WorldWideScience

Sample records for real-time water monitoring

  1. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  2. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  3. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  4. Real-time stability monitoring method for boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Fukunishi, K.; Suzuki, S.

    1987-01-01

    A method for real-time stability monitoring is developed for supervising the steady-state operation of a boiling water reactor core. The decay ratio of the reactor power fluctuation is determined by measuring only the output neutron noise. The concept of an inverse system is introduced to identify the dynamic characteristics of the reactor core. The adoption of an adaptive digital filter is useful in real-time identification. A feasibility test that used measured output noise as an indication of reactor power suggests that this method is useful in a real-time stability monitoring system. Using this method, the tedious and difficult work for modeling reactor core dynamics can be reduced. The method employs a simple algorithm that eliminates the need for stochastic computation, thus making the method suitable for real-time computation with a simple microprocessor. In addition, there is no need to disturb the reactor core during operation. Real-time stability monitoring using the proposed algorithm may allow operation under less stable margins

  5. Experiences and recommendations in deploying a real-time, water quality monitoring system

    Science.gov (United States)

    O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.

    2010-12-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points

  6. Experiences and recommendations in deploying a real-time, water quality monitoring system

    International Nuclear Information System (INIS)

    O'Flynn, B; O'Mathuna, C; Regan, F; Lawlor, A; Wallace, J; Torres, J

    2010-01-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems-–these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data

  7. Real-time flood monitoring and warning system

    Directory of Open Access Journals (Sweden)

    Jirapon Sunkpho

    2011-04-01

    Full Text Available Flooding is one of the major disasters occurring in various parts of the world. The system for real-time monitoring ofwater conditions: water level; flow; and precipitation level, was developed to be employed in monitoring flood in Nakhon SiThammarat, a southern province in Thailand. The two main objectives of the developed system is to serve 1 as informationchannel for flooding between the involved authorities and experts to enhance their responsibilities and collaboration and2 as a web based information source for the public, responding to their need for information on water condition and flooding.The developed system is composed of three major components: sensor network, processing/transmission unit, and database/application server. These real-time data of water condition can be monitored remotely by utilizing wireless sensors networkthat utilizes the mobile General Packet Radio Service (GPRS communication in order to transmit measured data to theapplication server. We implemented a so-called VirtualCOM, a middleware that enables application server to communicatewith the remote sensors connected to a GPRS data unit (GDU. With VirtualCOM, a GDU behaves as if it is a cable directlyconnected the remote sensors to the application server. The application server is a web-based system implemented usingPHP and JAVA as the web application and MySQL as its relational database. Users can view real-time water conditionas well as the forecasting of the water condition directly from the web via web browser or via WAP. The developed systemhas demonstrated the applicability of today’s sensors in wirelessly monitor real-time water conditions.

  8. Task 1. Monitoring real time materials degradation. NRC extended In-situ and real-time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-03-01

    The overall objective of this project was to perform a scoping study to identify, in concert with the nuclear industry, those sensors and techniques that have the most promising commercial viability and fill a critical inspection or monitoring need. Candidates to be considered include sensors to monitor real-time material degradation, characterize residual stress, monitor and inspect component fabrication, assess radionuclide and associated chemical species concentrations in ground water and soil, characterize fuel properties, and monitor severe accident conditions. Under Task 1—Monitoring Real-Time Materials Degradation—scoping studies were conducted to assess the feasibility of potential inspection and monitoring technologies (i.e., a combination of sensors, advanced signal processing techniques, and data analysis methods) that could be utilized in LWR and/or advanced reactor applications for continuous monitoring of degradation in-situ. The goal was to identify those techniques that appear to be the most promising, i.e., those that are closest to being both technically and commercially viable and that the nuclear industry is most likely to pursue. Current limitations and associated issues that must be overcome before commercial application of certain techniques have also been addressed.

  9. Continuous real-time water information: an important Kansas resource

    Science.gov (United States)

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  10. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  11. Real-time video quality monitoring

    Science.gov (United States)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  12. Real-Time Water Quality Monitoring and Habitat Assessment in the San Luis National Wildlife Refuge

    OpenAIRE

    Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington, Dennis W.

    2005-01-01

    The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simnple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing meth...

  13. Real time monitoring of water distribution in an operando fuel cell during transient states

    Science.gov (United States)

    Martinez, N.; Peng, Z.; Morin, A.; Porcar, L.; Gebel, G.; Lyonnard, S.

    2017-10-01

    The water distribution of an operating proton exchange membrane fuel cell (PEMFC) was monitored in real time by using Small Angle Neutron Scattering (SANS). The formation of liquid water was obtained simultaneously with the evolution of the water content inside the membrane. Measurements were performed when changing current with a time resolution of 10 s, providing insights on the kinetics of water management prior to the stationary phase. We confirmed that water distribution is strongly heterogeneous at the scale at of the whole Membrane Electrode Assembly. As already reported, at the local scale there is no straightforward link between the amounts of water present inside and outside the membrane. However, we show that the temporal evolutions of these two parameters are strongly correlated. In particular, the local membrane water content is nearly instantaneously correlated to the total liquid water content, whether it is located at the anode or cathode side. These results can help in optimizing 3D stationary diphasic models used to predict PEMFC water distribution.

  14. High-resolution near real-time drought monitoring in South Asia

    OpenAIRE

    Aadhar, Saran; Mishra, Vimal

    2017-01-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to m...

  15. Biosensor-based real-time monitoring of paracetamol photocatalytic degradation.

    Science.gov (United States)

    Calas-Blanchard, Carole; Istamboulié, Georges; Bontoux, Margot; Plantard, Gaël; Goetz, Vincent; Noguer, Thierry

    2015-07-01

    This paper presents for the first time the integration of a biosensor for the on-line, real-time monitoring of a photocatalytic degradation process. Paracetamol was used as a model molecule due to its wide use and occurrence in environmental waters. The biosensor was developed based on tyrosinase immobilization in a polyvinylalcohol photocrosslinkable polymer. It was inserted in a computer-controlled flow system installed besides a photocatalytic reactor including titanium dioxide (TiO2) as photocatalyst. It was shown that the biosensor was able to accurately monitor the paracetamol degradation with time. Compared with conventional HPLC analysis, the described device provides a real-time information on the reaction advancement, allowing a better control of the photodegradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Developments in real-time monitoring for geologic hazard warnings (Invited)

    Science.gov (United States)

    Leith, W. S.; Mandeville, C. W.; Earle, P. S.

    2013-12-01

    Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of

  17. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  18. Monitor of dynamic parameters in real time; Monitor de parametros dinamicos en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Ruiz E, J.A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In the complex physical systems exist parameters that are necessary for monitoring in real time. In the nuclear industry, particularly in a reactor this surveillance is important, where the times of the reactions are almost instantaneous. Although many of these parameters are monitored, given the advance of the computer systems the monitoring could either be enlarged direct or indirect of other parameters. The analysis of the neutron noise in the nuclear reactors, plays an important role, the noise signal it contains information about the operation conditions of a system, when analyzing it with analysis methodologies of analogical signals to provide important information for the early detection of possible flaws and to indicate the permissible operation levels. To show the characteristics of the operation of the system of Monitoring of Dynamic Parameters in Real Time, oscillations of neutron noise of the TRIGA Mark III of the ININ were analyzed, these were caused with the control bar to a power of 10 Watts, the oscillations were carried out to a frequency of 1Hz, signal of low frequency. In this work a virtual instrument that allows by means of the spectral analysis method in frequency point by point is presented, to indicate in real time periodic variations that could be presented in the neutron noise signal, visualizing in advance the dynamic behavior of the system or nuclear plant. Another of the tests of the monitoring system presented is that of the oscillatory event happened in the reactor of Laguna Verde Nucleo electric Central, would be convenient to have an instrument of surveillance for monitoring through the neutron noise signal the behavior of some important parameter to predict and to indicate in an immediate way an abnormal condition in the reactor operation or in the plant system. These parameters can be the power, the recirculation water flow, etc. The monitor is based on a personal computer (PC), a data acquisition card (ADC) and a computer program

  19. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  20. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  1. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  2. "Internet of Things" Real-Time Free Flap Monitoring.

    Science.gov (United States)

    Kim, Sang Hun; Shin, Ho Seong; Lee, Sang Hwan

    2018-01-01

    Free flaps are a common treatment option for head and neck reconstruction in plastic reconstructive surgery, and monitoring of the free flap is the most important factor for flap survival. In this study, the authors performed real-time free flap monitoring based on an implanted Doppler system and "internet of things" (IoT)/wireless Wi-Fi, which is a convenient, accurate, and efficient approach for surgeons to monitor a free flap. Implanted Doppler signals were checked continuously until the patient was discharged by the surgeon and residents using their own cellular phone or personal computer. If the surgeon decided that a revision procedure or exploration was required, the authors checked the consumed time (positive signal-to-operating room time) from the first notification when the flap's status was questioned to the determination for revision surgery according to a chart review. To compare the efficacy of real-time monitoring, the authors paired the same number of free flaps performed by the same surgeon and monitored the flaps using conventional methods such as a physical examination. The total survival rate was greater in the real-time monitoring group (94.7% versus 89.5%). The average time for the real-time monitoring group was shorter than that for the conventional group (65 minutes versus 86 minutes). Based on this study, real-time free flap monitoring using IoT technology is a method that surgeon and reconstruction team can monitor simultaneously at any time in any situation.

  3. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  4. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  5. Real-time water quality monitoring at a Great Lakes National Park

    Science.gov (United States)

    Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher

    2018-01-01

    Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.

  6. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  7. Real-time analysis of water movement in plant sample

    International Nuclear Information System (INIS)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro

    2000-01-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time 18 F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then 18 F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of 18 F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of 18 F labeled water absorption was found to be drastically decreased. (author)

  8. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  9. Expert systems for real-time monitoring and fault diagnosis

    Science.gov (United States)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  10. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  11. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  12. High-Resolution Near Real-Time Drought Monitoring in South Asia

    Science.gov (United States)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  13. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  14. Wide-area, real-time monitoring and visualization system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. [Design and implementation of real-time continuous glucose monitoring instrument].

    Science.gov (United States)

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  16. Real-time earthquake monitoring: Early warning and rapid response

    Science.gov (United States)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  17. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    Directory of Open Access Journals (Sweden)

    Antonio Skarmeta Gómez

    2012-03-01

    Full Text Available A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data inmany sparse locations during flood events.

  18. A web-based Tamsui River flood early-warning system with correction of real-time water stage using monitoring data

    Science.gov (United States)

    Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.

    2017-12-01

    Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.

  19. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) under controlled seawater injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D. [InterCorr International, Inc., 14503 Bammel N. Houston Road, Suite 300, Houston, TX 77019 (United States); Campbell, Scott [Commercial Microbiology Inc., 10400 Westoffice Drive Suite 107, Houston, TX 77042 (United States)

    2004-07-01

    An experimental study of microbiologically influenced corrosion (MIC) was conducted involving online, real-time monitoring of a bio-film loop under controlled conditions simulating oil field water handling and injection. Bio-film growth, MIC and biocide efficacy were monitored using an automated, multi-technique monitoring system including linear polarization resistance, electrochemical noise and harmonic distortion analysis. This data was correlated with conventional off-line methods to differentiate conditions of varying MIC activity in real-time to facilitate quick assessment and operator intervention. (authors)

  20. A real-time tritium-in-water monitor for measurement of heavy water leak to the secondary coolant

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Samant, R.K.; Abani, M.C.

    2000-01-01

    The paper describes the development and evaluation of on-line, real-time tritium in water monitor for detection and measurement of heavy water leak to the secondary coolant in a Pressurised Heavy Water Reactor. The detector used for this is a plastic scintillator film, made in the form of sponge and housed in a flow cell which is used for measurement of tritium activity present in heavy water. Two photomultiplier tubes are optically coupled on either face of the flow cell detector and measurement is done in coincidence mode. The sample water is continuously passed through the flow cell detector and a continuous measurement of tritium activity is carried out. It is observed that the impurities in the process water sample are gradually trapped in the flow cell, which affects the transparency of the detector with use. This reduces the sensitivity of the system. In addition, chlorine, which is added in the sample water, to arrest the fungus formation, creates chemiluminescence which interfere the measurement. To improve the sample quality as well as to eliminate the chemiluminescence created by chlorine, sample conditioner consisting of polypropylene candle, activated charcoal and glass fibre filter paper is developed. Polypropylene candle traps particulates above 5 μm pore size, activated charcoal absorbs organic compounds, free chlorine, fungus and turbidity and glass fibre filter paper stops submicron size particles. The measurement is also affected by the interference of dissolved argon-41 in the sample water. A bubbler system developed at BARC is used to strip the dissolved Ar-41 present in the sample which enables the system to measure tritium in presence of this interfering radioactive gas. The microprocessor based electronic system, used in the monitor provides the facility for selection of counting time and thereby improving the counting statistics. Alarm circuit is provided to give timely alarm when the tritium activity concentration exceeds the preset level

  1. Rapid, Real-time Methane Detection in Ground Water Using a New Gas-Water Equilibrator Design

    Science.gov (United States)

    Ruybal, C. J.; DiGiulio, D. C.; Wilkin, R. T.; Hargrove, K. D.; McCray, J. E.

    2014-12-01

    Recent increases in unconventional gas development have been accompanied by public concern for methane contamination in drinking water wells near production areas. Although not a regulated pollutant, methane may be a marker contaminant for others that are less mobile in groundwater and thus may be detected later, or at a location closer to the source. In addition, methane poses an explosion hazard if exsolved concentrations reach 5 - 15% volume in air. Methods for determining dissolved gases, such as methane, have evolved over 60 years. However, the response time of these methods is insufficient to monitor trends in methane concentration in real-time. To enable rapid, real-time monitoring of aqueous methane concentrations during ground water purging, a new gas-water equilibrator (GWE) was designed that increases gas-water mass exchange rates of methane for measurement. Monitoring of concentration trends allows a comparison of temporal trends between sampling events and comparison of baseline conditions with potential post-impact conditions. These trends may be a result of removal of stored casing water, pre-purge ambient borehole flow, formation physical and chemical heterogeneity, or flow outside of well casing due to inadequate seals. Real-time information in the field can help focus an investigation, aid in determining when to collect a sample, save money by limiting costs (e.g. analytical, sample transport and storage), and provide an immediate assessment of local methane concentrations. Four domestic water wells, one municipal water well, and one agricultural water well were sampled for traditional laboratory analysis and compared to the field GWE results. Aqueous concentrations measured on the GWE ranged from non-detect to 1,470 μg/L methane. Some trends in aqueous methane concentrations measured on the GWE were observed during purging. Applying a paired t-test comparing the new GWE method and traditional laboratory analysis yielded a p-value 0

  2. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    Science.gov (United States)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  3. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  4. Real-time personal exposure and health condition monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Isamu; Kanda, Hiroaki; Asai, Akio; Takeishi, Naoki; Ota, Yoshito [Hitachi Aloka Medical, Ltd., Measuring Systems Engineering Dept., Tokyo (Japan); Hanawa, Nobuhiro; Ueda, Hisao; Kusunoki, Tsuyoshi; Ishitsuka, Etsuo; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have proposed novel monitoring system for workers of nuclear facility. In these facilities, exposure management for workers is mainly used access control and personal exposure recordings. This system is currently only for reports management but is not confirmative for surveillance when work in progress. Therefore, JAEA and HAM integrate access control and personal exposure recordings and two real-time monitoring systems which are position sensing and vital sign monitor. Furthermore change personal exposure management to real-time management, this system integration prevents workers from risk of accidents, and makes possible take appropriate action quickly. This novel system is going to start for tentative operation, using position sensing and real-time personal dosimeter with database in Apr. 2012. (author)

  5. Nuclear power plant monitoring using real-time learning neural network

    International Nuclear Information System (INIS)

    Nabeshima, Kunihiko; Tuerkcan, E.; Ciftcioglu, O.

    1994-01-01

    In the present research, artificial neural network (ANN) with real-time adaptive learning is developed for the plant wide monitoring of Borssele Nuclear Power Plant (NPP). Adaptive ANN learning capability is integrated to the monitoring system so that robust and sensitive on-line monitoring is achieved in real-time environment. The major advantages provided by ANN are that system modelling is formed by means of measurement information obtained from a multi-output process system, explicit modelling is not required and the modelling is not restricted to linear systems. Also ANN can respond very fast to anomalous operational conditions. The real-time ANN learning methodology with adaptive real-time monitoring capability is described below for the wide-range and plant-wide data from an operating nuclear power plant. The layered neural network with error backpropagation algorithm for learning has three layers. The network type is auto-associative, inputs and outputs are exactly the same, using 12 plant signals. (author)

  6. Real-Time Water Quality Monitoring and Habitat Assessment in theSan Luis National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington,Dennis W.

    2005-08-28

    The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing methods were developed to document long-term trends in wetland moist soil vegetation and soil salinity in response to management options such as delaying the initiation of seasonal wetland drainage. These environmental management tools provide wetland managers with some of the tools necessary to improve salinity conditions in the San Joaquin River and improve compliance with State mandated salinity objectives without inflicting long-term harm on the wild fowl habitat resource.

  7. An Accelerometer-Based Sensor System for Real-Time Bridge Scour Monitoring

    Directory of Open Access Journals (Sweden)

    Yi-Jie Hsieh

    2015-11-01

    Full Text Available With the fast global climate change, many bridge structures are facing the nature disasters such as earthquakes and floods. The damage of bridges can cause the severe cost of human life and property. The heavy rain brought by the typhoon in July and August in Taiwan causes the bridge scour and makes the damage or collapse for bridges. Since scour is one of the major causes for bridge failure, how to monitor the bridge scour becomes an important task in Taiwan. This paper presents a real-time bridge scour monitoring system based on accelerometer sensors. The presented sensor network consists of a gateway node and under-water sensor nodes with the wired RS-485 communication protocol. The proposed master-slave architecture of the bridge scour monitoring system owns the scalability and flexibility and is setup in the field currently. The experimental results in the field show the presented sensor system can detect the bridge scour effectively with our proposed scour detection algorithm in real time.

  8. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  9. Off-line and real-time monitoring of acetaminophen photodegradation by an electrochemical sensor.

    Science.gov (United States)

    Berto, Silvia; Carena, Luca; Chiavazza, Enrico; Marletti, Matteo; Fin, Andrea; Giacomino, Agnese; Malandrino, Mery; Barolo, Claudia; Prenesti, Enrico; Vione, Davide

    2018-08-01

    The photochemistry of N-acetyl-para-aminophenol (acetaminophen, APAP) is here investigated by using differential pulse voltammetry (DPV) analysis to monitor APAP photodegradation upon steady-state irradiation. The purpose of this work is to assess the applicability of DPV to monitor the photochemical behaviour of xenobiotics, along with the development of an electrochemical set-up for the real-time monitoring of APAP photodegradation. We here investigated the APAP photoreactivity towards the main photogenerated reactive transients species occurring in sunlit surface waters (hydroxyl radical HO, carbonate radical CO 3 - , excited triplet state of anthraquinone-2-sulfonate used as proxy of the chromophoric DOM, and singlet oxygen 1 O 2 ), and determined relevant kinetic parameters. A standard procedure based on UV detection coupled with liquid chromatography (HPLC-UV) was used under identical experimental conditions to compare and verify the DPV-based results. The latter were in agreement with HPLC data, with the exception of the triplet-sensitized processes. In the other cases, DPV could be used as an alternative to the well-tested but more costly and time-consuming HPLC-UV technique. We have also assessed the reaction rate constant between APAP and HO by real-time DPV, which allowed for the monitoring of APAP photodegradation inside the irradiation chamber. Unfortunately, real-time DPV measurements are likely to be affected by temperature variations of the irradiated samples. Overall, DPV appeared as a fast, cheap and reasonably reliable technique when used for the off-line monitoring of APAP photodegradation. When a suitable real-time procedure is developed, it could become a very straightforward method to study the photochemical behaviour of electroactive xenobiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    International Nuclear Information System (INIS)

    Baldi, Simone; Quang, Thuan Le; Holub, Ondrej; Endel, Petr

    2017-01-01

    Highlights: • Fully-fledged set of fault detection and diagnosis tools for condensing boilers. • Detection of boiler performance degradation in condensing and noncondensing mode. • Virtual sensing for estimation of water mass flow rate. • Optimal Kalman detection of actuator and sensor faults. • Structural properties for detection and isolation of faults. - Abstract: Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12% increased efficiency. Many countries have encouraged the use of condensing boilers with financial incentives. It is thus important to develop software tools to assess the correct functioning of the boiler and eventually detect problems. Current monitoring tools are based on boiler static maps and on large sets of historical data, and are unable to assess timely loss of performance due to degradation of the efficiency curve or water leakages. This work develops a set of fault detection and diagnosis tools for dynamic energy efficiency monitoring and assessment in condensing boilers, i.e. performance degradation and faults can be detected using real-time measurements: this real-time feature is particularly relevant because of the limited amount of data that can be stored by state-of-the-art building energy management systems. The monitoring tools are organized as follows: a bimodal parameter estimator to detect deviations of the efficiency of the boiler from nominal values in both condensing and noncondensing mode; a virtual sensor for the estimation of the water mass flow rate; filters to detect actuator and sensor faults, possibly due to control and sensing problems. Most importantly, structural properties for detection and isolation of actuators and sensing faults are given: these properties are

  11. Real-Time Monitoring of Water Content in Sandy Soil Using Shear Mode Piezoceramic Transducers and Active Sensing—A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Qingzhao Kong

    2017-10-01

    Full Text Available A quantitative understanding of soil water content or soil water status is of great importance to many applications, such as landslide monitoring, rockfill dam health monitoring, precision agriculture, etc. In this paper, a feasibility study was conducted to monitor the soil water content in real time using permanent embedded piezoceramic-based transducers called smart aggregates (SAs. An active sensing approach using a customized swept acoustic wave with a frequency range between 100 Hz and 300 kHz was used to study the wave attenuation in the soil in correlation to soil moisture levels. Two sandy soil specimens, each embedded with a pair of SAs, were made in the laboratory, and the water percentage of the soil specimens was incrementally decreased from 15% to 3% during the tests. Due to the change of the soil water status, the damping property of the soil correspondingly changes. The change of the damping property results in the variation of the acoustic wave attenuation ratios. A wavelet packet-based energy index was adopted to compute the energy of the signal captured by the SA sensor. Experimental results show a parabolic growth curve of the received signal energy vs. the water percentage of the soil. The feasibility, sensitivity, and reliability of the proposed method for in-situ monitoring of soil water status were discussed.

  12. Simultaneous real-time monitoring of multiple cortical systems.

    Science.gov (United States)

    Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin

    2014-10-01

    Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our

  13. Attention focussing and anomaly detection in real-time systems monitoring

    Science.gov (United States)

    Doyle, Richard J.; Chien, Steve A.; Fayyad, Usama M.; Porta, Harry J.

    1993-01-01

    In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data.

  14. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  15. A review of tritium-in-water monitors

    International Nuclear Information System (INIS)

    Surette, R.A.; McElroy, R.G.C.

    1986-11-01

    The current status of tritium-in-water monitors is reviewed. It is argued that the main short-coming of existing tritium-in-water monitors is imperfections in the sample delivery. Most of the liquid and solid scintillation detectors are adequately sensitive for real time monitoring applications. Although other techniques for detecting tritium-in-water are possible they all suffer from the same sample delivery problems and are either insensitive, costly, complicated or not applicable for real time monitoring. 25 refs

  16. Real-time electron-beam dose monitoring

    International Nuclear Information System (INIS)

    McKeown, J.

    1995-01-01

    A new technique to monitor the integrated dose that a product receives in an irradiation facility is determined by collecting the charge that passes through the product. The technique allows the absorbed dose to be monitored as the irradiation is taking place, i.e. on-line and in real time. The procedure will also provide a means of directly measuring the electron energy, independent of the accelerator control system. The irradiation plant operator can immediately detect a problem of inadequate electron energy and take appropriate action. Examples taken on the IMPELA trademark accelerator at the Iotron Irradiation Facility in Vancouver are presented

  17. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  18. RadNet Real-Time Monitoring Spectrometry Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The RadNet Real-Time Monitoring Spectrometry Data Inventory contains measured data used to identify and measure specific radioactive materials in the atmosphere at...

  19. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  20. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  1. Near real-time analysis of tritium in treated water

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    The Tokyo Electric Power Company (TEPCO) is managing large quantities of treated water at the Fukushima Daiichi Nuclear Power Station. Moving forward, TEPCO will be discharging from the site clean water that meets agreed criteria. As part of agreements with stakeholders, TEPCO is planning to carefully monitor the water prior to discharge to assure compliance. The objective of this proposal is to support implementation of an on-line “real-time” (continuous or semi-continuous) tritium monitor that will reliably measure levels down to the agreed target 1500 Becquerels per liter (Bq/L).

  2. Radiation environmental real-time monitoring and dispersion modelling

    International Nuclear Information System (INIS)

    Kovacik, Andrej; Bartokova, Ivana; Melicherova, Terezia; Omelka, Jozef

    2015-01-01

    The MicroStep-MIS system of real-time radiation monitoring, which provides a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data, is described and discussed in detail. The qualities, long-term stability of measurement and sensitivity of the RPSG-05 probe are illustrated on its use within the radiation monitoring network of the Slovak Hydrometeorological Institute and within the monitoring network in the United Arab Emirates. (orig.)

  3. Real time n/γ discrimination for the JET neutron profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M., E-mail: marco.riva@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.P. 65, Frascati I-00044, Roma (Italy); Esposito, B.; Marocco, D.; Belli, F. [Associazione EURATOM-ENEA sulla Fusione, C.P. 65, Frascati I-00044, Roma (Italy); Syme, B. [EURATOM/CCFE Fusion Association, OX14 3DB Abingdon (United Kingdom); Giacomelli, L. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, 20100 Milano (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2013-10-15

    Highlights: ► Development of a pulse oriented acquisition system able for the JET neutron profile monitor to separate neutron and gamma pulses. ► Description of the FPGA hardware architecture. ► Comparison between the off-line and real time neutron count rates from the last JET experimental campaign. ► Estimate of the maximum sustainable count rate of the system. ► Statistical analysis of neutron measurements from JET neutron profile monitor and neutron monitors. -- Abstract: The JET neutron profile monitor provides the measurement of the neutron flux along 19 collimated lines of sight from which the neutron emissivity profile can be obtained through reconstruction based on inversion methods. The neutron detectors are liquid organic scintillators featuring n/γ pulse shape discrimination. A recent digital upgrade of the neutron profile monitor acquisition system (200 MSamples/s sampling rate per channel, 14 bit resolution) offers new real-time capabilities. An algorithm performing real-time n/γ discrimination by means of the charge comparison method is implemented in the acquisition system FPGA. The algorithm produces two distinct count rates (n and γ) that are sent to the JET real time network ready for control applications and are simultaneously stored into the JET archive together with all the samples of each pulse. The paper describes the architecture of the FPGA implementation and reports the analysis of data collected during the 2011–2012 JET campaigns. The comparison between the real-time and post-processed (off-line) neutron count rates shows an agreement within 5% for all 19 detectors. Moreover, it is shown that the maximum count rate sustainable by the acquisition system when storing raw data (∼900 kHz as evaluated in laboratory tests) can be extended up to 5 MHz when using the real-time implementation with no local data storage. Finally, a statistical analysis of the ratio between the line-integrated measurements from the neutron profile

  4. Intelligent data management for real-time spacecraft monitoring

    Science.gov (United States)

    Schwuttke, Ursula M.; Gasser, Les; Abramson, Bruce

    1992-01-01

    Real-time AI systems have begun to address the challenge of restructuring problem solving to meet real-time constraints by making key trade-offs that pursue less than optimal strategies with minimal impact on system goals. Several approaches for adapting to dynamic changes in system operating conditions are known. However, simultaneously adapting system decision criteria in a principled way has been difficult. Towards this end, a general technique for dynamically making such trade-offs using a combination of decision theory and domain knowledge has been developed. Multi-attribute utility theory (MAUT), a decision theoretic approach for making one-time decisions is discussed and dynamic trade-off evaluation is described as a knowledge-based extension of MAUT that is suitable for highly dynamic real-time environments, and provides an example of dynamic trade-off evaluation applied to a specific data management trade-off in a real-world spacecraft monitoring application.

  5. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  6. Efficiency investigation of an offshore deoiling hydrocyclone using real-time fluorescence- and microscopy-based monitors

    DEFF Research Database (Denmark)

    Hansen, Dennis S.; Bram, Mads Valentin; Yang, Zhenyu

    2017-01-01

    Offshore oil & gas production is facing an increasing challenge as the water fraction from the production wells rises over time. It is not uncommon that the extracted mixture contains a water-cut of more than 90%. The current North Sea discharge legislation states that the dispersed oil concentra......Offshore oil & gas production is facing an increasing challenge as the water fraction from the production wells rises over time. It is not uncommon that the extracted mixture contains a water-cut of more than 90%. The current North Sea discharge legislation states that the dispersed oil...... concentration in water must be less than 30 parts per million (ppm). Consequently, the discharge ports are sampled two times per day and analyzed using the OSPAR recommended GC-FID method. However, the variations of Oil-in-Water (OiW) concentration between sampling time points are unknown and could exceed...... the regulatory limits. This sampling method is commonly used since the current real-time OiW monitoring technology is still quite open and immature. This work focuses on experimental investigation of reliability and accuracy of selected real-time OiW measuring technologies based on two available commercial...

  7. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  8. A real-time intercepting beam-profile monitor for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  9. A knowledge-based system framework for real-time monitoring applications

    International Nuclear Information System (INIS)

    Heaberlin, J.O.; Robinson, A.H.

    1989-01-01

    A real-time environment presents a challenge for knowledge-based systems for process monitoring with on-line data acquisition in nuclear power plants. These applications are typically data intensive. This, coupled with the dynamic nature of events on which problematic decisions are based, requires the development of techniques fundamentally different from those generally employed. Traditional approaches involve knowledge management techniques developed for static data, the majority of which is elicited directly from the user in a consultation environment. Inference mechanisms are generally noninterruptible, requiring all appropriate rules to be fired before new data can be accommodated. As a result, traditional knowledge-based applications in real-time environments have inherent problems in dealing with the time dependence of both the data and the solution process. For example, potential problems include obtaining a correct solution too late to be of use or focusing computing resources on problems that no longer exist. A knowledge-based system framework, the real-time framework (RTF), has been developed that can accommodate the time dependencies and resource trade-offs required for real-time process monitoring applications. This framework provides real-time functionality by using generalized problem-solving goals and control strategies that are modifiable during system operation and capable of accommodating feedback for redirection of activities

  10. Universal SaaS platform of internet of things for real-time monitoring

    Science.gov (United States)

    Liu, Tongke; Wu, Gang

    2018-04-01

    Real-time monitoring service, as a member of the IoT (Internet of Things) service, has a wide range application scenario. To support rapid construction and deployment of applications and avoid repetitive development works in these processes, this paper designs and develops a universal SaaS platform of IoT for real-time monitoring. Evaluation shows that this platform can provide SaaS service to multiple tenants and achieve high real-time performance under the situation of large amount of device access.

  11. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiwei; Sheng, Shuangwen

    2018-02-01

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  12. Real-Time Spatial Monitoring of Vehicle Vibration Data as a Model for TeleGeoMonitoring Systems

    OpenAIRE

    Robidoux, Jeff

    2005-01-01

    This research presents the development and proof of concept of a TeleGeoMonitoring (TGM) system for spatially monitoring and analyzing, in real-time, data derived from vehicle-mounted sensors. In response to the concern for vibration related injuries experienced by equipment operators in surface mining and construction operations, the prototype TGM system focuses on spatially monitoring vehicle vibration in real-time. The TGM vibration system consists of 3 components: (1) Data Acquisition ...

  13. Optimized Scheduling of Smart Meter Data Access for Real-time Voltage Quality Monitoring

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Olsen, Rasmus Løvenstein; Schwefel, Hans-Peter

    2018-01-01

    Abstract—Active low-voltage distribution grids that support high integration of distributed generation such as photovoltaics and wind turbines require real-time voltage monitoring. At the same time, countries in Europe such as Denmark have close to 100% rollout of smart metering infrastructure....... The metering infrastructure has limitations to provide real-time measurements with small-time granularity. This paper presents an algorithm for optimized scheduling of smart meter data access to provide real-time voltage quality monitoring. The algorithm is analyzed using a real distribution grid in Denmark...

  14. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  15. Real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-01-01

    At Lawrence Livermore National Laboratory (LLNL) we have developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation, which computes a three-dimensional numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 yr within the U.S. Department of Energy's Atmospheric Release Advisory Capability (ARAC) project. Faster workstations and real-time instruments allow utilization of more complex three-dimensional models, which provides a foundation for building a real-time monitoring and emergency response workstation for a tritium facility. The stack monitors are two ion chambers per stack

  16. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  17. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  18. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  19. Field Demonstration of Real-Time Wind Turbine Foundation Strain Monitoring.

    Science.gov (United States)

    Rubert, Tim; Perry, Marcus; Fusiek, Grzegorz; McAlorum, Jack; Niewczas, Pawel; Brotherston, Amanda; McCallum, David

    2017-12-31

    Onshore wind turbine foundations are generally over-engineered as their internal stress states are challenging to directly monitor during operation. While there are industry drivers to shift towards more economical foundation designs, making this transition safely will require new monitoring techniques, so that the uncertainties around structural health can be reduced. This paper presents the initial results of a real-time strain monitoring campaign for an operating wind turbine foundation. Selected reinforcement bars were instrumented with metal packaged optical fibre strain sensors prior to concrete casting. In this paper, we outline the sensors' design, characterisation and installation, and present 67 days of operational data. During this time, measured foundation strains did not exceed 95 μ ϵ , and showed a strong correlation with both measured tower displacements and the results of a foundation finite element model. The work demonstrates that real-time foundation monitoring is not only achievable, but that it has the potential to help operators and policymakers quantify the conservatism of their existing design codes.

  20. Novel Real-Time Flight Envelope Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  1. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    Science.gov (United States)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  2. Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat

    Directory of Open Access Journals (Sweden)

    Andouglas Goncalves da Silva Junior

    2016-08-01

    Full Text Available Problems related to quality (and quantity of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points.

  3. Towards a Real-Time Embedded System for Water Monitoring Installed in a Robotic Sailboat.

    Science.gov (United States)

    Silva Junior, Andouglas Goncalves da; Lima Sa, Sarah Thomaz de; Santos, Davi Henrique Dos; Negreiros, Álvaro Pinto Ferrnandes de; Souza Silva, João Moreno Vilas Boas de; Álvarez Jácobo, Justo Emílio; Garcia Gonçalves, Luiz Marcos

    2016-08-08

    Problems related to quality (and quantity) of water in natural resources or in artificial reservoirs are frequently arising and are at the center of attention of authorities and governments around the world. Many times the monitoring is not performed in an efficient time frame and a precise manner, whereas the adoption of fast and punctual solutions would undoubtedly improve the water quality and consequently enhance the life of people. To minimize or diminish such kinds of problems, we propose an architecture for sensors installed in a robotic platform, an autonomous sail boat, able to acquire raw data relative to water quality, to process and make them available to people that might be interested in such information. The main contributions are the sensors architecture itself, which uses low cost sensors, with practical experimentation done with a prototype. Results show data collected for points in lakes and rivers in the northeast of Brazil. This embedded system is fixed in the sailboat robot with the intention to facilitate the study of water quality for long endurance missions. This robot can help monitoring water bodies in a more consistent manner. Nonetheless the system can also be used with fixed vases or buoys in strategic points.

  4. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    Science.gov (United States)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  5. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  6. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  7. Development of an intelligent hydroinformatic system for real-time monitoring and assessment of civil infrastructure

    Science.gov (United States)

    Cahill, Paul; Michalis, Panagiotis; Solman, Hrvoje; Kerin, Igor; Bekic, Damir; Pakrashi, Vikram; McKeogh, Eamon

    2017-04-01

    With the effects of climate change becoming more apparent, extreme weather events are now occurring with greater frequency throughout the world. Such extreme events have resulted in increased high intensity flood events which are having devastating consequences on hydro-structures, especially on bridge infrastructure. The remote and often inaccessible nature of such bridges makes inspections problematic, a major concern if safety assessments are required during and after extreme flood events. A solution to this is the introduction of smart, low cost sensing solutions at locations susceptible to hydro-hazards. Such solutions can provide real-time information on the health of the bridge and its environments, with such information aiding in the mitigation of the risks associated with extreme weather events. This study presents the development of an intelligent system for remote, real-time monitoring of hydro-hazards to bridge infrastructure. The solution consists of two types of remote monitoring stations which have the capacity to monitor environmental conditions and provide real-time information to a centralized, big data database solution, from which an intelligent decision support system will accommodate the results to control and manage bridge, river and catchment assets. The first device developed as part of the system is the Weather Information Logging Device (WILD), which monitors rainfall, temperature and air and soil moisture content. The ability of the WILD to monitor rainfall in real time enables flood early warning alerts and predictive river flow conditions, thereby enabling decision makers the ability to make timely and effective decisions about critical infrastructures in advance of extreme flood events. The WILD is complemented by a second monitoring device, the Bridge Information Recording Device (BIRD), which monitors water levels at a given location in real-time. The monitoring of water levels of a river allows for, among other applications

  8. Radiological safety system based on real-time tritium-in-air monitoring indoors and in effluents

    International Nuclear Information System (INIS)

    Bidica, N.; Sofalca, N; Balteanu, O.; Srefan, I.

    2006-01-01

    Exposure to tritium is an important health hazard in any tritium processing facility so that implementing a real-time tritium monitoring system is necessary for its operation in safety conditions. The tritium processing facility operators need to be informed at any time about the in-air tritium concentration indoors or in the stack effluents, in order to detect immediately any leaks in tritium containments, or any releases inside the buildings or to the environment. This information is very important for adopting if necessary protection measures and correcting actions as quickly as possible. In this paper we describe an improved real-time tritium monitoring system designed for the Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The design of the Radiological Safety System implemented for the ICIT Water Detritiation Pilot Plant is intended to provide the maximum safety level based on the ALARA concept. The main functions of tritium monitoring system are: - monitoring the working areas and gaseous effluents by determination of the tritium-in-air activity concentration; - local and remote data display; - assessing of environment dose equivalent rates and dose equivalents in the working environment (for personnel exposure control and work planning); - assessing the total tritium activity released to the environment through ventilation exhaust stack; - safety functions, i.e., local and remote, locking/unlocking personnel access, process shut-down in emergency conditions and start of the air cleaning systems. With all these features our tritium monitoring system is really a safety system adequate for personnel and environmental protection. (authors)

  9. Real-time beam monitoring in scanned proton therapy

    Science.gov (United States)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  10. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Directory of Open Access Journals (Sweden)

    Guenter Karl Schiepek

    2016-05-01

    Full Text Available AbstractObjective. The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients’ compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific surveys. Methods. The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results. We found high compliance rates (mean: 78.3%, median: 89.4% amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion. The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities.

  11. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    Science.gov (United States)

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  12. A real time monitoring system

    International Nuclear Information System (INIS)

    Fontanini, Horacio; Galdoz, Erwin

    1989-01-01

    A real time monitoring system is described. It was initially developed to be used as a man-machine interface between a basic principles simulator of the Embalse Nuclear Power Plant and the operators. This simulator is under construction at the Bariloche Atomic Center's Process Control Division. Due to great design flexibility, this system can also be used in real plants. The system is designed to be run on a PC XT or AT personal computer with high resolution graphics capabilities. Three interrelated programs compose the system: 1) Graphics Editor, to build static image to be used as a reference frame where to show dynamically updated data. 2) Data acquisition and storage module. It is a memory resident module to acquire and store data in background. Data can be acquired and stored without interference with the operating system, via serial port or through analog-to-digital converter attached to the personal computer. 3) Display module. It shows the acquired data according to commands received from configuration files prepared by the operator. (Author) [es

  13. Algorithm Development for a Real-Time Military Noise Monitor

    National Research Council Canada - National Science Library

    Vipperman, Jeffrey S; Bucci, Brian

    2006-01-01

    The long-range goal of this 1-year SERDP Exploratory Development (SEED) project was to create an improved real-time, high-energy military impulse noise monitoring system that can detect events with peak levels (Lpk...

  14. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  15. Towards a Near Real-Time Satellite-Based Flux Monitoring System for the MENA Region

    Science.gov (United States)

    Ershadi, A.; Houborg, R.; McCabe, M. F.; Anderson, M. C.; Hain, C.

    2013-12-01

    Satellite remote sensing has the potential to offer spatially and temporally distributed information on land surface characteristics, which may be used as inputs and constraints for estimating land surface fluxes of carbon, water and energy. Enhanced satellite-based monitoring systems for aiding local water resource assessments and agricultural management activities are particularly needed for the Middle East and North Africa (MENA) region. The MENA region is an area characterized by limited fresh water resources, an often inefficient use of these, and relatively poor in-situ monitoring as a result of sparse meteorological observations. To address these issues, an integrated modeling approach for near real-time monitoring of land surface states and fluxes at fine spatio-temporal scales over the MENA region is presented. This approach is based on synergistic application of multiple sensors and wavebands in the visible to shortwave infrared and thermal infrared (TIR) domain. The multi-scale flux mapping and monitoring system uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI), and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in conjunction with model reanalysis data and multi-sensor remotely sensed data from polar orbiting (e.g. Landsat and MODerate resolution Imaging Spectroradiometer (MODIS)) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate time-continuous (i.e. daily) estimates of field-scale water, energy and carbon fluxes. Within this modeling system, TIR satellite data provide information about the sub-surface moisture status and plant stress, obviating the need for precipitation input and a detailed soil surface characterization (i.e. for prognostic modeling of soil transport processes). The STARFM fusion methodology blends aspects of high frequency (spatially coarse) and spatially fine resolution sensors and is applied directly to flux output

  16. Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients.

    Science.gov (United States)

    Triantafyllopoulos, Dimitrios; Korvesis, Panagiotis; Mporas, Iosif; Megalooikonomou, Vasileios

    2016-03-01

    New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient's physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.

  17. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  18. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Castro, R.; Kneupner, K.; Vega, J.; De Arcas, G.; Lopez, J.M.; Purahoo, K.; Murari, A.; Fonseca, A.; Pereira, A.; Portas, A.

    2010-01-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  19. Real-time remote diagnostic monitoring test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@ciemat.e [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Kneupner, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid, Grupo I2A2, Madrid (Spain); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); Fonseca, A. [Associacao EURATOM/IST, Lisbon (Portugal); Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  20. A real-time, wearable elemental carbon monitor for use in underground mines

    International Nuclear Information System (INIS)

    Takiff, L.; Aiken, G.

    2010-01-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  1. A real-time, wearable elemental carbon monitor for use in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Takiff, L. [ICx Technologies, Cambridge, MA (United States); Aiken, G. [ICx Technologies, Albuquerque, NM (United States)

    2010-07-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  2. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  3. Liquid microjet - a new tool for environmental water quality monitoring?

    International Nuclear Information System (INIS)

    Holstein, W.; Buntine, M.

    2001-01-01

    Our ability to provide real-time, cost-effective and efficient technologies for water quality monitoring remains a critical global environmental research issue. Each year, ground and surface waterways around the world, the global marine environment and the especially-fragile interzonal estuarine ecosystems are being placed under severe stress due to ever-increasing levels of pollutants entering the earth's aquasphere. An almost revolutionary breakthrough in water quality monitoring would be achieved with the development of a real-time, broad-spectrum chemical analysis technology. In this article, a real-time mass spectrometric based water quality monitoring centre around in vacuo liquid microjet injection methodologies is presented

  4. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Kneupner, K.; Purahoo, K. [EURATOM/UKAEA Fusion Association, Abingdon (United Kingdom); Vega, J.; Pereira, A.; Portas, A. [Association EuratomCIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid (Spain); Murari, A. [Consorzio RFX, Padova (Italy); Fonseca, A. [Associacao URATOM/IST, Lisboa (Portugal); Contributors, J.E. [JET-EFDA, Abingdon (United Kingdom)

    2009-07-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  5. Real-time trend monitoring of gas compressor stations

    Energy Technology Data Exchange (ETDEWEB)

    Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  6. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  7. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    Directory of Open Access Journals (Sweden)

    Fabrizio Taffoni

    2018-01-01

    Full Text Available Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR, heart rate (HR, and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules.

  8. Real-time monitoring for fast deformations using GNSS low-cost receivers

    Directory of Open Access Journals (Sweden)

    T. Bellone

    2016-03-01

    Full Text Available Landslides are one of the major geo-hazards which have constantly affected Italy especially over the last few years. In fact 82% of the Italian territory is affected by this phenomenon which destroys the environment and often causes deaths: therefore it is necessary to monitor these effects in order to detect and prevent these risks. Nowadays, most of this type of monitoring is carried out by using traditional topographic instruments (e.g. total stations or satellite techniques such as global navigation satellite system (GNSS receivers. The level of accuracy obtainable with these instruments is sub-centimetrical in post-processing and centimetrical in real-time; however, the costs are very high (many thousands of euros. The rapid diffusion of GNSS networks has led to an increase of using mass-market receivers for real-time positioning. In this paper, the performances of GNSS mass-market receiver are reported with the aim of verifying if this type of sensor can be used for real-time landslide monitoring: for this purpose a special slide was used for simulating a landslide, since it enabled us to give manual displacements thanks to a micrometre screw. These experiments were also carried out by considering a specific statistical test (a modified Chow test which enabled us to understand if there were any displacements from a statistical point of view in real time. The tests, the algorithm and results are reported in this paper.

  9. A real-time non-contact monitoring method of subsea pipelines

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2015-01-01

    Full Text Available To monitoring the subsea pipeline in real-time, a special potentiometric sensor array and a potential prediction model are presented in this paper. Firstly, to measure the potential of seawater, a special potentiometric sensor array with Ag/AgCl all-solid-state reference electrodes is first developed in this paper. Secondly, according to the obtained distribution law of electric field intensities a prediction model of the pipeline potentials is developed. Finally, the potentiometric sensor array is applied in sink experiment and the prediction model is validated by the sink measurements. The maximum error for pipeline potential prediction model is 1.1 mV. The proposed non-contact monitoring method for subsea pipeline can predict the potential of sea pipeline in real-time, thus providing important information for further subsea pipeline maintenance.

  10. Results of Geoenvironmental Studies (2013-2014) Applied to a Monitoring Water Quality Network in Real Time in the Atoyac River (upstream) Puebla, Mexico.

    Science.gov (United States)

    Rodriguez-Espinosa, P. F.; Tavera, E. M.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    Results of geoenvironment studies, referents to geochemistry, weathering, size, mineral composition, and metals contained in sediments and physicochemical parameters of water in urban rivers associated with dam are presented. Emphasis on the interpretation of these results, was detect environmental susceptibility areas associated at the water quality in Upper basin of Atoyac River, Puebla, Mexico. The environmental sub secretary of the state government of Puebla, Mexico has initiated actions to clean up the urban Atoyac River, with measurements of physicochemical parameters associated of the water quality in real-time monitoring and sampling network along the river. The results identified an important role in the rivers, not only to receive and transport the contaminants associated with sedimentological and geochemical conditions, but magnified the effects of pollutant discharges. A significant concentration of hazardous metals in sediments of the dam, reflecting the geo-environmental conditions of anthropogenic Valsequillo Dam induction was determined. For example, a moderately contaminated Pb contaminated extreme class, and Cu and Zn contaminated with moderate to heavy contaminated under geoenvironment class index. Large concentration of clay minerals with larger surface areas was found there in the study, the minerals are definitely the fittest in nature to accept on their surfaces constitution of metals, metalloids and other contaminants which were reflected in the Geoenvironmental index. The results of the studies performed here enable us to locate monitoring stations and sampling network to physicochemical parameters in real time, in the areas of higher contamination found in geoenvironmental studies Atoyac High River Basin. Similarly, we can elucidate the origin of pollutants and monitoring agents reflected in BOD5 (223 mg / l) and COD (610 mg / l), suspended solids totals (136 mg / l) and dissolved solids totals (840 mg / l), in others. Recent hydrometric

  11. Near-Real-Time Monitoring of Insect Defoliation Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Valerie J. Pasquarella

    2017-07-01

    Full Text Available Introduced insects and pathogens impact millions of acres of forested land in the United States each year, and large-scale monitoring efforts are essential for tracking the spread of outbreaks and quantifying the extent of damage. However, monitoring the impacts of defoliating insects presents a significant challenge due to the ephemeral nature of defoliation events. Using the 2016 gypsy moth (Lymantria dispar outbreak in Southern New England as a case study, we present a new approach for near-real-time defoliation monitoring using synthetic images produced from Landsat time series. By comparing predicted and observed images, we assessed changes in vegetation condition multiple times over the course of an outbreak. Initial measures can be made as imagery becomes available, and season-integrated products provide a wall-to-wall assessment of potential defoliation at 30 m resolution. Qualitative and quantitative comparisons suggest our Landsat Time Series (LTS products improve identification of defoliation events relative to existing products and provide a repeatable metric of change in condition. Our synthetic-image approach is an important step toward using the full temporal potential of the Landsat archive for operational monitoring of forest health over large extents, and provides an important new tool for understanding spatial and temporal dynamics of insect defoliators.

  12. Real-time well condition monitoring in extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Kucs, R.; Spoerker, H.F. [OMV Austria Exploration and Production GmbH, Gaenserndorf (Austria); Thonhauser, G. [Montanuniversitaet Leoben (Austria)

    2008-10-23

    Ever rising daily operating cost for offshore operations make the risk of running into drilling problems due to torque and drag developments in extended reach applications a growing concern. One option to reduce cost related to torque and drag problems can be to monitor torque and drag trends in real time without additional workload on the platform drilling team. To evaluate observed torque or drag trends it is necessary to automatically recognize operations and to have a 'standard value' to compare the measurements to. The presented systematic approach features both options - fully automated operations recognition and real time analysis. Trends can be discussed between rig- and shore-based teams, and decisions can be based on up to date information. Since the system is focused on visualization of real-time torque and drag trends, instead of highly complex and repeated simulations, calculation time is reduced by comparing the real-time rig data against predictions imported from a commercial drilling engineering application. The system allows reacting to emerging stuck pipe situations or developing cuttings beds long before the situations become severe enough to result in substantial lost time. The ability to compare real-time data with historical data from the same or other wells makes the system a valuable tool in supporting a learning organization. The system has been developed in a joint research initiative for field application on the development of an offshore heavy oil field in New Zealand. (orig.)

  13. A design proposal of real-time monitoring stations: implementation and performance in contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Jose González

    2012-09-01

    Full Text Available With the aim of creating a real-time monitoring network for both oceanographic and meteorological data, a monitoring station conceptual design was developed. A common framework for software and electronics was adapted to different environmental conditions using two buoy approaches: one intended for oceanic waters, to be moored up to 30-40 m depth, where waves are the critical design factor, and one for continental waters (rivers, lakes and the inner part of estuaries, where currents are the critical design factor. When structures such as bridges are present in the area, the monitoring station can be installed on these structures, thus reducing its impact and increasing safety. In this paper, the design, implementation, operation and performance of these stations are described. A reliability index is calculated for the longest time series of the three related deployment options on the Galician coast: Cíes (oceanic buoy in front of the Ría de Vigo, Catoira (continental buoy in the Ulla river and Cortegada (installation in a bed in the Ría de Arousa.

  14. Cooperating Expert Systems for the Next Generation of Real-time Monitoring Applications

    Science.gov (United States)

    Schwuttke, U.; Veregge, J.; Quan, A.

    1995-01-01

    A distributed monitoring and diagnosis system has been developed and successfully applied to real-time monitoring of interplanetary spacecraft at NASA's Jet Propulsion Laboratory. This system uses a combination of conventional processing and artificial intelligence.

  15. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    Science.gov (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  16. Advances in Scientific Possibilities Offered by Real-Time Monitoring Technology.

    Science.gov (United States)

    Kleiman, Evan M; Nock, Matthew K

    2017-01-01

    There has been a marked increase in research aimed at studying dynamic (e.g., day-to-day, moment-to-moment) changes in mental disorders and related behavior problems. Indeed, the number of scientific papers published that focus on real-time monitoring has been nearly doubling every five years for the past several decades. These methods allow for a more fine-grained description of phenomena of interest as well as for real-world tests of theoretical models of human behavior. Here we comment on the recent study by van Winkel and colleagues (this issue)as an excellent example of the use of real-time monitoring methods to better understand mental disorders. We also discuss the expanding universe of new technologies (e.g., smartphones, wearable biosensors) that can be used to make discoveries about psychopathology and related constructs and describe what we perceive to be some of the most exciting scientific possibilities that can be achieved in the near term by taking advantage of these new and rapidly developing tools.

  17. Implementation of a FPGA-Based Feature Detection and Networking System for Real-time Traffic Monitoring

    OpenAIRE

    Chen, Jieshi; Schafer, Benjamin Carrion; Ho, Ivan Wang-Hei

    2016-01-01

    With the growing demand of real-time traffic monitoring nowadays, software-based image processing can hardly meet the real-time data processing requirement due to the serial data processing nature. In this paper, the implementation of a hardware-based feature detection and networking system prototype for real-time traffic monitoring as well as data transmission is presented. The hardware architecture of the proposed system is mainly composed of three parts: data collection, feature detection,...

  18. Ubiquitous health monitoring and real-time cardiac arrhythmias detection: a case study.

    Science.gov (United States)

    Li, Jian; Zhou, Haiying; Zuo, Decheng; Hou, Kun-Mean; De Vaulx, Christophe

    2014-01-01

    As the symptoms and signs of heart diseases that cause sudden cardiac death, cardiac arrhythmia has attracted great attention. Due to limitations in time and space, traditional approaches to cardiac arrhythmias detection fail to provide a real-time continuous monitoring and testing service applicable in different environmental conditions. Integrated with the latest technologies in ECG (electrocardiograph) analysis and medical care, the pervasive computing technology makes possible the ubiquitous cardiac care services, and thus brings about new technical challenges, especially in the formation of cardiac care architecture and realization of the real-time automatic ECG detection algorithm dedicated to care devices. In this paper, a ubiquitous cardiac care prototype system is presented with its architecture framework well elaborated. This prototype system has been tested and evaluated in all the clinical-/home-/outdoor-care modes with a satisfactory performance in providing real-time continuous cardiac arrhythmias monitoring service unlimitedly adaptable in time and space.

  19. Evaluation of a first mine real time diesel particulate matter (DPM) monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Gillies; Hsin Wei Wu [Gillies Wu Mining Technology (Australia)

    2008-04-15

    The objective of the study was to develop, test and prove up under mine conditions a Diesel Particulate Matter (DPM) real time atmospheric monitoring unit. The design for the new instrument, termed the D-PDM, is based on the recently developed real time respirable dust PDM. The project's main activities were to undertake through internationally recognised laboratory testing an evaluation of the new design and to undertake a comprehensive underground series of tests to establish the robustness and reliability of the new approach. The phases of design, the international laboratory testing and the underground mine evaluation in five operating mines proved that the monitor is capable in normal mine atmospheres of accurately measuring DPM levels in real time. The monitor has successfully reported data when used as a static or stationary instrument, when placed within the cab of a moving vehicle and when worn on a person's belt. The outcomes of the project provide the industry access to an enhanced tool for understanding the presence of DPM in the mine atmosphere.

  20. Simulated real-time process monitoring of a molten salt electrorefiner

    International Nuclear Information System (INIS)

    Rappleye, Devin; Simpson, Michael; Cumberland, Riley; McNelis, David; Yim, Man-Sung

    2014-01-01

    Highlights: • An alternative approach to safeguarding and monitoring pyroprocessing is proposed. • Possible signals to be used to monitor an electrorefiner are identified. • An inverse model was developed to determine deposition rates at the cathode. • The sensitivity of certain parameters in the inverse model are presented. - Abstract: An alternative approach to monitoring the pyrochemical process (pyroprocessing) for spent nuclear fuel treatment is proposed and examined. This approach relies on modeling and the real-time analysis of process readings. Using an electrorefiner model, named ERAD, cathode potential and cell current were identified as useful process readings. To provide a real-time analysis of these two process readings, an inverse model was developed based on fundamental electrochemical relations. The model was applied to the following operating modes: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. Using the cell current and cathode potential, the model predicted which species were depositing and their rates. The deposition rates predicted by the inverse model compared favorably to those calculated by ERAD

  1. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    Science.gov (United States)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  2. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    International Nuclear Information System (INIS)

    Omar, R C; Ismail, A; Khalid, N H N; Din, N M; Hussain, H; Jamaludin, M Z; Abdullah, F; Arazad, A Z; Yusop, H

    2013-01-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300–500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  3. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    Science.gov (United States)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  4. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  5. AQUA-SIT, monitorare la qualità dell’acqua in real time

    Directory of Open Access Journals (Sweden)

    Maria Ioannilli

    2009-03-01

    Full Text Available AQUA-SIT: a real time water quality monitoring system Two spin-off companies from the Tor Vergata University of Rome are jointly developing an innovative system for real-time monitoring of water quality. The new system integrates a set of sensors, hydrological models, models of pollutant diffusion into the water fl ow and an advanced geographic decision support system. It presents contained investment costs and reduced operational costs, thanks to the centralization of information. Although in a prototypical state, the project has already found a strong interest from some stakeholders in Italy.

  6. AQUA-SIT, monitorare la qualità dell’acqua in real time

    Directory of Open Access Journals (Sweden)

    Maria Ioannilli

    2009-03-01

    Full Text Available AQUA-SIT: a real time water quality monitoring systemTwo spin-off companies from the Tor Vergata University of Rome are jointly developing an innovative system for real-time monitoring of water quality. The new system integrates a set of sensors, hydrological models, models of pollutant diffusion into the water fl ow and an advanced geographic decision support system. It presents contained investment costs and reduced operational costs, thanks to the centralization of information. Although in a prototypical state, the project has already found a strong interest from some stakeholders in Italy.

  7. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  8. Real-time monitoring of a microbial electrolysis cell using an electrical equivalent circuit model.

    Science.gov (United States)

    Hussain, S A; Perrier, M; Tartakovsky, B

    2018-04-01

    Efforts in developing microbial electrolysis cells (MECs) resulted in several novel approaches for wastewater treatment and bioelectrosynthesis. Practical implementation of these approaches necessitates the development of an adequate system for real-time (on-line) monitoring and diagnostics of MEC performance. This study describes a simple MEC equivalent electrical circuit (EEC) model and a parameter estimation procedure, which enable such real-time monitoring. The proposed approach involves MEC voltage and current measurements during its operation with periodic power supply connection/disconnection (on/off operation) followed by parameter estimation using either numerical or analytical solution of the model. The proposed monitoring approach is demonstrated using a membraneless MEC with flow-through porous electrodes. Laboratory tests showed that changes in the influent carbon source concentration and composition significantly affect MEC total internal resistance and capacitance estimated by the model. Fast response of these EEC model parameters to changes in operating conditions enables the development of a model-based approach for real-time monitoring and fault detection.

  9. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    Science.gov (United States)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  10. GSM based real time remote radiation monitoring and mapping system

    International Nuclear Information System (INIS)

    Dodiya, Kamal; Gupta, Ashutosh; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Mobile Radiological Impact Assessment Laboratory (M-RIAL) has been developed in Radiation Safety Systems Division, Bhabha Atomic Research Centre for carrying out assessment of radioactive contamination following a nuclear or radiological emergency in a nuclear facility or in public domain. During such situations a large area is to be monitored for radiological impact assessment and availability of the monitored data in real-time to a control centre is a great advantage for the decision makers. Development and application of such a system has been described in this paper. The system can transmit real-time radiological data, acquired by the universal counting system of M-RIAL and tagged with positional information, wirelessly to an Emergency Response Centre (ERC) using Global System for Mobile (GSM) communication. The radiological profile of the affected area is then superimposed on Geographical Information System (GIS) at the ERC and which can be used for the generation of radiological impact maps for use as decision support

  11. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  12. Design of a real-time tax-data monitoring intelligent card system

    Science.gov (United States)

    Gu, Yajun; Bi, Guotang; Chen, Liwei; Wang, Zhiyuan

    2009-07-01

    To solve the current problem of low efficiency of domestic Oil Station's information management, Oil Station's realtime tax data monitoring system has been developed to automatically access tax data of Oil pumping machines, realizing Oil-pumping machines' real-time automatic data collection, displaying and saving. The monitoring system uses the noncontact intelligent card or network to directly collect data which can not be artificially modified and so seals the loopholes and improves the tax collection's automatic level. It can perform real-time collection and management of the Oil Station information, and find the problem promptly, achieves the automatic management for the entire process covering Oil sales accounting and reporting. It can also perform remote query to the Oil Station's operation data. This system has broad application future and economic value.

  13. Real-time monitoring and control of the plasma hearth process

    International Nuclear Information System (INIS)

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-01-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface

  14. Autonomous nutrient detection for water quality monitoring

    OpenAIRE

    Maher, Damien; Cleary, John; Cogan, Deirdre; Diamond, Dermot

    2012-01-01

    The ever increasing demand for real time environmental monitoring is currently being driven by strong legislative and societal drivers. Low cost autonomous environmental monitoring systems are required to meet this demand as current monitoring solutions are insufficient. This poster presents an autonomous nutrient analyser platform for water quality monitoring. Results from a field trial of the nutrient analyser are reported along with current work to expand the range of water quality targ...

  15. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    Science.gov (United States)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  16. Performance results of cooperating expert systems in a distributed real-time monitoring system

    Science.gov (United States)

    Schwuttke, U. M.; Veregge, J. R.; Quan, A. G.

    1994-01-01

    There are numerous definitions for real-time systems, the most stringent of which involve guaranteeing correct system response within a domain-dependent or situationally defined period of time. For applications such as diagnosis, in which the time required to produce a solution can be non-deterministic, this requirement poses a unique set of challenges in dynamic modification of solution strategy that conforms with maximum possible latencies. However, another definition of real time is relevant in the case of monitoring systems where failure to supply a response in the proper (and often infinitesimal) amount of time allowed does not make the solution less useful (or, in the extreme example of a monitoring system responsible for detecting and deflecting enemy missiles, completely irrelevant). This more casual definition involves responding to data at the same rate at which it is produced, and is more appropriate for monitoring applications with softer real-time constraints, such as interplanetary exploration, which results in massive quantities of data transmitted at the speed of light for a number of hours before it even reaches the monitoring system. The latter definition of real time has been applied to the MARVEL system for automated monitoring and diagnosis of spacecraft telemetry. An early version of this system has been in continuous operational use since it was first deployed in 1989 for the Voyager encounter with Neptune. This system remained under incremental development until 1991 and has been under routine maintenance in operations since then, while continuing to serve as an artificial intelligence (AI) testbed in the laboratory. The system architecture has been designed to facilitate concurrent and cooperative processing by multiple diagnostic expert systems in a hierarchical organization. The diagnostic modules adhere to concepts of data-driven reasoning, constrained but complete nonoverlapping domains, metaknowledge of global consequences of anomalous

  17. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  18. Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems.

    Science.gov (United States)

    da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre

    2012-08-13

    By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

  19. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring

    OpenAIRE

    Martín Furones, Ángel Esteban; Anquela Julián, Ana Belén; DIMAS PAGÉS, ALEJANDRO; Cos-Gayón López, Fernando José

    2015-01-01

    Structural failures (bridge or building collapses) and geohazards (landslides, ground subsi- dence or earthquakes) are worldwide problems that often lead to significant economic and loss of life. Monitoring the deformation of both natural phenomena and man-made struc- tures is a major key to assessing structural dynamic responses. Actually, this monitoring process is under real-time demand for developing warning and alert systems. One of the most used techniques for real-time deformation m...

  20. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  1. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  2. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    Science.gov (United States)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  3. Real-time ischemic condition monitoring in normoglycemic and hyperglycemic rats

    International Nuclear Information System (INIS)

    Choi, Samjin; Kang, Sung Wook; Lee, Gi-Ja; Chae, Su-Jin; Park, Hun-Kuk; Choi, Seok Keun; Chung, Joo-Ho

    2010-01-01

    An increase in excitotoxic amino acid glutamate (GLU) concentration associated with neuronal damage might be the cause of the ischemic damage observed in stroke patients suffering from hyperglycemia. However, the effect has never been investigated by real-time in vivo monitoring. Therefore, this study examined the effects of the functional responses of ischemia-evoked electroencephalography (EEG), cerebral blood flow (%CBF) and ΔGLU in hyperglycemia through real-time in vivo monitoring. Five Sprague-Dawley rats were treated with streptozocin (hyperglycemia) and five normal rats were used as the controls. Global ischemia was induced using an 11-vessel occlusion model. The experimental protocols consisting of 10 min pre-ischemic, 10 min ischemic and 40 min reperfusion periods were applied to both groups. Under these conditions, the responses of the ischemia-evoked EEG, %CBF and ΔGLU were monitored in real time. The EEG showed flat patterns during ischemia followed by poor recovery during reperfusion. The peak reperfusion %CBF was decreased significantly in the hyperglycemia group compared to the control group (p < 0.05, n = 5). The extracellular ΔGLU releases increased significantly during ischemia (p < 0.0001, n = 5) and reperfusion (p < 0.001, n = 5) in the hyperglycemia group compared to the control group. The decrease in reperfusion %CBF during short-term hyperglycemia might be related to the increased plasma osmolality, decreased adenosine levels and swollen endothelial cells with decreased vascular luminal diameters under hyperglycemic conditions. And, the increase in ΔGLU during short-term hyperglycemia might be related to the neurotoxic effects of the high extracellular concentrations of ΔGLU and the inhibition of GLU uptake

  4. Real-Time System for Water Modeling and Management

    Science.gov (United States)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The

  5. Usefulness of real-time PCR as a complementary tool to the monitoring of Legionella spp. and Legionella pneumophila by culture in industrial cooling systems.

    Science.gov (United States)

    Touron-Bodilis, A; Pougnard, C; Frenkiel-Lebossé, H; Hallier-Soulier, S

    2011-08-01

    This study was designed to evaluate the usefulness of quantification by real-time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90-431). Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 10(5) GU l(-1) ) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57-100% of the samples. These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real-time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. This study shows the possibility of using real-time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to French Government works.

  6. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain.

    Science.gov (United States)

    Kim, Min H; Yoon, Hargsoon; Choi, Sang H; Zhao, Fei; Kim, Jongsung; Song, Kyo D; Lee, Uhn

    2016-11-10

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1).

  7. Research overview of real-time monitoring system for micro leak of three-dimensional pipe network

    Directory of Open Access Journals (Sweden)

    Shaofeng WANG

    2016-04-01

    Full Text Available Aiming at the key technical problems encountered by domestic and foreign scholars in building the real-time monitoring system for the micro leak of three-dimensional pipe networks, the paper classifies the problems into three aspects: 1 in the extraction of fault signal frequency, how to avoid the effect of the mixed echo stack and improve the delay estimation accuracy of the correlation; 2 in network bifurcation structure, how to discern the signal propagation path, and how to locate the leak source; 3 under the uncertainly delay in transmitting and receiving information data, how to ensure the time synchronization accuracy of the real-time monitoring system for the three-dimensional pipe network leakage. Through the comparison of the monitoring technologies for the pipe network leakage at home and abroad, it shows that the acoustic emission sensor network based three-dimensional pipeline leak real-time monitoring has great advantages in detecting the weak leakage of flammable and explosive gas/liquid transportation pipelines.

  8. Real-time eye lens dose monitoring during cerebral angiography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J.; Wong, J.H.D.; Kadir, K.A.A.; Ng, K.H. [University of Malaya, Department of Biomedical Imaging, Faculty of Medicine, Kuala Lumpur (Malaysia); University of Malaya, University of Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Thorpe, N.K.; Cutajar, D.L.; Petasecca, M.; Lerch, M.L.F.; Rosenfeld, A.B. [University of Wollongong, Centre for Medical Radiation Physics (CMRP), Wollongong, NSW (Australia)

    2016-01-15

    To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R{sup 2}) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AK{sub L}: 0.93, AK{sub F}: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. (orig.)

  9. Real-time eye lens dose monitoring during cerebral angiography procedures

    International Nuclear Information System (INIS)

    Safari, M.J.; Wong, J.H.D.; Kadir, K.A.A.; Ng, K.H.; Thorpe, N.K.; Cutajar, D.L.; Petasecca, M.; Lerch, M.L.F.; Rosenfeld, A.B.

    2016-01-01

    To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R 2 ) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AK L : 0.93, AK F : 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. (orig.)

  10. Combining real-time monitoring and knowledge-based analysis in MARVEL

    Science.gov (United States)

    Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.

    1993-01-01

    Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.

  11. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  12. Distributed computing for real-time petroleum reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ayodele, O. R. [University of Alberta, Edmonton, AB (Canada)

    2004-05-01

    Computer software architecture is presented to illustrate how the concept of distributed computing can be applied to real-time reservoir monitoring processes, permitting the continuous monitoring of the dynamic behaviour of petroleum reservoirs at much shorter intervals. The paper describes the fundamental technologies driving distributed computing, namely Java 2 Platform Enterprise edition (J2EE) by Sun Microsystems, and the Microsoft Dot-Net (Microsoft.Net) initiative, and explains the challenges involved in distributed computing. These are: (1) availability of permanently placed downhole equipment to acquire and transmit seismic data; (2) availability of high bandwidth to transmit the data; (3) security considerations; (4) adaptation of existing legacy codes to run on networks as downloads on demand; and (5) credibility issues concerning data security over the Internet. Other applications of distributed computing in the petroleum industry are also considered, specifically MWD, LWD and SWD (measurement-while-drilling, logging-while-drilling, and simulation-while-drilling), and drill-string vibration monitoring. 23 refs., 1 fig.

  13. Real time monitoring of moment magnitude by waveform inversion

    Science.gov (United States)

    Lee, J.; Friederich, W.; Meier, T.

    2012-01-01

    An instantaneous measure of the moment magnitude (Mw) of an ongoing earthquake is estimated from the moment rate function (MRF) determined in real-time from available seismic data using waveform inversion. Integration of the MRF gives the moment function from which an instantaneous Mw is derived. By repeating the inversion procedure at regular intervals while seismic data are coming in we can monitor the evolution of seismic moment and Mw with time. The final size and duration of a strong earthquake can be obtained within 12 to 15 minutes after the origin time. We show examples of Mw monitoring for three large earthquakes at regional distances. The estimated Mw is only weakly sensitive to changes in the assumed source parameters. Depending on the availability of seismic stations close to the epicenter, a rapid estimation of the Mw as a prerequisite for the assessment of earthquake damage potential appears to be feasible.

  14. Real-time monitoring of corks' water absorption using laser speckle temporal correlation

    Science.gov (United States)

    Nassif, Rana; Abou Nader, Christelle; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2015-08-01

    Physical and mechanical properties of cork allow it solving many types of problems and make it suitable for a wide range of applications. Our objective consists into studying cork's water absorption by analyzing the dynamic speckle field using the temporal correlation method. Experimental results show that the medium was inert at first with the absence of activity, and as the cap cork was more and more immersed into water, the presence of the activity becomes more significant. This temporal parameter revealed the sensibility of biospeckle method to monitor the amount of absorbed water by cork caps.

  15. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    the expected lifetime of converters. Real time monitoring of power modules is very important together with a smart control and a driving technique in a converter. This ensures to operate the device within a safe operating area and also to protect from a catastrophic failure. Furthermore, the inherent physical...... and in a mission-profile oriented advanced power cycling test. The measurement technique is implemented in a full scale converter under field oriented test conditions. Initially, a real time measurement technique and it's implementation in a converter are introduced. A full scale converter is also used......Power electronic devices have a wide range of applications from very low to high power at constantly varying load conditions. Irrespective of the harsh operating loads, including both internal and external, an improvement in a performance such as efficiency, power density, reliability and cost...

  16. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  17. Development of a Real-Time Environmental Monitoring System, Life Cycle Assessment Systems, and Pollution Prevention Programs

    Science.gov (United States)

    Kocher, Walter M.

    2003-01-01

    Pollution prevention (P2) opportunities and Greening the Government (GtG) activities, including the development of the Real-Time Environmental Monitoring System (RTEMS), are currently under development at the NASA Glenn Research Center. The RTEMS project entails the ongoing development of a monitoring system which includes sensors, instruments, computer hardware and software, plus a data telemetry system.Professor Kocher has been directing the RTEMS project for more than 3 years, and the implementation of the prototype system at GRC will be a major portion of his summer effort. This prototype will provide mulitmedia environmental monitoring and control capabilities, although water quality and air emissions will be the immediate issues addressed this summer. Applications beyond those currently identified for environmental purposes will also be explored.

  18. On-line, real-time monitoring for petrochemical and pipeline process control applications

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D.; Eden, D.C.; Cayard, M.S.; Eden, D.A.; Mclean, D.T. [InterCorr International, Inc., 14503 Bammel N. Houston, Suite 300, Houston Texas 77014 (United States); Kintz, J. [BASF Corporation, 602 Copper Rd., Freeport, Texas 77541 (United States)

    2004-07-01

    Corrosion problems in petroleum and petrochemical plants and pipeline may be inherent to the processes, but costly and damaging equipment losses are not. With the continual drive to increase productivity, while protecting both product quality, safety and the environment, corrosion must become a variable that can be continuously monitored and assessed. This millennium has seen the introduction of new 'real-time', online measurement technologies and vast improvements in methods of electronic data handling. The 'replace when it fails' approach is receding into a distant memory; facilities management today is embracing new technology, and rapidly appreciating the value it has to offer. It has offered the capabilities to increase system run time between major inspections, reduce the time and expense associated with turnaround or in-line inspections, and reduce major upsets which cause unplanned shut downs. The end result is the ability to know on a practical basis of how 'hard' facilities can be pushed before excessive corrosion damage will result, so that process engineers can understand the impact of their process control actions and implement true asset management. This paper makes reference to use of a online, real-time electrochemical corrosion monitoring system - SmartCET 1- in a plant running a mostly organic process media. It also highlights other pertinent examples where similar systems have been used to provide useful real-time information to detect system upsets, which would not have been possible otherwise. This monitoring/process control approach has operators and engineers to see, for the first time, changes in corrosion behavior caused by specific variations in process parameters. Process adjustments have been identified that reduce corrosion rates while maintaining acceptable yields and quality. The monitoring system has provided a new window into the chemistry of the process, helping chemical engineers improve their process

  19. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  20. Real-time monitoring of capacity loss for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  1. Advanced Visualization System for Monitoring the ATLAS TDAQ Network in real-time

    CERN Document Server

    Batraneanu, S M; The ATLAS collaboration; Martin, B; Savu, D O; Stancu, S N; Leahu, L

    2012-01-01

    The trigger and data acquisition (TDAQ) system of the ATLAS experiment at CERN comprises approximately 2500 servers interconnected by three separate Ethernet networks, totaling 250 switches. Due to its real-time nature, there are additional requirements in comparison to conventional networks in terms of speed and performance. A comprehensive monitoring framework has been developed for expert use. However, non experts may experience difficulties in using it and interpreting data. Moreover, specific performance issues, such as single component saturation or unbalanced workload, need to be spotted with ease, in real-time, and understood in the context of the full system view. We addressed these issues by developing an innovative visualization system where the users benefit from the advantages of 3D graphics to visualize the large monitoring parameter space associated with our system. This has been done by developing a hierarchical model of the complete system onto which we overlaid geographical, logical and real...

  2. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  3. A chest drainage system with a real-time pressure monitoring device.

    Science.gov (United States)

    Chen, Chih-Hao; Liu, Tsang-Pai; Chang, Ho; Huang, Tung-Sung; Liu, Hung-Chang; Chen, Chao-Hung

    2015-07-01

    Tube thoracostomy is a common procedure. A chest bottle may be used to both collect fluids and monitor the recovery of the chest condition. The presence of the "tidaling phenomenon" in the bottle can be reflective of the extent of patient's recovery. However, current practice essentially depends on gross observation of the bottle. The device used here is designed for a real-time monitoring of change in pleural pressure to allow clinicians to objectively determine when the lung has recovered, which is crucially important in order to judge when to remove the chest tube. The device is made of a pressure sensor with an operating range between -100 to +100 cmH2O and an amplifying using the "Wheatstone bridge" concept. Recording and analysis was performed with LABview software. The data can be shown in real-time on screen and also be checked retrospectively. The device was connected to the second part of a three-bottle drain system by a three-way connector. The test animals were two 40-kg pigs. We used a thoracoscopic procedure to create an artificial lung laceration with endoscopic scissors. Active air leaks could result in vigorous tidaling phenomenon up to 20 cmH2O. In the absence of gross tidaling phenomenon, the pressure changes were around 0.25 cmH2O. This real-time pleural pressure monitoring device can help clinicians objectively judge the extent of recovery of the chest condition. It can be used as an effective adjunct with the current chest drain system.

  4. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Science.gov (United States)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  5. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    Flooding is among the most destructive, frequent, and costly natural disasters faced by modern society, with several major events occurring each year. In the past few years, major floods have devastated parts of China, Thailand, Pakistan, Australia, and the Philippines, among others. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we have developed, and are now operating, a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours after flooding events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard. The LANCE system typically processes imagery in less than 3 hours after satellite overpass, and our flood mapping system can output flood products within ½ hour of acquiring the LANCE products. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial assessment of flooding extent by late afternoon, every day, and more robust assessments after accumulating imagery over a longer period; the MODIS sensors are optical, so cloud cover remains an issue, which is partly overcome by using multiple looks over one or more days. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on some of these issues

  6. An inkjet-printed buoyant 3-D lagrangian sensor for real-time flood monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    A 3-D (cube-shaped) Lagrangian sensor, inkjet printed on a paper substrate, is presented for the first time. The sensor comprises a transmitter chip with a microcontroller completely embedded in the cube, along with a $1.5 \\\\lambda 0 dipole that is uniquely implemented on all the faces of the cube to achieve a near isotropic radiation pattern. The sensor has been designed to operate both in the air as well as water (half immersed) for real-time flood monitoring. The sensor weighs 1.8 gm and measures 13 mm$\\\\,\\\\times\\\\,$ 13 mm$\\\\,\\\\times\\\\,$ 13 mm, and each side of the cube corresponds to only $0.1 \\\\lambda 0 (at 2.4 GHz). The printed circuit board is also inkjet-printed on paper substrate to make the sensor light weight and buoyant. Issues related to the bending of inkjet-printed tracks and integration of the transmitter chip in the cube are discussed. The Lagrangian sensor is designed to operate in a wireless sensor network and field tests have confirmed that it can communicate up to a distance of 100 m while in the air and up to 50 m while half immersed in water. © 1963-2012 IEEE.

  7. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  8. Real-time risk monitoring in business processes : a sensor-based approach

    NARCIS (Netherlands)

    Conforti, R.; La Rosa, M.; Fortino, G.; Hofstede, ter A.H.M.; Recker, J.; Adams, M.

    2013-01-01

    This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis,

  9. Real-time bioacoustics monitoring and automated species identification

    Directory of Open Access Journals (Sweden)

    T. Mitchell Aide

    2013-07-01

    Full Text Available Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON, a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net. Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica.

  10. A real-time monitoring system for night glare protection

    Science.gov (United States)

    Ma, Jun; Ni, Xuxiang

    2010-11-01

    When capturing a dark scene with a high bright object, the monitoring camera will be saturated in some regions and the details will be lost in and near these saturated regions because of the glare vision. This work aims at developing a real-time night monitoring system. The system can decrease the influence of the glare vision and gain more details from the ordinary camera when exposing a high-contrast scene like a car with its headlight on during night. The system is made up of spatial light modulator (The liquid crystal on silicon: LCoS), image sensor (CCD), imaging lens and DSP. LCoS, a reflective liquid crystal, can modular the intensity of reflective light at every pixel as a digital device. Through modulation function of LCoS, CCD is exposed with sub-region. With the control of DSP, the light intensity is decreased to minimum in the glare regions, and the light intensity is negative feedback modulated based on PID theory in other regions. So that more details of the object will be imaging on CCD and the glare protection of monitoring system is achieved. In experiments, the feedback is controlled by the embedded system based on TI DM642. Experiments shows: this feedback modulation method not only reduces the glare vision to improve image quality, but also enhances the dynamic range of image. The high-quality and high dynamic range image is real-time captured at 30hz. The modulation depth of LCoS determines how strong the glare can be removed.

  11. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    Science.gov (United States)

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  12. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  13. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  14. Real-time Data Access Monitoring in Distributed, Multi-petabyte Systems

    Energy Technology Data Exchange (ETDEWEB)

    Azemoon, Tofigh; Becla, Jacek, a=Hanushevsky, Andrew; Turri, Massimiliano; /SLAC

    2008-04-22

    Petascale systems are in existence today and will become common in the next few years. Such systems are inevitably very complex, highly distributed and heterogeneous. Monitoring a petascale system in real-time and understanding its status at any given moment without impacting its performance is a highly intricate task. Common approaches and off-the-shelf tools are either unusable, do not scale, or severely impact the performance of the monitored servers. This paper describes unobtrusive monitoring software developed at Stanford Linear Accelerator Center (SLAC) for a highly distributed petascale production data set. The paper describes the employed solutions, the lessons learned, the problems still to be addressed, and explains how the system can be reused elsewhere.

  15. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  16. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  17. A first near real-time seismology-based landquake monitoring system.

    Science.gov (United States)

    Chao, Wei-An; Wu, Yih-Min; Zhao, Li; Chen, Hongey; Chen, Yue-Gau; Chang, Jui-Ming; Lin, Che-Min

    2017-03-02

    Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap 10 6  m 3 and area > 0.20 km 2 ) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

  18. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.

    Science.gov (United States)

    Park, Ky Young; Roubelakis-Angelakis, Kalliopi A

    2018-01-01

    The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O 2 .- ) and hydrogen peroxide (O 2 .- ) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H 2 O 2 . Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H 2 O 2 - and O 2 .- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.

  19. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  20. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    Directory of Open Access Journals (Sweden)

    Duc Nguyen Minh

    2017-01-01

    Full Text Available This work describes Live Monitor, the monitoring subsystem of SDDS – an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  1. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    International Nuclear Information System (INIS)

    Fernandes, A.; Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J.; Kiptily, V.; Correia, C.M.B.A.; Gonçalves, B.

    2014-01-01

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented

  2. Real-time algorithms for JET hard X-ray and gamma-ray profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, A., E-mail: anaf@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pereira, R.C.; Valcárcel, D.F.; Alves, D.; Carvalho, B.B.; Sousa, J. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, V. [EURATOM/CCFE Fusion Association, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, C.M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal)

    2014-03-15

    Highlights: • Real-time tools and mechanisms are required for data handling and machine control. • A new DAQ system, ATCA based, with embedded FPGAs, was installed at JET. • Different real-time algorithms were developed for FPGAs and MARTe application. • MARTe provides the interface to CODAS and to the JET real-time network. • The new DAQ system is capable to process and deliver data in real-time. - Abstract: The steady state operation with high energy content foreseen for future generation of fusion devices will necessarily demand dedicated real-time tools and mechanisms for data handling and machine control. Consequently, the real-time systems for those devices should be carefully selected and their capabilities previously established. The Joint European Torus (JET) is undertaking an enhancement program, which includes tests of relevant real-time tools for the International Thermonuclear Experimental Reactor (ITER), a key experiment for future fusion devices. In these enhancements a new Data AcQuisition (DAQ) system is included, with real-time processing capabilities, for the JET hard X-ray and gamma-ray profile monitor. The DAQ system is composed of dedicated digitizer modules with embedded Field Programmable Gate Array (FPGA) devices. The interface between the DAQ system, the JET control and data acquisition system and the JET real-time data network is provided by the Multithreaded Application Real-Time executor (MARTe). This paper describes the real-time algorithms, developed for both digitizers’ FPGAs and MARTe application, capable of meeting the DAQ real-time requirements. The new DAQ system, including the embedded real-time features, was commissioned during the 2012 experiments. Results achieved with these real-time algorithms during experiments are presented.

  3. Quantitative real-time monitoring of dryer effluent using fiber optic near-infrared spectroscopy.

    Science.gov (United States)

    Harris, S C; Walker, D S

    2000-09-01

    This paper describes a method for real-time quantitation of the solvents evaporating from a dryer. The vapor stream in the vacuum line of a dryer was monitored in real time using a fiber optic-coupled acousto-optic tunable filter near-infrared (AOTF-NIR) spectrometer. A balance was placed in the dryer, and mass readings were recorded for every scan of the AOTF-NIR. A partial least-squares (PLS) calibration was subsequently built based on change in mass over change in time for solvents typically used in a chemical manufacturing plant. Controlling software for the AOTF-NIR was developed. The software collects spectra, builds the PLS calibration model, and continuously fits subsequently collected spectra to the calibration, allowing the operator to follow the mass loss of solvent from the dryer. The results indicate that solvent loss can be monitored and quantitated in real time using NIR for the optimization of drying times. These time-based mass loss values have also been used to calculate "dynamic" vapor density values for the solvents. The values calculated are in agreement with values determined from the ideal gas law and could prove valuable as tools to measure temperature or pressure indirectly.

  4. Comparison of sensor characteristics of three real-time monitors for organic vapors.

    Science.gov (United States)

    Hori, Hajime; Ishimatsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2015-01-01

    Sensor characteristics and performance of three real-time monitors for volatile organic compounds (VOC monitor) equipped with a photo ionization detector (PID), a sensor using the interference enhanced reflection (IER) method and a semiconductor gas sensor were investigated for 52 organic solvent vapors designated as class 1 and class 2 of organic solvents by the Ordinance of Organic Solvent Poisoning Prevention in Japan. Test vapors were prepared by injecting each liquid solvent into a 50 l Tedlar® bag and perfectly vaporizing it. The vapor concentration was from one-tenth to twice the administrative control level for all solvents. The vapor concentration was measured with the monitors and a gas chromatograph equipped with a flame ionization detector simultaneously, and the values were compared. The monitor with the PID sensor could measure many organic vapors, but it could not detect some vapors with high ionization potential. The IER sensor could also detect many vapors, but a linear response was not obtained for some vapors. A semiconductor sensor could detect methanol that could not be detected by PID and IER sensors. Working environment measurement of organic vapors by real-time monitors may be possible, but sensor characteristics and their limitations should be known.

  5. Real-time measurement of dust in the workplace using video exposure monitoring: Farming to pharmaceuticals

    International Nuclear Information System (INIS)

    Walsh, P T; Forth, A R; Clark, R D R; Dowker, K P; Thorpe, A

    2009-01-01

    Real-time, photometric, portable dust monitors have been employed for video exposure monitoring (VEM) to measure and highlight dust levels generated by work activities, illustrate dust control techniques, and demonstrate good practice. Two workplaces, presenting different challenges for measurement, were used to illustrate the capabilities of VEM: (a) poultry farming activities and (b) powder transfer operations in a pharmaceutical company. For the poultry farm work, the real-time monitors were calibrated with respect to the respirable and inhalable dust concentrations using cyclone and IOM reference samplers respectively. Different rankings of exposure for typical activities were found on the small farm studied here compared to previous exposure measurements at larger poultry farms: these were mainly attributed to the different scales of operation. Large variations in the ratios of respirable, inhalable and real-time monitor TWA concentrations of poultry farm dust for various activities were found. This has implications for the calibration of light-scattering dust monitors with respect to inhalable dust concentration. In the pharmaceutical application, the effectiveness of a curtain barrier for dust control when dispensing powder in a downflow booth was rapidly demonstrated.

  6. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  7. Harmonizing electricity markets with physics : real time performance monitoring using grid-3PTM

    International Nuclear Information System (INIS)

    Budhraja, V.S.

    2003-01-01

    The Electric Power Group, LLC provides management and strategic consulting services for the electric power industry, with special emphasis on industry restructuring, competitive electricity markets, grid operations and reliability, power technologies, venture investments and start-ups. The Consortium for Electric Reliability Technology Solutions involves national laboratories, universities, and industry partners in researching, developing, and commercializing electric reliability technology solutions to protect and enhance the reliability of the American electric power system under the emerging competitive electricity market structure. Physics differentiate electric markets from other markets: there is real-time balancing, no storage, interconnected network, and power flows governed by physics. Some issues affecting both grid reliability and market issues are difficult to separate, such as security and congestion management, voltage management, reserves, frequency volatility, and others. The author examined the following investment challenges facing the electricity market: grid solutions, market solutions, and technology solutions. The real time performance monitoring and prediction platform, grid-3P was described and applications discussed, such as ACE-frequency monitoring, performance monitoring for automatic generation control (AGC) and frequency response, voltage/VAR monitoring, stability monitoring using phasor technology, and market monitoring. figs

  8. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Zink, Peter A.; Jue, Jan-Fong; Serrano, Brenda E.; Fredrickson, Guy L.; Cowan, Ben F.; Herrmann, Steven D.; Li, Shelly X.

    2010-01-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(double p rime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(double p rime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  9. A knowledge-based flight status monitor for real-time application in digital avionics systems

    Science.gov (United States)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  10. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  11. Conceptual design for real time monitoring of electron microbeam

    International Nuclear Information System (INIS)

    Kim, Ji Seok; Kim, Hyun Ki; Jang, Mee; Choi, Chang Woon; Sun, Gwang Min; Lee, Jai Ki

    2008-01-01

    It is recognized that the microbeam is powerful system to understand the interaction of ionizing radiation with cells. Especially, electron microbeam system is useful to investigate the effect of low-LET radiation for cells. Electron microbeam has been developed in KIRAMS. It can irradiate the small volume in cell level by collimator and electromagnetic field and give local dose to individual cell by controlling the number of electrons. When the electron microbeam irradiates the individual cell, however, there is a possibility to change the current and intended trajectory of electron beam. Because this possibility introduces the uncertainty of dose, it is necessary to monitor the trajectory and current of electron beam. This study deals with development of real time monitoring device to confirm beam quality and to control if necessary during experiment. Consequently we designed dual monitoring device to solve various factors. And we optimize the design by simulation. (author)

  12. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  13. A new method for real-time monitoring of grout spread through fractured rocks

    International Nuclear Information System (INIS)

    Henderson, A. E.; Robertson, I. A.; Whitfield, J. M.; Garrard, G. F. G.; Swannell, N. G.; Fisch, H.

    2008-01-01

    Reducing water ingress into the Shaft at Dounreay is essential for the success of future intermediate level waste (ILW) recovery using the dry retrieval method. The reduction is being realised by forming an engineered barrier of ultrafine cementitious grout injected into the fractured rock surrounding the Shaft. Grout penetration of 6 m in <50μm fractures is being reliably achieved, with a pattern of repeated injections ultimately reducing rock mass permeability by up to three orders of magnitude. An extensive field trials period, involving over 200 grout mix designs and the construction of a full scale demonstration barrier, has yielded several new field techniques that improve the quality and reliability of cementitious grout injection for engineered barriers. In particular, a new method has been developed for tracking in real-time the spread of ultrafine cementitious grout through fractured rock and relating the injection characteristics to barrier design. Fieldwork by the multi-disciplinary international team included developing the injection and real-time monitoring techniques, pre- and post injection hydro-geological testing to quantify the magnitude and extent of changes in rock mass permeability, and correlation of grout spread with injection parameters to inform the main works grouting programme. (authors)

  14. Improvements in real time {sup 222}Rn monitoring at Stromboli volcano

    Energy Technology Data Exchange (ETDEWEB)

    Lavagno, A., E-mail: andrea.lavagno@polito.it [Dipartimento di Scienze Applicata e Tecnologia, Politecnico di Torino (Italy); INFN, Sezione di Torino (Italy); Laiolo, M. [Dipartimento di Scienze della Terra, Università di Torino (Italy); Gervino, G. [Dipartimento di Fisica, Università di Torino (Italy); INFN, Sezione di Torino (Italy); Cigolini, C.; Coppola, D.; Piscopo, D. [Dipartimento di Scienze della Terra, Università di Torino (Italy); Marino, C. [Dipartimento di Fisica, Università di Torino (Italy); INFN, Sezione di Torino (Italy)

    2013-08-01

    Monitoring gas emissions from soil allow to get information on volcanic activity, hidden faults and hydrothermal dynamics. Radon activities at Stromboli were collected by means of multi-parametric real-time stations, that measure radon as well as environmental parameters. The last improvements on the detection system are presented and discussed.

  15. Real time speckle monitoring to control retinal photocoagulation

    Science.gov (United States)

    Bliedtner, Katharina; Seifert, Eric; Brinkmann, Ralf

    2017-07-01

    Photocoagulation is a treatment modality for several retinal diseases. Intra- and inter-individual variations of the retinal absorption as well as ocular transmission and light scattering makes it impossible to achieve a uniform effective exposure with one set of laser parameters. To guarantee a uniform damage throughout the therapy a real-time control is highly requested. Here, an approach to realize a real-time optical feedback using dynamic speckle analysis in-vivo is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633 nm diode laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. An algorithm is presented that can discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes and that seems to be robust to noise in-vivo. Tissue changes in rabbits during retinal coagulation could be observed for different lesion strengths. This algorithm can run on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage.

  16. Real Time Monitor of Grid job executions

    International Nuclear Information System (INIS)

    Colling, D J; Martyniak, J; McGough, A S; Krenek, A; Sitera, J; Mulac, M; Dvorak, F

    2010-01-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  17. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  18. Hall-Effect Sensors for Real-Time Monitoring Pier Scour

    Directory of Open Access Journals (Sweden)

    Chen-Chia CHEN

    2015-01-01

    Full Text Available Scour around bridge pier is a major cause of bridge failure such as collapse resulted in loss of life and property. Most of available sensors and approaches for monitoring bridge pier scour are very expensive, which is a main challenge for mass deployment of numerous bridges. Our proposed scour monitoring system utilized low-cost commercial sensors, hall-effect sensors (unit price< $1 that are capable of real-time measuring bridge pier scour with resolution of ~ 2.5 cm, and overall cost for single sensor node of our proposed work is at least 40 % less expensive than existing work. The hall- effect sensor is evaluated under controlled conditions in two laboratory flumes. After scour event, the typical voltage change of the hall-effect sensor is ~ 300 mV, and the system achieve signal-to-noise ratio performance of ~ 60 dB. Finally, we also provide an equation to predict the time variation of scour depth around pier model. Moreover, the master-slave architecture of bridge pier scour monitoring system has scalability and flexibility for mass deployment. This technique has the potential for further widespread implementation in the field.

  19. An Automatic Monitoring System for High-Frequency Measuring and Real-Time Management of Cyanobacterial Blooms in Urban Water Bodies

    Directory of Open Access Journals (Sweden)

    Viet Tran Khac

    2018-01-01

    Full Text Available Urban lakes mitigate the negative impacts on the hydrological cycle and improve the quality of life in cities. Worldwide, the concern increases for the protection and management of urban water bodies. Since the physical-chemical and biological conditions of a small aquatic ecosystem can vary rapidly over time, traditional low frequency measurement approaches (weekly or monthly sampling limits the knowledge and the transfer of research outcomes to management decision-making. In this context, this paper presents an automatic monitoring system including a full-scale experimental site and a data transfer platform for high-frequency observations (every 5 min in a small and shallow urban lake (Lake Champs-sur-Marne, Paris, France, 10.3 ha. Lake stratification and mixing periods can be clearly observed, these periods are compared with the dynamic patterns of chlorophyll-a, phycocyanin, dissolved oxygen and pH. The results indicate that the phytoplankton growth corresponds with dissolved oxygen cycles. However, thermal stratification cannot totally explain the entire dynamic patterns of different physical-chemical and ecological variables. Besides, the cyanobacteria is one of the dominating groups of phytoplankton blooms during the lake stratification periods (8 August–29 September 2016. During the cooling mixed period (29 September–19 October 2016, the high concentration of chlorophyll-a is mainly caused by the other phytoplankton species, such as diatoms. Perspectives are discussed in order to apply this observation system for real-time management of water bodies and lakes.

  20. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  1. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  2. Real-time monitoring of calcium carbonate precipitation from geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Stamatakis, E.; Muller, J.; Chatzichristos, C.

    2005-01-01

    The objective of the present work has been to study calcite scale formation in geothermal wells. Effective scale management requires on-line monitoring of scaling tendencies as well as detection and identification of scale deposits. In that respect, a gamma-ray attenuation technique was designed and evaluated in the lab for the real-time measurements of scale formation under flow conditions. As a first step we have obtained a preliminary thermodynamic prediction of the stability of a specific geothermal brine (GPK2-S2), regarding CaCO{sub 3} precipitation, under various P-T conditions, using the MultiScale simulation tool. Based on the tool's outcomes the experimental work for the study of calcite scale formation focused on confirming the results. The aim was to find the lowest system pressure at which no scale takes place under specific conditions (temperature, water composition, inhibitor concentration). The precipitation rates for calcite scale in absence and presence of a scale inhibitor were also obtained in the course of this study. (author)

  3. Design and implementation of an interactive web-based near real-time forest monitoring system

    NARCIS (Netherlands)

    Pratihast, Arun Kumar; Vries, de Ben; Avitabile, Valerio; Bruin, De Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection

  4. Building a satellite climate diagnostics data base for real-time climate monitoring

    International Nuclear Information System (INIS)

    Ropelewski, C.F.

    1991-01-01

    The paper discusses the development of a data base, the Satellite Climate Diagnostic Data Base (SCDDB), for real time operational climate monitoring utilizing current satellite data. Special attention is given to the satellite-derived quantities useful for monitoring global climate changes, the requirements of SCDDB, and the use of conventional meteorological data and model assimilated data in developing the SCDDB. Examples of prototype SCDDB products are presented. 10 refs

  5. A real-time stack radioactivity monitoring system and dose projection program

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.P.; Michael, P.A. [Brookhaven National Laboratory, Upton, NY (United States); Bernstein, H.J. [Bernstein & Sons, Bellport, NY (United States)

    1995-02-01

    At Brookhaven National Laboratory, a commercial Low- and High-Range Air Effluent Monitor has become operational at the 60 Mw (t) High Flux Beam Reactor. Its output data is combined with that from ground-level and elevated meteorological sensors to provide a real-time projection of the down-wind dose rates from noble gases and radioiodines released from the HFBR`s 100 m stack. The output of the monitor, and the meteorological sensors and the dose projections can be viewed at emergency response terminals located in the Reactor Control Room, its Technical Support Center and at the laboratory`s separately located Meteorological Station and Monitoring and Assessment Center.

  6. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Design of Wearable Breathing Sound Monitoring System for Real-Time Wheeze Detection

    Directory of Open Access Journals (Sweden)

    Shih-Hong Li

    2017-01-01

    Full Text Available In the clinic, the wheezing sound is usually considered as an indicator symptom to reflect the degree of airway obstruction. The auscultation approach is the most common way to diagnose wheezing sounds, but it subjectively depends on the experience of the physician. Several previous studies attempted to extract the features of breathing sounds to detect wheezing sounds automatically. However, there is still a lack of suitable monitoring systems for real-time wheeze detection in daily life. In this study, a wearable and wireless breathing sound monitoring system for real-time wheeze detection was proposed. Moreover, a breathing sounds analysis algorithm was designed to continuously extract and analyze the features of breathing sounds to provide the objectively quantitative information of breathing sounds to professional physicians. Here, normalized spectral integration (NSI was also designed and applied in wheeze detection. The proposed algorithm required only short-term data of breathing sounds and lower computational complexity to perform real-time wheeze detection, and is suitable to be implemented in a commercial portable device, which contains relatively low computing power and memory. From the experimental results, the proposed system could provide good performance on wheeze detection exactly and might be a useful assisting tool for analysis of breathing sounds in clinical diagnosis.

  8. The JET real-time plasma-wall load monitoring system

    International Nuclear Information System (INIS)

    Valcárcel, D.F.; Alves, D.; Card, P.; Carvalho, B.B.; Devaux, S.; Felton, R.; Goodyear, A.; Lomas, P.J.; Maviglia, F.; McCullen, P.; Reux, C.; Rimini, F.; Stephen, A.; Zabeo, L.

    2014-01-01

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented

  9. The JET real-time plasma-wall load monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, D.F., E-mail: daniel.valcarcel@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Alves, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Card, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Carvalho, B.B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Devaux, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Felton, R.; Goodyear, A.; Lomas, P.J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Reux, C. [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); Rimini, F.; Stephen, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St., Paul Lez Durance (France); and others

    2014-03-15

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented.

  10. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  11. Real-time Alarm Monitoring System for Detecting Driver Fatigue in Wireless Areas

    Directory of Open Access Journals (Sweden)

    Rongrong Fu

    2017-04-01

    Full Text Available The purpose of this paper was to develop a real-time alarm monitoring system that can detect the fatigue driving state through wireless communication. The drivers’ electroencephalogram (EEG signals were recorded from occipital electrodes. Seven EEG rhythms with different frequency bands as gamma, hbeta, beta, sigma, alpha, theta and delta waves were extracted. They were simultaneously assessed using relative operating characteristic (ROC curves and grey relational analysis to select one as the fatigue feature. The research results showed that the performance of theta wave was the best one. Therefore, theta wave was used as fatigue feature in the following alarm device. The real-time alarm monitoring system based on the result has been developed, once the threshold was settled by using the data of the first ten minutes driving period. The developed system can detect driver fatigue and give alarm to indicate the onset of fatigue automatically.

  12. Improvements to Web Toolkits for Antelope-based Real-time Monitoring Systems

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Vernon, F. L.; Hansen, T. S.; Orcutt, J.

    2005-12-01

    The Antelope Environmental Monitoring System (http://www.brtt.com) is a robust middleware architecture for near-real-time data collection, analysis, archiving and distribution. Antelope has an extensive toolkit allowing users to interact directly with their datasets. A rudimentary interface was developed in previous work between Antelope and the web-scripting language PHP (The PHP language is described in more detail at http://www.php.net). This interface allowed basic application development for remote access to and interaction with near-real-time data through a World Wide Web interface. We have added over 70 new functions for the Antelope interface to PHP, providing a solid base for web-scripting of near-real-time Antelope database applications. In addition, we have designed a new structure for web sites to be created from the Antelope platform, including PHP applications and Perl CGI scripts as well as static pages. Finally we have constructed the first version of the dbwebproject program, designed to dynamically create and maintain web-sites from specified recipes. These tools have already proven valuable for the creation of web tools for the dissemination of and interaction with near-real-time data streams from multi-signal-domain real-time sensor networks. We discuss current and future directions of this work in the context of the ROADNet project. Examples and applications of these core tools are elaborated in a companion presentation in this session (Newman et al., AGU 2005, session IN06).

  13. Real-time management of water quality in the San Joaquin River Basin, California.

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Karkoski, J.

    1997-09-01

    In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within +- 11 percent of actual, within +- 14 percent for seven-day forecasts, and with in +- 26 percent for 14-day forecasts for the 16-month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to +- 9 percent for the model and +- 11 percent and +- 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.

  14. Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Muchini

    2018-05-01

    Full Text Available Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.

  15. Multisensor Instrument for Real-Time Biological Monitoring

    Science.gov (United States)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  16. A home monitoring program including real-time wireless home spirometry in idiopathic pulmonary fibrosis: a pilot study on experiences and barriers.

    Science.gov (United States)

    Moor, C C; Wapenaar, M; Miedema, J R; Geelhoed, J J M; Chandoesing, P P; Wijsenbeek, M S

    2018-05-29

    In idiopathic pulmonary fibrosis (IPF), home monitoring experiences are limited, not yet real-time available nor implemented in daily care. We evaluated feasibility and potential barriers of a new home monitoring program with real-time wireless home spirometry in IPF. Ten patients with IPF were asked to test this home monitoring program, including daily home spirometry, for four weeks. Measurements of home and hospital spirometry showed good agreement. All patients considered real-time wireless spirometry useful and highly feasible. Both patients and researchers suggested relatively easy solutions for the identified potential barriers regarding real-time home monitoring in IPF.

  17. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  18. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Science.gov (United States)

    Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard

    2017-12-01

    Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).

  19. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    Directory of Open Access Journals (Sweden)

    Latos Dorota

    2017-12-01

    Full Text Available Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object’s behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar.

  20. Development of a real-time stability measurement system for boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; King, W.T.

    1987-01-01

    This paper describes the development of a portable, real time system for boiling water reactor (BWR) stability measurements. The system provides a means for the operator to monitor the reactor stability using existing plant instrumentation and commercially available hardware. The noise component (i.e., perturbations around steady state) of the neutron signal in BWRs has been shown to contain information about reactor stability, and several algorithms have been developed to extract that information. For the present work, the authors have used an algorithm that has been implemented on a portable personal computer. This algorithm uses the autocorrelation function of naturally occurring neutron noise (measured without special plant perturbations) and an autoregressive modeling technique to produce the asymptotic DR. For this real-time implementation, neutron noise data is preconditioned (i.e., filtered and amplified) and sampled at a 5-Hz sampling rate using a commercial data-acquisition system. Approximately every 1.5 min, the current (snapshot) autocorrelation function is computed directly from the data, and the average autocorrelation is updated. The current and average DR estimates are evaluated with the same periodicity and are displayed on the screen along with the autocorrelations and average power spectrum of the neutron noise

  1. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  2. Study of weld quality real-time monitoring system for auto-body assembly

    Science.gov (United States)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  3. An Approach for Real-time Levee Health Monitoring Using Signal Processing Methods

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2013-01-01

    We developed a levee health monitoring system within the UrbanFlood project funded under the EU 7th Framework Programme. A novel real-time levee health assessment Artificial Intelligence system is developed using data-driven methods. The system is implemented in the UrbanFlood early warning system.

  4. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    Science.gov (United States)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  5. A real-time monitoring/emergency response modeling workstation for a tritium facility

    International Nuclear Information System (INIS)

    Lawver, B.S.; Sims, J.M.; Baskett, R.L.

    1993-07-01

    At Lawrence Livermore National Laboratory (LLNL) we developed a real-time system to monitor two stacks on our tritium handling facility. The monitors transmit the stack data to a workstation which computes a 3D numerical model of atmospheric dispersion. The workstation also collects surface and upper air data from meteorological towers and a sodar. The complex meteorological and terrain setting in the Livermore Valley demands more sophisticated resolution of the three-dimensional structure of the atmosphere to reliably calculate plume dispersion than afforded by Gaussian models. We experience both mountain valley and sea breeze flows. To address these complexities, we have implemented the three-dimensional diagnostic MATHEW mass-adjusted wind field and ADPIC particle-in-cell dispersion models on the workstation for use in real-time emergency response modeling. Both MATHEW and ADPIC have shown their utility in a variety of complex settings over the last 15 years within the Department of Energy's Atmospheric Release Advisory Capability (ARAC[1,2]) project

  6. A Wireless and Real-Time Monitoring System Design for Car Networking Applications

    Directory of Open Access Journals (Sweden)

    Li Wenjun

    2013-01-01

    Full Text Available We described a wireless and monitoring system to obtain several classes of vehicle data and send them to the server via General Packet Radio Service (GPRS in real-time. These data are consisted by on-board diagnostic (OBD which get from the vehicle’s OBD interface, Tire-Pressure Monitoring system (TPMS and Global Positioning System (GPS. The main content of this paper is the hardware design of the system, especially RF modules and antennas.

  7. Coalescence measurements for evolving foams monitored by real-time projection imaging

    International Nuclear Information System (INIS)

    Myagotin, A; Helfen, L; Baumbach, T

    2009-01-01

    Real-time radiographic projection imaging together with novel spatio-temporal image analysis is presented to be a powerful technique for the quantitative analysis of coalescence processes accompanying the generation and temporal evolution of foams and emulsions. Coalescence events can be identified as discontinuities in a spatio-temporal image representing a sequence of projection images. Detection, identification of intensity and localization of the discontinuities exploit a violation criterion of the Fourier shift theorem and are based on recursive spatio-temporal image partitioning. The proposed method is suited for automated measurements of discontinuity rates (i.e., discontinuity intensity per unit time), so that large series of radiographs can be analyzed without user intervention. The application potential is demonstrated by the quantification of coalescence during the formation and decay of metal foams monitored by real-time x-ray radiography

  8. Development of real-time monitoring system using wired and wireless networks in a full-scale ship

    Directory of Open Access Journals (Sweden)

    Bu-Geun Paik

    2010-09-01

    Full Text Available In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN and power line communication (PLC employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

  9. A Real-Time Data Monitoring and Accumulation System for Dynamic Studies with Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, W.; Doll, J.; Lorenz, W. J.; Ostertag, H.; Adam, W. E.; Scheer, K. E. [German Cancer Research Centre, Institute of Nuclear Medicine, Heidelberg, Federal Republic of Germany (Germany)

    1971-02-15

    A multipurpose digital data monitoring and accumulation system is described. The central unit of the system is a PDP-8 computer with a 12K memory. The system contains furthermore a multipurpose digital input/output register for low data rates, a fourfold and a twofold ADC connected to the high-speed multiplexor unit of the PDP-8 and a digital timet. Data from various process peripheries are recorded on a nine-track IBM compatible Ampex tape recorder. When two co-ordinates are recorded the system is used in the ''add-one-to-storage'' mode. In the case of more than two co-ordinates the data are stored in the sequential mode, event by event. A dialogue real-time monitor program in assembler language was developed to control the process peripheries. The 4K-Fortran operating system was modified in such a way that monitor subroutines were called into the Fortran program without loss of the real-time properties of the monitor system during a Fortran run. The use of the system for lung function studies with an Anger-type scintillation camera and {sup 133}Xe is discussed as an example of the application of the system. (author)

  10. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant.

    Science.gov (United States)

    Moreno-Garcia, Isabel M; Palacios-Garcia, Emilio J; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J; Varo-Martinez, Marta; Real-Calvo, Rafael J

    2016-05-26

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant's components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  11. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Science.gov (United States)

    Moreno-Garcia, Isabel M.; Palacios-Garcia, Emilio J.; Pallares-Lopez, Victor; Santiago, Isabel; Gonzalez-Redondo, Miguel J.; Varo-Martinez, Marta; Real-Calvo, Rafael J.

    2016-01-01

    There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV) energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid. PMID:27240365

  12. Real-Time Monitoring System for a Utility-Scale Photovoltaic Power Plant

    Directory of Open Access Journals (Sweden)

    Isabel M. Moreno-Garcia

    2016-05-01

    Full Text Available There is, at present, considerable interest in the storage and dispatchability of photovoltaic (PV energy, together with the need to manage power flows in real-time. This paper presents a new system, PV-on time, which has been developed to supervise the operating mode of a Grid-Connected Utility-Scale PV Power Plant in order to ensure the reliability and continuity of its supply. This system presents an architecture of acquisition devices, including wireless sensors distributed around the plant, which measure the required information. It is also equipped with a high-precision protocol for synchronizing all data acquisition equipment, something that is necessary for correctly establishing relationships among events in the plant. Moreover, a system for monitoring and supervising all of the distributed devices, as well as for the real-time treatment of all the registered information, is presented. Performances were analyzed in a 400 kW transformation center belonging to a 6.1 MW Utility-Scale PV Power Plant. In addition to monitoring the performance of all of the PV plant’s components and detecting any failures or deviations in production, this system enables users to control the power quality of the signal injected and the influence of the installation on the distribution grid.

  13. Hybrid monitoring scheme for end-to-end performance enhancement of multicast-based real-time media

    Science.gov (United States)

    Park, Ju-Won; Kim, JongWon

    2004-10-01

    As real-time media applications based on IP multicast networks spread widely, end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) a next-generation group collaboration tool based on multi-party media services, the applicability of hybrid monitoring scheme that combines active and passive monitoring is investigated. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks both application-layer metrics (i.e., user traffic condition by analyzing RTCP packets) and system metrics. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

  14. Real-time monitoring of cisplatin cytotoxicity on three-dimensional spheroid tumor cells

    Directory of Open Access Journals (Sweden)

    Baek NH

    2016-07-01

    Full Text Available NamHuk Baek,1,* Ok Won Seo,1,* Jaehwa Lee,1 John Hulme,2 Seong Soo A An2 1Department of Research and Development, NanoEntek Inc., Seoul, 2Department of BioNano Technology, Gachon University, Gyeonggi-do, Korea *These authors contributed equally to this work Abstract: Three-dimensional (3D cell cultivation is a powerful technique for monitoring and understanding diverse cellular mechanisms in developmental cancer and neuronal biology, tissue engineering, and drug development. 3D systems could relate better to in vivo models than two-dimensional (2D cultures. Several factors, such as cell type, survival rate, proliferation rate, and gene and protein expression patterns, determine whether a particular cell line can be adapted to a 3D system. The 3D system may overcome some of the limitations of 2D cultures in terms of cell–cell communication and cell networks, which are essential for understanding differentiation, structural organization, shape, and extended connections with other cells or organs. Here, the effect of the anticancer drug cisplatin, also known as cis-diamminedichloroplatinum (II or CDDP, on adenosine triphosphate (ATP generation was investigated using 3D spheroid-forming cells and real-time monitoring for 7 days. First, 12 cell lines were screened for their ability to form 3D spheroids: prostate (DU145, testis (F9, embryonic fibroblast (NIH-3T3, muscle (C2C12, embryonic kidney (293T, neuroblastoma (SH-SY5Y, adenocarcinomic alveolar basal epithelial cell (A549, cervical cancer (HeLa, HeLa contaminant (HEp2, pituitary epithelial-like cell (GH3, embryonic cell (PA317, and osteosarcoma (U-2OS cells. Of these, eight cell lines were selected: NIH-3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U-2OS; and five underwent real-time monitoring of CDDP cytotoxicity: HeLa, A549, 293T, SH-SY5Y, and U-2OS. ATP generation was blocked 1 day after addition of 50 µM CDDP, but cytotoxicity in HeLa, A549, SH-SY5Y, and U-2OS cells could be

  15. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    Science.gov (United States)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  16. Friction coefficient of skin in real-time.

    Science.gov (United States)

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  17. Real-time monitoring of smallholder farmer responses to intra-seasonal climate variability in central Kenya

    Science.gov (United States)

    Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.

    2017-12-01

    While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.

  18. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    Science.gov (United States)

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Real-Time Monitoring of Occupants’ Thermal Comfort through Infrared Imaging: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2017-02-01

    Full Text Available Thermally comfortable indoor environments are of great importance, as modern lifestyles often require people to spend more than 20 h per day indoors. Since most of the thermal comfort models use a variety of different environmental and personal factors that need to be measured or estimated, real-time and continuous assessment of thermal comfort is often not practically feasible. This work presents a cheap and non-invasive approach based on infrared imaging for monitoring the occupants’ thermal sensation and comfort in real time. Thanks to a mechatronic device developed by the authors, the imaging is performed on the forehead skin, selected because it is always exposed to the environment and, thus, facilitating the monitoring activity in a non-invasive manner. Tests have been performed in controlled conditions on ten subjects to assess the hypothesis that the forehead temperature is correlated with subjects’ thermal sensation. This allows the exploitation of this quantity as a base for a simple monitoring of thermal comfort, which could later be tuned with an extensive experimental campaign.

  20. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  1. FPGA implementation of a hybrid on-line process monitoring in PC based real-time systems

    Directory of Open Access Journals (Sweden)

    Jovanović Bojan

    2011-01-01

    Full Text Available This paper presents one way of FPGA implementation of hybrid (hardware-software based on-line process monitoring in Real-Time systems (RTS. The reasons for RTS monitoring are presented at the beginning. The summary of different RTS monitoring approaches along with its advantages and drawbacks are also exposed. Finally, monitoring module is described in details. Also, FPGA implementation results and some useful monitoring system applications are mentioned.

  2. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring

    Science.gov (United States)

    Tu, Rui; Liu, Jinhai; Lu, Cuixian; Zhang, Rui; Zhang, Pengfei; Lu, Xiaochun

    2017-06-01

    An approach of cooperating the BDS, GPS, GLONASS and strong-motion (SM) records for real-time deformation monitoring was presented, which was validated by the experimental data. In this approach, the Global Navigation Satellite System (GNSS) data were processed with the real-time kinematic positioning technology to retrieve the GNSS displacement, and the SM data were calibrated to acquire the raw acceleration; a Kalman filter was then applied to combine the GNSS displacement and the SM acceleration to obtain the integrated displacement, velocity and acceleration. The validation results show that the advantages of each sensor are completely complementary. For the SM, the baseline shifts are estimated and corrected, and the high-precision velocity and displacement are recovered. While the noise of GNSS can be reduced by using the SM-derived high-resolution acceleration, thus the high-precision and broad-band deformation information can be obtained in real time. The proposed method indicates a promising potential and capability in deformation monitoring of the high-building, dam, bridge and landslide.

  3. Design of a compiler working out a real time BASIC language for CAMAC monitoring

    International Nuclear Information System (INIS)

    Barlerin, Antoine.

    1978-06-01

    After exposing why a real time system is required in order to perform interactive measures and controls, the various units of this system are described and it is shown how to build them up. Through the real time monitor each process is managed and controlled. The required input-output system and the monitor are linked up. Through the control system the operator can at every moment interface with the process in progress. In accordance with the above described systems a method for language elaboration based on graph theory is outlined and applied to a short language. The last chapter describes the BASIC like language to which have been aplied the above methods and indicates the actual performance of the machine [fr

  4. The new Athens center on data processing from the neutron monitor network in real time

    Directory of Open Access Journals (Sweden)

    Mavromichalaki

    2005-11-01

    Full Text Available The ground-based neutron monitors (NMs record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work.

  5. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    Science.gov (United States)

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  6. A Low-Cost, Real-Time Network for Radiological Monitoring Around Nuclear Facilities

    International Nuclear Information System (INIS)

    Bertoldo, N A

    2004-01-01

    A low-cost, real-time radiological sensor network for emergency response has been developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the site perimeter to continuously monitor radiological conditions as part of LLNL's comprehensive environment/safety/health protection program. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors transmit measurement data back to a central command center (CCC) computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio- and computer- based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. This system provides a low-cost real-time radiation monitoring solution that is easily converted to incorporate both a hard-wired interior perimeter with strategically positioned wireless secondary and tertiary concentric remote locations. These wireless stations would be configured with solar voltaic panels that provide current to recharge batteries and power the sensors and radio transceivers. These platforms would supply data transmission at a range of up to 95 km from a single transceiver location. As necessary, using radio transceivers in repeater mode can extend the transmission range. The RTRAM network as it is presently configured at LLNL has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions. With the proposed

  7. Development of real time abdominal compression force monitoring and visual biofeedback system

    Science.gov (United States)

    Kim, Tae-Ho; Kim, Siyong; Kim, Dong-Su; Kang, Seong-Hee; Cho, Min-Seok; Kim, Kyeong-Hyeon; Shin, Dong-Seok; Suh, Tae-Suk

    2018-03-01

    In this study, we developed and evaluated a system that could monitor abdominal compression force (ACF) in real time and provide a surrogating signal, even under abdominal compression. The system could also provide visual-biofeedback (VBF). The real-time ACF monitoring system developed consists of an abdominal compression device, an ACF monitoring unit and a control system including an in-house ACF management program. We anticipated that ACF variation information caused by respiratory abdominal motion could be used as a respiratory surrogate signal. Four volunteers participated in this test to obtain correlation coefficients between ACF variation and tidal volumes. A simulation study with another group of six volunteers was performed to evaluate the feasibility of the proposed system. In the simulation, we investigated the reproducibility of the compression setup and proposed a further enhanced shallow breathing (ESB) technique using VBF by intentionally reducing the amplitude of the breathing range under abdominal compression. The correlation coefficient between the ACF variation caused by the respiratory abdominal motion and the tidal volume signal for each volunteer was evaluated and R 2 values ranged from 0.79 to 0.84. The ACF variation was similar to a respiratory pattern and slight variations of ACF ranges were observed among sessions. About 73-77% average ACF control rate (i.e. compliance) over five trials was observed in all volunteer subjects except one (64%) when there was no VBF. The targeted ACF range was intentionally reduced to achieve ESB for VBF simulation. With VBF, in spite of the reduced target range, overall ACF control rate improved by about 20% in all volunteers except one (4%), demonstrating the effectiveness of VBF. The developed monitoring system could help reduce the inter-fraction ACF set up error and the intra fraction ACF variation. With the capability of providing a real time surrogating signal and VBF under compression, it could

  8. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  9. Real-Time and Seamless Monitoring of Ground-Level PM2.5 Using Satellite Remote Sensing

    Science.gov (United States)

    Li, Tongwen; Zhang, Chengyue; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Liangpei

    2018-04-01

    Satellite remote sensing has been reported to be a promising approach for the monitoring of atmospheric PM2.5. However, the satellite-based monitoring of ground-level PM2.5 is still challenging. First, the previously used polar-orbiting satellite observations, which can be usually acquired only once per day, are hard to monitor PM2.5 in real time. Second, many data gaps exist in satellitederived PM2.5 due to the cloud contamination. In this paper, the hourly geostationary satellite (i.e., Harawari-8) observations were adopted for the real-time monitoring of PM2.5 in a deep learning architecture. On this basis, the satellite-derived PM2.5 in conjunction with ground PM2.5 measurements are incorporated into a spatio-temporal fusion model to fill the data gaps. Using Wuhan Urban Agglomeration as an example, we have successfully derived the real-time and seamless PM2.5 distributions. The results demonstrate that Harawari-8 satellite-based deep learning model achieves a satisfactory performance (out-of-sample cross-validation R2 = 0.80, RMSE = 17.49 μg/m3) for the estimation of PM2.5. The missing data in satellite-derive PM2.5 are accurately recovered, with R2 between recoveries and ground measurements of 0.75. Overall, this study has inherently provided an effective strategy for the realtime and seamless monitoring of ground-level PM2.5.

  10. Alternate mode for data acquisition and real-time monitoring system based on CAMAC system

    International Nuclear Information System (INIS)

    Luo, J.R.; Wei, P.J.; Li, G.M.; Wang, H.

    2006-01-01

    Long discharges (about 250 s) have been achieved on HT-7 tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). And in the next generation tokamaks like ITER , KSTAR and EAST , the pulses will be about 1000 s. In such steady-state operation, we have to upgrade the CAMAC-based data acquisition system, with higher sampling rates and longer acquisition times. It is necessary to monitor the plasma parameters in real-time so that the operators can change the operational conditions during the discharge to maintain the plasma. A design of the system named alternant data acquisition and real-time monitoring system for steady-state tokamak operation based on CAMAC system has been setup in ASIPP. The application of this system has been demonstrated in the HT-7 and TRIAM-1M tokamaks during their 2004 experiment campaigns

  11. Real-time geomagnetic monitoring for space weather-related applications: Opportunities and challenges

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.

    2017-07-01

    An examination is made of opportunities and challenges for enhancing global, real-time geomagnetic monitoring that would be beneficial for a variety of operational projects. This enhancement in geomagnetic monitoring can be attained by expanding the geographic distribution of magnetometer stations, improving the quality of magnetometer data, increasing acquisition sampling rates, increasing the promptness of data transmission, and facilitating access to and use of the data. Progress will benefit from new partnerships to leverage existing capacities and harness multisector, cross-disciplinary, and international interests.

  12. All-IP wireless sensor networks for real-time patient monitoring.

    Science.gov (United States)

    Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua

    2014-12-01

    This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Combination of Robot Simulation with Real-time Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Jianyu YANG

    2014-08-01

    Full Text Available The paper mainly focuses in combining virtual reality based operation simulation with remote real-time monitoring and control method for an experimental robot. A system composition framework was designed and relative arm-wheel experimental robot platform was also built. Virtual robots and two virtual environments were developed. To locate the virtual robot within numerical environments, relative mathematical methods is also discussed, including analytic locating methods for linear motion and self-rotation, as well as linear transformation method with homogeneous matrices for turning motion, in order to decrease division calculations. Several experiments were carried out, trajectory errors were found because of relative slides between the wheel and the floor, during the locating experiments. Writing-monitoring experiments were also performed by programming the robotic arm to write a Chinese character, and the virtual robot in monitoring terminal perfectly followed all the movements. All the experiment results confirmed that virtual environment can not only be used as a good supplement to the traditional video monitoring method, but also offer better control experience during the operation.

  14. Rule Based Expert System for Monitoring Real Time Drug Supply in Hospital Using Radio Frequency Identification Technology

    Science.gov (United States)

    Driandanu, Galih; Surarso, Bayu; Suryono

    2018-02-01

    A radio frequency identification (RFID) has obtained increasing attention with the emergence of various applications. This study aims to examine the implementation of rule based expert system supported by RFID technology into a monitoring information system of drug supply in a hospital. This research facilitates in monitoring the real time drug supply by using data sample from the hospital pharmacy. This system able to identify and count the number of drug and provide warning and report in real time. the conclusion is the rule based expert system and RFID technology can facilitate the performance in monitoring the drug supply quickly and precisely.

  15. Implementing real-time GNSS monitoring to investigate continental rift initiation processes

    Science.gov (United States)

    Jones, J. R.; Stamps, D. S.; Wauthier, C.; Daniels, M. D.; Saria, E.; Ji, K. H.; Mencin, D.; Ntambila, D.

    2017-12-01

    Continental rift initiation remains an elusive, yet fundamental, process in the context of plate tectonic theory. Our early work in the Natron Rift, Tanzania, the Earth's archetype continental rift initiation setting, indicates feedback between volcanic deformation and fault slip play a key role in the rift initiation process. We found evidence that fault slip on the Natron border fault during active volcanism at Ol Doniyo Lengai in 2008 required only 0.01 MPa of Coulomb stress change. This previous study was limited by GPS constraints 18 km from the volcano, rather than immediately adjacent on the rift shoulder. We hypothesize that fault slip adjacent to the volcano creeps, and without the need for active eruption. We also hypothesize silent slip events may occur over time-scales less than 1 day. To test our hypotheses we designed a GNSS network with 4 sites on the flanks of Ol Doinyo Lengai and 1 site on the adjacent Natron border fault with the capability to calculate 1 second, 3-5 cm precision positions. Data is transmitted to UNAVCO in real-time with remote satellite internet, which we automatically import to the EarthCube building block CHORDS (Cloud Hosted Real-time Data Services for the Geosciences) using our newly developed method. We use CHORDS to monitor and evaluate the health of our network while visualizing the GNSS data in real-time. In addition to our import method we have also developed user-friendly capabilities to export GNSS positions (longitude, latitude, height) with CHORDS assuming the data are available at UNAVCO in NMEA standardized format through the Networked Transport of RTCM via Internet Protocol (NTRIP). The ability to access the GNSS data that continuously monitors volcanic deformation, tectonics, and their interactions on and around Ol Doinyo Lengai is a crucial component in our investigation of continental rift initiation in the Natron Rift, Tanzania. Our new user-friendly methods developed to access and post-process real-time GNSS

  16. Monitoring bacterial faecal contamination in waters using multiplex ...

    African Journals Online (AJOL)

    Monitoring of sanitary quality or faecal pollution in water is currently based on quantifying some bacterial indicators such as Escherichia coli and faecal enterococci. Using a multiplex real-time PCR assay for faecal enterococci and Bacteroides spp., the detection of faecal contamination in non-treated water can be done in a ...

  17. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  18. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  19. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  20. Medical Device Integrated Vital Signs Monitoring Application with Real-Time Clinical Decision Support.

    Science.gov (United States)

    Moqeem, Aasia; Baig, Mirza; Gholamhosseini, Hamid; Mirza, Farhaan; Lindén, Maria

    2018-01-01

    This research involves the design and development of a novel Android smartphone application for real-time vital signs monitoring and decision support. The proposed application integrates market available, wireless and Bluetooth connected medical devices for collecting vital signs. The medical device data collected by the app includes heart rate, oxygen saturation and electrocardiograph (ECG). The collated data is streamed/displayed on the smartphone in real-time. This application was designed by adopting six screens approach (6S) mobile development framework and focused on user-centered approach and considered clinicians-as-a-user. The clinical engagement, consultations, feedback and usability of the application in the everyday practices were considered critical from the initial phase of the design and development. Furthermore, the proposed application is capable to deliver rich clinical decision support in real-time using the integrated medical device data.

  1. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  2. In-line near real time monitoring of fluid streams in separation processes for used nuclear fuel - 5146

    International Nuclear Information System (INIS)

    Nee, K.; Nilsson, M.

    2015-01-01

    Applying spectroscopic tools for chemical processes has been intensively studied in various industries owing to its rapid and non-destructive analysis for detecting chemical components and determine physical characteristic in a process stream. The general complexity of separation processes for used nuclear fuel, e.g., chemical speciation, temperature variations, and prominent process security and safety concerns, require a well-secured and robust monitoring system to provide precise information of the process streams at real time without interference. Multivariate analysis accompanied with spectral measurements is a powerful statistic technique that can be used to monitor this complex chemical system. In this work, chemometric models that respond to the chemical components in the fluid samples were calibrated and validated to establish an in-line near real time monitoring system. The models show good prediction accuracy using partial least square regression analysis on the spectral data obtained from UV/Vis/NIR spectroscopies. The models were tested on a solvent extraction process using a single stage centrifugal contactor in our laboratory to determine the performance of an in-line near real time monitoring system. (authors)

  3. Radiation environmental real-time monitoring and dispersion modeling

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  4. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  5. Development of the real time monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsumi [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan); Watanabe, Tadashi; Kaburaki, Hideo

    1996-10-01

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering (CCSE) for the computational science research in nuclear fields. Visualization and animation processing technique are studied and developed for efficient understanding of simulation results. The real time monitor system, in which on-going simulation results are transferred from a supercomputer or workstation to a graphic workstation and are visualized and recorded, is described in this report. This system is composed of the graphic workstation and the video equipment connected to the network. The control shell programs are the job-execution shell for simulations on supercomputers, the file-transfer shell for output files for visualization, and the shell for starting visualization tools. Special image processing technique and hardware are not necessary in this system and the standard visualization tool AVS and the UNIX commands are used, so that this system can be implemented and applied in various computer environments. (author)

  6. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Noh, Y; Suh, T [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unit and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation

  7. SU-F-T-91: Development of Real Time Abdominal Compression Force (ACF) Monitoring System

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Noh, Y; Suh, T; Kim, S

    2016-01-01

    Purpose: Hard-plate based abdominal compression is known to be effective, but no explicit method exists to quantify abdominal compression force (ACF) and maintain the proper ACF through the whole procedure. In addition, even with compression, it is necessary to do 4D CT to manage residual motion but, 4D CT is often not possible due to reduced surrogating sensitivity. In this study, we developed and evaluated a system that both monitors ACF in real time and provides surrogating signal even under compression. The system can also provide visual-biofeedback. Methods: The system developed consists of a compression plate, an ACF monitoring unit and a visual-biofeedback device. The ACF monitoring unit contains a thin air balloon in the size of compression plate and a gas pressure sensor. The unit is attached to the bottom of the plate thus, placed between the plate and the patient when compression is applied, and detects compression pressure. For reliability test, 3 volunteers were directed to take several different breathing patterns and the ACF variation was compared with the respiratory flow and external respiratory signal to assure that the system provides corresponding behavior. In addition, guiding waveform were generated based on free breathing, and then applied for evaluating the effectiveness of visual-biofeedback. Results: We could monitor ACF variation in real time and confirmed that the data was correlated with both respiratory flow data and external respiratory signal. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed real time ACF monitoring system was found to be functional as intended and consistent. With the capability of both providing real time surrogating signal under compression and enabling visual-biofeedback, it is considered that the system would improve the quality of respiratory motion management in radiation

  8. Real-time monitoring and control of the oil pipeline networks; Monitoramento e controle inteligentes e em tempo real de redes de escoamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brasileiro, F.; Galvao, C.; Brasileiro, E.; Catao, B.; Souto, C.; Machado, E.; Muniz, M.; Souza, A.; Gomes, A. [Universidade Federal de Campina Grande, PB (Brazil)]. E-mail: fubica@dsc.ufcg.edu.br; Aloise, D. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Oliveira, A.; Gomes, C.; Rolim, T.; Boquimpani, C. [PETROBRAS S.A. (Brazil)

    2003-07-01

    Real-time monitoring and control of complex and large-scale oil pipeline networks is complicated by several requirements, among them: reliability of data acquisition and communication systems; strict time limits between data acquisition and decision of control action; operational constraints of a large number of pipeline devices and multi-objective control, involving economic, operational, environmental and institutional objectives and constraints. The MDTP system was designed for meeting such requirements. A simulation-optimization approach is the strategy adopted for the network state prediction and control. The simulation module is based on the quasi-steady state hydraulics of oil-water flow. The control is centered on the pumping systems, respecting operational constraints of tanks and pipes, without reducing the oil production targets. For real-time control, an optimization scheme generates multiple operational scenarios, the optimum of them being selected by means of a meta-heuristics approach. To meet the strict time limits for deciding the control strategy, a grid computing architecture was adopted, instead of conventional dedicated high-performance computers. (author)

  9. Near Real-time Operational Use of eMODIS Expedited NDVI for Monitoring Applications and Famine Early Warning

    Science.gov (United States)

    Rowland, J.; Budde, M. E.

    2010-12-01

    The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.

  10. Online Monitoring and Controlling Water Plant System Based on IoT Cloud Computing and Arduino

    Directory of Open Access Journals (Sweden)

    Ali Najim Abdullah

    2017-07-01

    Full Text Available Water is basis of the existence of life on earth and its invaluable because it’s an essential requirement for all the human beings but, presently water preparation and processing systems are suffering from different problems such as real-time operations problems, loss of large amounts of water in the liquidation and distribution operations, less amount of water sources, i.e. The increase in water problems coincides with the increase in population numbers and residential areas such as (water distribution, consumption, Interrupted water sources problems as well as water quality. Therefore, to eliminate these problems and make more efficient water systems, effective and reliable there is necessity for accurate monitoring and proper controlling system. In this paper, we are focusing on the design of water system in real-time and on the continuous monitoring of water based on IoT cloud computing and Arduino microcontroller. Water system with proper control algorithm and continuous monitoring any place and any time makes a stable distribution so that, we can have a record of height of water in tanks and we can change the devices status in the plant. Internet of things is a network of physical connected objects equipped with software, electronics circuits, sensors, and network connection part which allow monitoring and controlling anywhere around the world. Through using cloud computing proved by free severs, the water system’s data continuously is uploaded to cloud allowing the real time monitoring operation by the use of sensors and microcontroller (Arduino as Minicomputer to control and monitor the system operation from cloud with efficient (client to server connection.

  11. Construction of a Cerebral Hemorrhage Test System Operated in Real-time

    Science.gov (United States)

    Li, Gen; Sun, Jian; Ma, Ke; Yan, Qingguang; Zheng, Xiaolin; Qin, Mingxin; Jin, Gui; Ning, Xu; Zhuang, Wei; Feng, Hua; Huang, Shiyuwei

    2017-02-01

    The real-time monitoring and evaluation of the severity and progression of cerebral hemorrhage is essential to its intensive care and its successful emergency treatment. Based on magnetic induction phase shift technology combined with a PCI data acquisition system and LabVIEW software, this study established a real-time monitoring system for cerebral hemorrhage. To test and evaluate the performance of the system, the authors performed resolution conductivity experiments, salted water simulation experiments and cerebral hemorrhage experiments in rabbits and found that when the conductivity difference was 0.73 S/m, the phase difference was 13.196°. The phase difference change value was positively proportional to the volume of saline water, and the conductivity value was positively related to the phase difference of liquid under the same volume conditions. After injecting 3 mL blood into six rabbits, the average change in the blood phase difference was -2.03783 ± 0.22505°, and it was positively proportional to the volume of blood, which was consistent with the theoretical results. The results show that the system can monitor the progressive development of cerebral hemorrhage in real-time and has the advantages of low cost, small size, high phase accuracy, and good clinical application potentiality.

  12. Real-time amyloid aggregation monitoring with a photonic crystal-based approach.

    Science.gov (United States)

    Santi, Sara; Musi, Valeria; Descrovi, Emiliano; Paeder, Vincent; Di Francesco, Joab; Hvozdara, Lubos; van der Wal, Peter; Lashuel, Hilal A; Pastore, Annalisa; Neier, Reinhard; Herzig, Hans Peter

    2013-10-21

    We propose the application of a new label-free optical technique based on photonic nanostructures to real-time monitor the amyloid-beta 1-42 (Aβ(1-42)) fibrillization, including the early stages of the aggregation process, which are related to the onset of the Alzheimer's Disease (AD). The aggregation of Aβ peptides into amyloid fibrils has commonly been associated with neuronal death, which culminates in the clinical features of the incurable degenerative AD. Recent studies revealed that cell toxicity is determined by the formation of soluble oligomeric forms of Aβ peptides in the early stages of aggregation. At this phase, classical amyloid detection techniques lack in sensitivity. Upon a chemical passivation of the sensing surface by means of polyethylene glycol, the proposed approach allows an accurate, real-time monitoring of the refractive index variation of the solution, wherein Aβ(1-42) peptides are aggregating. This measurement is directly related to the aggregation state of the peptide throughout oligomerization and subsequent fibrillization. Our findings open new perspectives in the understanding of the dynamics of amyloid formation, and validate this approach as a new and powerful method to screen aggregation at early stages. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sound the alarm : monitoring system's real-time data reduces well downtime

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-10-15

    This article presented a new electrical heating element tool used to boost performance at low-producing wells. The down hole tool (DHT) was designed to generate steam underground in order to avoid the energy losses associated with above-ground equipment. The tool operates like an oven element but is connected to a computerized well-monitoring system in order to ensure that heat is evenly distributed. The DHT is equipped with an Optiview monitoring system designed to provide continuous readouts of near real time data. The system can also be customized to deliver messages to telephones, computers, or alarm systems. Changes in hydraulic torque, flow rates, tank levels, speeds, temperatures and hydraulic pressures can be set within ranges in order to optimize oil and gas well production by reducing operating costs and increasing equipment efficiencies. Use of the tool has during tests has minimized the need for well servicing. The patent pending technology is also being investigated for its use in water disposal and other pump-to-surface units. It was concluded that use of the technology will allow oil and gas managers to determine the status of wells in remote locations. 1 fig.

  14. Real-Time Monitoring of Alpha Emissions. Final report, FY 1994

    International Nuclear Information System (INIS)

    Gritzo, R.; Fowler, M.; Wouters, J.

    1994-01-01

    A technology is being developed for on-line, real-time monitoring of mixed and low-level incinerator stacks for levels of airborne alpha activity. The Large-Volume Flow Thru Detector System uses a detector composed of multiple parallel plates of scintillating material fabricated so that the entire stack gas stream flows directly through the inter-plate volume. This report is largely a compilation of 3 reports on background reduction, once-through flow tests, and the aeronautical/mechanical engineering work. The full text of each report is included as an appendix

  15. The CI-ROB project: real time monitoring for a robotic prostate curietherapy

    International Nuclear Information System (INIS)

    Liem, X.; Lartigau, E.; Coelen, V.; Merzouki, R.

    2010-01-01

    The authors present a project which is still at the proto-typing stage and for which hardware and software are still being developed, and which aims at developing a full line for a robotic curietherapy. It comprises an articulated robotic arm with six degree of freedom, and is based on an auto-regulated loop with real time monitoring and control. An echographic probe acquires the prostate images in real time. An adaptive detection defines the prostate contour. This is performed in a virtual environment which comprises the prostate phantom, the robot and the intervention table. The target is defined in the virtual environment (image coordinates) and coordinates are transmitted to the robot controller which defines the robot movements by using the inverse geometric model. Short communication

  16. Feasibility of real-time location systems in monitoring recovery after major abdominal surgery.

    Science.gov (United States)

    Dorrell, Robert D; Vermillion, Sarah A; Clark, Clancy J

    2017-12-01

    Early mobilization after major abdominal surgery decreases postoperative complications and length of stay, and has become a key component of enhanced recovery pathways. However, objective measures of patient movement after surgery are limited. Real-time location systems (RTLS), typically used for asset tracking, provide a novel approach to monitoring in-hospital patient activity. The current study investigates the feasibility of using RTLS to objectively track postoperative patient mobilization. The real-time location system employs a meshed network of infrared and RFID sensors and detectors that sample device locations every 3 s resulting in over 1 million data points per day. RTLS tracking was evaluated systematically in three phases: (1) sensitivity and specificity of the tracking device using simulated patient scenarios, (2) retrospective passive movement analysis of patient-linked equipment, and (3) prospective observational analysis of a patient-attached tracking device. RTLS tracking detected a simulated movement out of a room with sensitivity of 91% and specificity 100%. Specificity decreased to 75% if time out of room was less than 3 min. All RTLS-tagged patient-linked equipment was identified for 18 patients, but measurable patient movement associated with equipment was detected for only 2 patients (11%) with 1-8 out-of-room walks per day. Ten patients were prospectively monitored using RTLS badges following major abdominal surgery. Patient movement was recorded using patient diaries, direct observation, and an accelerometer. Sensitivity and specificity of RTLS patient tracking were both 100% in detecting out-of-room ambulation and correlated well with direct observation and patient-reported ambulation. Real-time location systems are a novel technology capable of objectively and accurately monitoring patient movement and provide an innovative approach to promoting early mobilization after surgery.

  17. The development of an innovative, real-time monitor for airborne alpha emissions

    International Nuclear Information System (INIS)

    Gritzo, R.; Fowler, M.; Wouters, J.

    1994-01-01

    Los Alamos National Laboratory (LANL) is developing a technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology uses a unique design for sensitive, real-time measurements of alpha particle emissions. Scintillating plates are stacked close together so that alpha-particle emissions in the flowing gas stream strike a plate. The light pulses produced when the alpha particle strikes the plate are registered by photomultiplier tubes and processed to determine the concentration of alpha emitting radionuclides present in the air. This technology directly addresses the public's demand for fast responding, high sensitivity effluent monitoring systems. With Department of Energy (DOE) EM-50 funding LANL has fabricated a beach-top proof of concept detector system and is conducting tests to evaluate its performance. A second generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for fiscal year 1995. In this paper the LVFTDS technology is explained, including the measured performance of a prototype detector. The advantages, disadvantages, and other ramifications of applying this technology to incinerator effluent monitoring are also discussed. An overview of the development effort is also provided

  18. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    Science.gov (United States)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  19. Dedicated real-time monitoring system for health care using ZigBee.

    Science.gov (United States)

    Alwan, Omar S; Prahald Rao, K

    2017-08-01

    Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients.

  20. Development of a real-time monitoring system and integration of different computer system in LHD experiments using IP multicast

    International Nuclear Information System (INIS)

    Emoto, Masahiko; Nakamura, Yukio; Teramachi, Yasuaki; Okumura, Haruhiko; Yamaguchi, Satarou

    2002-01-01

    There are several different computer systems in LHD (Large Helical Device) experiment, and therefore the coalition of these computers is a key to perform the experiment. Real-time monitoring system is also important because the long discharge is needed in the LHD experiment. In order to achieve these two requirements, the technique of IP multicast is adopted. The authors have developed three new systems, the first one is the real-time monitoring system, the next one is the delivery system of the shot number and the last one is the real-time notification system of the plasma data registration. The first system can deliver the real-time monitoring data to the LHD experimental LAN through the firewall of the LHD control LAN in NIFS. The other two systems are used to realize high coalition of the different computers in the LHD plasma experiment. We can conclude that IP multicast is very useful both in the LHD experiment and a future large plasma experiment from various experiences. (author)

  1. Real-time Environmental Monitoring Data on the internet

    International Nuclear Information System (INIS)

    Nakashima, N.I.; Maruo, Y.; Tobita, K.; Takeyasu, M.

    2000-01-01

    Japan Nuclear Cycle Development Institute (JNC) places great emphasis on safety, information disclosure and communication with the local community. The Real-time Environmental Monitoring Data (REMD) was made to provide to the public on the JNC web-site (http://www.jnc.go.jp/). It is the first organization having nuclear facilities in Japan to open REMD on the Internet web-site. JNC Tokai Works included Tokai Reprocessing Plant (TRP) started to open REMD in Oct. 1998. O-arai Engineering Center (OEC) included the Experimental Fast Reactor JOYO opened in April 1999. OEC produced this web-site in both Japanese and English (http://www.jnc.go.jp/zooarai/Oantai_e/html/index.html). REMD means airborne gamma radiation dose rate, and Meteorological Observation Data. Tokai Works has 13 Monitoring Posts/Stations and OEC has 8 Monitoring Posts to measure airborne gamma radiation dose. The data from these Monitoring Posts/Stations are shown on the web-site. The Meteorological Observation Data in this web-site are wind direction, wind speed, temperature, humidity, precipitation, and atmospheric stability. Atmospheric stability provides information on the state of the atmosphere concerned with air diffusion. REMD web-site provides all these data mentioned above as current data, data tables, trend graphs, and additional information. They are updated every hour. The current data are shown with a graphical map around the JNC site. Data tables are shown within 7 days. Daily highest and lowest temperature and precipitation are also shown as a table. There are three kinds of trend graphs of airborne radiation dose rate, the latest 24 hours trend graph, 48 hours, and 7 days. Each graph is shown with a graph of precipitation, so that variation of airborne gamma radiation with rainfall can be seen. Some explanations of this web-site are expressed as additional information. The topics of them are airborne Radiation, Meteorology, Radioactivity and Radiation, and Rainfall and Radiation. A set

  2. Pilot Water Quality Monitoring Station in Dublin Bay North Bank Monitoring Station (NBMS): MATSIS Project Part I

    OpenAIRE

    O Donnell, G.; Joyce, E.; O Boyle, S.; McGovern, E.

    2008-01-01

    The lack of short-term temporal resolution associated with traditional spot sampling for monitoring water quality of dynamic coastal and estuarine waters has meant that many organisations are interesting in autonomous monitoring technologies to provide near real-time semi-continuous data. Such approaches enable capturing short term episodic events (which may be missed or alternatively skew datasets when using spot samples) and provide early warning of water quality problems. New policy driver...

  3. Real Time Agricultural Monitoring with the Planet SmallSat Constellation

    Science.gov (United States)

    Mascaro, J.

    2017-12-01

    Planet—an aerospace and data analytics company (www.planet.com)—now operates 190 earth observation satellites, collecting approximately 85% of the land-surface of the Earth every day in multispectral, 3.7m-resolution imagery. This frequency and spatial resolution provides for unique monitoring of global agriculture, especially billions of smallholder farms that feed much of the world. Through our Education and Research Program, anyone at a university is eligible to access a portion of Planet data to power their research at no cost. Here, we present innovative results from our research partners. Most critically, several users have undertaken the development of models for regularizing spectrally disparate data feeds from Planet, Sentinel and Landsat; these approaches have generated standardized, 3.7m-resolution, daily data feeds for NDVI, LAI and (in combination with eddy covariance data) crop water use. The key breakthrough is interoperability: ingesting multiple, disparate satellite information fields for the generation of actionable agricultural indicators. This foundational methodology, aided by computer vision, can provide near real-time updates on the yield, health and welfare of smallholder farms. Storms, drought and disease can be detected faster than ever before, enabling smart intervention and enhancing the effectiveness of insurance and disaster relief mechanisms.

  4. Real-time monitoring through the use of technology to enhance performances throughout HIV cascades.

    Science.gov (United States)

    Avery, Matthew; Mills, Stephen J; Stephan, Eric

    2017-09-01

    Controlling the HIV epidemic requires strong linkages across a 'cascade' of prevention, testing, and treatment services. Information and communications technology (ICT) offers the potential to monitor and improve the performance of this HIV cascade in real time. We assessed recent (media to expand reach and improve programmatic targeting; technology in healthcare settings to strengthen coordination, guide clinical decision-making and improve clinical interactions; and telephone-based follow-up to improve treatment retention and adherence. With exceptions, publications have tended to be descriptive rather than evaluative, and the evidence-base for the effectiveness of ICT-driven interventions remains mixed. There is widespread recognition of the potential for ICT to improve HIV cascade performance, but with significant challenges. Successful implementation of real-time cascade monitoring will depend upon stakeholder engagement, compatibility with existing workflows, appropriate resource allocation, and managing expectations.

  5. Enhancements and Evolution of the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  6. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  7. Real-time earthquake data feasible

    Science.gov (United States)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  8. Real time nanogravimetric monitoring of corrosion in radioactive environments

    OpenAIRE

    Tzagkaroulakis, Ioannis; Boxall, Colin

    2017-01-01

    Monitoring and understanding the mechanism of metal corrosion throughout the nuclear fuel cycle play a key role in the safe asset management of facilities. They also provide information essential for making an informed choice regarding the selection of decontamination methods for steel plant and equipment scheduled for decommissioning. Recent advances in Quartz Crystal Nanobalance (QCN) technology offer the means of monitoring corrosion in-situ, in radiologically harsh environments, in real t...

  9. Development of a real time chemistry monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Millett, P.J.; Bates, J.; Burns, G.

    1998-01-01

    EPRI has developed SMART chem WORKS, which is capable of operating as a real time chemistry diagnostic and monitoring system. A high degree of plant-specific customization is possible which allows discrimination between normal chemistry and off-normal conditions. The initial implementation of the system has been very successful. State of the art technology has been employed which allows remote administration of the system, a flexible, web page display of the output from the system and instant notification of excursions using email and pagers. The second installation of SMART chem WORKS is currently underway at a BWR plant, Grand Gulf. The SMART chem WORKS techniques can be applied to monitor PWR Primary Chemistry, PWR Secondary Chemistry and BWR steam cycle chemistry. A fossil steam cycle simulator will also be developed for application to fossil plants. (J.P.N.)

  10. Development of a real time activity monitoring Android application utilizing SmartStep.

    Science.gov (United States)

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  11. NASDA technician test real-time radiation monitoring device

    Science.gov (United States)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  12. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  13. Validation of Prototype Continuous Real-Time Vital Signs Video Analytics Monitoring System CCATT Viewer

    Science.gov (United States)

    2018-01-26

    traditional monitors, this capability will facilitate management of a group of patients. Innovative visual analytics of the complex array of real-time...redundant system could be useful in managing hundreds of bedside monitor data sources. With too many data sources, a single central server may suffer...collection rate. 3.2 Viewer Elements Design For detailed elements to display, as well as their color, line styles , and locations on the screen, we

  14. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  15. Real Time Physiological Status Monitoring (RT-PSM): Accomplishments, Requirements, and Research Roadmap

    Science.gov (United States)

    2016-03-01

    actionable information. With many lessons learned , the first implementation of real time physiological monitoring (RT-PSM) uses thermal-work strain... Bidirectional Inductive On-Body Network (BIONET) for WPSM Develop sensor links and processing nodes on-Soldier and non-RF links off-Soldier Elintrix...recent sleep watches (e.g., BASIS Peak, Intel Corp.) are attempting to parse sleep quality beyond duration and interruptions into deep and REM sleep

  16. Design of Heavy Metals Monitoring System in Water Based on WSN and GPRS

    Directory of Open Access Journals (Sweden)

    Ke Lin

    2014-04-01

    Full Text Available In order to realize the real-time monitoring of heavy metals in water environment, a new type of heavy metal monitoring system was developed. The system was composed of monitoring terminal, gateway, GPRS network and upper computer monitoring center. The system detected the heavy metal ion concentrations by ion-selective electrode array and came into the system error automatic compensation method in the detection process. The collecting data was transported to the monitoring center through the cooperation between the wireless sensor network constituted by CC2530 and General Packet Radio Service network. The test result shows that the system can increased precision dramatically and strengthens the real-time transmission capacity effectively. The system is reliable in transmission, high real-time performance, flexible in networking and can be applied to continuous remote monitoring of heavy metals pollution.

  17. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly.

    Science.gov (United States)

    Hwang, J Y; Kang, J M; Jang, Y W; Kim, H

    2004-01-01

    Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.

  18. A real-time BWR [boiling water reactor] stability measurement system

    International Nuclear Information System (INIS)

    March-Leuba, J.; King, W.T.

    1987-01-01

    This paper describes the characteristics of a portable, real-time system used for nonperturbational measurements of stability in boiling water reactors. The algorithm used in this system estimates the closed-loop asymptotic decay ratio using only the naturally occurring neutron noise and it is based on the univariate autoregressive methodology

  19. An integrated framework for SAGD real-time monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohajer, M.; Perez-Damas, C.; Berbin, A.; Al-kinani, A. [Schlumberger, Calgary, AB (Canada)

    2009-07-01

    This study examined the technologies and workflows for real-time optimization (RTO) of the steam assisted gravity drainage (SAGD) process. Although SAGD operators have tried to control the reservoir's steam chamber distribution to optimize bitumen recovery and minimize steam oil ratios, a true optimization can only be accomplished by implementing RTO workflows. In order for these workflows to be successful, some elements must be properly designed and introduced into the system. Most notably, well completions must ensure the integrity of downhole sensors; the appropriate measuring instruments must be selected; and surface and downhole measurements must be obtained. Operators have not been early adopters of RTO workflows for SAGD because of the numerous parameters that must be monitored, harsh operating conditions, the lack of integration between the different data acquisition systems, and the complex criteria required to optimize SAGD performance. This paper discussed the first stage in the development of a fully integrated RTO workflow for SAGD. An experimental apparatus with fiber optics distributed temperature sensing (DTS) was connected to a data acquisition system, and intra-minute data was streamed directly into an engineering desktop. The paper showed how subcool calculations can be effectively performed along the length of the horizontal well in real time and the results used to improve SAGD operation. Observations were compared against simulated predictions. In the next stage, a more complex set of criteria will be derived and additional data will be incorporated, such as surface heave, cross-well microseismic, multiphase flowmeter, and observation wells. 9 refs., 9 tabs., 13 figs.

  20. Radiological safety system based on real-time tritium-in-air monitoring indoor and in effluents

    International Nuclear Information System (INIS)

    Bidica, Nicolae; Sofalca, Nicolae; Balteanu, Ovidiu-Ioan; Stefan, Ioana-Iuliana

    2007-01-01

    In this paper we describe an improved real-time tritium monitoring system designed for Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The system consists of three fixed tritium-in-air monitors which measure continuously tritium-in-air concentration (in both species: vapour and gas) in working areas and gaseous effluents. Portable tritium monitors with ionization chamber, and tritium-in-air collector combined with liquid scintillation counter method are also used to supplement fixed instrument measurements. The main functions of tritium monitoring system are: to measure tritium-in air concentration in working areas and gaseous effluents; to alarm the personnel if tritium concentration thresholds are exceeded; to integrate tritium activity released to the environment during a week and to cut off normal ventilation when the activity threshold is exceeded and start the air cleaning system. Now, several especial functions have been added, so that by using appropriate conversion factors, the tritium monitoring system is able to estimate the effective dose rate before starting an activity into the monitored area, during this activity, or soon as the activity was finished. Another new function has been added by coupling tritium-in-air monitoring system with control access system. This is very useful for quick estimation of tritium doses. For routine dosimetric survey, one the internal dose for individuals by measuring tritium in urine is estimated. With all these features our tritium monitoring system is really a safety system for personnel and for environment. (authors)

  1. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    Science.gov (United States)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  2. Definition of a near real-time microbiological monitor for application in space vehicles

    Science.gov (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.; Woodward, Samuel S.; Pierson, Duane L.

    1989-01-01

    The concepts and methodologies for microbiological monitoring in space are examined, focusing on the determination of the requirements of a near real-time microbiological monitor. Results are presented from the technical evaluation of five microbiological monitor concepts, including cultural methods, single cell detection, biomolecular detection, specific product detection, and general molecular composition. Within these concepts, twenty-eight specific methodolgies were assessed and the five candidate methodologies with the highest engineering and feasibility scores were selected for further evaluations. The candidate methodologies are laser light scattering, primary fluorescence, secondary fluorescence, volatile product detection, and electronic particle detection. The advantages and disadvantages of these five candidate methodologies are discussed.

  3. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring

    OpenAIRE

    Mohieddine Benammar; Abderrazak Abdaoui; Sabbir H.M. Ahmad; Farid Touati; Abdullah Kadri

    2018-01-01

    The impact of air quality on health and on life comfort is well established. In many societies, vulnerable elderly and young populations spend most of their time indoors. Therefore, indoor air quality monitoring (IAQM) is of great importance to human health. Engineers and researchers are increasingly focusing their efforts on the design of real-time IAQM systems using wireless sensor networks. This paper presents an end-to-end IAQM system enabling measurement of CO2, CO, SO2, NO2, O3, Cl2, am...

  4. Effectiveness of a simple and real-time baseline shift monitoring system during stereotactic body radiation therapy of lung tumors.

    Science.gov (United States)

    Uchida, Yukihiro; Tachibana, Hidenobu; Kamei, Yoshiyuki; Kashihara, Kenichi

    2017-11-01

    This study aimed to clinically validate a simple real-time baseline shift monitoring system in a prospective study of consecutive patients undergoing stereotactic body radiation therapy (SBRT) of lung tumors, and to investigate baseline shift due to intrafraction motion of the patient's body during lung SBRT. Ten consecutive patients with peripheral lung tumors were treated by SBRT consisting of four fractions of 12 Gy each, with a total dose of 48 Gy. During treatment, each patient's geometric displacement in the anterior-posterior and left-right directions (the baseline shift) was measured using a real-time monitoring webcam system. Displacement between the start and end of treatment was measured using an X-ray fluoroscopic imaging system. The displacement measurements of the two systems were compared, and the measurements of baseline shift acquired by the monitoring system during treatment were analyzed for all patients. There was no significant deviation between the monitoring system and the X-ray imaging system, with the accuracy of measurement being within 1 mm. Measurements using the monitoring system showed that 7 min of treatment generated displacements of more than 1 mm in 50% of the patients. Baseline shift of a patient's body may be measured accurately in real time, using a monitoring system without X-ray exposure. The manubrium of the sternum is a good location for measuring the baseline shift of a patient's body at all times. The real-time monitoring system may be useful for measuring the baseline shift of a patient's body independently of a gating system. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Creation and clinical application of real-time dose monitor using dose area product meter

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Uoyama, Yoshinori; Iida, Hiroji; Mizushima, Takashi

    2004-01-01

    The management of patient dose has become more of an issue in recent years. Dose can be determined non-invasively and in real time through the use of a dose area product meter, but it is the area dose value that is obtained. Therefore, we created a program that estimates entrance skin dose (ESD) in real time from area dose values obtained during procedures. We used Microsoft Visual C++ 6.0 (Standard Edition) for the programming language and C language for the programming environment. The value was a maximum 285.4 mGy at ileus tube insertion when measuring ESD for radiography of the digestive organ and non-vascular type interventional radiology (IVR) using the created program and seeking the average according to the procedures. The program that we created can be considered valid for monitoring ESD correctly and in real time. (author)

  6. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  7. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  8. A Realization of Temperature Monitoring System Based on Real-Time Kernel μC/OS and 1-wire Bus

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2013-06-01

    Full Text Available The traditional temperature monitoring system generally adopt some analog sensors for collecting data and a microcontroller for processing data for the purpose of temperature monitoring. However, this back-fore ground system has the disadvantages that the system has poor real-time property and single function, the amount of sensors is not easy to expand, and the software system has a difficulty in upgrading. Aiming at these disadvantages, the system designed in this paper adopts brand-new hardware and software structures: a digitaltemperature sensor array is connected to 1-wire bus and communicated with a control core through 1-wire bus protocol, thus a great convenience is provided for the expansion of the sensor; a real-time operating system is introduced into the software, an application program capable of realizing various functions runs on the real-time kernel μC/OS-II platform. The application of the real-time kernel also provides a good lower layer interface for the late-stage software upgrading.

  9. Development of a real-time monitor for airborne alpha emissions. First quarter report, TTP AL 142003

    Energy Technology Data Exchange (ETDEWEB)

    Gritzo, R.E.; Fowler, M.M.

    1994-02-01

    This is the first quarterly report for Fiscal Year (FY) 1994 for TTP AL 142003, Development of a Real-Time Monitor for Airborne Alpha Emissions. Los Alamos National Laboratory (LANL) is developing a new technology for on-line, real-time monitoring of incinerator stacks for low levels of airborne alpha activity. While initially developed for incinerators, this new technology may well find other applications in continuous air monitoring, process monitoring, and monitoring during remediation activities. Referred to as the Large-Volume Flow Thru Detector System (LVFTDS), this technology responds directly to the need for fast responding, high sensitivity effluent monitoring systems. With DOE EM-50 funding, LANL has fabricated a bench-top proof of concept detector system and is conducting tests to evaluate its performance. A second- generation prototype is being designed, based on requirements driven by potential field test sites. An industrial partner is being solicited to license the technology. Field trials of a full-scale detector system are planned for FY 95. Accomplishments during the first quarter of FY 94 are chronicled in this report, including budgetary data. A schedule for the remainder of the fiscal year is also provided.

  10. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    Science.gov (United States)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  11. Real-time continuous glucose monitoring during labour and delivery in women with Type 1 diabetes — observations from a randomized controlled trial

    DEFF Research Database (Denmark)

    Cordua, S; Secher, A L; Ringholm, L

    2013-01-01

    To explore whether real-time continuous glucose monitoring during labour and delivery supplementary to hourly self-monitored plasma glucose in women with Type 1 diabetes reduces the prevalence of neonatal hypoglycaemia.......To explore whether real-time continuous glucose monitoring during labour and delivery supplementary to hourly self-monitored plasma glucose in women with Type 1 diabetes reduces the prevalence of neonatal hypoglycaemia....

  12. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  13. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  14. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  15. Robustness of parameter-less remote real-time pressure control in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-06-01

    Full Text Available One way of reducing water leakage, pipe bursts and water consumption in a water distribution system (WDS) is to manage the pressure to be as low as possible. This can be done by adjusting a pressure control valve (PCV) in real-time in order to keep...

  16. Airborne ocean water lidar (OWL) real time processor (RTP)

    Science.gov (United States)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  17. Cloud Computing: A model Construct of Real-Time Monitoring for Big Dataset Analytics Using Apache Spark

    Science.gov (United States)

    Alkasem, Ameen; Liu, Hongwei; Zuo, Decheng; Algarash, Basheer

    2018-01-01

    The volume of data being collected, analyzed, and stored has exploded in recent years, in particular in relation to the activity on the cloud computing. While large-scale data processing, analysis, storage, and platform model such as cloud computing were previously and currently are increasingly. Today, the major challenge is it address how to monitor and control these massive amounts of data and perform analysis in real-time at scale. The traditional methods and model systems are unable to cope with these quantities of data in real-time. Here we present a new methodology for constructing a model for optimizing the performance of real-time monitoring of big datasets, which includes a machine learning algorithms and Apache Spark Streaming to accomplish fine-grained fault diagnosis and repair of big dataset. As a case study, we use the failure of Virtual Machines (VMs) to start-up. The methodology proposition ensures that the most sensible action is carried out during the procedure of fine-grained monitoring and generates the highest efficacy and cost-saving fault repair through three construction control steps: (I) data collection; (II) analysis engine and (III) decision engine. We found that running this novel methodology can save a considerate amount of time compared to the Hadoop model, without sacrificing the classification accuracy or optimization of performance. The accuracy of the proposed method (92.13%) is an improvement on traditional approaches.

  18. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  19. Experimental validation of concept for real-time wavelength monitoring and tracking in densely populated WDM networks

    Science.gov (United States)

    Vukovic, Alex; Savoie, Michel; Hua, Heng; Campbell, Scott; Nguyen, Thao

    2005-10-01

    As the telecom industry responds with technological innovations to requests for higher data rates, increased number of wavelengths at higher densities, longer transmission distances and more intelligence for next generation optical networks, new monitoring schemes based on monitoring and tracking of each wavelength need to be developed and deployed. An optical layer monitoring scheme, based on tracking key optical parameters per each wavelength, is considered to be one of enablers for the transformation of today's opaque networks to dynamic, agile future networks. Ever-tighter network monitoring and control will be required to fulfill customer Service Level Agreements (SLAs). A wavelength monitoring and tracking concept was developed as a three-step approach. It started with the identification of all critical parameters required to obtain sufficient information about each wavelength; followed by the deployment of a cost-efficient device to provide simultaneous, accurate measurements in real-time of all critical parameters; and finally, the formulation of a specification for wavelength monitoring and tracking devices for real-time, simultaneous measurements and processing the data. A prototype solution based on a commercially available integrated modular spectrometer within a testbed environment associated with the all-optical network (AON) demonstrator program was used to verify and validate the wavelength monitoring and tracking concept. The developed concept verified that it can manage tracking of 32 wavelengths within a wavelength division multiplexing network. The developed concept presented in this paper can be used inside the transparent domains of networks to detect, identify and locate signal degradations in real-time, even sometimes to recognize the cause of the failure. Aside from the reduction of operational expenses due to the elimination of the need for operators at every site and skilled field technicians to isolate and repair faults, the developed

  20. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-10-01

    Full Text Available Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination. Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC and intact (ICC cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change, significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min. Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes both in laboratory-scale research and full-scale system investigations in practice.

  1. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    Science.gov (United States)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been

  2. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  3. Real-time monitoring of arsenic filtration by granular ferric hydroxide

    International Nuclear Information System (INIS)

    Fleming, D.E.B.; Eddy, I.S.; Gherase, M.R.; Gibbons, M.K.; Gagnon, G.A.

    2008-01-01

    Full text: Contamination of drinking water by arsenic is a serious public health issue in many parts of the world. One recent approach to this problem has been to filter out arsenic by use of granular ferric hydroxide (GFH), an adsorbent developed specifically for the selective removal of arsenic from water. Previous studies have documented the efficiency and high treatment capacity of this approach. We present a novel X-ray fluorescence method to monitor the accumulation of arsenic within a specially designed GFH column, as both a function of time (or water volume) and location along the column. Using a miniature X-ray tube and silicon PiN diode detector, X-ray fluorescence is used to detect characteristic X-rays of arsenic excited from within the GFH. Trials were performed using a water flow rate of approximately 1.5 litres per hour, with an added arsenic concentration of approximately 1000 μg per litre. In this paper, trial results are presented and potential applications described. Characteristic arsenic Kα X-ray peak area as a function of time, as measured at various locations along a granular ferric hydroxide (GFH) water filtration column

  4. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  5. Automatic Optimization for Large-Scale Real-Time Coastal Water Simulation

    Directory of Open Access Journals (Sweden)

    Shunli Wang

    2016-01-01

    Full Text Available We introduce an automatic optimization approach for the simulation of large-scale coastal water. To solve the singular problem of water waves obtained with the traditional model, a hybrid deep-shallow-water model is estimated by using an automatic coupling algorithm. It can handle arbitrary water depth and different underwater terrain. As a certain feature of coastal terrain, coastline is detected with the collision detection technology. Then, unnecessary water grid cells are simplified by the automatic simplification algorithm according to the depth. Finally, the model is calculated on Central Processing Unit (CPU and the simulation is implemented on Graphics Processing Unit (GPU. We show the effectiveness of our method with various results which achieve real-time rendering on consumer-level computer.

  6. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  7. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai [Department of Radiation Oncology, John Hopkins University, Baltimore, MD (United States); Ji, Tianlong [Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning (China); Iordachita, Iulian [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD (United States); Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A. [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  8. MO-FG-CAMPUS-JeP3-04: Feasibility Study of Real-Time Ultrasound Monitoring for Abdominal Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Su, Lin; Kien Ng, Sook; Zhang, Ying; Herman, Joseph; Wong, John; Ding, Kai; Ji, Tianlong; Iordachita, Iulian; Tutkun Sen, H.; Kazanzides, Peter; Lediju Bell, Muyinatu A.

    2016-01-01

    Purpose: Ultrasound is ideal for real-time monitoring in radiotherapy with high soft tissue contrast, non-ionization, portability, and cost effectiveness. Few studies investigated clinical application of real-time ultrasound monitoring for abdominal stereotactic body radiation therapy (SBRT). This study aims to demonstrate the feasibility of real-time monitoring of 3D target motion using 4D ultrasound. Methods: An ultrasound probe holding system was designed to allow clinician to freely move and lock ultrasound probe. For phantom study, an abdominal ultrasound phantom was secured on a 2D programmable respiratory motion stage. One side of the stage was elevated than another side to generate 3D motion. The motion stage made periodic breath-hold movement. Phantom movement tracked by infrared camera was considered as ground truth. For volunteer study three healthy subjects underwent the same setup for abdominal SBRT with active breath control (ABC). 4D ultrasound B-mode images were acquired for both phantom and volunteers for real-time monitoring. 10 breath-hold cycles were monitored for each experiment. For phantom, the target motion tracked by ultrasound was compared with motion tracked by infrared camera. For healthy volunteers, the reproducibility of ABC breath-hold was evaluated. Results: Volunteer study showed the ultrasound system fitted well to the clinical SBRT setup. The reproducibility for 10 breath-holds is less than 2 mm in three directions for all three volunteers. For phantom study the motion between inspiration and expiration captured by camera (ground truth) is 2.35±0.02 mm, 1.28±0.04 mm, 8.85±0.03 mm in LR, AP, SI directly, respectively. The motion monitored by ultrasound is 2.21±0.07 mm, 1.32±0.12mm, 9.10±0.08mm, respectively. The motion monitoring error in any direction is less than 0.5 mm. Conclusion: The volunteer study proved the clinical feasibility of real-time ultrasound monitoring for abdominal SBRT. The phantom and volunteer ABC

  9. A framework to monitor activities of satellite data processing in real-time

    Science.gov (United States)

    Nguyen, M. D.; Kryukov, A. P.

    2018-01-01

    Space Monitoring Data Center (SMDC) of SINP MSU is one of the several centers in the world that collects data on the radiational conditions in near-Earth orbit from various Russian (Lomonosov, Electro-L1, Electro-L2, Meteor-M1, Meteor-M2, etc.) and foreign (GOES 13, GOES 15, ACE, SDO, etc.) satellites. The primary purposes of SMDC are: aggregating heterogeneous data from different sources; providing a unified interface for data retrieval, visualization, analysis, as well as development and testing new space weather models; and controlling the correctness and completeness of data. Space weather models rely on data provided by SMDC to produce forecasts. Therefore, monitoring the whole data processing cycle is crucial for further success in the modeling of physical processes in near-Earth orbit based on the collected data. To solve the problem described above, we have developed a framework called Live Monitor at SMDC. Live Monitor allows watching all stages and program components involved in each data processing cycle. All activities of each stage are logged by Live Monitor and shown in real-time on a web interface. When an error occurs, a notification message will be sent to satellite operators via email and the Telegram messenger service so that they could take measures in time. The Live Monitor’s API can be used to create a customized monitoring service with minimum coding.

  10. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-01-01

    The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility

  11. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  12. Real Time Environmental Radiation Monitoring System in the Philippines

    International Nuclear Information System (INIS)

    Garcia, Teofilo Y.

    2015-01-01

    The widespread release of radioactive materials caused by the Fukushima Daiichi Nuclear Power Plant Accident that occurred on 11 March 2011 raised concerns on the environmental radiation monitoring Presently, the Philippine Nuclear Research Institute (PNRI) can only perform limited incident. Country-wide radiation measurements by carrying out field-works in the different provinces of the country. This is due to limitation in the availability of appropriate equipment to carry-out the task of conducting radiation measurements, especially in remote and hart to access areas of the country. Although no nuclear reactor is currently operating in the Philippines, it is situated in a region surrounded by neighboring countries with several existing or planned nuclear power plants. While nuclear power has tremendous benefits in meeting the electricity needs of growing populations, and does not have the adverse environmental effects associated with burning of fossil fuels, there are potential risks from releases of radio nuclides into the environment. The PNRI, through the support of the International Atomic Energy Agency (IAEA), is establishing an on-line environmental radiation monitoring system that can provide real-time environmental during emergencies that lead to extensive spread of radioactive materials, such as nuclear power plant accidents, an on-line radiation monitoring system will enable the immediate detection of radiological emergencies affecting the country and will provide important information of authorities for appropriate emergency response. (author)

  13. Real-Time Cloud-Based Health Tracking and Monitoring System in Designed Boundary for Cardiology Patients

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2018-01-01

    Full Text Available Telemonitoring is not a new term, in information technology (IT, which has been employed to remotely monitor the health of patients that are located not in common places, such hospitals or medical centers. For that, wearable medical sensors, such as electrocardiography sensors, blood pressure sensors, and glucometer, have commonly been used to make possible to acquire the real-time information from the remotely located patients; therefore, the medical information is further carried, via the Internet, to perform medical diagnosis and the corresponding treatments. Like in other IT sectors, there has been tremendous progress accounted in medical sectors (and in telemonitoring systems that changes the human life protection against several chronic diseases, and the patient’s medical information can be accessed wirelessly via Wi-Fi and cellular systems. Further, with the advents of cloud computing technology, medical systems are now more efficient and scalable in processing, such as storage and access, the medical information with minimal development costs. This study is also a piece of enhancement made to track and monitor the real-time medical information, bounded in authorized area, through the modeling of private cloud computing. The private cloud-based environment is designed, for patient health monitoring called bounded telemonitoring system, to acquire the real-time medical information of patients that resided in the boundary, inside medical wards and outside medical wards, of the medical center. A new wireless sensor network scenario is designed and modeled to keep or monitor the patients’ health information whole day, 24 hours. This research is a new secured sight towards medical information access and gives directions for future developments in the medical systems.

  14. Real-Time Patient and Staff Radiation Dose Monitoring in IR Practice

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: karmanna@stanford.edu; Paulis, Leonie, E-mail: leonie.paulis@mumc.nl; Vergoossen, Laura; Kovac, Axel O., E-mail: axel.kovac@mumc.nl; Wijnhoven, Geert, E-mail: g.wijnhoven@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Mees, Barend, E-mail: barend.mees@mumc.nl [Maastricht University Medical Centre, Department of Vascular Surgery (Netherlands); Das, Marco, E-mail: m.das@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre, Department of Radiology (Netherlands)

    2017-03-15

    PurposeKnowledge of medical radiation exposure permits application of radiation protection principles. In our center, the first dedicated real-time, automated patient and staff dose monitoring system (DoseWise Portal, Philips Healthcare) was installed. Aim of this study was to obtain insight in the procedural and occupational doses.Materials and MethodsAll interventional radiologists, vascular surgeons, and technicians wore personal dose meters (PDMs, DoseAware, Philips Healthcare). The dose monitoring system simultaneously registered for each procedure dose-related data as the dose area product (DAP) and effective staff dose (E) from PDMs. Use and type of shielding were recorded separately. All procedures were analyzed according to procedure type; these included among others cerebral interventions (n = 112), iliac and/or caval venous recanalization procedures (n = 68), endovascular aortic repair procedures (n = 63), biliary duct interventions (n = 58), and percutaneous gastrostomy procedure (n = 28).ResultsMedian (±IQR) DAP doses ranged from 2.0 (0.8–3.1) (percutaneous gastrostomy) to 84 (53–147) Gy cm{sup 2} (aortic repair procedures). Median (±IQR) first operator doses ranged from 1.6 (1.1–5.0) μSv to 33.4 (12.1–125.0) for these procedures, respectively. The relative exposure, determined as first operator dose normalized to procedural DAP, ranged from 1.9 in biliary interventions to 0.1 μSv/Gy cm{sup 2} in cerebral interventions, indicating large variation in staff dose per unit DAP among the procedure types.ConclusionReal-time dose monitoring was able to identify the types of interventions with either an absolute or relatively high staff dose, and may allow for specific optimization of radiation protection.

  15. Radioactive aerosol detection station for near real-time atmospheric monitoring

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, John D.

    1997-01-01

    A radionuclide aerosol detection station has been developed to measure radioactivity in the environment. The objective is to monitor the atmosphere for anthropogenic radioactivity that could be indicative of nuclear weapons tests to verify the Comprehensive Nuclear Test Ban Treaty. Eighty stations will form the backbone of the International Monitoring System in which stations are linked to a central analysis facility called the International Data Centre. Data are transmitted to this centre in near real-time to facilitate rapid detection. Principal process of the field measurement are collection, separation, and assay. Collection of airborne radioactivity is achieved through high-volume air sampling. Aerosols separation is accomplished by high-efficiency particulate filtration. Radionuclides assay is achieved by in-situ high resolution gamma spectrometry. These modules are integrated into a unit that provides power, control, and communication support subsystems. Station operation is semi-automatic requiring only minimal human interaction. (author). 6 refs., 3 figs., 3 tabs

  16. Applications of gamma-ray spectrometry in real-time environmental monitoring

    International Nuclear Information System (INIS)

    Heath, R.L.; Dyer, N.C.

    1974-01-01

    The operation of large nuclear installations involves significant inventories of radioactive materials. Effective monitoring of effluent streams to permit evaluation of potential hazards which might result from discharge of radioisotopes is a requirement for safe operation of such facilities. The purpose of this paper is to present a summary of a program being conducted at the Idaho National Engineering Laboratory (INEL) to apply gamma-ray spectrometry to real-time isotopic monitoring of nuclear installations. The application of the lithium-drifted Ge spectrometer in the laboratory for isotopic assay is well established. To apply these techniques to routine on-line isotopic measurements requires the solution of a number of significant problems. These may be summarized as follows: the development of a remote pulse-height analyzer system; the development of adequate methods for analysis of pulse-amplitude spectra to permit isotopic assay and interpretation of results; and determination of basic nuclear decay data requirements for nuclides of interest to insure acceptance of isotopic assay results

  17. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    Science.gov (United States)

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  18. Advances in LWD pressure measurements: smart, time optimized pretests and on demand real-time transmission applications

    Energy Technology Data Exchange (ETDEWEB)

    Serafim, Robson; Ferraris, Paolo [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The StethoScope Logging While Drilling (LWD) Pressure Measurement, introduced in Brazil in 2005, has been extensively used in deep water environment to provide reservoir pressure and mobility in real-time. In the last three years the StethoScope service was further enhanced to allow better real time monitoring using a larger transmission rate, higher RT data resolution and remote visualization. In order to guarantee stable formation pressures with a limited test duration under a wide range of conditions, Time Optimized Pretests (TOP) were developed. These tests adjust automatically drawdown and buildup parameters as a function of formation characteristics (pressure/mobility) without requiring any input from the operator. On-demand frame (ODF), an advanced telemetry triggered automatically during the pressure tests, allowed to increase equivalent transmission rate and resolution and to include quality indices computed downhole. This paper is focused on the TOP and ODF Field Test results in Brazil, which proved to be useful and reliable options for better real-time decisions together with remote monitoring visualization implemented by the RTMonitor program. (author)

  19. Real-time monitoring of clinical processes using complex event processing and transition systems.

    Science.gov (United States)

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  20. Real-Time Monitoring and Control of HgCdTe MBE Using an Integrated Multi-Sensor System

    National Research Council Canada - National Science Library

    Olson, G

    1998-01-01

    We present recent progress on the use of an integrated real-time sensing and control system for monitoring and controlling substrate temperature, layer composition, and effusion cell flux during MBE...

  1. Microbiological monitoring of acid mine drainage treatment systems and aquatic surroundings using real-time PCR.

    Science.gov (United States)

    Han, J S; Kim, C G

    2009-01-01

    In general, acid mine drainage (AMD) causes low pH and high metal concentrations in mining areas and surroundings. The aim of this research was to achieve microbiological monitoring for AMD and to assess whether mine water outflows have any ecological effects on the aqueous ecosystem receiving effluents from different types of treatment system. The water quality of aquatic sample was analyzed and the molecular biological diversity of the samples was assessed using 16S rRNA methods, which were implemented to determine which bacteria existed throughout various unit processes for different AMD treatment systems and their receiving water environments. Acidiphilium cryptum, a heterotrophic acidophile, was found at the AMD sites, and Rhodoferax ferrireducens, which can reduce iron using insoluble Fe(III) as an electron acceptor, was detected at many AMD treatment facilities and downstream of the treatment processes. Subsequently, quantitative real-time PCR was conducted on specific genes of selected bacteria. Surprisingly, obvious trends were observed in the relative abundance of the various bacteria that corresponded to the water quality analytical results. The copy number of Desulfosporosinus orientus, a sulfate reducing bacteria, was also observed to decrease in response to decreases in metals according to the downstream flow of the AMD treatment system.

  2. Real-time personal dose monitoring and management system

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Cheng Chang; Yang Huating; Liu Zhengshan; Deng Changming; Li Mei

    2000-01-01

    This paper mainly describes a real-time personal dose monitoring and management system. The system is composed of three parts that include SDM-98 semiconductor detector personal dosimeters, Data Readers and a Management System Software. It can be used for personal dose monitoring and management and other controlling actions in a radioactive controlled area. Adopting semiconductor detector and microcontroller, SDM-98 Personal Dosimeter is used to measure personal accumulated dose equivalent and dose rate caused by X-ray and Gamma ray. The results can be read directly on LCD. All the data stored in dosimeter can be transmitted into a data reader by infrared optical link. The alarm threshold can be adjusted successively in whole range of dose or dose rate. The Data Reader is an intelligent interface between the dosimeter and master computer. The data received from dosimeter will be sent to a master computer through RS-232 serial interface. According to the master computer's order, the Data Reader can turn on the dosimeter's power at entrance and shutdown it at exit. The Management System Software which written by Visual BASIC 5.0 runs on MS Win95. All the measuring data from dosimeters can be analyzed and treated according to requirements and stored in database. Therefore, some figures and tables relative to dose or rate can be shown on screen or printed out. (author)

  3. Test plan for glove box testing with the real-time transuranic dust monitor

    International Nuclear Information System (INIS)

    Partin, J.K.; Fincke, J.R.

    1994-10-01

    This test plan describes the objectives, instrumentation, and testing procedures used to prove the feasibility of a real-time transuranic dust monitor (RTDM). The RTDM is under development at the Idaho National Engineering Laboratory (INEL) as a Waste Characterization Technology funded by the Buried Waste Integrated Demonstration Project. The instrument is an in situ monitor that uses optical techniques to establish particle size, particle number density, and mass and species of heavy metal contamination. US Department of Energy orders mandate the assessment of radiological exposure and contamination spread during the remediation of radioactive waste. Of particular concern is heavy metal contamination of dust, both radioactive and nonradioactive. Small particles of metal, particularly the radioactive species, tend to become electrically charged and consequently attach themselves to dust particles. This airborne activated dust is a primary means of contamination transport during remediation activities, and therefore, must be continuously monitored to protect personnel involved in the operations and to control the spread of contamination. If real-time monitoring is not available there is increased likelihood of generating unacceptably high levels of contamination and being forced to shut down costly retrieval operations to decontaminate. A series of experiments are described to determine the optimal experimental design, operational parameters, and levels of detection for the RTDM. Initial screening will be performed using monodisperse particle standards to set parameters and calibrate the instrument. Additional testing will be performed using INEL soil samples spiked with a surrogate, cerium oxide, to prove the design before transporting the apparatus to the Test Reactor Area for testing with plutonium-contaminated dusts

  4. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    Directory of Open Access Journals (Sweden)

    Jon Chouler

    2015-07-01

    Full Text Available The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  5. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    OpenAIRE

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction fac...

  6. Adequate technologies for wireless real-time dose rate monitoring for off-site emergency management

    International Nuclear Information System (INIS)

    Dielmann, R.; Buerkin, W.

    2003-01-01

    Full text: What are the requirements for off-site gamma dose rate monitoring systems? What are the pros and cons of available communication technologies? This report gives an overview of modern communication techniques and their applicability for reliable real-time data acquisition as basis for off-site nuclear emergency management. The results of three years operating experience with a wireless gamma dose rate monitoring system, installed around the NPPs of KURSK, KALININ and BALAKOVA (Russia) in the year 2000, are shown. (author)

  7. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    Science.gov (United States)

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  8. The Piston Compressor: The Methodology of the Real-Time Condition Monitoring

    International Nuclear Information System (INIS)

    Naumenko, A P; Kostyukov, V N

    2012-01-01

    The methodology of a diagnostic signal processing, a function chart of the monitoring system are considered in the article. The methodology of monitoring and diagnosing is based on measurement of indirect processes' parameters (vibroacoustic oscillations) therefore no more than five sensors is established on the cylinder, measurement of direct structural and thermodynamic parameters is envisioned as well. The structure and principle of expert system's functioning of decision-making is given. Algorithm of automatic expert system includes the calculation diagnostic attributes values based on their normative values, formation sets of diagnostic attributes that correspond to individual classes to malfunction, formation of expert system messages. The scheme of a real-time condition monitoring system for piston compressors is considered. The system have consistently-parallel structure of information-measuring equipment, which allows to measure the vibroacoustic signal for condition monitoring of reciprocating compressors and modes of its work. Besides, the system allows to measure parameters of other physical processes, for example, system can measure and use for monitoring and statements of the diagnosis the pressure in decreasing spaces (the indicator diagram), the inlet pressure and flowing pressure of each cylinder, inlet and delivery temperature of gas, valves temperature, position of a rod, leakage through compression packing and others.

  9. Real-time monitoring of BTEX in air via ambient-pressure MPI

    Science.gov (United States)

    Swenson, Orven F.; Carriere, Josef P.; Isensee, Harlan; Gillispie, Gregory D.; Cooper, William F.; Dvorak, Michael A.

    1998-05-01

    We have developed and begun to field test a very sensitive method for real-time measurements of single-ring aromatic hydrocarbons in ambient air. In this study, we focus on the efficient 1 + 1 resonance enhanced multiphoton ionization (REMPI) of the BTEX species in the narrow region between 266 and 267 nm. We particularly emphasize 266.7 nm, a wavelength at which both benzene and toluene exhibit a sharp absorbance feature and benzene and its alkylated derivatives all absorb. An optical parametric oscillator system generating 266.7 nm, a REMPI cell, and digital oscilloscope detector are mounted on a breadboard attached to a small cart. In the first field test, the cart was wheeled through the various rooms of a chemistry research complex. Leakage of fuel through the gas caps of cars and light trucks in a parking lot was the subject of the second field test. The same apparatus was also used for a study in which the performance of the REMPI detector and a conventional photoionization detector were compared as a BTEX mixture was eluted by gas chromatography. Among the potential applications of the methodology are on-site analysis of combustion and manufacturing processes, soil gas and water headspace monitoring, space cabin and building air quality, and fuel leak detection.

  10. Towards Online Visualization and Interactive Monitoring of Real-Time CFD Simulations on Commodity Hardware

    Directory of Open Access Journals (Sweden)

    Nils Koliha

    2015-09-01

    Full Text Available Real-time rendering in the realm of computational fluid dynamics (CFD in particular and scientific high performance computing (HPC in general is a comparably young field of research, as the complexity of most problems with practical relevance is too high for a real-time numerical simulation. However, recent advances in HPC and the development of very efficient numerical techniques allow running first optimized numerical simulations in or near real-time, which in return requires integrated and optimized visualization techniques that do not affect performance. In this contribution, we present concepts, implementation details and several application examples of a minimally-invasive, efficient visualization tool for the interactive monitoring of 2D and 3D turbulent flow simulations on commodity hardware. The numerical simulations are conducted with ELBE, an efficient lattice Boltzmann environment based on NVIDIA CUDA (Compute Unified Device Architecture, which provides optimized numerical kernels for 2D and 3D computational fluid dynamics with fluid-structure interactions and turbulence.

  11. Real-time monitoring of Hanford nuclear waste

    International Nuclear Information System (INIS)

    McNeece, S.G.; Glasscock, J.A.; Rosnick, C.K.

    1979-10-01

    Two minicomputers are used to perform real time monitoring of radioactive waste storage tanks on the Hanford Nuclear Reservation. The Computer Automated Surveillance System, CASS, consists of a network of six field microprocessors, a central microprocessor and two central Eclipse minicomputers. The field microprocessors are each responsible for monitoring alarm sensors, liquid levels and temperatures. The field microprocessors report alarm conditions immediately to the central microprocessor. The central minicomputer reports all alarm conditions to the user terminals, requests data from the field on a scheduled and requested basis, and generates reports. It handles all requests for information from the user and stores all incoming data for historical purposes. The CASS software consists of five major segments: (1) process creation, (2) report generation, (3) file updating, (4) terminal communication, and (5) microprocessor communication. Since CASS must operate 24 hours a day, 7 days a week, the system cannot be allowed to abnormally terminate. For this reason all processes are started by the creation process. Having a single process responsible for creating all other processes provides the ability to detect a failure of a subordinate process and to automatically restart the failed process. The report generation process schedules reports, requests the data to be gathered to produce the reports, forms the reports, and distributes the reports to the user terminals. The file updating process handles all data file modifications. There is a terminal communication process for each user terminal which is responsible for printing scheduled reports and for allowing the user to request information from the CASS system. The microprocessor communication process handles all communication with the central microprocessor

  12. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    Science.gov (United States)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and

  13. Development of a Real-Time Smoke Belching Monitoring System for Public Utility Vehicles (PUV via GSM

    Directory of Open Access Journals (Sweden)

    Nelson C. Rodelas

    2016-05-01

    Full Text Available The Development of a Real-Time-Based Smoke Belching Monitoring System for Public Utility Vehicle is designed in order to monitor smoke belchers or violators among public utility vehicles (PUV that uses diesel such as jeepneys or buses. The concept of the project is to measure the opacity of the smoke being emitted by the PUV with the use of a predesigned sensor unit incorporated by Light Dependent Resistor Sensor and Light Source facing each other, 4 inches apart. By allowing the smoke to pass through the LDR and Light Source, the desired resistance is acquired and processed by the microcontroller to obtain the Light Absorption Coefficient. This value is the basis for being a smoke belcher (If it exceeds 2.5 k. The system then sends the data (Plate Number and K -value for every one (1 hour to the Database System and to the operator with the aid of GSM Microcontroller that leads to a real time monitoring. The system is possible to implement and has a potential to be used for emission testing centers since it has the features of the commercial opacity meter which is common in emission centers to measure the smoke emitted by the diesel-fueled vehicles. This project serves as an innovation in emission testing because it monitors the smoke belchers in real-time and operators or owners of the vehicle are not required anymore to go to the emission testing center every year to renew their car registration.

  14. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  15. Development of a real-time extremity dose monitor for personnel in interventional radiology

    International Nuclear Information System (INIS)

    Ban, Nobuhiko; Kusama, Tomoko; Adachi, Akiko

    2000-01-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  16. Development of a real-time extremity dose monitor for personnel in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Nobuhiko; Kusama, Tomoko [Oita University of Nursing and Health Sciences, Oita (Japan); Adachi, Akiko [Oita Medical University, Oita (JP)] [and others

    2000-05-01

    Protection of personnel in interventional radiology is one of the most important issues of radiological protection in medicine. Fluoroscopically guided interventional procedures require the operation near X-ray beam, which brings a considerable hand exposure to the operators. For the purpose of effectual control of their extremity doses, we have developed a real-time extremity dose monitor which is worn on a strap around the wrist. The monitor consists of a silicon semiconductor detector, thin lithium battery and a waterproof frame with a four-digit LED display. Experiment was carried out to examine a response of the monitor to diagnostic X-rays. A practical test was also performed to evaluate usability in the actual interventional procedures. In the experiment, the extremity dose monitor was placed on an arm phantom and exposed to diagnostic X-rays. Readings of the monitor were compared to those of Capintec PS-033 shallow chamber. The monitor was highly sensitive to diagnostic X-rays. It showed a linear response down to doses of a few tens of microsieverts. For high dose-rate exposure, however, a slight decrease in the response was observed, about 10% of counting loss for 80 kV, 40 mA X-ray at one meter from the focus. With regard to energy dependence, variation was within 20% for 60 to 100 kV X-rays. The monitor showed a good angular response in general, except lateral geometry facing the far side from a detector center. In the practical test, hand exposures of medical staff were measured with the extremity dose monitor. They were also asked to fill in a questionnaire regarding size and weight of the monitor, clarity of the display and usefulness. The subjects consisted of physicians, technicians and nurses who engaged in angiography, PTCD, CT-biopsy, barium enema and so on. The readings of the monitor were less than 1 mSv in most cases while 93 mSv was recorded in an extreme case due to direct-beam exposure. In some cases, TLD rings were used together with the

  17. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  18. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Real Time Monitoring of GPS-IGU orbits and clocks as a tool to disseminate corrections to GPS-Broadcast Ephemerides

    Science.gov (United States)

    Thaler, G.; Opitz, M.; Weber, R.

    2009-04-01

    Nowadays RTIGS and NTRIP have become standards for real time GNSS based positioning applications. The IGS (International GNSS Service) Real-Time Working Group disseminates via Internet (RTIGS) raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern and in a further step correction terms for improving the accuracy of the GPS broadcast ephemerides can be calculated. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Satellite Clock Corrections to GPS Time. The real-time orbit calculation and monitoring of the predicted IGU satellite orbits is currently in a testing phase and will be operable in the near future. A kinematic model and calculated ranges to the satellites are combined in a KALMAN-Filter approach. Currently the most recent GPS- Satellite Clock Corrections are published in Real Time via Internet. A 24 - hour clock RINEX file and the IGU SP3 files modified for the associated clock corrections are stored on the ftp-server of the institute. To perform the task of calculating corrections to the broadcast ephemerides three programs are used, which are BNC (BKG Ntrip Client) and BNS (BKG Ntrip State Space Server) from BKG (Bundesamt für Kartographie und Geoinformation) as well as RTR-Control. BNC receives the GPS-broadcast ephemerides from the Ntrip-Caster and forwards them to BNS. RTR-Control calculates the satellite clocks and in future also the satellite orbits and forwards them in SP3-format to BNS. BNS calculates the correction terms to the broadcast ephemerides and delivers it in RTCM 3.x format (proprietary message 4056) back to the Ntrip-caster. Subsequently

  20. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  1. A HyperSpectral Imaging (HSI) approach for bio-digestate real time monitoring

    Science.gov (United States)

    Bonifazi, Giuseppe; Fabbri, Andrea; Serranti, Silvia

    2014-05-01

    One of the key issues in developing Good Agricultural Practices (GAP) is represented by the optimal utilisation of fertilisers and herbicidal to reduce the impact of Nitrates in soils and the environment. In traditional agriculture practises, these substances were provided to the soils through the use of chemical products (inorganic/organic fertilizers, soil improvers/conditioners, etc.), usually associated to several major environmental problems, such as: water pollution and contamination, fertilizer dependency, soil acidification, trace mineral depletion, over-fertilization, high energy consumption, contribution to climate change, impacts on mycorrhizas, lack of long-term sustainability, etc. For this reason, the agricultural market is more and more interested in the utilisation of organic fertilisers and soil improvers. Among organic fertilizers, there is an emerging interest for the digestate, a sub-product resulting from anaerobic digestion (AD) processes. Several studies confirm the high properties of digestate if used as organic fertilizer and soil improver/conditioner. Digestate, in fact, is somehow similar to compost: AD converts a major part of organic nitrogen to ammonia, which is then directly available to plants as nitrogen. In this paper, new analytical tools, based on HyperSpectral Imaging (HSI) sensing devices, and related detection architectures, is presented and discussed in order to define and apply simple to use, reliable, robust and low cost strategies finalised to define and implement innovative smart detection engines for digestate characterization and monitoring. This approach is finalized to utilize this "waste product" as a valuable organic fertilizer and soil conditioner, in a reduced impact and an "ad hoc" soil fertilisation perspective. Furthermore, the possibility to contemporary utilize the HSI approach to realize a real time physicalchemical characterisation of agricultural soils (i.e. nitrogen, phosphorus, etc., detection) could

  2. Monitoring substrate enables real-time regulation of a protein localization pathway.

    Science.gov (United States)

    Ito, Koreaki; Mori, Hiroyuki; Chiba, Shinobu

    2018-06-01

    Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.

  3. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  4. Diffusion-sensitive optical coherence tomography for real-time monitoring of mucus thinning treatments

    Science.gov (United States)

    Blackmon, Richard L.; Kreda, Silvia M.; Sears, Patrick R.; Ostrowski, Lawrence E.; Hill, David B.; Chapman, Brian S.; Tracy, Joseph B.; Oldenburg, Amy L.

    2016-03-01

    Mucus hydration (wt%) has become an increasingly useful metric in real-time assessment of respiratory health in diseases like cystic fibrosis and COPD, with higher wt% indicative of diseased states. However, available in vivo rheological techniques are lacking. Gold nanorods (GNRs) are attractive biological probes whose diffusion through tissue is sensitive to the correlation length of comprising biopolymers. Through employment of dynamic light scattering theory on OCT signals from GNRs, we find that weakly-constrained GNR diffusion predictably decreases with increasing wt% (more disease-like) mucus. Previously, we determined this method is robust against mucus transport on human bronchial epithelial (hBE) air-liquid interface cultures (R2=0.976). Here we introduce diffusion-sensitive OCT (DS-OCT), where we collect M-mode image ensembles, from which we derive depth- and temporally-resolved GNR diffusion rates. DS-OCT allows for real-time monitoring of changing GNR diffusion as a result of topically applied mucus-thinning agents, enabling monitoring of the dynamics of mucus hydration never before seen. Cultured human airway epithelial cells (Calu-3 cell) with a layer of endogenous mucus were doped with topically deposited GNRs (80x22nm), and subsequently treated with hypertonic saline (HS) or isotonic saline (IS). DS-OCT provided imaging of the mucus thinning response up to a depth of 600μm with 4.65μm resolution, over a total of 8 minutes in increments of >=3 seconds. For both IS and HS conditions, DS-OCT captured changes in the pattern of mucus hydration over time. DS-OCT opens a new window into understanding mechanisms of mucus thinning during treatment, enabling real-time efficacy feedback needed to optimize and tailor treatments for individual patients.

  5. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    Science.gov (United States)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  6. Real time psychrometric data collection

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1996-01-01

    Eight Mine Weather Stations (MWS) installed at the Waste Isolation Pilot Plant (WIPP) to monitor the underground ventilation system are helping to simulate real-time ventilation scenarios. Seasonal weather extremes can result in variations of Natural Ventilation Pressure (NVP) which can significantly effect the ventilation system. The eight MWS(s) (which previously collected and stored temperature, barometric pressure and relative humidity data for subsequent NVP calculations) were upgraded to provide continuous real-time data to the site wide Central monitoring System. This data can now be utilized by the ventilation engineer to create realtime ventilation simulations and trends which assist in the prediction and mitigation of NVP and psychrometric related events

  7. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  8. The potential of lipopolysaccharide as a real-time biomarker of bacterial contamination in marine bathing water.

    Science.gov (United States)

    Sattar, Anas A; Jackson, Simon K; Bradley, Graham

    2014-03-01

    The use of total lipopolysaccharide (LPS) as a rapid biomarker for bacterial pollution was investigated at a bathing and surfing beach during the UK bathing season. The levels of faecal indicator bacteria Escherichia coli (E. coli), the Gram-positive enterococci, and organisms commonly associated with faecal material, such as total coliforms and Bacteroides, were culturally monitored over four months to include a period of heavy rainfall and concomitant pollution. Endotoxin measurement was performed using a kinetic Limulus Amebocyte Lysate (LAL) assay and found to correlate well with all indicators. Levels of LPS in excess of 50 Endotoxin Units (EU) mL(-1) were found to correlate with water that was unsuitable for bathing under the current European regulations. Increases in total LPS, mainly from Gram-negative indicator bacteria, are thus a potential real-time, qualitative method for testing bacterial quality of bathing waters.

  9. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  10. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  11. Real-time measurement and monitoring of absorbed dose for electron beams

    Science.gov (United States)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  12. Real-time measurement and monitoring of absorbed dose for electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-10-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  13. Real-time measurement and monitoring of absorbed dose for electron beams

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-01-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators

  14. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  15. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  16. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study

    OpenAIRE

    Prabhudesai, Sumant; Kanjani, Amruta; Bhagat, Isha; Ravikumar, Karnam G.; Ramachandran, Bala

    2015-01-01

    Aims: The aim of this prospective, observational study was to determine the accuracy of a real-time continuous glucose monitoring system (CGMS) in children with septic shock. Subjects and Methods: Children aged 30 days to 18 years admitted to the Pediatric Intensive Care Unit with septic shock were included. A real-time CGMS sensor was used to obtain interstitial glucose readings. CGMS readings were compared statistically with simultaneous laboratory blood glucose (BG). Results: Nineteen chil...

  17. Real time monitoring to the odour of excrement for health of infants and elderly completely bedridden

    Science.gov (United States)

    Ye, Jiancheng; Huang, Guoliang

    2017-01-01

    In the domain of biomedical signals measurements, monitoring human physiological parameters is an important issue. With the rapid development of wireless body area network, it makes monitor, transmit and record physiological parameters faster and more convenient. Infants and the elderly completely bedridden are two special groups of the society who need more medical care. According to researches investigating current frontier domains and the market products, the detection of physiological parameters from the excrement is rare. However, urine and faeces contain a large number of physiological information, which are high relative to health. The mainly distributed odour from urine is NH4 and the distributed odour from feces is mainly H2S, which are both could be detected by the sensors. In this paper, we introduce the design and implementation of a portable wireless device based on body area network for real time monitoring to the odour of excrement for health of infants and the elderly completely bedridden. The device not only could monitor in real time the emitted odour of faeces and urine for health analysis, but also measures the body temperature and environment humidity, and send data to the mobile phone of paramedics to alarm or the server for storage and process, which has prospect to monitoring infants and the paralysis elderly.

  18. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  19. Comparison of Microtox and Xenoassay Light as a Near Real Time River Monitoring Assay for Heavy Metals

    Directory of Open Access Journals (Sweden)

    M. I. E. Halmi

    2014-01-01

    Full Text Available Luminescence-based assays for toxicants such as Microtox, ToxAlert, and Biotox have been used extensively worldwide. However, the use of these assays in near real time conditions is limited due to nonoptimal assay temperature for the tropical climate. An isolate that exhibits a high luminescence activity in a broad range of temperatures was successfully isolated from the mackerel, Rastrelliger kanagurta. This isolate was tentatively identified as Photobacterium sp. strain MIE, based on partial 16S rDNA molecular phylogeny. Optimum conditions that support high bioluminescence activity occurred between 24 and 30°C, with pH 5.5 to 7.5, 10 to 20 g/L of sodium chloride, 30 to 50 g/L of tryptone, and 4 g/L of glycerol as the carbon source. Assessment of near real time capability of this bacterial system, Xenoassay light to monitor heavy metals from a contaminated river running through the Juru River Basin shows near real time capability with assaying time of less than 30 minutes per samples. Samples returned to the lab were tested with a standard Microtox assay using Vibrio fishceri. Similar results were obtained to Xenoassay light that show temporal variation of copper concentration. Thus, this strain is suitable for near real time river monitoring of toxicants especially in the tropics.

  20. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  1. Development of a Real-time Hand Dose Monitor for Personnel in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ban, N.; Nakaoka, H.; Haruta, R.; Murakami, Y.; Kubo, T.; Maeda, T.; Kusama, T

    2001-07-01

    Medical procedures denoted as interventional radiology require operation near an X ray beam, which brings high dose exposures to the operators' hands. For the effectual control of their extremity doses, a prototype of a real-time wrist dosemeter has been developed, hand dose monitor (HDM), based on a single silicon detector. Experiments were performed to test its response to diagnostic X rays. The HDM was highly sensitive and showed a linear response down to doses of a few tens of microsieverts. Though dose rate, energy and angular dependence of the response were observed in some extreme conditions, the HDM was proved to be of practical use if it was appropriately calibrated. Since an HDM enables personnel to check their hand doses on a real-time basis, it would enable medical staff to control the exposure themselves. (author)

  2. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  3. Gun Launch System: efficient and low-cost means of research and real-time monitoring

    Science.gov (United States)

    Degtyarev, Alexander; Ventskovsky, Oleg; Korostelev, Oleg; Yakovenko, Peter; Kanevsky, Valery; Tselinko, Alexander

    2005-08-01

    The Gun Launch System with a reusable sub-orbital launch vehicle as a central element is proposed by a consortium of several Ukrainian high-tech companies as an effective, fast-response and low-cost means of research and real-time monitoring. The system is described in details, with the emphasis on its most important advantages. Multiple applications of the system are presented, including ones for the purposes of microgravity research; chemical, bacteriological and radiation monitoring and research of atmosphere and ionosphere; operational monitoring of natural and man-made disasters, as well as for some other areas of great practical interest. The current level of the system development is given, and the way ahead towards full system's implementation is prescribed.

  4. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  5. Integrated Coastal Observation Network (ICON) for real-time monitoring of sea-level, sea-state, and surface-meteorological data

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Mehra, P.; VijayKumar, K.; Luis, R.

    ). Real-time reporting capability of ICON yields several benefits, such as (i) remote monitoring of proper working condition of individual stations; (ii) implementation of repair/maintenance in the shortest possible time, thereby minimizing break...

  6. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  7. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  8. Real-time adjustment of pressure to demand in water distribution systems: Parameter-less P-controller algorithm

    CSIR Research Space (South Africa)

    Page, Philip R

    2016-08-01

    Full Text Available Remote real-time control is currently the most advanced form of pressure management. Here the parameters describing pressure control valves (or pumps) are changed in real-time in such a way to provide the most optimal pressure in the water...

  9. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  10. A UAV based system for real time flash flood monitoring in desert environments using Lagrangian microsensors

    KAUST Repository

    Abdelkader, Mohamed; Shaqura, Mohammad; Claudel, Christian G.; Gueaieb, Wail

    2013-01-01

    with advance warning, for which real time monitoring is critical. While satellite-based high resolution weather forecasts can help predict floods to a certain extent, they are not reliable enough, as flood models depend on a large number of parameters

  11. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The US Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water (approximately40 Im), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, the Advanced Technologies Group of Thermo Power Corporation (a Thermo Electron company) is developing a real-time, field-deployable alpha monitor based on a solid-state silicon wafer semiconductor (US Patent 5,652,013 and pending, assigned to the US Department of Energy). The Thermo Water Alpha Monitor will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning (D and D) operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste, Plutonium, and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This report details the program's accomplishments to date. Most significantly, the Alpha Monitoring Instrument was successfully field demonstrated on water 100X below the Environmental Protection Agency's proposed safe drinking water limit--down to under 1 pCi/1. During the Field Test, the Alpha Monitoring Instrument successfully analyzed isotopic uranium levels on a total of five different surface water, process water, and

  12. System for continuous real time air monitoring by means of gamma spectrometry with germanium dosimeter

    International Nuclear Information System (INIS)

    Montalto, M.; Giacomelli, R.; Nocente, M.; Bortoluzzi, S.; Spezzano, P.

    1990-12-01

    Design of automatic system for real time air monitoring of radioactive particulates are relate. Recommendations are made for design and operation of sampling conduits to minimize losses. By means of experimental equipment loss of particles in long sampling conduits, minimum detectable activity and efficiency of gamma radiation detectable are evaluated. (author)

  13. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    Science.gov (United States)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  14. Safety Culture Monitoring: How to Assess Safety Culture in Real Time?

    International Nuclear Information System (INIS)

    Zronek, B.; Maryska, J.; Treslova, L.

    2016-01-01

    Do you know what is current level of safety culture in your company? Are you able to follow trend changes? Do you know what your recent issues are? Since safety culture is understood as vital part of nuclear industry daily life, it is crucial to know what the current level is. It is common to perform safety culture survey or ad hoc assessment. This contribution shares Temelin NPP, CEZ approach how to assess safety culture level permanently. Using behavioral related outputs of gap solving system, observation program, dedicated surveys, regulatory assessment, etc., allows creating real time safety culture monitoring without the need to perform any other activities. (author)

  15. Real-Time Optical Monitoring of Pt Catalyst Under the Potentiodynamic Conditions

    Science.gov (United States)

    Song, Hyeon Don; Lee, Minzae; Kim, Gil-Pyo; Choi, Inhee; Yi, Jongheop

    2016-12-01

    In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.

  16. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  17. Estimation of patient-specific imaging dose for real-time tumour monitoring in lung patients during respiratory-gated radiotherapy

    Science.gov (United States)

    Shiinoki, Takehiro; Onizuka, Ryota; Kawahara, Daisuke; Suzuki, Tatsuhiko; Yuasa, Yuki; Fujimoto, Koya; Uehara, Takuya; Hanazawa, Hideki; Shibuya, Keiko

    2018-03-01

    Purpose: To quantify the patient-specific imaging dose for real-time tumour monitoring in the lung during respiratory-gated stereotactic body radiotherapy (SBRT) in clinical cases using SyncTraX. Methods and Materials: Ten patients who underwent respiratory-gated SBRT with SyncTraX were enrolled in this study. The imaging procedure for real-time tumour monitoring using SyncTraX was simulated using Monte Carlo. We evaluated the dosimetric effect of a real-time tumour monitoring in a critical organ at risk (OAR) and the planning target volume (PTV) over the course of treatment. The relationship between skin dose and gating efficiency was also investigated. Results: For all patients, the mean D50 to the PTV, ipsilateral lung, liver, heart, spinal cord and skin was 118.3 (21.5–175.9), 31.9 (9.5–75.4), 15.4 (1.1–31.6), 10.1 (1.3–18.1), 25.0 (1.6–101.8), and 3.6 (0.9–7.1) mGy, respectively. The mean D2 was 352.0 (26.5–935.8), 146.4 (27.3–226.7), 90.7 (3.6–255.0), 42.2 (4.8–82.7), 88.0 (15.4–248.5), and 273.5 (98.3–611.6) mGy, respectively. The D2 of the skin dose was found to increase as the gating efficiency decreased. Conclusions: The additional dose to the PTV was at most 1.9% of the prescribed dose over the course of treatment for real-time tumour monitoring. For OARs, we could confirm the high dose region, which may not be susceptible to radiation toxicity. However, to reduce the skin dose from SyncTraX, it is necessary to increase the gating efficiency.

  18. Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools

    Science.gov (United States)

    Matikas, Theodore E.

    2010-07-01

    The objective of this work is to characterize the damage and monitor in real-time aging structural components used in aerospace applications by means of advanced nondestructive evaluation techniques. Two novel experimental methodologies are used in this study, based on ultrasonic microscopy and nonlinear acoustics. It is demonstrated in this work that ultrasonic microscopy can be successfully utilized for local elastic property measurement, crack-size determination as well as for interfacial damage evaluation in high-temperature materials, such as metal matrix composites. Nonlinear acoustics enables real-time monitoring of material degradation in aerospace structures. When a sinusoidal ultrasonic wave of a given frequency and of sufficient amplitude is introduced into a nonharmonic solid, the fundamental wave distorts as it propagates, and therefore the second and higher harmonics of the fundamental frequency are generated. Measurements of the amplitude of these harmonics provide information on the coefficient of second- and higher-order terms of the stress-strain relation for a nonlinear solid. It is shown in this article that the material bulk nonlinear parameter for metallic alloy samples at different fatigue levels exhibits large changes compared to linear ultrasonic parameters, such as velocity and attenuation.

  19. System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    B. Mokhtar

    2016-01-01

    Full Text Available This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS, and Operation Management Subsystem (OMS. The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

  20. Patient satisfaction and barriers to initiating real-time continuous glucose monitoring in early pregnancy in women with diabetes

    DEFF Research Database (Denmark)

    Secher, A L; Madsen, A B; Nielsen, Lene Ringholm

    2012-01-01

    of initial monitoring). Ten women (15%) did not wish to use continuous glucose monitoring again in pregnancy. Main causes behind early removal of continuous glucose monitoring were self-reported skin irritation, technical problems and continuous glucose monitoring inaccuracy. No differences were found......Aim: To evaluate self-reported satisfaction and barriers to initiating real-time continuous glucose monitoring in early pregnancy among women with pregestational diabetes. Methods: Fifty-four women with Type 1 diabetes and 14 women with Type 2 diabetes were offered continuous glucose monitoring...

  1. Education technology with continuous real time monitoring of the current functional and emotional students' states

    Science.gov (United States)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  2. Simulation of a nuclear measurement system around a multi-task mode real-time monitor

    International Nuclear Information System (INIS)

    De Grandi, G.; Ouiguini, R.

    1983-01-01

    When debugging and testing material and software for the automation of systems, the non-availability of this last one states important logistic problems. A simulator of the system to be automatized, conceived around a multi-task mode real-time monitor, allowing the debugging of the software of automation without the physical presence of the system to be automatized, is proposed in the present report

  3. Real-Time Tropospheric Delay Estimation using IGS Products

    Science.gov (United States)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  4. Real-Time Monitoring and Fault Diagnosis of a Low Power Hub Motor Using Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Mehmet Şimşir

    2016-01-01

    Full Text Available Low power hub motors are widely used in electromechanical systems such as electrical bicycles and solar vehicles due to their robustness and compact structure. Such systems driven by hub motors (in wheel motors encounter previously defined and undefined faults under operation. It may inevitably lead to the interruption of the electromechanical system operation; hence, economic losses take place at certain times. Therefore, in order to maintain system operation sustainability, the motor should be precisely monitored and the faults are diagnosed considering various significant motor parameters. In this study, the artificial feedforward backpropagation neural network approach is proposed to real-time monitor and diagnose the faults of the hub motor by measuring seven main system parameters. So as to construct a necessary model, we trained the model, using a data set consisting of 4160 samples where each has 7 parameters, by the MATLAB environment until the best model is obtained. The results are encouraging and meaningful for the specific motor and the developed model may be applicable to other types of hub motors. The prosperous model of the whole system was embedded into Arduino Due microcontroller card and the mobile real-time monitoring and fault diagnosis system prototype for hub motor was designed and manufactured.

  5. A Distributed Web-based Solution for Ionospheric Model Real-time Management, Monitoring, and Short-term Prediction

    Science.gov (United States)

    Kulchitsky, A.; Maurits, S.; Watkins, B.

    2006-12-01

    With the widespread availability of the Internet today, many people can monitor various scientific research activities. It is important to accommodate this interest providing on-line access to dynamic and illustrative Web-resources, which could demonstrate different aspects of ongoing research. It is especially important to explain and these research activities for high school and undergraduate students, thereby providing more information for making decisions concerning their future studies. Such Web resources are also important to clarify scientific research for the general public, in order to achieve better awareness of research progress in various fields. Particularly rewarding is dissemination of information about ongoing projects within Universities and research centers to their local communities. The benefits of this type of scientific outreach are mutual, since development of Web-based automatic systems is prerequisite for many research projects targeting real-time monitoring and/or modeling of natural conditions. Continuous operation of such systems provide ongoing research opportunities for the statistically massive validation of the models, as well. We have developed a Web-based system to run the University of Alaska Fairbanks Polar Ionospheric Model in real-time. This model makes use of networking and computational resources at the Arctic Region Supercomputing Center. This system was designed to be portable among various operating systems and computational resources. Its components can be installed across different computers, separating Web servers and computational engines. The core of the system is a Real-Time Management module (RMM) written Python, which facilitates interactions of remote input data transfers, the ionospheric model runs, MySQL database filling, and PHP scripts for the Web-page preparations. The RMM downloads current geophysical inputs as soon as they become available at different on-line depositories. This information is processed to

  6. Characterization (environmental Signature) and Function of the Main Instrumented (monitoring Water Quality Network in Real Time) Rivers Atoyac and Zahuapan in High Atoyac Basin; in Dry, Rain and Winter Season 2013-2014; Puebla-Tlaxcala Mexico

    Science.gov (United States)

    Tavera, E. M.; Rodriguez-Espinosa, P. F.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    The Zahuapan and Atoyac rivers were characterized in the Upper Atoyac through the integration of physical and chemical parameters (environmental firm) determining the behavior and function of the basin as a tool for measuring and monitoring the quality and management of water resources of the water in one of the most polluted rivers in Mexico. For the determination of the environmental signature proceeded to characterize the water through 11 physicochemical parameters: temperature (T), potential hydrogen (pH), dissolved oxygen (DO), spectral absorption coefficient (SAC), the reduction of oxide potential (ORP), turbidity (Turb), conductivity (l), biochemical oxygen demand in 5 days (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and total dissolved solids (TDS ), which were evaluated in 49 sites in the dry season, 47 for the rainy season and 23 for the winter season in the basin and Atoyac Zahuapan Alto Atoyac, Puebla-Tlaxcala, Mexico river; finding a mathematical algorithm to assimilate and better represent the information obtained. The algorithm allows us to estimate correlation greater than 0.85. The results allow us to propose the algorithm used in the monitoring stations for purposes of processing information assimilated form.This measurement and monitoring of water quality supports the project, the monitoring network in real time and the actions to clean up Atoyac River, in the urban area of the city of Puebla.

  7. Real-time monitoring of the laser hot-wire welding process

    Science.gov (United States)

    Liu, Wei; Liu, Shuang; Ma, Junjie; Kovacevic, Radovan

    2014-04-01

    The laser hot-wire welding process was investigated in this work. The dynamics of the molten pool during welding was visualized by using a high-speed charge-coupled device (CCD) camera assisted by a green laser as an illumination source. It was found that the molten pool is formed by the irradiation of the laser beam on the filler wire. The effect of the hot-wire voltage on the stability of the welding process was monitored by using a spectrometer that captured the emission spectrum of the laser-induced plasma plume. The spectroscopic study showed that when the hot-wire voltage is above 9 V a great deal of spatters occur, resulting in the instability of the plasma plume and the welding process. The effect of spatters on the plasma plume was shown by the identified spectral lines of the element Mn I. The correlation between the Fe I electron temperature and the weld-bead shape was studied. It was noted that the electron temperature of the plasma plume can be used to real-time monitor the variation of the weld-bead features and the formation of the weld defects.

  8. Students Collecting Real time Data

    Science.gov (United States)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  9. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre

    2010-01-01

    Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...... as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one...

  10. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  11. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing.

    Science.gov (United States)

    Harnsoongnoen, Supakorn; Wanthong, Anuwat

    2017-10-01

    Magnetic sensing at microwave frequencies for real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations is reported. The sensing element was designed based on a coplanar waveguide (CPW) loaded with a split ring resonator (SRR), which was fabricated on a DiClad 880 substrate with a thickness of 1.6mm and relative permittivity (ε r ) of 2.2. The magnetic sensor was connected to a Vector Network Analyzer (VNA) and the electromagnetic interaction between the samples and sensor was analyzed. The magnitude of the transmission coefficient (S 21 ) was used as an indicator to detect the solution sample concentrations ranging from 0.04 to 0.20g/ml. The experimental results confirmed that the developed system using microwaves for the real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentrations gave unique results for each solution type and concentration. Moreover, the proposed sensor has a wide dynamic range, high linearity, fast operation and low-cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  13. Real-Time Alpine Measurement System Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sami A. Malek

    2017-11-01

    Full Text Available Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.

  14. Real-Time Alpine Measurement System Using Wireless Sensor Networks.

    Science.gov (United States)

    Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D

    2017-11-09

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.

  15. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  16. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    Science.gov (United States)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we

  17. Real-time computing in environmental monitoring of a nuclear power plant

    International Nuclear Information System (INIS)

    Deme, S.; Lang, E.; Nagy, Gy.

    1987-06-01

    A real-time computing method is described for calculating the environmental radiation exposure due to a nuclear power plant both at normal operation and at accident. The effects of the Gaussian plume are recalculated in every ten minutes based on meteorological parameters measured at a height of 20 and 120 m as well as on emission data. At normal operation the quantity of radioactive materials released through the stacks is measured and registered while, at an accident, the source strength is unknown and the calculated relative data are normalized to the values measured at the eight environmental monitoring stations. The doses due to noble gases and to dry and wet deposition as well as the time integral of 131 I concentration are calculated and stored by a professional personal computer for 720 points of the environment of 11 km radius. (author)

  18. Real time monitoring automation of dose rate absorbed in air due to environmental gamma radiation

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Capote Ferrera, Eduardo; Carrazana Gonzalez, Jorge A.; Manzano de Armas, Jose F.; Alonso Abad, Dolores; Prendes Alonso, Miguel; Tomas Zerquera, Juan; Caveda Ramos, Celia A.; Kalber, Olof; Fabelo Bonet, Orlando; Montalvan Estrada, Adelmo; Cartas Aguila, Hector; Leyva Fernandez, Julio C.

    2005-01-01

    The Center of Radiation Protection and Hygiene (CPHR) as the head institution of the National Radiological Environmental Surveillance Network (RNVRA) has strengthened its detection and response capacity for a radiological emergency situation. The measurements of gamma dose rate at the main point of the RNVRA are obtained in real time and the CPHR receives the data coming from those points in a short time. To achieve the operability of the RNVRA it was necessary to complete the existent monitoring facilities using 4 automatic gamma probes, implementing in this way a real time measurement system. The software, GenitronProbe for obtaining the data automatically from the probe, Data Mail , for sending the data via e-mail, and Gamma Red , for receiving and processing the data in the head institution ,were developed

  19. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    Science.gov (United States)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  20. Benefits of remote real-time side-effect monitoring systems for patients receiving cancer treatment.

    Science.gov (United States)

    Kofoed, Sarah; Breen, Sibilah; Gough, Karla; Aranda, Sanchia

    2012-03-05

    In Australia, the incidence of cancer diagnoses is rising along with an aging population. Cancer treatments, such as chemotherapy, are increasingly being provided in the ambulatory care setting. Cancer treatments are commonly associated with distressing and serious side-effects and patients often struggle to manage these themselves without specialized real-time support. Unlike chronic disease populations, few systems for the remote real-time monitoring of cancer patients have been reported. However, several prototype systems have been developed and have received favorable reports. This review aimed to identify and detail systems that reported statistical analyses of changes in patient clinical outcomes, health care system usage or health economic analyses. Five papers were identified that met these criteria. There was wide variation in the design of the monitoring systems in terms of data input method, clinician alerting and response, groups of patients targeted and clinical outcomes measured. The majority of studies had significant methodological weaknesses. These included no control group comparisons, small sample sizes, poor documentation of clinical interventions or measures of adherence to the monitoring systems. In spite of the limitations, promising results emerged in terms of improved clinical outcomes (e.g. pain, depression, fatigue). Health care system usage was assessed in two papers with inconsistent results. No studies included health economic analyses. The diversity in systems described, outcomes measured and methodological issues all limited between-study comparisons. Given the acceptability of remote monitoring and the promising outcomes from the few studies analyzing patient or health care system outcomes, future research is needed to rigorously trial these systems to enable greater patient support and safety in the ambulatory setting.

  1. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Smart Winery: A Real-Time Monitoring System for Structural Health and Ullage in Fino Style Wine Casks.

    Science.gov (United States)

    Cañete, Eduardo; Chen, Jaime; Martín, Cristian; Rubio, Bartolomé

    2018-03-07

    The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in "Bodegas San Acacio," a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper.

  3. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    International Nuclear Information System (INIS)

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-01-01

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability

  4. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    multiple observation geometries in change detection procedures. Additionally, it will be shown how SAR-based hazard information can be integrated with data from optical satellites, thermal sensors, webcams and models to create near-real time volcano hazard information. We will introduce a prototype monitoring system that integrates SAR-based hazard information into the near real-time volcano hazard monitoring system of the Alaska Volcano Observatory. This prototype system was applied to historic eruptions of the volcanoes Okmok and Augustine, both located in the North Pacific. We will show that for these historic eruptions, the addition of SAR data lead to a significant improvement in activity detection and eruption monitoring, and improved the accuracy and timeliness of eruption alerts.

  5. Launch of Village Blue Web Application Shares Water Monitoring Data with Baltimore Community

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have launched their mobile-friendly web application for Village Blue, a project that provides real-time water quality monitoring data to the Baltimore, Maryland community.

  6. Cyclometalated Iridium(III) Complexes as AIE Phosphorescent Probes for Real-Time Monitoring of Mitophagy in Living Cells

    Science.gov (United States)

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Guan, Ruilin; Ouyang, Cheng; Zhu, Yanjiao; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitophagy, which is a special autophagy that removes damaging mitochondria to maintain sufficient healthy mitochondria, provides an alternative path for addressing dysfunctional mitochondria and avoiding cellular death. In the present study, by coupling the triphenylamine group with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives, we synthesized five Ir(III) complexes with an AIE property that are expected to fulfill requirements for real-time monitoring of mitophagy. Ir1-Ir5 were exploited to image mitochondria with a short incubation time by confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS). Due to aggregation-induced emission (AIE), Ir1-Ir5 exhibited excellent photostability compared to MitoTracker Green (MTG). Moreover, Ir1-Ir5 manifested satisfactory photostability in the mitochondrial physiological pH range. In addition, the uptake mechanism of Ir1 was investigated using confocal microscopy and flow cytometry analysis. Finally, using both Ir1 and LysoTracker Green, we were able to achieve real-time monitoring of mitophagy.

  7. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.

    Science.gov (United States)

    Eide, Ingvar; Westad, Frank

    2018-01-01

    A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors), salinity (calculated from temperature and conductivity), biomass at three different depth intervals (5-50, 50-120, 120-250 m), and current speed measured in two directions (east and north) using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA). Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.

  8. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    International Nuclear Information System (INIS)

    Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di

    2012-01-01

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle 3 ™ format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 ± 0.59 mm and 0.05 ± 0.31°, indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5° were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 ± 0.21%, 0.99 ± 0.59%, and 1.18 ± 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral

  9. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    Science.gov (United States)

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  10. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  11. The study of key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring

    Science.gov (United States)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Liu, Jinhai

    2016-08-01

    This paper has studied the key issues about integration of GNSS and strong-motion records for real-time earthquake monitoring. The validations show that the consistence of the coordinate system must be considered firstly to exclude the system bias between GNSS and strong-motion. The GNSS sampling rate is suggested about 1-5 Hz, and we should give the strong-motion's baseline shift with a larger dynamic noise as its variation is very swift. The initialization time of solving the baseline shift is less than one minute, and ambiguity resolution strategy is not greatly improved the solution. The data quality is very important for the solution, we advised to use multi-frequency and multi-system observations. These ideas give an important guide for real-time earthquake monitoring and early warning by the tight integration of GNSS and strong-motion records.

  12. The backend design of an environmental monitoring system upon real-time prediction of groundwater level fluctuation under the hillslope.

    Science.gov (United States)

    Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang

    2012-01-01

    The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.

  13. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  14. Performance of overlapped shield tunneling through an integrated physical model tests, numerical simulations and real-time field monitoring

    Directory of Open Access Journals (Sweden)

    Junlong Yang

    2017-03-01

    Full Text Available In this work, deformations and internal forces of an existing tunnel subjected to a closely overlapped shield tunneling are monitored and analyzed using a series of physical model experiments and numerical simulations. Effects of different excavation sequences and speeds are explicitly considered in the analysis. The results of the physical model experiments show that the bottom-up tunneling procedure is better than the top-down tunneling procedure. The incurred deformations and internal forces of the existing tunnel increase with the excavation speed and the range of influence areas also increase accordingly. For construction process control, real-time monitoring of the power tunnel is used. The monitoring processes feature full automation, adjustable frequency, real-time monitor and dynamic feedback, which are used to guide the construction to achieve micro-disturbance control. In accordance with the situation of crossing construction, a numerical study on the performance of power tunnel is carried out. Construction control measures are given for the undercrossing construction, which helps to accomplish the desired result and meet protection requirements of the existing tunnel structure. Finally, monitoring data and numerical results are compared, and the displacement and joint fracture change models in the power tunnel subject to the overlapped shield tunnel construction are analyzed. Keywords: Overlapped tunnel, Automatic monitoring, Micro-disturbance control

  15. Pemantauan Parameter Panel Surya Berbasis Arduino secara Real Time

    Directory of Open Access Journals (Sweden)

    Muhammad Rizal Fachri

    2015-09-01

    Full Text Available Monitoring the output parameters of a solar module is required for assessing its performance under real operating conditions. This paper presents a new technique for monitoring the output parameters i.e. current and voltage of a solar module directly under real operating conditions. In this new monitoring technique, the output parameters of a solar module can be directly processed in real time condition and their results are displayed in a graph. The monitoring system is developed using microprocessor Arduino Atmega 328P and equipped with calibrated current and voltage sensors, a data acquisition system which is integrated directly into an Excel spreadsheet using the PLX-DAQ application program and a memory card for backup. The monitoring system is connected to a computer using a RS232 serial port. The collected data is saved directly into a spreadsheet and plotted in real time. This technique provides an easy access to the collected data for further analysis.

  16. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  17. Operational monitoring and forecasting of bathing water quality through exploiting satellite Earth observation and models: The AlgaRisk demonstration service

    Science.gov (United States)

    Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.

    2015-04-01

    Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

  18. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  19. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    Science.gov (United States)

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Experiences with an expert system technology for real-time monitoring and diagnosis of industrial processes

    International Nuclear Information System (INIS)

    Chou, Q.B.; Mylopoulos, J.; Opala, J.

    1996-01-01

    The complexity of modern industrial processes and the large amount of data available to their operators make it difficult to monitor their status and diagnose potential failures. Although there have been many attempts to apply knowledge-based technologies to this problem, there have not been any convincing success. This paper describes recent experiences with a technology that combines artificial intelligence and simulation techniques for building real-time monitoring and diagnosis systems. A prototype system for monitoring and diagnosing the feedwater system of a nuclear power plant built using this technology is described. The paper then describes several interesting classes of failures that the prototype is capable of diagnosing. (author). 19 refs, 6 figs

  1. Experiences with an expert system technology for real-time monitoring and diagnosis of industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Q B [Ontario Hydro, Toronto, ON (Canada); Mylopoulos, J [Toronto Univ., ON (Canada); Opala, J [CAE Electronics, Montreal, Quebec (Canada)

    1997-12-31

    The complexity of modern industrial processes and the large amount of data available to their operators make it difficult to monitor their status and diagnose potential failures. Although there have been many attempts to apply knowledge-based technologies to this problem, there have not been any convincing success. This paper describes recent experiences with a technology that combines artificial intelligence and simulation techniques for building real-time monitoring and diagnosis systems. A prototype system for monitoring and diagnosing the feedwater system of a nuclear power plant built using this technology is described. The paper then describes several interesting classes of failures that the prototype is capable of diagnosing. (author). 19 refs, 6 figs.

  2. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  3. Real-time particle monitor calibration factors and PM2.5 emission factors for multiple indoor sources.

    Science.gov (United States)

    Dacunto, Philip J; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Repace, James L; Ott, Wayne R; Hildemann, Lynn M

    2013-08-01

    Indoor sources can greatly contribute to personal exposure to particulate matter less than 2.5 μm in diameter (PM2.5). To accurately assess PM2.5 mass emission factors and concentrations, real-time particle monitors must be calibrated for individual sources. Sixty-six experiments were conducted with a common, real-time laser photometer (TSI SidePak™ Model AM510 Personal Aerosol Monitor) and a filter-based PM2.5 gravimetric sampler to quantify the monitor calibration factors (CFs), and to estimate emission factors for common indoor sources including cigarettes, incense, cooking, candles, and fireplaces. Calibration factors for these indoor sources were all significantly less than the factory-set CF of 1.0, ranging from 0.32 (cigarette smoke) to 0.70 (hamburger). Stick incense had a CF of 0.35, while fireplace emissions ranged from 0.44-0.47. Cooking source CFs ranged from 0.41 (fried bacon) to 0.65-0.70 (fried pork chops, salmon, and hamburger). The CFs of combined sources (e.g., cooking and cigarette emissions mixed) were linear combinations of the CFs of the component sources. The highest PM2.5 emission factors per time period were from burned foods and fireplaces (15-16 mg min(-1)), and the lowest from cooking foods such as pizza and ground beef (0.1-0.2 mg min(-1)).

  4. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  5. Real-Time Mass Spectrometry Monitoring of Oak Wood Toasting: Elucidating Aroma Development Relevant to Oak-aged Wine Quality

    Science.gov (United States)

    Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan

    2015-11-01

    We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.

  6. Continuous water quality monitoring for the hard clam industry in Florida, USA.

    Science.gov (United States)

    Bergquist, Derk C; Heuberger, David; Sturmer, Leslie N; Baker, Shirley M

    2009-01-01

    In 2000, Florida's fast-growing hard clam aquaculture industry became eligible for federal agricultural crop insurance through the US Department of Agriculture, but the responsibility for identifying the cause of mortality remained with the grower. Here we describe the continuous water quality monitoring system used to monitor hard clam aquaculture areas in Florida and show examples of the data collected with the system. Systems recording temperature, salinity, dissolved oxygen, water depth, turbidity and chlorophyll at 30 min intervals were installed at 10 aquaculture lease areas along Florida's Gulf and Atlantic coasts. Six of these systems sent data in real-time to a public website, and all 10 systems provided data for web-accessible archives. The systems documented environmental conditions that could negatively impact clam survival and productivity and identified biologically relevant water quality differences among clam aquaculture areas. Both the real-time and archived data were used widely by clam growers and nursery managers to make management decisions and in filing crop loss insurance claims. While the systems were labor and time intensive, we recommend adjustments that could reduce costs and staff time requirements.

  7. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    Science.gov (United States)

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    Science.gov (United States)

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  9. Real time fish pond monitoring and automation using Arduino

    Science.gov (United States)

    Harun, Z.; Reda, E.; Hashim, H.

    2018-03-01

    Investment and operating costs are the biggest obstacles in modernizing fish ponds in an otherwise very lucrative industry i.e. food production, in this region. Small-scale farmers running on small ponds could not afford to hire workers to man daily operations which usually consists of monitoring water levels, temperature and feeding fish. Bigger scale enterprises usually have some kinds of automation for water monitoring and replacement. These entities have to consider employing pH and dissolved oxygen (DO) sensors to ensure the health and growth of fish, sooner or later as their farms grow. This project identifies one of the sites, located in Malacca. In this project, water, temperature, pH and DO levels are measured and integrated with aerating and water supply pumps using Arduino. User could receive information at predetermined intervals on preferred communication or display gadgets as long as they have internet. Since integrating devices are comparatively not expensive; it usually consists of Arduino board, internet and relay frames and display system, farmer could source these components easily. A sample of two days measurements of temperature, pH and DO levels show that this farm has a high-quality water. Oxygen levels increases in the day as sunshine supports photosynthesis in the pond. With this integration system, farmer need not hire worker at their site, consequently drive down operating costs and improve efficiency.

  10. Real-time monitoring of laser hot-wire cladding of Inconel 625

    Science.gov (United States)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  11. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  12. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  13. Sensor response monitoring in pressurized water reactors using time series modeling

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Kerlin, T.W.

    1978-01-01

    Random data analysis in nuclear power reactors for purposes of process surveillance, pattern recognition and monitoring of temperature, pressure, flow and neutron sensors has gained increasing attention in view of their potential for helping to ensure safe plant operation. In this study, application of autoregressive moving-average (ARMA) time series modeling for monitoring temperature sensor response characteristrics is presented. The ARMA model is used to estimate the step and ramp response of the sensors and the related time constant and ramp delay time. The ARMA parameters are estimated by a two-stage algorithm in the spectral domain. Results of sensor testing for an operating pressurized water reactor are presented. 16 refs

  14. A Low-Level Real-Time In Situ Monitoring System for Tritium in Groundwater and Vadose Zone

    Science.gov (United States)

    Santo, J. T.; Levitt, D. G.

    2002-12-01

    Tritium is a radioactive isotope of hydrogen produced as a by-product of the nuclear fuel cycle. It is also an integral part of the nuclear weapons industry and has been released into the environment through both the production and testing of nuclear weapons. There are many sites across the DOE complex where tritium has been released into the subsurface through the disposal of radioactive waste and at the Nevada Test Site, through the underground testing of nuclear weapons. Numerous DOE facilities have an on-going regulatory need to be able to monitor tritium concentrations in groundwater within deep hydrologic zones and in the shallower non-saturated vadose zone beneath waste disposal pits and shafts and other release sites. Typical access to groundwater is through deep monitoring wells and situated in remote locations. In response to this need, Science and Engineering Associates, Inc. (SEA) and its subcontractor, the University of Nevada Las Vegas (UNLV) Harry Reid Center (HRC) for Environmental Studies has conducted the applied research and engineering and produced a real time, in situ monitoring system for the detection and measurement of low levels of tritium in the groundwater and in the shallower vadose zone. The monitoring system has been deployed to measure tritium in both the vadose zone near a subsurface radioactive waste package and the groundwater in a deep hydrologic reservoir at the Nevada Test Site. The monitoring system has been designed to detect tritium in the subsurface below federal and/or state regulatory limits for safe drinking water and has been successfully demonstrated. The development effort is being funded through the U.S. Department of Energy, National Energy Technology Laboratory and the DOE Nevada Operations Office Advanced Monitoring Systems Initiative (AMSI).

  15. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  16. xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies.

    Science.gov (United States)

    Martinez-Serra, Jordi; Gutierrez, Antonio; Muñoz-Capó, Saúl; Navarro-Palou, María; Ros, Teresa; Amat, Juan Carlos; Lopez, Bernardo; Marcus, Toni F; Fueyo, Laura; Suquia, Angela G; Gines, Jordi; Rubio, Francisco; Ramos, Rafael; Besalduch, Joan

    2014-01-01

    The xCELLigence system is a new technological approach that allows the real-time cell analysis of adherent tumor cells. To date, xCELLigence has not been able to monitor the growth or cytotoxicity of nonadherent cells derived from hematological malignancies. The basis of its technology relies on the use of culture plates with gold microelectrodes located in their base. We have adapted the methodology described by others to xCELLigence, based on the pre-coating of the cell culture surface with specific substrates, some of which are known to facilitate cell adhesion in the extracellular matrix. Pre-coating of the culture plates with fibronectin, compared to laminin, collagen, or gelatin, significantly induced the adhesion of most of the leukemia/lymphoma cells assayed (Jurkat, L1236, KMH2, and K562). With a fibronectin substrate, nonadherent cells deposited in a monolayer configuration, and consequently, the cell growth and viability were robustly monitored. We further demonstrate the feasibility of xCELLigence for the real-time monitoring of the cytotoxic properties of several antineoplastic agents. In order to validate this technology, the data obtained through real-time cell analysis was compared with that obtained from using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. This provides an excellent label-free tool for the screening of drug efficacy in nonadherent cells and discriminates optimal time points for further molecular analysis of cellular events associated with treatments, reducing both time and costs.

  17. Global, Daily, Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    Science.gov (United States)

    Slayback, D. A.; Policelli, F. S.; Brakenridge, G. R.; Tokay, M. M.; Smith, M. M.; Kettner, A. J.

    2013-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is expected to increase in frequency and damage with climate change and population growth. Some of 2013's major floods have impacted the New York City region, the Midwest, Alberta, Australia, various parts of China, Thailand, Pakistan, and central Europe. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours of events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial daily assessment of flooding extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on many of these issues, and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these

  18. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  19. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  20. Radiation environmental real-time monitoring and dispersion modeling: A comprehensive solution

    International Nuclear Information System (INIS)

    Kovacik, A.; Bartokova, I.; Omelka, J.; Melicherova, T.

    2014-01-01

    The system of real-time radiation monitoring provided by MicroStep-MIS is a turn-key solution for measurement, acquisition, processing, reporting, archiving and displaying of various radiation data. At the level of measurements, the monitoring stations can be equipped with various devices from radiation probes, measuring the actual ambient gamma dose rate, to fully automated aerosol monitors, returning analysis results of natural and manmade radionuclides concentrations in the air. Using data gathered by our radiation probes RPSG-05 integrated into monitoring network of Crisis Management of the Slovak Republic and into monitoring network of Slovak Hydrometeorological Institute, we demonstrate its reliability and long-term stability of measurements. Data from RPSG-05 probes and GammaTracer probes, both of these types are used in the SHI network, are compared. The sensitivity of RPSG-05 is documented on data where changes of dose rate are caused by precipitation. Qualities of RPSG-05 probe are illustrated also on example of its use in radiation monitoring network in the United Arab Emirates. A more detailed information about radioactivity of the atmosphere can be obtained by using spectrometric detectors (e.g. scintillation detectors) which, besides gamma dose rate values, offer also a possibility to identify different radionuclides. However, this possibility is limited by technical parameters of detector like energetic resolution and detection efficiency in given geometry of measurement. A clearer information with less doubts can be obtained from aerosol monitors with a built-in silicon detector of alpha and beta particles and with an electrically cooled HPGe detector dedicated for gamma-ray spectrometry, which is performed during the sampling. Data from a complex radiation monitoring network can be used, together with meteorological data, in radiation dispersion model by MicroStep-MIS. This model serves for simulation of atmospheric propagation of radionuclides

  1. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    Science.gov (United States)

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  2. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    Science.gov (United States)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  3. Real-Time Pore Pressure Detection: Indicators and Improved Methods

    Directory of Open Access Journals (Sweden)

    Jincai Zhang

    2017-01-01

    Full Text Available High uncertainties may exist in the predrill pore pressure prediction in new prospects and deepwater subsalt wells; therefore, real-time pore pressure detection is highly needed to reduce drilling risks. The methods for pore pressure detection (the resistivity, sonic, and corrected d-exponent methods are improved using the depth-dependent normal compaction equations to adapt to the requirements of the real-time monitoring. A new method is proposed to calculate pore pressure from the connection gas or elevated background gas, which can be used for real-time pore pressure detection. The pore pressure detection using the logging-while-drilling, measurement-while-drilling, and mud logging data is also implemented and evaluated. Abnormal pore pressure indicators from the well logs, mud logs, and wellbore instability events are identified and analyzed to interpret abnormal pore pressures for guiding real-time drilling decisions. The principles for identifying abnormal pressure indicators are proposed to improve real-time pore pressure monitoring.

  4. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana

    2017-01-01

    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  5. Real-time monitoring of harmful algal blooms in the southern ...

    African Journals Online (AJOL)

    A half-hourly acquisition regime collects data from the instruments, which are transmitted in real time using cellular phone telemetry. A website is updated with these data, when available, along with satellite data and shellfish warnings, to provide near real-time information on conditions in the area. Demonstration data from ...

  6. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  7. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.

    Directory of Open Access Journals (Sweden)

    Ingvar Eide

    Full Text Available A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors, salinity (calculated from temperature and conductivity, biomass at three different depth intervals (5-50, 50-120, 120-250 m, and current speed measured in two directions (east and north using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA. Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.

  8. Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2016-01-01

    Overvoltage (OV) in a low voltage distribution network is one of the foremost issues observed even under moderate penetration of rooftop solar photovoltaics (PVs). Similarly, grid under-voltage (UV) is foreseen as a potential issue resulting from increased integration of large flexible loads......, such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...... and reactive power injection/consumptions of the EWHs and PVs following the voltage violations. To effectively support the network in real-time, the controller allows EWHs to operate prior to PVs in OV and after the PVs in UV violations. The effectiveness of the proposed control strategy is demonstrated...

  9. Full integrated system of real-time monitoring based on distributed architecture for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Subekti, Muhammad; Ohno, Tomio; Kudo, Kazuhiko; Takamatsu, Kuniyoshi; Nabeshima, Kunihiko

    2005-01-01

    A new monitoring system scheme based on distributed architecture for the High Temperature Engineering Test Reactor (HTTR) is proposed to assure consistency of the real-time process of expanded system. A distributed monitoring task on client PCs as an alternative architecture maximizes the throughput and capabilities of the system even if the monitoring tasks suffer a shortage of bandwidth. The prototype of the on-line monitoring system has been developed successfully and will be tested at the actual HTTR site. (author)

  10. Technology survey for real-time monitoring of plutonium in a vitrifier off-gas system

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.

    1996-01-01

    We surveyed several promising measurement technologies for the real-time monitoring of plutonium in a vitrifier off-gas system. The vitrifier is being developed by Westinghouse Savannah River Corp. and will be used to demonstrate vitrification of plutonium dissolved in nitric acid for fissile material disposition. The risk of developing a criticality hazard in the off-gas processing equipment can be managed by using available measurement technologies. We identified several potential technologies and methods for detecting plutonium that are sensitive enough to detect the accumulation of a mass sufficient to form a criticality hazard. We recommend gross alpha-monitoring technologies as the most promising option for Westinghouse Savannah River Corp. to consider because that option appears to require the least additional development. We also recommend further consideration for several other technologies because they offer specific advantages and because gross alpha-monitoring could prove unsuitable when tested for this specific application

  11. Applications of Near Real-Time Image and Fire Products from MODIS

    Science.gov (United States)

    Schmaltz, J. E.; Ilavajhala, S.; Teague, M.; Ye, G.; Masuoka, E.; Davies, D.; Murphy, K. J.; Michael, K.

    2010-12-01

    NASA’s MODIS Rapid Response Project (http://rapidfire.sci.gsfc.nasa.gov/) has been providing MODIS fire detections and imagery in near real-time since 2001. The Rapid Response system is part of the Land and Atmospheres Near-real time Capability for EOS (LANCE-MODIS) system. Current capabilities include providing MODIS imagery in true color and false color band combinations, a vegetation index, and temperature - in both uncorrected swath format and geographically corrected subset regions. The geographically-corrected subsets images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. These data are available within a few hours of data acquisition. The images are accessed by large number of user communities to obtain a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (fires, oil spills, floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. In addition, the scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. The MODIS Rapid Response project has also been providing a near real-time data feed on fire locations and MODIS imagery subsets to the Fire Information for Resource Management System (FIRMS) project (http://maps.geog.umd.edu/firms). FIRMS provides timely availability of fire location information, which is essential in preventing and fighting large forest/wild fires. Products are available through a WebGIS for visualizing MODIS hotspots and MCD45 Burned Area images, an email alerting tool to deliver fire data on daily/weekly/near real-time basis, active data downloads in formats such as shape, KML, CSV, WMS, etc., along with MODIS imagery subsets. FIRMS’ user base covers more than 100 countries and territories. A recent user

  12. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  13. Effects of euthanasia on brain physiological activities monitored in real-time.

    Science.gov (United States)

    Mayevsky, Avraham; Barbiro-Michaely, Efrat; Ligeti, Laszlo; MacLaughlin, Alan C

    2002-10-01

    Animal experimentation is terminated by the euthanasia procedure in order to avoid pain and minimize suffering. Very little is known about the real time physiological changes taking place in the brain of animals during the euthanasia. Since there is no way to evaluate the suffering of animals under euthanasia, it is assumed that objective physiological changes taking place could serve as a good way to compare various types of euthanasia procedures. In the present study we compared the effect of euthanasia induced by i. v. injection of concentrated KCL to that of Taxan T-61 (a standard mixture used by veterinarians). The responses of the cat brain were evaluated by monitoring the hemodynamic (CBF), metabolic (NADH redox state), electrical (EcoG) and extracellular ion levels, as an indicator to the ionic homeostasis.

  14. Implantable Biosensors for Real-time Strain and Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Keat Ghee Ong

    2008-10-01

    Full Text Available Implantable biosensors were developed for real-time monitoring of pressure and strain in the human body. The sensors, which are wireless and passive, consisted of a soft magnetic material and a permanent magnet. When exposed to a low frequency AC magnetic field, the soft magnetic material generated secondary magnetic fields that also included the higher-order harmonic modes. Parameters of interest were determined by measuring the changes in the pattern of these higher-order harmonic fields, which was achieved by changing the intensity of a DC magnetic field generated by a permanent magnet. The DC magnetic field, or the biasing field, was altered by changing the separation distance between the soft magnetic material and the permanent magnet. For pressure monitoring, the permanent magnet was placed on the membrane of an airtight chamber. Changes in the ambient pressure deflected the membrane, altering the separation distance between the two magnetic elements and thus the higher-order harmonic fields. Similarly, the soft magnetic material and the permanent magnet were separated by a flexible substrate in the stress/strain sensor. Compressive and tensile forces flexed the substrate, changing the separation distance between the two elements and the higher-order harmonic fields. In the current study, both stress/strain and pressure sensors were fabricated and characterized. Good stability, linearity and repeatability of the sensors were demonstrated. This passive and wireless sensor technology may be useful for long term detection of physical quantities within the human body as a part of treatment assessment, disease diagnosis, or detection of biomedical implant failures.

  15. Real time processing of neutron monitor data using the edge editor algorithm

    Directory of Open Access Journals (Sweden)

    Mavromichalaki Helen

    2012-09-01

    Full Text Available The nucleonic component of the secondary cosmic rays is measured by the worldwide network of neutron monitors (NMs. In most cases, a NM station publishes the measured data in a real time basis in order to be available for instant use from the scientific community. The space weather centers and the online applications such as the ground level enhancement (GLE alert make use of the online data and are highly dependent on their quality. However, the primary data in some cases are distorted due to unpredictable instrument variations. For this reason, the real time primary data processing of the measured data of a station is necessary. The general operational principle of the correction algorithms is the comparison between the different channels of a NM, taking advantage of the fact that a station hosts a number of identical detectors. Median editor, Median editor plus and Super editor are some of the correction algorithms that are being used with satisfactory results. In this work an alternative algorithm is proposed and analyzed. The new algorithm uses a statistical approach to define the distribution of the measurements and introduces an error index which is used for the correction of the measurements that deviate from this distribution.

  16. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  17. Lung Injury; Relates to Real-Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0253 TITLE: Lung Injury; Relates to Real- Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung...2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION ...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s

  18. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    International Nuclear Information System (INIS)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W.; Laumonier, Herve; Trillaud, Herve; Seror, Olivier; Sesay, Musa-Bahazid; Grenier, Nicolas

    2010-01-01

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  19. Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit-Coiffe, Matthieu; Quesson, Bruno; Moonen, Chrit T.W. [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Laumonier, Herve; Trillaud, Herve [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Saint-Andre, CHU Bordeaux, Bordeaux (France); Seror, Olivier [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service de Radiologie, Hopital Jean Verdier, Bondy (France); Sesay, Musa-Bahazid [Service d' Anesthesie Reanimation III, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France); Grenier, Nicolas [Universite Victor Segalen Bordeaux 2, Laboratoire Imagerie Moleculaire et Fonctionnelle: de la physiologie a la therapie CNRS UMR 5231, Bordeaux Cedex (France); Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Hopital Pellegrin, CHU Bordeaux, Bordeaux (France)

    2010-01-15

    To assess the practical feasibility and effectiveness of real-time magnetic resonance (MR) temperature monitoring for the radiofrequency (RF) ablation of liver tumours in a clinical setting, nine patients (aged 49-87 years, five men and four women) with one malignant tumour (14-50 mm, eight hepatocellular carcinomas and one colorectal metastasis), were treated by 12-min RF ablation using a 1.5-T closed magnet for real-time temperature monitoring. The clinical monopolar RF device was filtered at 64 MHz to avoid electromagnetic interference. Real-time computation of thermal-dose (TD) maps, based on Sapareto and Dewey's equation, was studied to determine its ability to provide a clear end-point of the RF procedure. Absence of local recurrence on follow-up MR images obtained 45 days after the RF ablation was used to assess the apoptotic and necrotic prediction obtained by real-time TD maps. Seven out of nine tumours were completely ablated according to the real-time TD maps. Compared with 45-day follow-up MR images, TD maps accurately predicted two primary treatment failures, but were not relevant in the later progression of one case of secondary local tumour. The real-time TD concept is a feasible and promising monitoring method for the RF ablation of liver tumours. (orig.)

  20. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  1. Real-time continuous glucose monitoring as a tool to prevent severe hypoglycaemia in selected pregnant women with Type 1 diabetes

    DEFF Research Database (Denmark)

    Secher, A L; Stage, E; Ringholm, Lene

    2014-01-01

    AIMS: Among women with Type 1 diabetes who have had severe hypoglycaemia the year before pregnancy, 70% also experience this complication in pregnancy, and particularly in the first half of pregnancy. We evaluated whether routine use of real-time continuous glucose monitoring from early pregnancy...... onwards could prevent severe hypoglycaemia in these women. METHODS: All 136 consecutive pregnant women with Type 1 diabetes referred to our centre were asked about severe hypoglycaemic events in the year before pregnancy and early in pregnancy at their first antenatal visit. Women with a relevant recent...... history were informed about their additional high risk of severe hypoglycaemia, their treatment was focused on restricted insulin doses during the first 16 gestational weeks, and they were offered real-time continuous glucose monitoring on top of self-monitored plasma glucose measurements. RESULTS: Among...

  2. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    Science.gov (United States)

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    Thermo Power Corporation has proven the technical viability of an on-line, real-time alpha radionuclide instrument for aqueous sample analysis through laboratory and initial field tests of the instrument. The instrument has been shown to be isotonically sensitive to extremely low (ten parts per trillion, or femto Curies per liter) levels of a broad range of radioisotopes. Performance enhancement and other scaling data obtained during the course of this investigation have shown that on-line, real-time operation is possible, with a sub 30-minute response time analyzing 20 ppb (30 pCi/1) natural uranium. Now that these initial field tests in Oak Ridge, Tennessee have been successfully completed, Thermo Power plans to conduct comprehensive field tests of the instrument. The purpose of these endurance tests will be to determine the endurance characteristics of the Thermo Alpha Monitor for Water when it is used by non-Thermo Power personnel in a series of one or more extended field tests. Such endurance testing is the vital next step towards the commercialization of the Alpha Monitor. Subsequently, it will be possible to provide the DOE with an instrument that has the capability of obtaining rapid feedback about the concentrations of alpha-emitting isotope contamination in effluent water streams (Subsurface Contaminants Focus Area). It will also be useful for process control of remediation and D and D operations such as monitoring scrubber/rinse water radioactivity levels (Mixed Waste, Plutonium and D and D Focus Areas)

  4. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    Science.gov (United States)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  5. An OpenMP Parallelisation of Real-time Processing of CERN LHC Beam Position Monitor Data

    CERN Document Server

    Renshall, H

    2012-01-01

    SUSSIX is a FORTRAN program for the post processing of turn-by-turn Beam Position Monitor (BPM) data, which computes the frequency, amplitude, and phase of tunes and resonant lines to a high degree of precision. For analysis of LHC BPM data a specific version run through a C steering code has been implemented in the CERN Control Centre to run on a server under the Linux operating system but became a real time computational bottleneck preventing truly online study of the BPM data. Timing studies showed that the independent processing of each BPMs data was a candidate for parallelization and the Open Multiprocessing (OpenMP) package with its simple insertion of compiler directives was tried. It proved to be easy to learn and use, problem free and efficient in this case reaching a factor of ten reductions in real-time over twelve cores on a dedicated server. This paper reviews the problem, shows the critical code fragments with their OpenMP directives and the results obtained.

  6. Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain

    Directory of Open Access Journals (Sweden)

    Ganjar Alfian

    2017-11-01

    Full Text Available Since customer attention is increasing due to growing customer health awareness, it is important for the perishable food supply chain to monitor food quality and safety. This study proposes a real-time monitoring system that utilizes smartphone-based sensors and a big data platform. Firstly, we develop a smartphone-based sensor to gather temperature, humidity, GPS, and image data. The IoT-generated sensor on the smartphone has characteristics such as a large amount of storage, an unstructured format, and continuous data generation. Thus, in this study, we propose an effective big data platform design to handle IoT-generated sensor data. Furthermore, the abnormal sensor data generated by failed sensors is called outliers and may arise in real cases. The proposed system utilizes outlier detection based on statistical and clustering approaches to filter out the outlier data. The proposed system was evaluated for system and gateway performance and tested on the kimchi supply chain in Korea. The results showed that the proposed system is capable of processing a massive input/output of sensor data efficiently when the number of sensors and clients increases. The current commercial smartphones are sufficiently capable of combining their normal operations with simultaneous performance as gateways for transmitting sensor data to the server. In addition, the outlier detection based on the 3-sigma and DBSCAN were used to successfully detect/classify outlier data as separate from normal sensor data. This study is expected to help those who are responsible for developing the real-time monitoring system and implementing critical strategies related to the perishable supply chain.

  7. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    Science.gov (United States)

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  8. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    Directory of Open Access Journals (Sweden)

    Holger Klinck

    Full Text Available In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical

  9. Integrated approach to monitor water dynamics with drones

    Science.gov (United States)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  10. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  11. SU-F-J-44: Development of a Room Laser Based Real-Time Alignment Monitoring System Using An Array of Photodiodes

    International Nuclear Information System (INIS)

    Noh, Y; Kim, T; Kang, S; Kim, D; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2016-01-01

    Purpose: To develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS. Methods: The RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus, how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions. Results: The signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time. Conclusion: We developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the

  12. Project of a Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring (NRTSSS)

    Science.gov (United States)

    D'Anna, G.; Calore, D.; Mangano, G.; D'Alessandro, A.; Favali, P.

    2011-12-01

    The INGV seismic network ensures reliable and continuous monitoring of the Italian territory. However, the peculiarity of the Italian peninsula, characterised by an intense offshore geodynamic and seismic activity, requires the extension of the seismic monitoring to the sea. The aim of this project is: - to identify bottleneck is related to the construction, installation and use of underwater seismic station; - to define the most appropriate and low-cost architecture to guarantee the minimum functionality required for a seismic station. In order to obtain reliable seafloor seismic signals integrated to land-based network, the requirements to be fulfill are: - an acceptable coupling with the seabed; - the orientation of the components with respect to the magnetic North and to the verticality; - the correct time stamp of the data; - the data transfer to the land for the integration. Currently, the optimal solution for offshore seismic station is a cable connection to power and real-time data transfer, like the case of Western Ionian Sea cabled observatory, one of the operative node of the EMSO research infrastructure (European Multidisciplinary Seafloor and water column Observatory, http://emso-eu.org). But in the Mediterranean many seismic areas are located a few tens-hundreds of miles from the coast and cabled solutions are not feasible essentially for economic reasons. For this kind of installations EMSO research infrastructure foresees no-cabled solution, that requires a surface buoy deployed in the vicinity seafloor modules.This project plans to develop a surface buoy equipped with autonomous power supply system to power also the seafloor platforms and two-way communication system enabling the data transfer through latest generation of broadband radio communication or satellite link (Fig. 1). All the components of the prototype system are described.

  13. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    Science.gov (United States)

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.

  14. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    Directory of Open Access Journals (Sweden)

    Arun Kumar Pratihast

    Full Text Available This paper describes an interactive web-based near real-time (NRT forest monitoring system using four levels of geographic information services: 1 the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2 NRT forest disturbance detection based on satellite time-series, 3 presentation of forest disturbance data through a web-based application and social media and 4 interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications.

  15. Real-time pathogen monitoring during enrichment: a novel nanotechnology-based approach to food safety testing.

    Science.gov (United States)

    Weidemaier, Kristin; Carruthers, Erin; Curry, Adam; Kuroda, Melody; Fallows, Eric; Thomas, Joseph; Sherman, Douglas; Muldoon, Mark

    2015-04-02

    We describe a new approach for the real-time detection and identification of pathogens in food and environmental samples undergoing culture. Surface Enhanced Raman Scattering (SERS) nanoparticles are combined with a novel homogeneous immunoassay to allow sensitive detection of pathogens in complex samples such as stomached food without the need for wash steps or extensive sample preparation. SERS-labeled immunoassay reagents are present in the cultural enrichment vessel, and the signal is monitored real-time through the wall of the vessel while culture is ongoing. This continuous monitoring of pathogen load throughout the enrichment process enables rapid, hands-free detection of food pathogens. Furthermore, the integration of the food pathogen immunoassay directly into the enrichment vessel enables fully biocontained food safety testing, thereby significantly reducing the risk of contaminating the surrounding environment with enriched pathogens. Here, we present experimental results showing the detection of E. coli, Salmonella, or Listeria in several matrices (raw ground beef, raw ground poultry, chocolate milk, tuna salad, spinach, brie cheese, hot dogs, deli turkey, orange juice, cola, and swabs and sponges used to sample a stainless steel surface) using the SERS system and demonstrate the accuracy of the approach compared to plating results. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Tsunami Amplitude Estimation from Real-Time GNSS.

    Science.gov (United States)

    Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.

    2017-12-01

    Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia

  17. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application

    Science.gov (United States)

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Introduction : Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced “gold-standard” for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. Methods : This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system’s measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Results : Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. Discussion : This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures. PMID:26401167

  18. Exploring the utility of real-time hydrologic data for landslide early warning

    Science.gov (United States)

    Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.

    2017-12-01

    Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.

  19. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  20. Real-Time Payload Control and Monitoring on the World Wide Web

    Science.gov (United States)

    Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1998-01-01

    World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP) and the Java object-oriented programming environment offer a powerful, yet relatively inexpensive, framework for distributed application software development. This paper describes the design of a real-time payload control and monitoring system that was developed with W3 technologies at NASA Ames Research Center. Based on Java Development Toolkit (JDK) 1.1, the system uses an event-driven "publish and subscribe" approach to inter-process communication and graphical user-interface construction. A C Language Integrated Production System (CLIPS) compatible inference engine provides the back-end intelligent data processing capability, while Oracle Relational Database Management System (RDBMS) provides the data management function. Preliminary evaluation shows acceptable performance for some classes of payloads, with Java's portability and multimedia support identified as the most significant benefit.