton energy loss spectra due to a significant momentum transfer in head-on collisions.

  11. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  12. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  13. Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Sfaxi, L.; Baira, M.; Maaref, H.; Bru-Chevallier, C.

    2011-01-01

    Self-assembled InAs/GaAs (001) quantum dots (QDs) were grown by molecular beam epitaxy using ultra low-growth rate. A typical dot diameter of around 28 ± 2 nm and a typical height of 5 ± 1 nm are observed based on atomic force microscopy image. The photoluminescence (PL) spectra, their power and temperature dependences have been studied for ground (GS) and three excited states (1–3ES) in InAs QDs. By changing the excitation power density, we can significantly influence the distribution of excitons within the QD ensemble. The PL peak energy positions of GS and ES emissions bands depend on an excitation light power. With increasing excitation power, the GS emission energy was red-shifted, while the 1–3ES emission energies were blue-shifted. It is found that the full width at half maximum of the PL spectra has unusual relationship with increasing temperature from 9 to 300 K. The temperature dependence of QD PL spectra shown the existence of two stages of PL thermal quenching and two distinct activation energies corresponding to the temperature ranges I (9–100 K) and II (100–300 K).

  14. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  15. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Penfold, S; Miller, A [University of Adelaide, Adelaide, SA (Australia)

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based on scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.

  16. Photo-Realistic Image Synthesis and Virtual Cinematography

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    Realistic Virtual View Synthesis is a new field of research that has received increasing attention in recent years. It is strictly related to the grown popularity of virtual reality and the spread of its applications, among which virtual photography and cinematography. The use of computer generated...... characters, "virtual actors", in the motion picture production increases every day. While the most known computer graphics techniques have largely been adopted successfully in nowadays fictions, it still remains very challenging to implement virtual actors which would resemble, visually, human beings....... Interestingly, film directors have been looking at the recent progress achieved by the research community in the field of realistic visualization of virtual views, and they have successfully implemented state of the art research approaches in their productions. An innovative concept is then gaining consensus...

  17. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  18. Numerical study of overpopulation density for laser oscillation in recombining hydrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oda, T.; Furukane, U.

    1983-06-01

    The dependence of overpopulation density (OD) on ground-level population density (n1) and electron temperature (Te) in a recombining hydrogen plasma is evaluated for line pairs with the principal quantum numbers (2,3), (3,4), and (4,5). The approach is based on the simultaneouss solution of the quasi-steady-state rate equation (including interatomic-collision terms) and the optical-escape-factor equation for the Lyman series with Doppler profile. Calculations are performed for optically thin and thick plasmas at a fixed atomic temperature of 0.15 eV, over a Te range from 0.1 to 1 eV and an electron-density (ne) range from 10 to the 11th to 10 to the 17th per cu cm. It is shown that peak OD occurs at an ne slightly below that at which population inversion is destroyed, that peak OD is inversely sensitive to Te, and that peak OD(2,3) is the highest of the three peak OD. Laser oscillation is determined to be possible for (2,3) at Te higher than for (3,4) and (4,5), if self-absorption is negligible. The OD remains constant as n1 increases, up to the point at which significant self-absorption occurs. No laser oscillation is expected at level (4,5), nor in optically thick plasma at any level, for the realistic cavity parameters and temperatures used in the calculations. 21 references.

  19. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  20. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    Energy Technology Data Exchange (ETDEWEB)

    Togashi, H., E-mail: hajime.togashi@riken.jp [Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakazato, K. [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Takehara, Y.; Yamamuro, S.; Suzuki, H. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan); Takano, M. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-05-15

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas–Fermi calculation is performed to obtain the minimized free energy of a Wigner–Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas–Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid–gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  1. Quasiparticle density of states, localization, and distributed disorder in the cuprate superconductors

    Science.gov (United States)

    Sulangi, Miguel Antonio; Zaanen, Jan

    2018-04-01

    We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.

  2. Decay rates of resonance states at high level density

    International Nuclear Information System (INIS)

    Persson, E.; Technische Univ. Dresden; Gorin, T.; Technische Univ. Dresden; Rotter, I.; Technische Univ. Dresden

    1996-05-01

    The time dependent Schroedinger equation of an open quantum mechanical system is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean time independent Hamilton operator. We calculate the decay rates at low and high level density in two different formalism. The rates are, generally, time dependent and oscillate around an average value due to the non-orthogonality of the wavefunctions. The decay law is studied disregarding the oscillations. In the one-channel case, it is proportional to t -b with b∼3/2 in all cases considered, including the critical region of overlapping where the non-orthogonality of the wavefunctions is large. Starting from the shell model, we get b∼2 for 2 and 4 open decay channels and all coupling strengths to the continuum. When the closed system is described by a random matrix, b∼1+K/2 for K=2 and 4 channels. This law holds in a limited time interval. The distribution of the widths is different in the two models when more than one channel are open. This leads to the different exponents b in the power law. Our calculations are performed with 190 and 130 states, respectively, most of them in the critical region. The theoretical results should be proven experimentally by measuring the time behaviour of de-excitation of a realistic quantum system. (orig.)

  3. I-Love relations for incompressible stars and realistic stars

    Science.gov (United States)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  4. Field, temperature, and angle dependent critical current density Jc(H,T,θ) in coated conductors obtained via contact-free methods

    International Nuclear Information System (INIS)

    Thompson, J R; Christen, D K; Zhang Yifei; Zuev, Y L; Cantoni, C; Sinclair, J W; Chen Yimin; Selvamanickam, V

    2010-01-01

    Applications of coated conductors based on high- T c superconductors often require detailed knowledge of their critical current density J c as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods for obtaining the angularly dependent J c using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  5. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    Science.gov (United States)

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-03

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.

  6. Hyper-realistic face masks: a new challenge in person identification.

    Science.gov (United States)

    Sanders, Jet Gabrielle; Ueda, Yoshiyuki; Minemoto, Kazusa; Noyes, Eilidh; Yoshikawa, Sakiko; Jenkins, Rob

    2017-01-01

    We often identify people using face images. This is true in occupational settings such as passport control as well as in everyday social environments. Mapping between images and identities assumes that facial appearance is stable within certain bounds. For example, a person's apparent age, gender and ethnicity change slowly, if at all. It also assumes that deliberate changes beyond these bounds (i.e., disguises) would be easy to spot. Hyper-realistic face masks overturn these assumptions by allowing the wearer to look like an entirely different person. If unnoticed, these masks break the link between facial appearance and personal identity, with clear implications for applied face recognition. However, to date, no one has assessed the realism of these masks, or specified conditions under which they may be accepted as real faces. Herein, we examined incidental detection of unexpected but attended hyper-realistic masks in both photographic and live presentations. Experiment 1 (UK; n = 60) revealed no evidence for overt detection of hyper-realistic masks among real face photos, and little evidence of covert detection. Experiment 2 (Japan; n = 60) extended these findings to different masks, mask-wearers and participant pools. In Experiment 3 (UK and Japan; n = 407), passers-by failed to notice that a live confederate was wearing a hyper-realistic mask and showed limited evidence of covert detection, even at close viewing distance (5 vs. 20 m). Across all of these studies, viewers accepted hyper-realistic masks as real faces. Specific countermeasures will be required if detection rates are to be improved.

  7. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    Science.gov (United States)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  8. EMC3-Eirene simulations of gas puff effects on edge density and ICRF coupling in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching (Germany); University of Ghent, Ghent (Belgium); Coster, David; Lunt, Tilmann; Bobkov, Volodymyr; Feng, Yuehe [Max Planck Institute for Plasma Physics, Garching (Germany); Collaboration: ASDEX Upgrade team

    2015-05-01

    Ion cyclotron range of frequency (ICRF) heating relies on the Fast Wave (FW) to transport the power from the edge (the antenna) to the plasma center. Since the FW is evanescent below a critical density (typically in the 10{sup 18} m{sup -3} range), the wave does not propagate in the region where the density is below this value in the very edge of the plasma. The coupling depends strongly on the width of this region. The distance between the ICRF antenna and the FW cut-off layer can be made smaller by increasing the edge density in front of the ICRF antenna. Previous experiments in many tokamaks and preliminary simulation results for AUG and JET with EDGE2D-EIRENE show that the edge density could indeed be increased with gas puffing at the top of the vessel or in the midplane. But the 2D code cannot quantitatively reproduce the experimental results, mainly due to the assumptions of toroidal axisymmetry. EMC3-EIRENE is a 3D Edge Monte Carlo plasma fluid transport code. By including the toroidal nonaxisymmetric plasma facing components and 3D positions of gas valves in the code, the simulations can be made more realistic. We will show first simulation results of the code and a comparison to experiments.

  9. Putting a Realistic Theory of Mind into Agency Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Stea, Diego

    2014-01-01

    Agency theory is one of the most important foundational theories in management research, but it rests on contestable cognitive assumptions. Specifically, the principal is assumed to hold a perfect (correct) theory regarding some of the content of the agent's mind, while he is entirely ignorant...... concerning other such content. More realistically, individuals have some limited access to the minds of others. We explore the implications for classical agency theory of realistic assumptions regarding the human potential for interpersonal sensemaking. We discuss implications for the design and management...

  10. Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity.

    Science.gov (United States)

    Barnes, A I; Siva-Jothy, M T

    2000-01-01

    If there are costs involved with the maintenance of pathogen resistance, then higher investment in this trait is expected when the risk of pathogenesis is high. One situation in which the risk of pathogenesis is elevated is at increased conspecific density. This paper reports the results of a study of density-dependent polyphenism in pathogen resistance and immune function in the mealworm beetle Tenebrio molitor. Beetles reared at high larval densities showed lower mortality when exposed to a generalist entomopathogenic fungus and a higher degree of cuticular melanization than those reared solitarily. The degree of cuticular melanization was a strong indicator of resistance, with darker beetles being more resistant than lighter ones regardless of rearing density. No differences were found between rearing densities in the levels of phenoloxidase, an enzyme key to the insect immune response. The results show that pathogen resistance is phenotypically plastic in T. molitor, suggesting that the maintenance of this trait is costly. PMID:10687824

  11. Results of recent calculations using realistic potentials

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Results of recent calculations for the triton using realistic potentials with strong tensor forces are reviewed, with an emphasis on progress made using the many different calculational schemes. Several test problems are suggested. 49 refs., 5 figs

  12. Influence of the density dependence factor in effective nucleon-nucleon forces and interaction of 4He-particles with stable nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.

    2004-01-01

    Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei

  13. Chain length dependence of the critical density of organic homologous series

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Fredenslund, Aage; Tassios, Dimitrios P.

    1995-01-01

    Whether the critical density of organic compounds belonging to a certain homologous series increases or decreases with (increasing) molecular weight has been a challenging question over the years. Two sets of experimental data have recently appeared in the literature for the critical density of n......-alkanes: Steele's data (up to n-decane) suggest that critical density increases with carbon number and reaches a limiting value. On the other hand, the data of Teja et al., 1990 which cover a broader range of n-alkanes (up to n-octadecane), reveal a decreasing trend of the critical density after a maximum at n......-heptane. Teja et al. have also presented critical density measurements for 1-alkenes (up to 1-decene) and 1-alkanols (up to 1-undecanol). These data follow the same decreasing trend with the molecular weight as n-alkanes. This trend is not in agreement with the predictions of most group-contribution methods...

  14. Guidance on Dependence Assessment in SPAR-H

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley

    2012-06-01

    As part of the effort to develop the SPAR-H user guidance, particular attention was paid to the assessment of dependence in order to address user questions about proper application of dependence. This paper presents a discussion of dependence from a psychological perspective and provides guidance on applying this information during the qualitative analysis of dependence to ensure more realistic and appropriate dependence assessments with the SPAR-H method. While this guidance was developed with SPAR-H in mind, it may be informative to other human reliability analysis methods that also use a THERP-based dependence approach, particularly if applied at the human failure event level.

  15. Simple and Realistic Data Generation

    DEFF Research Database (Denmark)

    Pedersen, Kenneth Houkjær; Torp, Kristian; Wind, Rico

    2006-01-01

    This paper presents a generic, DBMS independent, and highly extensible relational data generation tool. The tool can efficiently generate realistic test data for OLTP, OLAP, and data streaming applications. The tool uses a graph model to direct the data generation. This model makes it very simple...... to generate data even for large database schemas with complex inter- and intra table relationships. The model also makes it possible to generate data with very accurate characteristics....

  16. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    Energy Technology Data Exchange (ETDEWEB)

    Franco de Carvalho, F. [Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Tavernelli, I. [IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon (Switzerland)

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.

  17. Simulating Excitons in MoS2 with Time-Dependent Density Functional Theory

    Science.gov (United States)

    Flamant, Cedric; Kolesov, Grigory; Kaxiras, Efthimios

    Monolayer molybdenum disulfide, owing to its graphene-like two-dimensional geometry whilst still having a finite bandgap, is a material of great interest in condensed matter physics and for potential application in electronic devices. In particular, MoS2 exhibits significant excitonic effects, a desirable quality for fundamental many-body research. Time-dependent density functional theory (TD-DFT) allows us to simulate dynamical effects as well as temperature-based effects in a natural way given the direct treatment of the time evolution of the system. We present a TD-DFT study of monolayer MoS2 exciton dynamics, examining various qualitative and quantitative predictions in pure samples and in the presence of defects. In particular, we generate an absorption spectrum through simulated pulse excitation for comparison to experiment and also analyze the response of the exciton in an external electric field.In this work we also discuss the electronic structure of the exciton in MoS2 with and without vacancies.

  18. Realistic Approach for Phasor Measurement Unit Placement

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    This paper presents a realistic cost-effectivemodel for optimal placement of phasor measurement units (PMUs) for complete observability of a power system considering practical cost implications. The proposed model considers hidden or otherwise unaccounted practical costs involved in PMU...... installation. Consideration of these hidden but significant and integral part of total PMU installation costs was inspired from practical experience on a real-life project. The proposedmodel focuses on the minimization of total realistic costs instead of a widely used theoretical concept of a minimal number...... of PMUs. The proposed model has been applied to IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, New England 39-bus, and large power system of 300 buses and real life Danish grid. A comparison of the presented results with those reported by traditionalmethods has also been shown to justify the effectiveness...

  19. Getting realistic; Endstation Demut

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.P.

    2004-01-28

    The fuel cell hype of the turn of the millenium has reached its end. The industry is getting realistic. If at all, fuel cell systems for private single-family and multiple dwellings will not be available until the next decade. With a Europe-wide field test, Vaillant intends to advance the PEM technology. [German] Der Brennstoffzellen-Hype der Jahrtausendwende ist verfolgen. Die Branche uebt sich in Bescheidenheit. Die Marktreife der Systeme fuer Ein- und Mehrfamilienhaeuser wird - wenn ueberhaupt - wohl erst im naechsten Jahrzehnt erreicht sein. Vaillant will durch einen europaweiten Feldtest die Entwicklung der PEM-Technologie vorantreiben. (orig.)

  20. Excitonic effects in solids : time-dependent density functional theory versus the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    The aim of this work is to compare two state-of-the-art methods for the investigation of excitonic effects in solids, namely Time-Dependent Density Functional Theory (TDDFT) and Many-Body Perturbation Theory (MBPT), for selected simple gap systems as well as semiconducting polymers. Within TDDFT, the linear response framework is used and the Dyson equation for the density-density response function is solved, whereas within MBPT, the Bethe-Salpeter equation (BSE) for the electron-hole correlation function is solved. The dielectric function is obtained as a last step. Both techniques take into account the excitonic effects caused by the interaction of electron-hole pairs. In the former these effects are included in the exchange-correlation (xc) kernel, whereas in the latter they are located in the interaction kernel of the BSE. Kohn-Sham single-particle wave functions obtained from Density Functional Theory within the linearized augmented planewave (LAPW) method are used to calculate all relevant quantities of the formalism. For the simple systems GaAs, Si and LiF are chosen. The role of several approximations to the xc kernel is studied and it is found that for GaAs and Si simple semi-empirical models provide a dielectric function in accordance with the BSE. For the case of LiF, being a system with a weak screening and a strongly bound exciton, only an xc kernel derived from MBPT yields reasonable results but still a slight discrepancy to the BSE is observed. Finally, the semiconducting polymers poly-acetylene and poly(phenylene-vinylene) (PPV) are studied. For both materials the concept of semi-empirical approximations to the xc kernel turns out to be ambiguous due to their low-dimensional character. In the case of poly-acetylene, the xc kernel derived from MBPT yields a dielectric function which is in close but not exact agreement with the one obtained from the BSE. (author) [de