WorldWideScience

Sample records for real-time in-vivo mu-imaging

  1. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  2. Real-time Raman system for in vivo disease diagnosis.

    Science.gov (United States)

    Motz, Jason T; Gandhi, Saumil J; Scepanovic, Obrad R; Haka, Abigail S; Kramer, John R; Dasari, Ramachandra R; Feld, Michael S

    2005-01-01

    Raman spectroscopy has been well established as a powerful in vitro method for studying biological tissue and diagnosing disease. The recent development of efficient, high-throughput, low-background optical fiber Raman probes provides, for the first time, the opportunity to obtain real-time performance in the clinic. We present an instrument for in vivo tissue analysis which is capable of collecting and processing Raman spectra in less than 2 s. This is the first demonstration that data acquisition, analysis, and diagnostics can be performed in clinically relevant times. The instrument is designed to work with the new Raman probes and includes custom written LabVIEW and Matlab programs to provide accurate spectral calibration, analysis, and diagnosis along with important safety features related to laser exposure. The real-time capabilities of the system were demonstrated in vivo during femoral bypass and breast lumpectomy surgeries. Such a system will greatly facilitate the adoption of Raman spectroscopy into clinical research and practice.

  3. Real-time dynamic imaging of virus distribution in vivo.

    Directory of Open Access Journals (Sweden)

    Sean E Hofherr

    2011-02-01

    Full Text Available The distribution of viruses and gene therapy vectors is difficult to assess in a living organism. For instance, trafficking in murine models can usually only be assessed after sacrificing the animal for tissue sectioning or extraction. These assays are laborious requiring whole animal sectioning to ascertain tissue localization. They also obviate the ability to perform longitudinal or kinetic studies in one animal. To track viruses after systemic infection, we have labeled adenoviruses with a near-infrared (NIR fluorophore and imaged these after intravenous injection in mice. Imaging was able to track and quantitate virus particles entering the jugular vein simultaneous with injection, appearing in the heart within 500 milliseconds, distributing in the bloodstream and throughout the animal within 7 seconds, and that the bulk of virus distribution was essentially complete within 3 minutes. These data provide the first in vivo real-time tracking of the rapid initial events of systemic virus infection.

  4. Real Time Deconvolution of In-Vivo Ultrasound Images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    based model for the ultrasound pulse and can include a depth varying pulse and spatially varying signal-to-noise ration. An autoregressive moving average (ARMA) model of orders 8 and 9 is used for the pulse, and the ARMA parameters are determined as a function of depth using a minimum variance algorithm...... to a factor of 5.1. The basic pulse can be estimated in roughly 0.176 seconds on a single CPU core on an Intel i5 CPU running at 1.8 GHz. An in-vivo image consisting of 100 lines of 1600 samples can be processed in roughly 0.1 seconds making it possible to perform real-time deconvolution on ultrasound data...... by using dual or quad core CPUs for frame-rates of 20-40 Hz....

  5. In vivo real-time cavitation imaging in moving organs

    Science.gov (United States)

    Arnal, B.; Baranger, J.; Demene, C.; Tanter, M.; Pernot, M.

    2017-02-01

    The stochastic nature of cavitation implies visualization of the cavitation cloud in real-time and in a discriminative manner for the safe use of focused ultrasound therapy. This visualization is sometimes possible with standard echography, but it strongly depends on the quality of the scanner, and is hindered by difficulty in discriminating from highly reflecting tissue signals in different organs. A specific approach would then permit clear validation of the cavitation position and activity. Detecting signals from a specific source with high sensitivity is a major problem in ultrasound imaging. Based on plane or diverging wave sonications, ultrafast ultrasonic imaging dramatically increases temporal resolution, and the larger amount of acquired data permits increased sensitivity in Doppler imaging. Here, we investigate a spatiotemporal singular value decomposition of ultrafast radiofrequency data to discriminate bubble clouds from tissue based on their different spatiotemporal motion and echogenicity during histotripsy. We introduce an automation to determine the parameters of this filtering. This method clearly outperforms standard temporal filtering techniques with a bubble to tissue contrast of at least 20 dB in vitro in a moving phantom and in vivo in porcine liver.

  6. Quasi real time in vivo dosimetry for VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Fidanzio, A.; Azario, L. [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Porcelli, A. [U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Greco, F. [U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Cilla, S. [U.O di Fisica Sanitaria, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso 86100, Italy and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00146 (Italy); Grusio, M. [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Balducci, M.; Valentini, V. [U.O.C di Radioterapia, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Piermattei, A., E-mail: a.piermattei@rm.unicatt.it [Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); U.O.C di Fisica Sanitaria, Università Cattolica del Sacro Cuore, Rome 00168 (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma Tre, Rome 00168 (Italy)

    2014-06-15

    Purpose: Results about the feasibility of a method for quasi real timein vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. Methods: An algorithm to reconstructin vivo the isocenter dose, D{sub iso}, for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D{sub iso} and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. Results: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ{sub mean} ≤ 0.4 and P{sub γ<1} ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. Conclusions: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.

  7. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo.

    NARCIS (Netherlands)

    Moeskops, B.W.M.; Steeghs, M.M.L.; Swam, K. van; Cristescu, S.M.; Scheepers, P.T.J.; Harren, F.J.M.

    2006-01-01

    Trace gases emitted by human skin in vivo are monitored non-invasively and in real time using laser-based photoacoustic detection and proton-transfer reaction mass spectrometry. A small quartz cuvette is placed on the skin to create a headspace from which a carrier gas transports the skin emissions

  8. In vivo Real-Time Mass Spectrometry for Guided Surgery Application.

    Science.gov (United States)

    Fatou, Benoit; Saudemont, Philippe; Leblanc, Eric; Vinatier, Denis; Mesdag, Violette; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2016-05-18

    Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions.

  9. In vivo Real-Time Mass Spectrometry for Guided Surgery Application

    Science.gov (United States)

    Fatou, Benoit; Saudemont, Philippe; Leblanc, Eric; Vinatier, Denis; Mesdag, Violette; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2016-01-01

    Here we describe a new instrument (SpiderMass) designed for in vivo and real-time analysis. In this instrument ion production is performed remotely from the MS instrument and the generated ions are transported in real-time to the MS analyzer. Ion production is promoted by Resonant Infrared Laser Ablation (RIR-LA) based on the highly effective excitation of O-H bonds in water molecules naturally present in most biological samples. The retrieved molecular patterns are specific to the cell phenotypes and benign versus cancer regions of patient biopsies can be easily differentiated. We also demonstrate by analysis of human skin that SpiderMass can be used under in vivo conditions with minimal damage and pain. Furthermore SpiderMass can also be used for real-time drug metabolism and pharmacokinetic (DMPK) analysis or food safety topics. SpiderMass is thus the first MS based system designed for in vivo real-time analysis under minimally invasive conditions. PMID:27189490

  10. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.

    Science.gov (United States)

    Zhang, Runkun; Huang, Wanting; Li, Gongke; Hu, Yufei

    2017-03-21

    The development of noninvasive methods for real-time in vivo analysis is of great significant, which provides powerful tools for medical research and clinical diagnosis. In the present work, we described a new strategy based on cataluminescence (CTL) for real-time in vivo clinical breath analysis. To illustrate such strategy, a homemade real-time CTL monitoring system characterized by coupling an online sampling device with a CTL sensor for sevoflurane (SVF) was designed, and a real-time in vivo method for the monitoring of SVF in exhaled breath was proposed. The accuracy of the method was evaluated by analyzing the real exhaled breath samples, and the results were compared with those obtained by GC/MS. The measured data obtained by the two methods were in good agreement. Subsequently, the method was applied to real-time monitoring of SVF in exhaled breath from rat models of the control group to investigate elimination pharmacokinetics. In order to further probe the potential of the method for clinical application, the elimination pharmacokinetics of SVF from rat models of control group, liver fibrosis group alcohol liver group, and nonalcoholic fatty liver group were monitored by the method. The raw data of pharmacokinetics of different groups were normalized and subsequently subjected to linear discriminant analysis (LDA). These data were transformed to canonical scores which were visualized as well-clustered with the classification accuracy of 100%, and the overall accuracy of leave-one-out cross-validation procedure is 88%, thereby indicating the utility of the potential of the method for liver disease diagnosis. Our strategy undoubtedly opens up a new door for real-time clinical analysis in a pain-free and noninvasive way and also guides a promising development direction for CTL.

  11. Nasal swab real-time PCR is not suitable for in vivo diagnosis of bovine tuberculosis

    Directory of Open Access Journals (Sweden)

    Fabiana Q. Mayer

    Full Text Available ABSTRACT: Bovine tuberculosis (bTB is a zoonosis causing economic losses and public health risks in many countries. The disease diagnosis in live animals is performed by intradermal tuberculin test, which is based on delayed hypersensitivity reactions. As tuberculosis has complex immune response, this test has limitations in sensitivity and specificity. This study sought to test an alternative approach for in vivo diagnosis of bovine tuberculosis, based on real-time polymerase chain reaction (PCR. DNA samples, extracted from nasal swabs of live cows, were used for SYBR® Green real-time PCR, which is able to differentiate between Mycobacterium tuberculosis and Mycobacterium avium complexes. Statistical analysis was performed to compare the results of tuberculin test, the in vivo gold standard bTB diagnosis method, with real-time PCR, thereby determining the specificity and sensitivity of molecular method. Cervical comparative test (CCT was performed in 238 animals, of which 193 had suitable DNA from nasal swabs for molecular analysis, as indicated by amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH gene, and were included in the study. In total, 25 (10.5% of the animals were CCT reactive, of which none was positive in the molecular test. Of the 168 CCT negative animals, four were positive for M. tuberculosis complex at real time PCR from nasal swabs. The comparison of these results generated values of sensitivity and specificity of 0% and 97.6%, respectively; moreover, low coefficients of agreement and correlation (-0.029 and -0.049, respectively between the results obtained with both tests were also observed. This study showed that real-time PCR from nasal swabs is not suitable for in vivo diagnosis of bovine tuberculosis; thus tuberculin skin test is still the best option for this purpose.

  12. Real-time in vivo dosimetry and error detection during afterloading brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir

    error scenarios, in order to quantify the error detection sensitivity of the real-time point dosimetry system used by means of a statistical error detection concept that incorporated a full uncertainty analysis. The limiting effects of the dependence on the a priori reconstruction of the dosimeter...... sources, even small discrepancies of the planned source position may result in largely modified dose distributions that could lead to an insufficient dose to the tumor and/or increased doses to OARs. One way to monitor the integrity of a BT treatment delivery and to detect potential treatment errors......, is to perform real-time in vivo dosimetry (IVD) inside the target region during the treatment. That way, an independent and patient specific verification of the agreement between delivered and planned treatments can be performed. If a treatment error is detected, modifications of the treatment parameters...

  13. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination

    Science.gov (United States)

    Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei

    2012-08-01

    Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer. This work successfully moves biomedical Raman spectroscopic technique into real-time, on-line clinical cancer diagnosis, especially in routine endoscopic diagnostic applications.

  14. Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT)

    Science.gov (United States)

    Brandenburg, Roland; Haller, Bernd; Hauger, Christoph

    2003-11-01

    We have carried out real-time in vivo and in vitro imaging of human dental tissue in a clinical setting by means of optical coherence tomography (OCT). We have used a compact, commercial prototype OCT system applying for the first time a surgical microscope as a beam delivery system for investigations of dental tissue. We have imaged demineralised tissue, caries lesions, restored teeth and oral mucosa and demonstrate the detection of changes in tissue microstructure. We discuss the details of this system and its potential and limitations with respect to dental applications.

  15. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...

  16. In Vivo and Real-time Monitoring of Secondary Metabolites of Living Organisms by Mass Spectrometry

    Science.gov (United States)

    Hu, Bin; Wang, Lei; Ye, Wen-Cai; Yao, Zhong-Ping

    2013-07-01

    Secondary metabolites are compounds that are important for the survival and propagation of animals and plants. Our current understanding on the roles and secretion mechanism of secondary metabolites is limited by the existing techniques that typically cannot provide transient and dynamic information about the metabolic processes. In this manuscript, by detecting venoms secreted by living scorpion and toad upon attack and variation of alkaloids in living Catharanthus roseus upon stimulation, which represent three different sampling methods for living organisms, we demonstrated that in vivo and real-time monitoring of secondary metabolites released from living animals and plants could be readily achieved by using field-induced direct ionization mass spectrometry.

  17. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets.

    Science.gov (United States)

    Nyman, Lara R; Wells, K Sam; Head, W Steve; McCaughey, Michael; Ford, Eric; Brissova, Marcela; Piston, David W; Powers, Alvin C

    2008-11-01

    The pancreatic islets of Langerhans are highly vascularized micro-organs that play a key role in the regulation of blood glucose homeostasis. The specific arrangement of endocrine cell types in islets suggests a coupling between morphology and function within the islet. Here, we established a line-scanning confocal microscopy approach to examine the relationship between blood flow and islet cell type arrangement by real-time in vivo imaging of intra-islet blood flow in mice. These data were used to reconstruct the in vivo 3D architecture of the islet and time-resolved blood flow patterns throughout the islet vascular bed. The results revealed 2 predominant blood flow patterns in mouse islets: inner-to-outer, in which blood perfuses the core of beta cells before the islet perimeter of non-beta cells, and top-to-bottom, in which blood perfuses the islet from one side to the other regardless of cell type. Our approach included both millisecond temporal resolution and submicron spatial resolution, allowing for real-time imaging of islet blood flow within the living mouse, which has not to our knowledge been attainable by other methods.

  18. Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery.

    Directory of Open Access Journals (Sweden)

    Desmond B S Pink

    Full Text Available The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM, a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2 peptide fragment or vascular endothelial growth factor (VEGF. VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors.

  19. Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.

    Science.gov (United States)

    Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D

    2014-02-21

    Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.

  20. Real-time and static in vivo ophthalmic imaging by spectral optical coherence tomography

    Science.gov (United States)

    Wojtkowski, Maciej; Bajraszewski, Tomasz; Targowski, Piotr; Kowalczyk, Andrzej

    2004-07-01

    Fast Spectral Optical Coherence Tomography (SOCT) technique is used to perform cross sectional and three-dimensional ophthalmic images. Static, real-time and 3-D in vivo images of the human cornea, lens, iris, corneo-scleral junction, retinal layers, optic disc and macula lutea are presented. The ophthalmic application of SOCT is promising because this technique ensures fast acquisition with relatively low optical power of incident light. All demonstrated images are obtained with the aid of SOCT instrument, which was constructed in the optical laboratory of medical physics group at Nicolaus Copernicus University (Torun, Poland). What is to our knowledge there are the first good quality (>90dB sensitivity) ophthalmic OCT images obtained by technique, which is different than time domain OCT.

  1. Measurement of bacterial gene expression in vivo by laser capture microdissection and quantitative real-time RT-PCR

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Jensen, Tim Kåre; Angen, Øystein

    2007-01-01

    Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser ca...... capture microdissection and real-time quantitative RT-PCR....

  2. Development of a real-time in-vivo dose guided radiotherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Ushino, T.; Smith, M.; Perle, S. [Global Dosimetry Solutions, Irvine, CA (United States); Justus, B.; Huston, A.; Falkenstein, P. [U. S. Naval Research Lab., Optical Physics Branch, Washington, DC (United States); Miller, R.; Coleman, N. [National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2006-07-01

    Accurately assessing the dose to target organs and surrounding tissues in radiation therapy is paramount to achieving maximum treatment efficacy. The goal of radiation therapy is to deliver an optimum dose of ionizing radiation to the target area while at the same time, minimizing the dose to the surrounding tissues. Frequently the target tissue is spatially dynamic and is in close proximity to other tissues whose radiation dose should be minimized to avoid damage. A highly spatially resolved real-time patient dosimetry system will allow radiation therapists and physicians to verify, instantaneously, that the radiation dose is being delivered accurately to the intended target area. There also is a need to accurately assess skin dose in real-time during fluoroscopically-guided interventional procedures to minimize skin damage. A substantial increase in the number of fluoroscopically guided interventional procedures since the 1990 has resulted in an increase in the incidence of radiation-induced skin injuries. This has become a concern to the extent that F.D.A. proposed regulations for monitoring radiation doses delivered by fluoroscopy machines(1). The most likely cause of radiation induced skin injuries are due to particularly long procedures performed at normal dose rates. The availability of real-time radiation dose information will allow the operating physician to appropriately balance the clinical benefit of enhanced visualization versus radiation risks associated with long interventional procedures. Global Dosimetry Solutions (G.D.S.), Inc., a fully accredited world-wide provider of dosimetry services to a wide range of customers including hospitals, medical and dental offices, veterinary clinics, university and national laboratories, nuclear power plants, etc., has developed an in vivo, real-time radiation monitoring technologies for use in radiotherapy and fluoroscopically-guided procedures. The core technologies were developed by Drs. Brian Justus and Alan

  3. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations.

    Directory of Open Access Journals (Sweden)

    Jennifer C Ewald

    Full Text Available Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET. We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation.

  4. Real-time mapping of the corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy

    Science.gov (United States)

    Guthoff, Rudolf F.; Zhivov, Andrey; Stachs, Oliver

    2010-02-01

    The aim of the study was to produce two-dimensional reconstruction maps of the living corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy in real time. CLSM source data (frame rate 30Hz, 384x384 pixel) were used to create large-scale maps of the scanned area by selecting the Automatic Real Time (ART) composite mode. The mapping algorithm is based on an affine transformation. Microscopy of the sub-basal nerve plexus was performed on normal and LASIK eyes as well as on rabbit eyes. Real-time mapping of the sub-basal nerve plexus was performed in large-scale up to a size of 3.2mm x 3.2mm. The developed method enables a real-time in vivo mapping of the sub-basal nerve plexus which is stringently necessary for statistically firmed conclusions about morphometric plexus alterations.

  5. Real time monitoring in-vivo micro-environment through the wound heal mechanism

    Science.gov (United States)

    Yan, Jack

    2013-02-01

    One of the In-vivo system's challenge is real time display the sensing information. Usually Ultrasound, CT, MRI, PET are used to get the internal information, this thesis proposed another approach to address the display challenge. Special nano-particles are in-taken or injected to living subject (usually into blood circulation) to sense and collect psychological information when the active particles pass through the tissues of interest. Using the wound healing mechanism, these activated particles (Information collected) can be drifted out to the wound area and adhibited close to the skin, then skin can show different color if the activated particles are concentrated enough in the specific area to create a skin screen. The skin screen can display the blood status, internal organ's temperature, pressure depending the nano-particles' function and their pathway. This approach can also be used to display in-body video if the particles are sensitive and selective enough. In the future, the skin screen can be bio-computer's monitor. The wound healing in an animal model normally divides in four phase: Hemostasis, Inflammation, Proliferation and Maturation. Hemostasis phase is to form a stable clot sealing the damaged vessel. Inflammation phase causes the blood vessels to become leaky releasing plasma and PMN's (polymorphonucleocytes) into the surrounding tissue and provide the first line of defense against infection. Proliferation phase involves replacement of dermal tissues and sometimes subdermal tissues in deeper wounds as well as contraction of the wound. Maturation phase remodels the dermal tissues mainly by fibroblast to produce greater tensile strength. The skin screen wound will be carefully controlled to be triggered at dermis layer.

  6. Real-time depth-resolved fiber optic Raman endoscopy for in vivo diagnosis of gastric precancer

    Science.gov (United States)

    Bergholt, Mads S.; Zheng, Wei; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy B. Y.; Huang, Zhiwei

    2014-03-01

    Raman spectroscopy represents a unique optical vibrational technique based on the fundamental premise of inelastic light scattering. Raman spectroscopy enables histopathological assessment at the biomolecular level. We have developed a fiber-optic depth-resolved near-infrared (NIR) Raman endoscopy technique integrated with on-line diagnostic algorithms for in vivo real-time epithelial diagnostics under multimodal wide-field imaging (i.e., white light reflectance (WLR), narrow-band imaging (NBI), autofluorescence imaging (AFI)) modalities. A selection of 450 patients who previously underwent Raman endoscopy (n=1900 spectra) was used to render diagnostic models for identifying gastric precancer (i.e., dysplasia) based on probabilistic partial least squares (PLS) - discriminant analysis (DA). The on-line Raman endoscopy technique was tested prospectively on (n=5) patients for real-time in vivo gastric epithelium tissue diagnosis. The fiber-optic confocal Raman endoscopic technique developed could prospectively identify gastric dysplasia in real-time with a sensitivity: 81.3% (61/75) and specificity 88.3% (188/213) on spectrum basis. On lesion basis, all dysplastic lesions were identified. This study successfully demonstrates for the first time the prospective real-time in vivo diagnosis of gastric precancer using depth-resolved Raman endoscopy.

  7. [Significance of sound beam thickness in real time sonography. In vitro and in vivo observations].

    Science.gov (United States)

    Bönhof, J A; Kremer, H; Bönhof, B; Stapff, M; Zöllner, N

    1983-03-01

    In Real-time Sonography slice-thickness artifacts may lead to misinterpretation, mainly in cystic organs. With in vitro studies it was possible to show the mechanism of this artifact, which is based on beam thickness.

  8. Real-Time Monitoring of Shear Wave Traveling in Liver Tissue In Vivo

    Science.gov (United States)

    Machida, Hideyuki; Yagi, Shin-ichi; Kondo, Yuji; Murata, Yutaka; Akimoto, Shin

    2004-05-01

    Real-time imaging of tissue dynamic response caused by internal or external stress forces acting across a living tissue is promising for improving diagnostic quality and accuracy of clinical palpation as an “ultrasonic visualized palpation”. Thus we have investigated a real-time imaging system of local tissue displacement along an ultrasonic beam scanned across the living tissue, which realized straightforward but tissue-oriented physiological and dynamic color imaging on a conventional B-mode screen. System performance is fairly supported by a flexible design of a digital signal processor for real-time local cross correlation between successive two-dimensional complex speckle echo frames. Propagation of shear waves raised by external stress in a tissue phantom was clearly observed, so that real-time observation of shear wave traveling across a physiological liver tissue locally stressed by heartbeats was studied. As a result, we could confirm the characteristic shear wave propagation pattern by internal stress synchronous with heartbeat.

  9. Real-time noninvasive imaging of fatty acid uptake in vivo.

    Science.gov (United States)

    Henkin, Amy H; Cohen, Allison S; Dubikovskaya, Elena A; Park, Hyo Min; Nikitin, Gennady F; Auzias, Mathieu G; Kazantzis, Melissa; Bertozzi, Carolyn R; Stahl, Andreas

    2012-11-16

    Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin sensitivity. To enable noninvasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models.

  10. Real time non invasive imaging of fatty acid uptake in vivo

    Science.gov (United States)

    Henkin, Amy H.; Cohen, Allison S.; Dubikovskaya, Elena A.; Park, Hyo Min; Nikitin, Gennady F.; Auzias, Mathieu G.; Kazantzis, Melissa; Bertozzi, Carolyn R.; Stahl, Andreas

    2012-01-01

    Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin-sensitivity. To enable non-invasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real-time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models. PMID:22928772

  11. Real-time depth-resolved Raman endoscopy for in vivo diagnosis of dysplasia in Barrett's esophagus

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy Bok Yan; Huang, Zhiwei

    2013-03-01

    Raman spectroscopy is a vibrational analytic technique sensitive to the changes in biomolecular composition and conformations occurring in tissue. With our most recent development of depth-resolved near-infrared (NIR) Raman endoscopy integrated with on-line diagnostic algorithms, in vivo real-time epithelial diagnostics has been realized under multimodal wide-field imaging (i.e., white- light reflectance (WLR), narrow-band imaging (NBI), autofluorescence imaging (AFI)) modalities. A selection of 43 patients who previously underwent Raman endoscopy (n=146 spectra) was used to render a robust model based on partial least squares - discriminant analysis (PLS-DA) for diagnosis of dysplasia in Barrett's esophagus. The Raman endoscopy technique was validated prospectively on 2 new esophageal patients for in vivo tissue diagnosis. The Raman endoscopic technique could identify esophageal high-grade dysplasia in vivo with an accuracy of 85.9% (sensitivity: 91.3% (21/23): specificity 83.3% (40/48)) on spectrum basis. This study realizes for the first time depth-resolved Raman endoscopy for real-time in vivo diagnosis of dysplasia in Barrett's epithelium at the biomolecular level.

  12. Real time non invasive imaging of fatty acid uptake in vivo

    OpenAIRE

    Henkin, Amy H.; Cohen, Allison S.; Dubikovskaya, Elena A.; Park, Hyo Min; Nikitin, Gennady F.; Auzias, Mathieu G.; Kazantzis, Melissa; Bertozzi, Carolyn R.; Stahl, Andreas

    2012-01-01

    Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin-sensitivity. To enable non-invasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-cha...

  13. Real-time molecular profiling of photochemically induced rat thrombosis in vivo through quantitative Raman analysis of blood

    Science.gov (United States)

    Lin, M. M.; Shen, A. G.; Yao, H. L.; Zhang, Z. Z.; Hu, J. M.

    2014-11-01

    A device of an animal thrombosis model in vivo coupled with a Raman system for near-surface blood vessels is proposed in this letter. The dual-function set up is capable of simultaneously establishing a photochemically induced artificial thrombus model and collecting in vivo Raman data of both arterial and venous blood, and it provides the first observation of rat thrombosis under the physiological conditions from the beginning to the final form. The real-time and quantitative molecular profiling of flowing blood and the spectra of blood cells in the process of thrombosis provides an insight into the occurring mechanism of thrombosis and a promising method for the in vivo screening of new antithrombotic and thrombolytic drugs.

  14. In vivo near real time imaging of oxygen partial pressures in the glass catfish (Kryptopterus bichirris)

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    the fish with externally-mounted blue light emitting diodes (lip = 470 nm) to image the oxygen partial pressure. This method makes it possible to investigate oxygen partial pressures in the vascular system and different tissues of fish without having to insert any probes into the animal. After injection...... of the microspheres and a recovery period from the anaesthesia, in vivo oxygen partial pressure can be determined by just taking a picture of the live fish exposed to blue light. As no electrodes or sensors are attached, the method allows a wide range of experiments investigating in vivo oxygen levels under different...

  15. Transesophageal real-time three-dimensional echocardiography methods and initial in vitro and human in vivo studies.

    Science.gov (United States)

    Handke, Michael; Heinrichs, Gudrun; Moser, Urs; Hirt, Felix; Margadant, Felix; Gattiker, Felix; Bode, Christoph; Geibel, Annette

    2006-11-21

    The purpose of this study was to develop a transesophageal probe that: 1) enables on-line representation of the spatial structures of the heart, and 2) enables navigation of medical instruments. Whereas transthoracic real-time 3-dimensional (3D) echocardiography could recently be implemented, there is still no corresponding transesophageal system. Transesophageal real-time 3D echocardiography would have great potential for numerous clinical applications, such as navigation of catheters. The newly developed real-time 3D system is based on a transesophageal probe in which multiple transducers are arranged in an interlaced pattern on a rotating cylinder. This enables continuous recording of a large echo volume of 70 mm in length and a sector angle of 120 degrees . The presentation of the volume-reconstructed data is made with a time lag of <100 ms. The frame rate is up to 20 Hz. In addition to conventional imaging, the observer can obtain a stereoscopic image of the structures examined with red/blue goggles. It was shown in vitro on ventricle- and aorta-form agar models and in vivo that the system enables excellent visualization of the 3D structures. Shape, spatial orientation, and the navigation of various catheters (e.g., EPS-catheter, Swan-Ganz-catheter), stents, or atrial septal defect occluders could be recorded on-line and stereoscopically depicted. The size of the echo sector enables a wide field of view without changing the position of the probe. Transesophageal real-time 3D echocardiography can be technically realized with the system presented here. The in vitro and in vivo studies show particularly the potential for navigation in the heart and large vessels on the basis of stereoscopic images.

  16. Optical endomicroscopy and the road to real-time, in vivo pathology: present and future

    Directory of Open Access Journals (Sweden)

    Carignan Charles S

    2012-08-01

    Full Text Available Abstract Epithelial cancers account for substantial mortality and are an important public health concern. With the need for earlier detection and treatment of these malignancies, the ability to accurately detect precancerous lesions has an increasingly important role in controlling cancer incidence and mortality. New optical technologies are capable of identifying early pathology in tissues or organs in which cancer is known to develop through stages of dysplasia, including the esophagus, colon, pancreas, liver, bladder, and cervix. These diagnostic imaging advances, together as a field known as optical endomicroscopy, are based on confocal microscopy, spectroscopy-based imaging, and optical coherence tomography (OCT, and function as “optical biopsies,” enabling tissue pathology to be imaged in situ and in real time without the need to excise and process specimens as in conventional biopsy and histopathology. Optical biopsy techniques can acquire high-resolution, cross-sectional images of tissue structure on the micron scale through the use of endoscopes, catheters, laparoscopes, and needles. Since the inception of these technologies, dramatic technological advances in accuracy, speed, and functionality have been realized. The current paradigm of optical biopsy, or single-area, point-based images, is slowly shifting to more comprehensive microscopy of larger tracts of mucosa. With the development of Fourier-domain OCT, also known as optical frequency domain imaging or, more recently, volumetric laser endomicroscopy, comprehensive surveillance of the entire distal esophagus is now achievable at speeds that were not possible with conventional OCT technologies. Optical diagnostic technologies are emerging as clinically useful tools with the potential to set a new standard for real-time diagnosis. New imaging techniques enable visualization of high-resolution, cross-sectional images and offer the opportunity to guide biopsy, allowing maximal

  17. Real-time in vivo micromorphology and histopathology of choroidal osteoma using enhanced depth imaging

    Directory of Open Access Journals (Sweden)

    Rameez Hussain

    2015-01-01

    Full Text Available Choroidal osteoma is a usually unilateral benign tumor of the choroid composed of mature bone. Optical coherence tomography (OCT has been used to image osteoma for several years. With the advent of enhanced depth imaging (EDI feature of spectral-domain OCT (SD-OCT, better visualization of the morphology of choroidal lesions has been possible. Herein we present a case of choroidal osteoma in a 45-year-old woman, wherein in vivo morphology of the choroidal osteoma had been visualized using EDI technique of SD-OCT before and after performing photodynamic therapy. EDI OCT has proven to be a valuable noninvasive imaging modality, almost comparable to histopathological examination, for diagnosing choroidal osteomas and for providing an insight into the in vivo micromorphological changes occurring during the course of the disease.

  18. Real-time in vivo luminescence dosimetry in radiotherapy and mammography using Al2O3:C

    DEFF Research Database (Denmark)

    Aznar, Marianne

    2005-01-01

    New treatment and clinical imaging techniques have created a need for accurate and practical in vivo dosimeters in radiation medicine. This work describes the development of a new optical-fiber radiation dosimeter system, based on radioluminescence (RL)and optically stimulated luminescence (OSL...... treatments (such as intensity-modulated radiation therapy) indicate that the RL/OSL dosimetry system canreliably measure the absorbed dose within 2%. The real-time RL signal also enables an individual dose assessment from each field. The RL/OSL dosimetry system was also used during mammography examinations...

  19. A real-time in-vivo method for studying the percutaneous absorption of volatile chemicals.

    Science.gov (United States)

    Thrall, K D; Poet, T S; Corley, R A; Tanojo, H; Edwards, J A; Weitz, K K; Hui, X; Maibach, H I; Wester, R C

    2000-01-01

    Realistic estimates of percutaneous absorption following exposures to solvents in the workplace, or through contaminated soil and water, are critical to understanding human health risks. A method was developed to determine dermal uptake of solvents under non-steady-state conditions using real-time breath analysis in rats, monkeys, and humans. The exhaled breath was analyzed using an ion-trap mass spectrometer, which can quantitate chemicals in the exhaled breath stream in the 1-5 ppb range. The resulting data were evaluated using physiologically-based pharmacokinetic (PBPK) models to estimate dermal permeability constants (Kp) under various exposure conditions. The effects of exposure matrix (soil versus water), occlusion versus non-occlusion, and species differences on the absorption of methyl chloroform, trichloroethylene, and benzene were compared. Exposure concentrations were analyzed before and at 0.5-hour intervals throughout the exposures. The percentage of each chemical absorbed and the corresponding Kp were estimated by optimization of the PBPK model to the medium concentration and the exhaled-breath data. The method was found to be sufficiently sensitive for animal and human dermal studies at low exposure concentrations over small body surface areas, for short periods, using non-steady-state exposure conditions.

  20. Real-time profiling of kidney tubular fluid nitric oxide concentrations in vivo.

    Science.gov (United States)

    Levine, D Z; Iacovitti, M; Burns, K D; Zhang, X

    2001-07-01

    To directly determine intratubular nitric oxide concentrations ([NO]) in vivo, we modified amperometric integrated electrodes (WPI P/N ISO-NOP007), which are highly sensitive to NO and not affected by ascorbic acid, nitrite, L-arginine, or dopamine. Although reactive lengths were as short as 5 microm long, the electrode still responded rapidly. With the use of kidney surface fluid as the "zero point," the electrode tip was inserted into tubular segments along the track of a perforation made by a beveled glass pipette. The surface fluid zero point was usually stable as distal, late proximal, and early proximal tubule [NO] levels were measured sequentially in the same nephron. In eight normal rats, distal, late proximal, and early proximal [NO] concentrations were each approximately 110 nM. In contrast, in nine 5/6 nephrectomized rats 2 wk postsurgery, although [NO] also did not differ among distal, late proximal, and early proximal segments, levels were approximately fourfold higher than those in normal rats and were significantly reduced after N(G)-monomethyl-L-arginine administration. These are the first quantitative in vivo tubular fluid [NO] measurements and show a significant increase in tubular fluid [NO] after renal ablation.

  1. Real Time Microelectrode Measurement of Nitric Oxide in Kidney Tubular Fluid in vivo

    Directory of Open Access Journals (Sweden)

    Michelle Iacovitti

    2003-08-01

    Full Text Available In this review we summarize our experience using a microelectrode to measure nitric oxide concentrations [NO] in living rat kidney tubules. In the anaesthetized living rat, the abdomen can be opened, and the kidney can be placed in a cup such that one can puncture a surface single tubular segment, 1-2 mm long, connected to one of 30,000 filtering glomeruli. The tubular segment can be viewed with a stereo microscope and punctured using sophisticated micromanipulators. The segment, ranging in diameter from about 15 - 35 um contains freely flowing RBC-free fluid, electrolytes, O2, pCO2 and NO gas concentrations, and a host of other known and unknown substances. After a “pre” puncture with a 7-10 um beveled glass pipette, intratubular [NO] can be directly determined by inserting, into the tubular lumen, the tip of a specially modified amperometric integrated electrode (WPI P/N ISO-NOP007. We review our in vivo experience with this electrode, emphasizing optimal practice to ensure appropriate calibration, stability, and selectivity for in vivo use. The electrode is highly selective for NO, and, despite fragility, with appropriate precautions, it can provide reproducible and highly sensitive NO measurements in the 40-1000 nM range.

  2. In Vivo Experiments with Intraluminal Ultrasound Applicator Compatible with ``Real-Time'' MR Temperature Mapping, designed for Oesophagus Tumour Ablation

    Science.gov (United States)

    Melodelima, D.; Salomir, R.; Mougenot, C.; Theillère, Y.; Moonen, C.; Cathignol, D.

    2005-03-01

    High intensity ultrasound has shown considerable ability to produce precise and deep thermal coagulation necrosis. Focused, cylindrical, spherical or plane transducers have been used to induce high temperature elevation in tissues, in order to coagulate proteins and kill cells. Magnetic Resonance Imaging (MRI) has been used, with focused transducers and cylindrical interstitial applicators, to monitor temperature distribution and provide temperature feedback control during heating procedures. The active part of intraluminal applicators is positioned very close to the target region. It is therefore essential to provide accurate monitoring of heat deposition in the tissue layer near the transducer, in order to control the extension of coagulation necrosis. The purpose of this study was to develop a 10-mm diameter intraluminal ultrasound applicator, designed to treat oesophageal cancers and compatible with "real-time" MR temperature mapping. The ultrasound applicator was tested in vivo under real time, PRF based, fast MR temperature monitoring. Experiments were performed in vivo on pig oesophagus. Respiratory-gated, MR thermometry was performed with segmented EPI gradient echo sequences. Post treatment follow up was performed with MRI in oesophagus and liver. Excellent MR compatibility was demonstrated. Thermal lesions identified on post-treatment follow up showed good correlation with on line MR thermometry data. This study demonstrated the feasibility of oesophageal thermal ablation using intraluminal ultrasound and on line MR temperature monitoring.

  3. Real-time, High-resolution, In Vivo Characterization of Superficial Skin With Microscopy Using Ultraviolet Surface Excitation (MUSE).

    Science.gov (United States)

    Ho, Derek; Fereidouni, Farzad; Levenson, Richard M; Jagdeo, Jared

    2016-11-01

    Skin care products make up the largest part (36%) of the cosmetic market globally, of which the United States plays the largest role. In 2015, approximately 115 billion USD was spent globally on skin care products. Skin care products, in contradistinction to pharmaceuticals, are not strictly regulated by the FDA. A key factor for evaluation of a skin care product or topical drug is skin barrier function and effect on super cial skin. Thus, it is critical to have quantitative and qualitative methods to study the effects of skin care products on skin barrier and the super cial skin. Currently, no imaging method exists that can evaluate and track super cial skin changes visually in real-time. To report using a novel imaging modality, Microscopy using Ultraviolet Surface Excitation (MUSE), to provide real-time, high- resolution, in vivo characterization of super cial skin and moisturizing properties of topical moisturizer, and to highlight key bene ts of using MUSE to visualize the super cial skin and serve as an excellent complementary tool to current quantitative methods. The methodology of MUSE is based upon two main principles inherent to ultraviolet (UV) light and uorescent staining agents. In this study, the author's (JJ) index ngertip was imaged using the MUSE instrument without and with moisturizer. Dermatoglyphics of the fingertip consists of ridges (cristae super ciales) and grooves (sulci super ciales) proved to be straightforward to visualize at high resolution. Desquamation of superficial corneocytes and opening of an acrosyringium (the most superficial portion of eccrine ducts) were visualized in high-resolution. Post-application of a moisturizer, a uniform layer of moisturizer could be seen superficial to the corneocytes along the ridges and CONCLUSIONS: Real-time, high-resolution, in vivo characterization of super cial skin and moisturizing properties of moisturizer using MUSE is feasible. Its utility can be enhanced with downstream quantification using

  4. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  5. Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods.

    Science.gov (United States)

    Araújo, Patricia Valente; Correia-Silva, Jeane de Fátima; Gomez, Ricardo Santiago; Massara, Maria de Lourdes de Andrade; Cortes, Maria Esperanza; Poletto, Luiz Thadeu de Abreu

    2015-09-01

    The aim of this study was to evaluate the antimicrobial effect of photodynamic therapy (PDT) in carious lesions in vivo by culture and real-time PCR methods. Ten teeth with deep active carious lesions were selected and five portions of carious dentin were removed for each tooth. Two increments were used as control, to represent the superficial and deep dentin, respectively. Methylene blue at 100mg/L was placed in contact with the cavity for 5min, before being irradiated with a halogen light source for 1min. Then, after PDT, other three portions were removed. The samples were processed in laboratory and the number of viable cfu was obtained. The real-time PCR analyses were performed in two increments of carious dentin, removed before and after PDT. The Streptococcus mutans DNA was isolated from carious dentin samples and amplification and detection of DNA were performed with real-time PCR. The cavities were then restored with glass-ionomer cement. Using conventional culture methods, the results demonstrated that viable bacteria were significantly reduced in all of the agar plates following photosensitization. No difference was found between both groups regarding S. mutans DNA quantification by real-time PCR. Although PDT may not affect the number of S. mutans DNA copies immediately after the treatment, clear reduction of the number of cfu was found. Despite its promising use for eliminating bacteria in dental caries treatment, further studies are necessary to establish an effective clinical protocol for the PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Adaptive error detection for HDR/PDR brachytherapy: guidance for decision making during real-time in vivo point dosimetry.

    Science.gov (United States)

    Kertzscher, Gustavo; Andersen, Claus E; Tanderup, Kari

    2014-05-01

    This study presents an adaptive error detection algorithm (AEDA) for real-time in vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). The AEDA applied on two in vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with

  7. In vivo assessment of subcutaneous fat in dogs by real-time ultrasonography and image analysis.

    Science.gov (United States)

    Payan-Carreira, Rita; Martins, Luis; Miranda, Sónia; Olivério, Pedro; Silva, Severiano R

    2016-10-20

    Systems for estimating body condition score (BCS) are currently used in canine practice to monitor fatness levels. These tools are cheap and easy to use but lack the necessary precision to monitor small changes in body fat, particularly during weight control treatments or in research. The present work aims to study the application of real-time ultrasonography (RTU) together with image analysis in the assessment of subcutaneous fat depots in dogs. Ultrasound images were collected from five anatomical locations (chest, flank, abdomen, thigh and lumbar) from 28 healthy dogs of different breeds and with a body weight (BW) ranging from 5.2 to 33.0 kg. BCS was collected by visual appraisal using a 5-point scale. Subcutaneous fat thickness (SFT) was estimated from RTU images, using the average of three measurements taken in fat deposits located above the muscles represented in each image. Correlations were established between SFT and BW or BCS as well as a classification of BCS-based fatness [overweight (BCS = 4), ideal (BCS = 3) and lean (BCS = 2)]. SFT was found to differ between the five regions considered (P dogs included in the study and also those correlating most with BW, in contrast to the chest, which showed the least variation. Overall, a strong correlation was found between BCS and SFT. The highest correlations were established for the flank, abdomen and lumbar areas. In every anatomical area, a decrease in SFT was observed across all three BCS classes, ranging from 48 to 65 % among overweight and ideal dogs, and from 46 to 83 % among ideal and lean dogs. Preliminary data showed that within this population there was a strong correlation between BCS and SFT estimated from RTU images. It was also observed that RTU measurements for fat thickness differed among the anatomical points surveyed suggesting differences in their sensitivity to a change in BCS. The images displaying the best prediction value for fatness variations were those collected at the

  8. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo

    Science.gov (United States)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2017-03-01

    Metastasis is responsible for as many as 90% of cancer-related deaths, and the deadliest skin cancer, melanoma, has a high propensity for metastasis. Since hematogenous spread of circulating tumor cells (CTCs) is cancer's main route of metastasis, detecting and destroying CTCs can impede metastasis and improve patients' prognoses. Extensive studies employing exogenous agents to detect tumor-specific biomarkers and guide therapeutics to CTCs have achieved promising results, but biosafety remains a critical concern. Taking another approach, physical detection and destruction of CTCs is a safer way to evaluate and reduce metastasis risks. Melanoma cells strongly express melanosomes, providing a striking absorption contrast with the blood background in the red to near-infrared spectrum. Exploiting this intrinsic optical absorption contrast of circulating melanoma cells, we coupled dual-wavelength photoacoustic flow cytography with a nanosecond-pulsed laser killing mechanism that specifically targets melanoma CTCs. We have successfully achieved in vivo label-free imaging of rare single CTCs and CTC clusters in mice. Further, the photoacoustic signal from a CTC immediately hardware-triggers a lethal pinpoint laser irradiation that lyses it on the spot in a thermally confined manner. Our technology can facilitate early inhibition of metastasis by clearing circulating tumor cells from vasculature.

  9. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction...... of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects...... of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods:In the event of a measured potential treatment error, the AEDA proposes the most...

  10. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo.

    Science.gov (United States)

    Toupin, Solenn; Bour, Pierre; Lepetit-Coiffé, Matthieu; Ozenne, Valéry; Denis de Senneville, Baudouin; Schneider, Rainer; Vaussy, Alexis; Chaumeil, Arnaud; Cochet, Hubert; Sacher, Frédéric; Jaïs, Pierre; Quesson, Bruno

    2017-01-25

    Clinical treatment of cardiac arrhythmia by radiofrequency ablation (RFA) currently lacks quantitative and precise visualization of lesion formation in the myocardium during the procedure. This study aims at evaluating thermal dose (TD) imaging obtained from real-time magnetic resonance (MR) thermometry on the heart as a relevant indicator of the thermal lesion extent. MR temperature mapping based on the Proton Resonance Frequency Shift (PRFS) method was performed at 1.5 T on the heart, with 4 to 5 slices acquired per heartbeat. Respiratory motion was compensated using navigator-based slice tracking. Residual in-plane motion and related magnetic susceptibility artifacts were corrected online. The standard deviation of temperature was measured on healthy volunteers (N = 5) in both ventricles. On animals, the MR-compatible catheter was positioned and visualized in the left ventricle (LV) using a bSSFP pulse sequence with active catheter tracking. Twelve MR-guided RFA were performed on three sheep in vivo at various locations in left ventricle (LV). The dimensions of the thermal lesions measured on thermal dose images, on 3D T1-weighted (T1-w) images acquired immediately after the ablation and at gross pathology were correlated. MR thermometry uncertainty was 1.5 °C on average over more than 96% of the pixels covering the left and right ventricles, on each volunteer. On animals, catheter repositioning in the LV with active slice tracking was successfully performed and each ablation could be monitored in real-time by MR thermometry and thermal dosimetry. Thermal lesion dimensions on TD maps were found to be highly correlated with those observed on post-ablation T1-w images (R = 0.87) that also correlated (R = 0.89) with measurements at gross pathology. Quantitative TD mapping from real-time rapid CMR thermometry during catheter-based RFA is feasible. It provides a direct assessment of the lesion extent in the myocardium with precision in the range of one

  11. Moving Raman spectroscopy into real-time, online diagnosis and detection of precancer and cancer in vivo in the upper GI during clinical endoscopic examination

    Science.gov (United States)

    Huang, Zhiwei; Bergholt, Mads Sylvest; Zheng, Wei; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy Bok Yan; Shabbir, Asim

    2013-03-01

    A rapid image-guided Raman endoscopy system integrated with on-line diagnostic scheme is developed for in vivo Raman tissue diagnosis (optical biopsy) in the upper GI during clinical gastrointestinal endoscopy under multimodal wide-field imaging guidance. The real-time Raman endoscopy technique was tested prospectively on new gastric patients (n=4) and could identify dysplasia in vivo with sensitivity of 81.5% (22/27) and specificity of 87.9% (29/33). This study realizes for the first time the novel image-guided Raman endoscopy as a screening tool for real-time, online diagnosis of gastric cancer and precancer in vivo at endoscopy.

  12. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth

    Directory of Open Access Journals (Sweden)

    Beddows David CS

    2001-12-01

    Full Text Available Abstract Background Laser Induced Breakdown Spectroscopy (LIBS can be used to measure trace element concentrations in solids, liquids and gases, with spatial resolution and absolute quantifaction being feasible, down to parts-per-million concentration levels. Some applications of LIBS do not necessarily require exact, quantitative measurements. These include applications in dentistry, which are of a more "identify-and-sort" nature – e.g. identification of teeth affected by caries. Methods A one-fibre light delivery / collection assembly for LIBS analysis was used, which in principle lends itself for routine in vitro / in vivo applications in a dental practice. A number of evaluation algorithms for LIBS data can be used to assess the similarity of a spectrum, measured at specific sample locations, with a training set of reference spectra. Here, the description has been restricted to one pattern recognition algorithm, namely the so-called Mahalanobis Distance method. Results The plasma created when the laser pulse ablates the sample (in vitro / in vivo, was spectrally analysed. We demonstrated that, using the Mahalanobis Distance pattern recognition algorithm, we could unambiguously determine the identity of an "unknown" tooth sample in real time. Based on single spectra obtained from the sample, the transition from caries-affected to healthy tooth material could be distinguished, with high spatial resolution. Conclusions The combination of LIBS and pattern recognition algorithms provides a potentially useful tool for dentists for fast material identification problems, such as for example the precise control of the laser drilling / cleaning process.

  13. Real-time in vivo imaging of butterfly wing development: revealing the cellular dynamics of the pupal wing tissue.

    Directory of Open Access Journals (Sweden)

    Masaki Iwata

    Full Text Available Butterfly wings are covered with regularly arranged single-colored scales that are formed at the pupal stage. Understanding pupal wing development is therefore crucial to understand wing color pattern formation. Here, we successfully employed real-time in vivo imaging techniques to observe pupal hindwing development over time in the blue pansy butterfly, Junonia orithya. A transparent sheet of epithelial cells that were not yet regularly arranged was observed immediately after pupation. Bright-field imaging and autofluorescent imaging revealed free-moving hemocytes and tracheal branches of a crinoid-like structure underneath the epithelium. The wing tissue gradually became gray-white, epithelial cells were arranged regularly, and hemocytes disappeared, except in the bordering lacuna, after which scales grew. The dynamics of the epithelial cells and scale growth were also confirmed by fluorescent imaging. Fluorescent in vivo staining further revealed that these cells harbored many mitochondria at the surface of the epithelium. Organizing centers for the border symmetry system were apparent immediately after pupation, exhibiting a relatively dark optical character following treatment with fluorescent dyes, as well as in autofluorescent images. The wing tissue exhibited slow and low-frequency contraction pulses with a cycle of approximately 10 to 20 minutes, mainly occurring at 2 to 3 days postpupation. The pulses gradually became slower and weaker and eventually stopped. The wing tissue area became larger after contraction, which also coincided with an increase in the autofluorescence intensity that might have been caused by scale growth. Examination of the pattern of color development revealed that the black pigment was first deposited in patches in the central areas of an eyespot black ring and a parafocal element. These results of live in vivo imaging that covered wide wing area for a long time can serve as a foundation for studying the

  14. Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology.

    Science.gov (United States)

    Wang, Thomas D; Friedland, Shai; Sahbaie, Peyman; Soetikno, Roy; Hsiung, Pei-Lin; Liu, Jonathan T C; Crawford, James M; Contag, Christopher H

    2007-11-01

    Histologic interpretation of disease currently is performed with static images of excised tissues, and is limited by processing artifact, sampling error, and interpretive variability. The aim of this study was to show the use of functional optical imaging of viable mucosa for quantitative evaluation of colonic neoplasia in real time. Fluorescein (5 mg/mL) was administered topically in 54 human subjects undergoing screening colonoscopy. Fluorescence images were collected with 488-nm excitation at 12 frames/s with the confocal microendoscopy system. Movement of fluorescein in the transient period (5 s) were quantified. Normal mucosa showed circular crypts with uniform size, hyperplasia revealed proliferative glands with serrated lumens, and adenomas displayed distorted elongated glands. For t less than 5 seconds, fluorescein passed through normal epithelium with a peak speed of 1.14 +/- 0.09 microm/s at t = 0.5 seconds, and accumulated into lamina propria as points of fluorescence that moved through the interglandular space with an average speed of 41.7 +/- 3.4 microm/s. Passage of fluorescein through adenomatous mucosa was delayed substantially. For t greater than 5 seconds, high sensitivity, specificity, and accuracy was achieved using a discriminant function to evaluate the contrast ratio to distinguish normal from lesional mucosa (91%, 87%, and 89%, respectively; P < .001), hyperplasia from adenoma (97%, 96%, and 96%, respectively; P < .001), and tubular from villous adenoma (100%, 92%, and 93%, respectively; P < .001). Confocal imaging can be performed in vivo to assess the functional behavior of tissue in real time for providing pathologic interpretation, representing a new method for histologic evaluation.

  15. MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, G; Podesta, M [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Reniers, B [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Research Group NuTeC, CMK, Hasselt University, Agoralaan Gebouw H, Diepenbeek B-3590 (Belgium); Verhaegen, F [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3G 1A4 (Canada)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities such as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator

  16. Real-time in vivo dosimetry with MOSFET detectors in serial tomotherapy for head and neck cancer patients.

    Science.gov (United States)

    Qi, Zhen-Yu; Deng, Xiao-Wu; Huang, Shao-Min; Shiu, Almon; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly; Kron, Tomas

    2011-08-01

    A real-time dose verification method using a recently designed metal oxide semiconductor field effect transistor (MOSFET) dosimetry system was evaluated for quality assurance (QA) of intensity-modulated radiation therapy (IMRT). Following the investigation of key parameters that might affect the accuracy of MOSFET measurements (i.e., source surface distance [SSD], field size, beam incident angles and radiation energy spectrum), the feasibility of this detector in IMRT dose verification was demonstrated by comparison with ion chamber measurements taken in an IMRT QA phantom. Real-time in vivo measurements were also performed with the MOSFET system during serial tomotherapy treatments administered to 8 head and neck cancer patients. MOSFET sensitivity did not change with SSD. For field sizes smaller than 20 × 20 cm(2), MOFET sensitivity varied within 1.0%. The detector angular response was isotropic within 2% over 360°, and the observed sensitivity variation due to changes in the energy spectrum was negligible in 6-MV photons. MOSFET system measurements and ion chamber measurements agreed at all points in IMRT phantom plan verification, within 5%. The mean difference between 48 IMRT MOSFET-measured doses and calculated values in 8 patients was 3.33% and ranged from -2.20% to 7.89%. More than 90% of the total measurements had deviations of less than 5% from the planned doses. The MOSFET dosimetry system has been proven to be an effective tool in evaluating the actual dose within individual patients during IMRT treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. SU-F-T-328: Real-Time in Vivo Dosimetry of Prostate SBRT Boost Treatments Using MOSkin Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Legge, K; O’Connor, D J [University of Newcastle (Australia); Cutajar, D; Rozenfeld, A [University of Wollongong (Australia); Wilfert, A; Martin, J [Calvary Mater Newcastle (Australia); Greer, P [University of Newcastle (Australia); Calvary Mater Newcastle (Australia)

    2016-06-15

    Purpose: To provide in vivo measurements of dose to the anterior rectal wall during prostate SBRT boost treatments using MOSFET detectors. Methods: Dual MOSkin detectors were attached to a Rectafix rectal sparing device and inserted into patients during SBRT boost treatments. Patients received two boost fractions, each of 9.5–10 Gy and delivered using 2 VMAT arcs. Measurements were acquired for 12 patients. MOSFET voltages were read out at 1 Hz during delivery and converted to dose. MV images were acquired at known frequency during treatment so that the position of the gantry at each point in time was known. The cumulative dose at the MOSFET location was extracted from the treatment planning system at in 5.2° increments (FF beams) or at 5 points during each delivered arc (FFF beams). The MOSFET dose and planning system dose throughout the entirety of each arc were then compared using root mean square error normalised to the final planned dose for each arc. Results: The average difference between MOSFET measured and planning system doses determined over the entire course of treatment was 9.7% with a standard deviation of 3.6%. MOSFETs measured below the planned dose in 66% of arcs measured. Uncertainty in the position of the MOSFET detector and verification point are major sources of discrepancy, as the detector is placed in a high dose gradient region during treatment. Conclusion: MOSkin detectors were able to provide real time in vivo measurements of anterior rectal wall dose during prostate SBRT boost treatments. This method could be used to verify Rectafix positioning and treatment delivery. Further developments could enable this method to be used during high dose treatments to monitor dose to the rectal wall to ensure it remains at safe levels. Funding has been provided by the University of Newcastle. Kimberley Legge is the recipient of an Australian Postgraduate Award.

  18. Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen-thawed in vitro blastocysts

    Directory of Open Access Journals (Sweden)

    Galli Cesare

    2009-12-01

    Full Text Available Abstract Background Application of reverse transcription quantitative real-time polymerase chain reaction is very well suited to reveal differences in gene expression between in vivo and in vitro produced embryos. Ultimately, this may lead to optimized equine assisted reproductive techniques. However, for a correct interpretation of the real-time PCR results, all data must be normalized, which is most reliably achieved by calculating the geometric mean of the most stable reference genes. In this study a set of reliable reference genes was identified for equine in vivo and fresh and frozen-thawed in vitro embryos. Findings The expression stability of 8 candidate reference genes (ACTB, GAPDH, H2A/I, HPRT1, RPL32, SDHA, TUBA4A, UBC was determined in 3 populations of equine blastocysts (fresh in vivo, fresh and frozen-thawed in vitro embryos. Application of geNorm indicated UBC, GAPDH, ACTB and HPRT1 as the most stable genes in the in vivo embryos and UBC, RPL32, GAPDH and ACTB in both in vitro populations. When in vivo and in vitro embryos were combined, UBC, ACTB, RPL32 and GAPDH were found to be the most stable. SDHA and H2A/I appeared to be highly regulated. Conclusions Based on these results, the geometric mean of UBC, ACTB, RPL32 and GAPDH is to be recommended for accurate normalization of quantitative real-time PCR data in equine in vivo and in vitro produced blastocysts.

  19. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    Directory of Open Access Journals (Sweden)

    Laszlo G. Puskas

    2011-09-01

    Full Text Available Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified

  20. High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity.

    Science.gov (United States)

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z; Nagy, Lajos I; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L; Tiszlavicz, Laszlo; Puskas, Laszlo G

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg

  1. Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery.

    Science.gov (United States)

    Mehta, Sanjay R; Huang, Robert; Yang, Meng; Zhang, Xing-Quan; Kolli, Bala; Chang, Kwang-Poo; Hoffman, Robert M; Goto, Yasuyuki; Badaro, Roberto; Schooley, Robert T

    2008-12-01

    Leishmania species are obligate intracellular protozoan parasites that cause a broad spectrum of clinical diseases in mammalian hosts. The most frequently used approach to quantify parasites in murine model systems is based on thickness measurements of the footpad or ear after experimental infection. To overcome the limitations of this method, we used a Leishmania mutant episomally transfected with enhanced green fluorescent protein, enabling in vivo real-time whole-body fluorescence imaging, to follow the progression of Leishmania infection in parasitized tissues. Fluorescence correlated with the number of Leishmania parasites in the tissue and demonstrated the real-time efficacy of a therapeutic vaccine. This approach provides several substantial advantages over currently available animal model systems for the in vivo study of immunopathogenesis, prevention, and therapy of leishmaniasis. These include improvements in sensitivity and the ability to acquire real-time data on progression and spread of the infection.

  2. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk [Centre for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Tanderup, Kari, E-mail: karitand@rm.dk [Department of Oncology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus (Denmark)

    2014-05-15

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was

  3. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release

    Science.gov (United States)

    Zhang, Jinfeng; Li, Shengliang; An, Fei-Fei; Liu, Juan; Jin, Shubin; Zhang, Jin-Chao; Wang, Paul C.; Zhang, Xiaohong; Lee, Chun-Sing; Liang, Xing-Jie

    2015-08-01

    The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed to improve their drug loading capacities (which are typically self-carried nanodrug delivery strategies without using inert carriers is highly desirable. In this study, we developed a self-carried curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environments with drug loading capacities >78 wt%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescence ``OFF-ON'' activation and real-time monitoring of the Cur molecule release. In vitro and in vivo experiments clearly show that the therapeutic efficacy of the PEGylated Cur NPs is considerably better than that of free Cur. This self-carried strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and monitoring.The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed to improve their drug loading capacities (which are typically self-carried nanodrug delivery strategies without using inert carriers is highly desirable. In this study, we developed a self-carried curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environments with drug loading capacities >78 wt%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescence ``OFF-ON'' activation and real-time

  4. An accurate, flexible and small optical fiber sensor: a novel technological breakthrough for real-time analysis of dynamic blood flow data in vivo.

    Science.gov (United States)

    Yuan, Qiao-ying; Zhang, Ling; Xiao, Dan; Zhao, Kun; Lin, Chun; Si, Liang-yi

    2014-01-01

    Because of the limitations of existing methods and techniques for directly obtaining real-time blood data, no accurate microflow in vivo real-time analysis method exists. To establish a novel technical platform for real-time in vivo detection and to analyze average blood pressure and other blood flow parameters, a small, accurate, flexible, and nontoxic Fabry-Perot fiber sensor was designed. The carotid sheath was implanted through intubation of the rabbit carotid artery (n = 8), and the blood pressure and other detection data were determined directly through the veins. The fiber detection results were compared with test results obtained using color Doppler ultrasound and a physiological pressure sensor recorder. Pairwise comparisons among the blood pressure results obtained using the three methods indicated that real-time blood pressure information obtained through the fiber sensor technique exhibited better correlation than the data obtained with the other techniques. The highest correlation (correlation coefficient of 0.86) was obtained between the fiber sensor and pressure sensor. The blood pressure values were positively related to the total cholesterol level, low-density lipoprotein level, number of red blood cells, and hemoglobin level, with correlation coefficients of 0.033, 0.129, 0.358, and 0.373, respectively. The blood pressure values had no obvious relationship with the number of white blood cells and high-density lipoprotein and had a negative relationship with triglyceride levels, with a correlation coefficient of -0.031. The average ambulatory blood pressure measured by the fiber sensor exhibited a negative correlation with the quantity of blood platelets (correlation coefficient of -0.839, Preal time; the sensor can also determine the content and status of the blood flow to some extent. Therefore, the fiber sensor can obtain partially real-time vascular rheology information and may thus enable the early diagnosis of blood rheology disorders and

  5. An accurate, flexible and small optical fiber sensor: a novel technological breakthrough for real-time analysis of dynamic blood flow data in vivo.

    Directory of Open Access Journals (Sweden)

    Qiao-ying Yuan

    Full Text Available Because of the limitations of existing methods and techniques for directly obtaining real-time blood data, no accurate microflow in vivo real-time analysis method exists. To establish a novel technical platform for real-time in vivo detection and to analyze average blood pressure and other blood flow parameters, a small, accurate, flexible, and nontoxic Fabry-Perot fiber sensor was designed. The carotid sheath was implanted through intubation of the rabbit carotid artery (n = 8, and the blood pressure and other detection data were determined directly through the veins. The fiber detection results were compared with test results obtained using color Doppler ultrasound and a physiological pressure sensor recorder. Pairwise comparisons among the blood pressure results obtained using the three methods indicated that real-time blood pressure information obtained through the fiber sensor technique exhibited better correlation than the data obtained with the other techniques. The highest correlation (correlation coefficient of 0.86 was obtained between the fiber sensor and pressure sensor. The blood pressure values were positively related to the total cholesterol level, low-density lipoprotein level, number of red blood cells, and hemoglobin level, with correlation coefficients of 0.033, 0.129, 0.358, and 0.373, respectively. The blood pressure values had no obvious relationship with the number of white blood cells and high-density lipoprotein and had a negative relationship with triglyceride levels, with a correlation coefficient of -0.031. The average ambulatory blood pressure measured by the fiber sensor exhibited a negative correlation with the quantity of blood platelets (correlation coefficient of -0.839, P<0.05. The novel fiber sensor can thus obtain in vivo blood pressure data accurately, stably, and in real time; the sensor can also determine the content and status of the blood flow to some extent. Therefore, the fiber sensor can obtain

  6. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    OpenAIRE

    Puskas, Laszlo G.; Sandor Kulin; Klara Kitajka; Robert L. Katona; Tamas Bito; Vilmos Tubak; Laszlo Tiszlavicz; Nagy, Lajos I.; Feher, Liliana Z.; Gabriella Fabian; Nora Farago

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative...

  7. Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

    Directory of Open Access Journals (Sweden)

    Nigel T. Maidment

    2008-08-01

    Full Text Available Using Micro-Electro-Mechanical-Systems (MEMS technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs modified with glutamate oxidase (GluOx for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1μM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.

  8. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy

    Science.gov (United States)

    Hu, Chun-Rui; Zhang, Delong; Slipchenko, Mikhail N.; Cheng, Ji-Xin; Hu, Bing

    2014-08-01

    The myelin sheath plays an important role as the axon in the functioning of the neural system, and myelin degradation is a hallmark pathology of multiple sclerosis and spinal cord injury. Electron microscopy, fluorescent microscopy, and magnetic resonance imaging are three major techniques used for myelin visualization. However, microscopic observation of myelin in living organisms remains a challenge. Using a newly developed stimulated Raman scattering microscopy approach, we report noninvasive, label-free, real-time in vivo imaging of myelination by a single-Schwann cell, maturation of a single node of Ranvier, and myelin degradation in the transparent body of the Xenopus laevis tadpole.

  9. Intact Endogenous Metabolite Analysis of Mice Liver by Probe Electrospray Ionization/Triple Quadrupole Tandem Mass Spectrometry and Its Preliminary Application to in Vivo Real-Time Analysis.

    Science.gov (United States)

    Zaitsu, Kei; Hayashi, Yumi; Murata, Tasuku; Ohara, Tomomi; Nakagiri, Kenta; Kusano, Maiko; Nakajima, Hiroki; Nakajima, Tamie; Ishikawa, Tetsuya; Tsuchihashi, Hitoshi; Ishii, Akira

    2016-04-05

    Probe electrospray ionization (PESI) is a recently developed ionization technique that enables the direct detection of endogenous compounds like metabolites without sample preparation. In this study, we have demonstrated the first combination use of PESI with triple quadrupole tandem mass spectrometry (MS/MS), which was then applied to intact endogenous metabolite analysis of mice liver, achieving detection of 26 metabolites including amino acids, organic acids, and sugars. To investigate its practicality, metabolic profiles of control and CCl4-induced acute hepatic injury mouse model were measured by the developed method. Results showed clear separation of the two groups in score plots of principal component analysis and identified taurine as the primary contributor to group separation. The results were further validated by the established gas chromatography/MS/MS method, demonstrating the present method's usefulness. In addition, we preliminarily applied the method to real-time analysis of an intact liver of a living mouse. We successfully achieved monitoring of the real-time changes of two tricarboxylic acid cycle intermediates, α-ketoglutaric acid and fumaric acid, in the liver immediately after pyruvic acid injection via a cannulated tube to the portal vein. The present method achieved an intact analysis of metabolites in liver without sample preparation, and it also demonstrates future possibility to establish in vivo real-time metabolome analysis of living animals by PESI/MS/MS.

  10. SU-F-T-559: High-Resolution Scintillating Fiber Array for In-Vivo Real-Time SRS and SBRT Patient QA

    Energy Technology Data Exchange (ETDEWEB)

    Knewtson, T; Pokhrel, S [University of Missouri- Columbia, Columbia, MO (United States); University of Tennessee Health Science Center, Memphis, TN (United States); Methodist LeBoneur Healthcare, Memphis, TN (United States); Loyalka, S [University of Missouri- Columbia, Columbia, MO (United States); Izaguirre, E [University of Tennessee Health Science Center, Memphis, TN (United States); Methodist LeBoneur Healthcare, Memphis, TN (United States); The West Cancer Center, Memphis, TN (United States)

    2016-06-15

    Purpose: A high-resolution scintillating fiber detector was built for in-vivo real-time patient specific quality assurance (QA). The detector is designed for stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) to monitor treatment delivery and detect real-time deviations from planned dose to increase patient safety and treatment accuracy. Methods: The detector consists of two high-density scintillating fiber arrays layered to form an X-Y grid which can be attached to the accessory tray of a medical linac for SBRT and cone SRS treatment QA. Fiber arrays consist of 128 scintillating fibers embedded within a precision-machined, high-transmission polymer substrate with 0.8mm pitch. The fibers are coupled on both ends to high-sensitivity photodetectors and the output is recorded through a high-speed analog-to-digital converter to capture the linac pulse sequence as treatment delivery progresses. The detector has a software controlled 360 degree rotational system to capture angular beam projections for high-resolution beam profile reconstruction. Results: The detector was validated using SRS cone sizes from 6mm to 34mm and MLC defined field sizes from 5×5mm2 to 100×100mm2. The detector output response is linear with dose and is dose rate independent. Each field can be reconstructed accurately with a spatial resolution of 0.8mm and the current beam output is displayed every 50msec. Dosimetric errors of 1% with respect to the treatment plan can be identified and clinically significant deviations from the expected treatment can be displayed in real-time to alert the therapists. Conclusion: The high resolution detector is capable of reconstructing beam profiles in real-time with submillimeter resolution and 1% dose resolution. This system has the ability to project in-vivo both spatial and dosimetric errors during SBRT and SRS treatments when only a non-clinically significant fraction of the intended dose was delivered. The device has the potential to

  11. A dynamic real time in vivo and static ex vivo analysis of granulomonocytic cell migration in the collagen-induced arthritis model.

    Directory of Open Access Journals (Sweden)

    Ruth Byrne

    Full Text Available Neutrophilic granulocytes and monocytes (granulomonocytic cells; GMC drive the inflammatory process at the earliest stages of rheumatoid arthritis (RA. The migratory behavior and functional properties of GMC within the synovial tissue are, however, only incompletely characterized. Here we have analyzed GMC in the murine collagen-induced arthritis (CIA model of RA using multi-photon real time in vivo microscopy together with ex vivo analysis of GMC in tissue sections.GMC were abundant as soon as clinical arthritis was apparent. GMC were motile and migrated randomly through the synovial tissue. In addition, we observed the frequent formation of cell clusters consisting of both neutrophilic granulocytes and monocytes that actively contributed to the inflammatory process of arthritis. Treatment of animals with a single dose of prednisolone reduced the mean velocity of cell migration and diminished the overall immigration of GMC.In summary, our study shows that the combined application of real time in vivo microscopy together with elaborate static post-mortem analysis of GMC enables the description of dynamic migratory characteristics of GMC together with their precise location in a complex anatomical environment. Moreover, this approach is sensitive enough to detect subtle therapeutic effects within a very short period of time.

  12. Real-time in vivo luminescence dosimetry in radiotherapy and mammography using Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.C.

    2005-06-15

    New treatment and clinical imaging techniques have created a need for accurate and practical in vivo dosimeters in radiation medicine. This work describes the development of a new optical-fiber radiation dosimeter system, based on radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al2O3:C), for applications in radiotherapy and mammography. This system offers several features, such as a small detector, high sensitivity, real-time read-out, and the ability to measure both dose rate and absorbed dose. Measurement protocols and algorithms for the correction of responses were developed to enable a reliable absorbed dose assessment from the RL and OSL signals. At radiotherapy energies, the variation of the signal with beam parameters was smaller than 1% (1 SD). Treatment-like experiments in phantoms, and in vivo measurements during complex patient treatments (such as intensity-modulated radiation therapy) indicate that the RL/OSL dosimetry system can reliably measure the absorbed dose within 2%. The real-time RL signal also enables an individual dose assessment from each field. The RL/OSL dosimetry system was also used during mammography examinations. In such conditions, the reproducibility of the measurements showed to be around 3%. In vivo measurements on three patients showed that the presence of the RL/OSL probes did not degrade the diagnostic quality of the radiograph and that the system could be used to measure exit doses (i.e., absorbed doses on the inferior surface of the breast). A Monte Carlo study proved that the energy dependence of the RL/OSL system at these low energies could be reduced by optimizing the design of the probes. It is concluded that the new RL/OSL dosimetry system shows considerable potential for applications in both radiotherapy and mammography. (au)

  13. Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles.

    Science.gov (United States)

    Barrios-Collado, César; García-Gómez, Diego; Zenobi, Renato; Vidal-de-Miguel, Guillermo; Ibáñez, Alfredo J; Martinez-Lozano Sinues, Pablo

    2016-02-16

    We have deployed an efficient secondary electrospray ionization source coupled to an Orbitrap mass analyzer (SESI-MS) to investigate the emissions of a Begonia semperflorens. We document how hundreds of species can be tracked with an unparalleled time resolution of 2 min during day-night cycles. To further illustrate the capabilities of this system for volatile organic compounds (VOCs) analysis, we subjected the plant to mechanical damage and monitored its response. As a result, ∼1200 VOCs were monitored displaying different kinetics. To validate the soundness of our in vivo measurements, we fully characterized some key compounds via tandem mass spectrometry (MS/MS) and confirmed their expected behavior based on prior gas chromatography/mass spectrometry (GC/MS) studies. For example, β-caryophyllene, which is directly related to photosynthesis, was found to show a periodic day-night pattern with highest concentrations during the day. We conclude that the capability of SESI-MS to capture highly dynamic VOC emissions and wide analyte coverage makes it an attractive tool to complement GC/MS in plant studies.

  14. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    Science.gov (United States)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  15. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer.

    Science.gov (United States)

    Longmire, Michelle; Kosaka, Nobuyuki; Ogawa, Mikako; Choyke, Peter L; Kobayashi, Hisataka

    2009-06-01

    One of the primary goals of oncological molecular imaging is to accurately identify and characterize malignant tissues in vivo. Currently, molecular imaging relies on targeting a single molecule that while overexpressed in malignancy, is often also expressed at lower levels in normal tissue, resulting in reduced tumor to background ratios. One approach to increasing the specificity of molecular imaging in cancer is to use multiple probes each with distinct fluorescence to target several surface antigens simultaneously, in order to identify tissue expression profiles, rather than relying on the expression of a single target. This next step forward in molecular imaging will rely on characterization of tissue based on fluorescence and therefore will require the ability to simultaneously identify several optical probes each attached to different targeting ligands. We created a novel 'coincident' ovarian cancer mouse model by coinjecting each animal with two distinct cell lines, HER2+/red fluorescent protein (RFP)- SKOV3 and HER2-/RFP+ SHIN3-RFP, in order to establish a model of disease in which animals simultaneously bore tumors with two distinct phenotypes (HER2+/RFP-, HER2-/RFP+), which could be utilized for multicolor imaging. The HER2 receptor of the SKOV3 cell line was targeted with a trastuzumab-rhodamine green conjugate to create green tumor implants, whereas the RFP plasmid of the SHIN3 cells created red tumor implants. We demonstrate that real-time in vivo multicolor imaging is feasible and that fluorescence characteristics can then serve to guide the surgical removal of disease.

  16. A Non-invasive and Real-time Monitoring of the Regulation of Photosynthetic Metabolism Biosensor Based on Measurement of Delayed Fluorescence in Vivo

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2007-01-01

    Full Text Available In this paper, a new principle biosensor for non-invasive monitoring of theregulation of photosynthetic metabolism based on quantitative measurement of delayedfluorescence (DF is developed. The biosensor, which uses light-emitting diode lattice asexcitation light source and a compact Single Photon Counting Module to collect DF signal,is portable and can evaluate plant photosynthesis capacity in vivo. Compared with itsprimary version in our previous report, the biosensor can better control environmentalfactors. Moreover, the improved biosensor can automatically complete the measurements oflight and CO2 response curves of DF intensity. In the experimental study, the testing of theimproved biosensor has been made in soybean (Glycine max Zaoshu No. 18 seedlingstreated with NaHSO3 to induce changes in seedlings growth and photosynthetic metabolism.Contrast evaluations of seedlings photosynthesis were made from measurements of netphotosynthesis rate (Pn based on consumption of CO2 in tested plants. Current testingresults have demonstrated that the improved biosensor can accurately determine theregulatory effects of NaHSO3 on photosynthetic metabolism. Therefore, the biosensorpresented here could be potential useful for real-time monitoring the regulatory effects ofplant growth regulators (PGRs and other exogenous chemical factors on plant growth andphotosynthetic metabolism.

  17. Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats.

    Science.gov (United States)

    Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi

    2017-09-01

    We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.

  18. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  19. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2017-01-01

    Polymeric micelles in nanomedicine are often crosslinked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, crosslinking may interfere with advanced release strategies. Despite this, it is often not investigated whether...

  20. Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia

    Directory of Open Access Journals (Sweden)

    Serena Joaquín

    2009-06-01

    Full Text Available Abstract Background Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, β2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. Results The expression stability of the candidate reference genes was evaluated using the 2-ΔC'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. Conclusion We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.

  1. Cancer cells mimic in vivo spatial-temporal cell-cycle phase distribution and chemosensitivity in 3-dimensional Gelfoam® histoculture but not 2-dimensional culture as visualized with real-time FUCCI imaging.

    Science.gov (United States)

    Yano, Shuya; Miwa, Shinji; Mii, Sumiyuki; Hiroshima, Yukihiko; Uehara, Fuminaru; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Zhao, Ming; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2015-01-01

    The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.

  2. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  3. Real-Time Amperometric Recording of Extracellular H2O2 in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study

    Science.gov (United States)

    Reid, Caroline H.; Finnerty, Niall J.

    2017-01-01

    We detail an extensive characterisation study on a previously described dual amperometric H2O2 biosensor consisting of H2O2 detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H2O2 sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H2O2 biosensor to detect increases in amperometric current following locally perfused/infused H2O2 and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H2O2 current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H2O2 and tentatively supports measurement of H2O2 dynamics in freely moving NOD SCID mice. PMID:28698470

  4. Real-Time Amperometric Recording of Extracellular H₂O₂ in the Brain of Immunocompromised Mice: An In Vitro, Ex Vivo and In Vivo Characterisation Study.

    Science.gov (United States)

    Reid, Caroline H; Finnerty, Niall J

    2017-07-08

    We detail an extensive characterisation study on a previously described dual amperometric H₂O₂ biosensor consisting of H₂O₂ detection (blank) and degradation (catalase) electrodes. In vitro investigations demonstrated excellent H₂O₂ sensitivity and selectivity against the interferent, ascorbic acid. Ex vivo studies were performed to mimic physiological conditions prior to in vivo deployment. Exposure to brain tissue homogenate identified reliable sensitivity and selectivity recordings up to seven days for both blank and catalase electrodes. Furthermore, there was no compromise in pre- and post-implanted catalase electrode sensitivity in ex vivo mouse brain. In vivo investigations performed in anaesthetised mice confirmed the ability of the H₂O₂ biosensor to detect increases in amperometric current following locally perfused/infused H₂O₂ and antioxidant inhibitors mercaptosuccinic acid and sodium azide. Subsequent recordings in freely moving mice identified negligible effects of control saline and sodium ascorbate interference injections on amperometric H₂O₂ current. Furthermore, the stability of the amperometric current was confirmed over a five-day period and analysis of 24-h signal recordings identified the absence of diurnal variations in amperometric current. Collectively, these findings confirm the biosensor current responds in vivo to increasing exogenous and endogenous H₂O₂ and tentatively supports measurement of H₂O₂ dynamics in freely moving NOD SCID mice.

  5. Transplantation into the Anterior Chamber of the Eye for Longitudinal, Non-invasive In vivo Imaging with Single-cell Resolution in Real-time

    Science.gov (United States)

    Abdulreda, Midhat H.; Caicedo, Alejandro; Berggren, Per-Olof

    2013-01-01

    Intravital imaging has emerged as an indispensable tool in biological research. In the process, many imaging techniques have been developed to study different biological processes in animals non-invasively. However, a major technical limitation in existing intravital imaging modalities is the inability to combine non-invasive, longitudinal imaging with single-cell resolution capabilities. We show here how transplantation into the anterior chamber of the eye circumvents such significant limitation offering a versatile experimental platform that enables non-invasive, longitudinal imaging with cellular resolution in vivo. We demonstrate the transplantation procedure in the mouse and provide representative results using a model with clinical relevance, namely pancreatic islet transplantation. In addition to enabling direct visualization in a variety of tissues transplanted into the anterior chamber of the eye, this approach provides a platform to screen drugs by performing long-term follow up and monitoring in target tissues. Because of its versatility, tissue/cell transplantation into the anterior chamber of the eye not only benefits transplantation therapies, it extends to other in vivo applications to study physiological and pathophysiological processes such as signal transduction and cancer or autoimmune disease development. PMID:23524511

  6. In-vivo real-time tandem scanning confocal microscopic examination of wound healing in the cornea following an alkali burn

    Science.gov (United States)

    Chew, Sek J.; Beuerman, Roger W.; Kaufman, Herbert

    1994-06-01

    Chemical burns of the cornea can cause irreversible scarring, leading to visual impairment. The tandem scanning confocal microscope (TSM) was used to evaluate stromal changes in vivo following exposure to alkali, the most devastating form of chemical ocular injury. The corneas of anesthetized rabbits were exposed to filter papers impregnated with NaOH. A 25x water immersion objective lens was used with the TSM, and images captured with a CCD camera. Normal keratocytes appeared as ovoid nuclei. Collagen lamellae were not visible. Alkali led to immediate opacification of the extracellular matrix and loss of keratocytes. The former was quantified by en-face serial optical sectioning and subsequent off-line densitometry of the captured image. Wound healing was monitored as spindle-shaped cells appeared at the wound edge. This was accompanied by the production of fibrillary extracellular matrix. After 3 days, branched cellular processes 100 to 200 micrometers long were extended. By 1 week, dense aggregates of ovoid fibroblasts and whorls of collagen fibers had formed. Despite the overlying scarring, the deeper stromal layers and endothelium were still visible with this technique. We suggest that the TSM would be a useful clinical instrument for the evaluation and treatment evaluation of patients with chemical injuries of the cornea.

  7. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue

    Science.gov (United States)

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A.; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment.

  8. The bedside diagnostic accuracy of a novice reflectance confocal microscopy reader for skin cancer detection in vivo in real-time: understanding challenges and potential pitfalls

    Science.gov (United States)

    Jain, Manu; Pulijal, Sri Varsha; Rajadhyaksha, Milind

    2017-02-01

    Reflectance confocal microscopy (RCM) is a non-invasive device that images skin lesions in vivo at a cellular resolution to guide management of patient care. While previous studies have demonstrated high accuracy of RCM in diagnosing skin cancers, most of these studies were performed by experts as a blinded analysis off-site and does not reflect true clinical scenario. We assessed the diagnostic potential of a novice RCM reader, in clinical settings, at the bedside. Over a period of 15 months (August 2015- November 2016), 168 lesions (from 128 cases) were imaged with RCM to determine BCC and or melanoma in dermoscopically equivocal lesions. To evaluate the learning curve of the novice reader, diagnostic accuracy was evaluated at the end of 15 months, as well as during the first half (8 months) and latter half (seven months) of the study. Histopathological diagnosis was available in 95/168 lesions, including 38 melanocytic lesions (ML: 13 melanomas and 25 nevi) and 57 non-melanocytic lesions (NML: 26 BCCs, 4 SCCs and 27 benign). The remaining 73/168 lesions (43.45%) were not biopsied (received topical treatment, monitoring). On RCM, 22/26 (84.61%) BCCs and 11/13 (84.61%) melanomas were correctly diagnosed. BCC was missed in 3/26 (11.53%) lesions and melanoma in 2/13 (15.38%) lesions; these lesions were diagnosed mostly as superficial BCCs and focal epidermal changes overlying deeply situated melanoma nodule on histopathology, respectively. False positive diagnosis of BCC was obtained in 7/23 (30.4%) lesions and of melanoma in 2/22 (4.5%) lesions; these were diagnosed mostly as benign inflamed keratosis and moderately atypical dysplastic nevus on histopathology, respectively. In 7 lesions BCC or melanoma could not be ruled out. A marked increase in the sensitivity and specificity was noticed between the two halves of the study. An overall high diagnostic accuracy of 80.28% with high sensitivity and specificity of 80.68% and 80.8%, respectively in diagnosing skin

  9. Real-time in vivo monitoring of circadian E-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock.

    Science.gov (United States)

    Weger, Meltem; Weger, Benjamin D; Diotel, Nicolas; Rastegar, Sepand; Hirota, Tsuyoshi; Kay, Steve A; Strähle, Uwe; Dickmeis, Thomas

    2013-08-15

    E-box:Luc) line is an excellent tool for studying the regulation of the circadian clock and its maturation in vivo and in real time. Furthermore, it is highly suitable for in vivo screens targeting the core clock mechanism that take into account the complexity of an intact organism. Finally, it allows mapping of clock activity in the brain of a vertebrate model organism with prominent adult neurogenesis and high regeneration capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17 beta or alpha-zearalenol.

    Science.gov (United States)

    Celius, T; Matthews, J B; Giesy, J P; Zacharewski, T R

    2000-12-15

    Estrogen receptor-mediated induction of zona radiata (ZR) and vitellogenin (VTG) mRNA and protein in rainbow trout (Oncorhynchus mykiss) was compared to assess their utility as biomarkers for exposure to estrogenic compounds. Partial sequences of rainbow trout ZR and beta-actin were cloned by reverse transcriptase polymerase chain reaction (RT-PCR) using degenerate primers based on conserved regions across a number of species. A 549 bp fragment of the rainbow trout ZR-gene showed a high degree of amino acid sequence identity to that of salmon (77%), winter flounder (64%), carp ZP2 (63%) and medaka (61%) ZR-proteins. The 1020 bp beta-actin fragment was approximately 100% identical to sequences from several species. Real-time PCR was used to quantify the induction of ZR-gene and VTG in rainbow trout liver after in vivo exposure to estradiol-17 beta (E(2)) (0.01, 0.1, 1.0 or 10 mg/kg body weight (bw) fish) or alpha-zearalenol (alpha-ZEA) (0.1, 1.0 or 10 mg/kg bw). Real-time PCR and indirect enzyme-linked immunosorbent assay (ELISA) showed that ZR and VTG were induced in both the liver and the plasma after a single injection of E(2) or alpha-ZEA. ZR was more responsive to low levels of E(2) and alpha-ZEA than VTG, and real-time PCR was shown to be more sensitive than the ELISA. Rainbow trout ZR-gene and proteins provide a sensitive biomarker for assessing estrogenic activity.

  11. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  12. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  13. Real-Time Logistics

    National Research Council Canada - National Science Library

    Agnes Shanley

    2017-01-01

    .... Working with T-Systems, a vendor of private cloud hosting, the companies are developing a proof of concept that would use blockchain-based smart contracts, with Roambee offering real-time product...

  14. Real-Time Evaluations

    Directory of Open Access Journals (Sweden)

    UNHCR

    2002-07-01

    Full Text Available A real-time evaluation (RTE is a timely, rapid andinteractive review of a fast evolving humanitarianoperation undertaken at an early phase. Its broadobjectives are to gauge the effectiveness and impactof a given UNHCR response and to ensure that itsfindings are used as an immediate catalyst fororganisational and operational change.

  15. Real Time Processing

    CERN Multimedia

    CERN. Geneva; ANDERSON, Dustin James; DOGLIONI, Caterina

    2015-01-01

    The LHC provides experiments with an unprecedented amount of data. Experimental collaborations need to meet storage and computing requirements for the analysis of this data: this is often a limiting factor in the physics program that would be achievable if the whole dataset could be analysed. In this talk, I will describe the strategies adopted by the LHCb, CMS and ATLAS collaborations to overcome these limitations and make the most of LHC data: data parking, data scouting, and real-time analysis.

  16. Real-time specifications

    DEFF Research Database (Denmark)

    David, A.; Larsen, K.G.; Legay, A.

    2015-01-01

    A specification theory combines notions of specifications and implementations with a satisfaction relation, a refinement relation, and a set of operators supporting stepwise design. We develop a specification framework for real-time systems using Timed I/O Automata as the specification formalism......, with the semantics expressed in terms of Timed I/O Transition Systems. We provide constructs for refinement, consistency checking, logical and structural composition, and quotient of specifications-all indispensable ingredients of a compositional design methodology. The theory is implemented in the new tool Ecdar...

  17. Real Time Text Analysis

    Science.gov (United States)

    Senthilkumar, K.; Ruchika Mehra Vijayan, E.

    2017-11-01

    This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language

  18. Real time Faraday spectrometer

    Science.gov (United States)

    Smith, Jr., Tommy E.; Struve, Kenneth W.; Colella, Nicholas J.

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  19. Ovation Prime Real-Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ovation Prime Real-Time (OPRT) product is a real-time forecast and nowcast model of auroral power and is an operational implementation of the work by Newell et...

  20. A Monte Carlo study of the energy dependence of Al2O3: C crystals for real-time in vivo dosimetry in mammography

    DEFF Research Database (Denmark)

    Aznar, M.C.; Medin, J.; Hemdal, B.

    2005-01-01

    In a previous experimental study, a novel method for in vivo dosimetry has been investigated, based on radioluminescence (RL) and optically stimulated luminescence (OSL). However, because of (fie large difference in atomic composition between the detector material and the breast tissue, relativel...

  1. Towards Real-Time Argumentation

    OpenAIRE

    Vicente JULIÁN; Martí NAVARRO; Botti, Vicente; Stella HERAS

    2015-01-01

    In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support a...

  2. Designing Real Time Assistive Technologies

    DEFF Research Database (Denmark)

    Sonne, Tobias; Obel, Carsten; Grønbæk, Kaj

    2015-01-01

    design criteria in relation to three core components (sensing, recognizing, and assisting) for designing real time assistive technologies for children with ADHD. Based on these design criteria, we designed the Child Activity Sensing and Training Tool (CASTT), a real time assistive prototype that captures...... activities and assists the child in maintaining attention. From a preliminary evaluation of CASTT with 20 children in several schools, we and found that: 1) it is possible to create a wearable sensor system for children with ADHD that monitors physical and physiological activities in real time; and that 2......) real time assistive technologies have potential to assist children with ADHD in regaining attention in critical school situations....

  3. Real-time Service Acounting

    NARCIS (Netherlands)

    Le, V.M.; van Beijnum, Bernhard J.F.; de Goede, Leo; Cheng, T.

    2002-01-01

    Offering telematics services toward the end-users involves inter-domain real-time service provisioning, it therefore can also involves inter-domain real-time service accounting. Recognizing the increasing complexity of accounting services due to dynamic service usage behavior of the end-users, the

  4. Real-time volume graphics

    CERN Document Server

    Engel, Klaus; Kniss, Joe; Rezk-Salama, Christof; Weiskopf, Daniel

    2006-01-01

    Based on course notes of SIGGRAPH course teaching techniques for real-time rendering of volumetric data and effects; covers both applications in scientific visualization and real-time rendering. Starts with the basics (texture-based ray casting) and then improves and expands the algorithms incrementally. Book includes source code, algorithms, diagrams, and rendered graphics.

  5. Near real-time polarimetric imaging system.

    Science.gov (United States)

    Buscemi, Isabella Chiara; Guyot, Steve

    2013-11-01

    A new imaging technique which enables near real-time multispectral acquisition of the so-called degree of polarization (DOP) in polarimetry using incoherent white light is described. The experimental setup allows the interactive and dynamic acquisition of DOP for all the possible elliptic polarization states. In such a way, a complete chart of light-matter interaction can be obtained and besides many structure details can be enhanced. Thus, we present the calibration and first images acquired with this system. The particular characteristics of this setup allow it to be the perfect candidate for in vivo as well as ex vivo medical applications.

  6. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  7. Towards Real-Time Argumentation

    Directory of Open Access Journals (Sweden)

    Vicente JULIÁN

    2016-07-01

    Full Text Available In this paper, we deal with the problem of real-time coordination with the more general approach of reaching real-time agreements in MAS. Concretely, this work proposes a real-time argumentation framework in an attempt to provide agents with the ability of engaging in argumentative dialogues and come with a solution for their underlying agreement process within a bounded period of time. The framework has been implemented and evaluated in the domain of a customer support application. Concretely, we consider a society of agents that act on behalf of a group of technicians that must solve problems in a Technology Management Centre (TMC within a bounded time. This centre controls every process implicated in the provision of technological and customer support services to private or public organisations by means of a call centre. The contract signed between the TCM and the customer establishes penalties if the specified time is exceeded.

  8. Real time automatic scene classification

    NARCIS (Netherlands)

    Verbrugge, R.; Israël, Menno; Taatgen, N.; van den Broek, Egon; van der Putten, Peter; Schomaker, L.; den Uyl, Marten J.

    2004-01-01

    This work has been done as part of the EU VICAR (IST) project and the EU SCOFI project (IAP). The aim of the first project was to develop a real time video indexing classification annotation and retrieval system. For our systems, we have adapted the approach of Picard and Minka [3], who categorized

  9. Real Time Sonic Boom Display

    Science.gov (United States)

    Haering, Ed

    2014-01-01

    This presentation will provide general information about sonic boom mitigation technology to the public in order to supply information to potential partners and licensees. The technology is a combination of flight data, atmospheric data and terrain information implemented into a control room real time display for flight planning. This research is currently being performed and as such, any results and conclusions are ongoing.

  10. Real Time Control on Firewire

    NARCIS (Netherlands)

    Zhang, Yuchen

    2004-01-01

    The goal of this project is to get insight into the use of Firewire as a field bus for real-time control. A characterization of Firewire's asynchronous transmission has been made by testing the point-to-point roundtrip in a 3-node Firewire network. The results show Firewire's asynchronous

  11. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  12. Real time freeway incident detection.

    Science.gov (United States)

    2014-04-01

    The US Department of Transportation (US-DOT) estimates that over half of all congestion : events are caused by highway incidents rather than by rush-hour traffic in big cities. Real-time : incident detection on freeways is an important part of any mo...

  13. ISTTOK real-time architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Hekkert, Tiago; Carvalho, Bernardo B.

    2014-03-15

    Highlights: • All real-time diagnostics and actuators were integrated in the same control platform. • A 100 μs control cycle was achieved under the MARTe framework. • Time-windows based control with several event-driven control strategies implemented. • AC discharges with exception handling on iron core flux saturation. • An HTML discharge configuration was developed for configuring the MARTe system. - Abstract: The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system. The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service. Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs. The ISTTOK control system GAMs run sequentially each 100 μs cycle on an Intel{sup ®} Q8200 4-core processor running at 2.33 GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog

  14. Real-time augmented face

    OpenAIRE

    Lepetit, V.; Vacchetti, L; Thalmann, D; Fua, P.

    2003-01-01

    This real-time augmented reality demonstration relies on our tracking algorithm described in V. Lepetit et al (2003). This algorithm considers natural feature points, and then does not require engineering of the environment. It merges the information from preceding frames in traditional recursive tracking fashion with that provided by a very limited number of reference frames. This combination results in a system that does not suffer from jitter and drift, and can deal with drastic changes. T...

  15. Real-time flutter analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1984-01-01

    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared.

  16. Real-time pulmonary graphics.

    Science.gov (United States)

    Mammel, Mark C; Donn, Steven M

    2015-06-01

    Real-time pulmonary graphics now enable clinicians to view lung mechanics and patient-ventilator interactions on a breath-to-breath basis. Displays of pressure, volume, and flow waveforms, pressure-volume and flow-volume loops, and trend screens enable clinicians to customize ventilator settings based on the underlying pathophysiology and responses of the individual patient. This article reviews the basic concepts of pulmonary graphics and demonstrates how they contribute to our understanding of respiratory physiology and the management of neonatal respiratory failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Real Time Plasma State Monitoring

    OpenAIRE

    Kudlacek, Ondrej

    2016-01-01

    The thesis describes several methods of plasma state monitoring for feedback control. For a tokamak device operation, one needs to gain in real time some information about the plasma state. The amount of needed information increases with the size of the device. In small machines, such as ISTTOK and Golem, the plasma current centroid position control is sufficient, as the heat fluxes are low and the plasma is in limiter regime. In larger devices, like RFX-mod, TCV or ASDEX-Upgrade with more co...

  18. Real-time analysis keratometer

    Science.gov (United States)

    Adachi, Iwao P. (Inventor); Adachi, Yoshifumi (Inventor); Frazer, Robert E. (Inventor)

    1987-01-01

    A computer assisted keratometer in which a fiducial line pattern reticle illuminated by CW or pulsed laser light is projected on a corneal surface through lenses, a prismoidal beamsplitter quarterwave plate, and objective optics. The reticle surface is curved as a conjugate of an ideal corneal curvature. The fiducial image reflected from the cornea undergoes a polarization shift through the quarterwave plate and beamsplitter whereby the projected and reflected beams are separated and directed orthogonally. The reflected beam fiducial pattern forms a moire pattern with a replica of the first recticle. This moire pattern contains transverse aberration due to differences in curvature between the cornea and the ideal corneal curvature. The moire pattern is analyzed in real time by computer which displays either the CW moire pattern or a pulsed mode analysis of the transverse aberration of the cornea under observation, in real time. With the eye focused on a plurality of fixation points in succession, a survey of the entire corneal topography is made and a contour map or three dimensional plot of the cornea can be made as a computer readout in addition to corneal radius and refractive power analysis.

  19. Autonomous Real Time Requirements Tracing

    Science.gov (United States)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  20. Real-time flood forecasting

    Science.gov (United States)

    Lai, C.; Tsay, T.-K.; Chien, C.-H.; Wu, I.-L.

    2009-01-01

    Researchers at the Hydroinformatic Research and Development Team (HIRDT) of the National Taiwan University undertook a project to create a real time flood forecasting model, with an aim to predict the current in the Tamsui River Basin. The model was designed based on deterministic approach with mathematic modeling of complex phenomenon, and specific parameter values operated to produce a discrete result. The project also devised a rainfall-stage model that relates the rate of rainfall upland directly to the change of the state of river, and is further related to another typhoon-rainfall model. The geographic information system (GIS) data, based on precise contour model of the terrain, estimate the regions that were perilous to flooding. The HIRDT, in response to the project's progress, also devoted their application of a deterministic model to unsteady flow of thermodynamics to help predict river authorities issue timely warnings and take other emergency measures.

  1. Real-time visualization of joint cavitation.

    Directory of Open Access Journals (Sweden)

    Gregory N Kawchuk

    Full Text Available Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking.

  2. Real-time scene generator

    Science.gov (United States)

    Lord, Eric; Shand, David J.; Cantle, Allan J.

    1996-05-01

    This paper describes the techniques which have been developed for an infra-red (IR) target, countermeasure and background image generation system working in real time for HWIL and Trial Proving applications. Operation is in the 3 to 5 and 8 to 14 micron bands. The system may be used to drive a scene projector (otherwise known as a thermal picture synthesizer) or for direct injection into equipment under test. The provision of realistic IR target and countermeasure trajectories and signatures, within representative backgrounds, enables the full performance envelope of a missile system to be evaluated. It also enables an operational weapon system to be proven in a trials environment without compromising safety. The most significant technique developed has been that of line by line synthesis. This minimizes the processing delays to the equivalent of 1.5 frames from input of target and sightline positions to the completion of an output image scan. Using this technique a scene generator has been produced for full closed loop HWIL performance analysis for the development of an air to air missile system. Performance of the synthesis system is as follows: 256 * 256 pixels per frame; 350 target polygons per frame; 100 Hz frame rate; and Gouraud shading, simple reflections, variable geometry targets and atmospheric scaling. A system using a similar technique has also bee used for direct insertion into the video path of a ground to air weapon system in live firing trials. This has provided realistic targets without degrading the closed loop performance. Delay of the modified video signal has been kept to less than 5 lines. The technique has been developed using a combination of 4 high speed Intel i860 RISC processors in parallel with the 4000 series XILINX field programmable gate arrays (FPGA). Start and end conditions for each line of target pixels are prepared and ordered in the I860. The merging with background pixels and output shading and scaling is then carried out in

  3. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  4. Adapting RealTime Physics

    Science.gov (United States)

    George, E. A.; Fleisch, D. A.; Voytas, P. A.; Dollhopf, W. E.

    2001-10-01

    We are changing the way we teach our introductory physics sequence, restructuring the laboratory portion of these courses around research-based curricular materials that make use of MBL and digital video capture techniques. As the first step in this project, we adapted RealTime Physics (RTP) Mechanics and Electric Circuits labs for an introductory Mechanics and an introductory E&M course. The RTP Mechanics labs had to be rather severely modified in order to fit the constraints of the Mechanics course (1.5 hours of lab a week). In both courses, we have also created several new experiments that make use of MBL and video tools and use an approach similar to that of the RTP experiments. We will briefly describe these new experiments, and discuss how well the modified RTP and new experiments have worked in the context of our curriculum. In addition, we will report pre- and post-instruction results on standard conceptual exams. We also retested about half the students in the E&M course nine months after they had completed the course in order to see how well they retained the concepts.

  5. Hard Real-Time Networking on FIrewire

    NARCIS (Netherlands)

    Zhang, Yuchen; Orlic, B.; Visser, P.M.; Broenink, Johannes F.; Marquet, P; McGuire, N; Wurmsdobler, P

    2005-01-01

    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsys- tem, RT-FireWire was designed that can, in combination with Linux-based real-time operating

  6. Students Collecting Real time Data

    Science.gov (United States)

    Miller, P.

    2006-05-01

    Students Collecting Real-Time Data The Hawaiian Islands Humpback Whale National Marine Sanctuary has created opportunities for middle and high school students to become Student Researchers and to be involved in real-time marine data collection. It is important that we expose students to different fields of science and encourage them to enter scientific fields of study. The Humpback Whale Sanctuary has an education visitor center in Kihei, Maui. Located right on the beach, the site has become a living classroom facility. There is a traditional Hawaiian fishpond fronting the property. The fishpond wall is being restored, using traditional methods. The site has the incredible opportunity of incorporating Hawaiian cultural practices with scientific studies. The Sanctuary offers opportunities for students to get involved in monitoring and data collection studies. Invasive Seaweed Study: Students are collecting data on invasive seaweed for the University of Hawaii. They pull a large net through the shallow waters. Seaweed is sorted, identified and weighed. The invasive seaweeds are removed. The data is recorded and sent to UH. Remote controlled monitoring boats: The sanctuary has 6 boogie board sized remote controlled boats used to monitor reefs. Boats have a camera with lights on the underside. The boats have water quality monitoring devices and GPS units. The video from the underwater camera is transmitted via a wireless transmission. Students are able to monitor the fish, limu and invertebrate populations on the reef and collect water quality data via television monitors or computers. The boat can also pull a small plankton tow net. Data is being compiled into data bases. Artificial Reef Modules: The Sanctuary has a scientific permit from the state to build and deploy artificial reef modules. High school students are designing and building modules. These are deployed out in the Fishpond fronting the Sanctuary site and students are monitoring them on a weekly basis

  7. Real-time endoscopic optical properties imaging

    Science.gov (United States)

    Angelo, Joseph P.; van de Giessen, Martijn; Gioux, Sylvain

    2017-01-01

    With almost 50% of all surgeries in the U.S. being performed as minimally invasive procedures, there is a need to develop quantitative endoscopic imaging techniques to aid surgical guidance. Recent developments in widefield optical imaging make endoscopic implementations of real-time measurement possible. In this work, we introduce a proof-of-concept endoscopic implementation of a functional widefield imaging technique called 3D single snapshot of optical properties (3D-SSOP) that provides quantitative maps of absorption and reduced scattering optical properties as well as surface topography with simple instrumentation added to a commercial endoscope. The system’s precision and accuracy is validated using tissue-mimicking phantoms, showing a max error of 0.004 mm−1, 0.05 mm−1, and 1.1 mm for absorption, reduced scattering, and sample topography, respectively. This study further demonstrates video acquisition of a moving phantom and an in vivo sample with a framerate of approximately 11 frames per second. PMID:29188107

  8. Real-time optoacoustic monitoring of stroke

    Science.gov (United States)

    Kneipp, Moritz; Turner, Jake; Hambauer, Sebastian; Krieg, Sandro M.; Lehmberg, Jens; Lindauer, Ute; Razansky, Daniel

    2014-03-01

    Characterizing disease progression and identifying possible therapeutic interventions in stroke is greatly aided by the use of longitudinal function imaging studies. In this study, we investigate the applicability of real-time multispectral optoacoustic tomography (MSOT) as a tool for non-invasive monitoring of the progression of stroke in the whole brain. The middle cerebral artery occlusion (MCAO) method was used to induce stroke. Mice were imaged under isoflurane anesthesia preoperatively and at several time points during and after the 60-minute occlusion. The animals were sacrificed after 24 hours and their excised brains frozen at -80°C for sectioning. The cryosection were stained using H&E staining to identify the ischemic lesion. Major vessels are readily identifiable in the whole mouse head in the in vivo optoacoustic scans. During ischemia, a reduction in cerebral blood volume is detectable in the cortex. Post ischemia, spectral unmixing of the optoacoustic signals shows an asymmetry of the deoxygenated hemoglobin in the hemisphere affected by MCAO. This hypoxic area was mainly located around the boundary of the ischemic lesion and was therefore identified as the ischemic penumbra. Non-invasive functional MSOT imaging is able to visualize the hypoxic penumbra in brains affected by stroke. Stopping the spread of the infarct area and revitalizing the penumbra is central in stroke research, this new imaging technique may therefore prove to be a valuable tool in the monitoring and developing new treatments.

  9. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction t....... In the Bertrand case, welfare is the same with all or no consumers on smart meters.......We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  10. A Real time network at home

    OpenAIRE

    Hanssen, F.T.Y.; Jansen, P.G.; Hartel, Pieter H.; Scholten, Johan; Vervoort, Wiek; Karelse, F.

    2001-01-01

    This paper proposes a home network which integrates both real-time and non-real-time capabilities for one coherent, distributed architecture. Such a network is not yet available. Our network will support inexpensive, small appliances as well as more expensive, large appliances. The network is based on a new type of real-time token protocol that uses scheduling to achieve optimal token-routing through the network. Depending on the scheduling algorithm, bandwidth utilisations of 100 percent are...

  11. Modular specification of real-time systems

    DEFF Research Database (Denmark)

    Inal, Recep

    1994-01-01

    Duration Calculus, a real-time interval logic, has been embedded in the Z specification language to provide a notation for real-time systems that combines the modularisation and abstraction facilities of Z with a logic suitable for reasoning about real-time properties. In this article the notatio...... is presented through a top-level specification of requirements for a simple air traffic monitoring system, and reasoning is illustrated by a refinement towards a design...

  12. Ease: a real-time multitasking executive

    OpenAIRE

    Doyle, David

    1996-01-01

    Ease the real time multitasking executive described m this thesis is designed for embedded systems with particular emphasis on DSP motor control applications. Ease provides an application software interface to the underlying hardware and encourages an object oriented programming approach which inherently enhances software integrity, maintainability and dependability in the potentially chaotic real time environment. Its focus is to tackle the undesirable aspects of real time programming an...

  13. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power......We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...

  14. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power......We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...

  15. Real-Time Confocal Imaging Of The Living Eye

    Science.gov (United States)

    Jester, James V.; Cavanagh, H. Dwight; Essepian, John; Shields, William J.; Lemp, Michael A.

    1989-12-01

    In 1986, we adapted the Tandem Scanning Reflected Light Microscope of Petran and Hadraysky to permit non-invasive, confocal imaging of the living eye in real-time. We were first to obtain stable, confocal optical sections in vivo, from human and animal eyes. Using confocal imaging systems we have now studied living, normal volunteers, rabbits, cats and primates sequentially, non-invasively, and in real-time. The continued development of real-time confocal imaging systems will unlock the door to a new field of cell biology involving for the first time the study of dynamic cellular processes in living organ systems. Towards this end we have concentrated our initial studies on three areas (1) evaluation of confocal microscope systems for real-time image acquisition, (2) studies of the living normal cornea (epithelium, stroma, endothelium) in human and other species; and (3) sequential wound-healing responses in the cornea in single animals to lamellar-keratectomy injury (cellular migration, inflammation, scarring). We believe that this instrument represents an important, new paradigm for research in cell biology and pathology and that it will fundamentally alter all experimental and clinical approaches in future years.

  16. A Real time network at home

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.; Hartel, Pieter H.; Scholten, Johan; Vervoort, Wiek; Karelse, F.

    2001-01-01

    This paper proposes a home network which integrates both real-time and non-real-time capabilities for one coherent, distributed architecture. Such a network is not yet available. Our network will support inexpensive, small appliances as well as more expensive, large appliances. The network is based

  17. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  18. Storm real-time processing cookbook

    CERN Document Server

    Anderson, Quinton

    2013-01-01

    A Cookbook with plenty of practical recipes for different uses of Storm.If you are a Java developer with basic knowledge of real-time processing and would like to learn Storm to process unbounded streams of data in real time, then this book is for you.

  19. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  20. A Real-time Network at Home

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Hartel, Pieter H.; Jansen, P.G.; Scholten, Johan; Vervoort, Wiek

    2001-01-01

    This paper proposes a home network which integrates both real-time and non-real-time capabilities for one coherent, distributed architecture. Such a network is not yet available. Our network will support inexpensive, small appliances as well as more expensive, large appliances. The network is based

  1. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...

  2. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  3. Achieving real-time performance in FIESTA

    Science.gov (United States)

    Wilkinson, William; Happell, Nadine; Miksell, Steve; Quillin, Robert; Carlisle, Candace

    1988-01-01

    The Fault Isolation Expert System for TDRSS Applications (FIESTA) is targeted for operation in a real-time online environment. Initial stages of the prototype development concentrated on acquisition and representation of the knowledge necessary to isolate faults in the TDRSS Network. Recent efforts focused on achieving real-time performance including: a discussion of the meaning of FIESTA real-time requirements, determination of performance levels (benchmarking) and techniques for optimization. Optimization techniques presented include redesign of critical relations, filtering of redundant data and optimization of patterns used in rules. Results are summarized.

  4. Interactive Real-time Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Brix, Lau

    Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD project...... with regard to optimal sampling strategy for detecting motion in four different anatomies on two different MRI scanner brands. A fully implemented interactive real-time MRI system was exploited in a group of healthy fetuses and proved its eligibility as an alternative diagnostic tool for fetal imaging...

  5. Visualization in Real-Time Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project will be to migrate some of the outputs from the WFF Mission Planning Lab (MPL) into a real-time visualization system.  The MPL is...

  6. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  7. The power of real-time PCR

    National Research Council Canada - National Science Library

    Mark A. Valasek; Joyce J. Repa

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences...

  8. The LAA real-time benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Block, R.K.; Krischer, W.; Lone, S. [CERN, Geneva (Switzerland)

    1989-04-01

    In the context of the LAA detector development program a subgroup Real Time Data Processing has tackled the problem of intelligent triggering. The main goal of this group is to show how fast digital devices, implemented as custom-made or commercial processors, can execute some basic algorithms, and how they can be embedded in the data flow between detector readout components and fully programmable commercial processors, which are expected to be the final data processing filter in real time.

  9. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  10. Real Time Cockpit Resource Management (CRM) Training

    Science.gov (United States)

    2010-10-01

    i AFRL-RH-AZ-TR-2011-0005 Real Time Cockpit Resource Management ( CRM ) Training David Kaiser Jeffery Eberhart Chris Butler Gregg...Resource Management ( CRM ) Training 5a. CONTRACT NUMBER FA8650-08-C-6848 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kaiser, David...283 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Real Time Cockpit Resource Management ( CRM ) Training 4 Table of

  11. Analysis of real-time vibration data

    Science.gov (United States)

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Real time speckle monitoring to control retinal photocoagulation

    Science.gov (United States)

    Bliedtner, Katharina; Seifert, Eric; Brinkmann, Ralf

    2017-07-01

    Photocoagulation is a treatment modality for several retinal diseases. Intra- and inter-individual variations of the retinal absorption as well as ocular transmission and light scattering makes it impossible to achieve a uniform effective exposure with one set of laser parameters. To guarantee a uniform damage throughout the therapy a real-time control is highly requested. Here, an approach to realize a real-time optical feedback using dynamic speckle analysis in-vivo is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633 nm diode laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. An algorithm is presented that can discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes and that seems to be robust to noise in-vivo. Tissue changes in rabbits during retinal coagulation could be observed for different lesion strengths. This algorithm can run on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage.

  14. Real-time 2-D temperature imaging using ultrasound.

    Science.gov (United States)

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  15. Continuous, real time microwave plasma element sensor

    Science.gov (United States)

    Woskov, Paul P.; Smatlak, Donna L.; Cohn, Daniel R.; Wittle, J. Kenneth; Titus, Charles H.; Surma, Jeffrey E.

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  16. RTMOD: Real-Time MODel evaluation

    DEFF Research Database (Denmark)

    Graziani, G.; Galmarini, S.; Mikkelsen, Torben

    2000-01-01

    The 1998 - 1999 RTMOD project is a system based on an automated statistical evaluation for the inter-comparison of real-time forecasts produced by long-range atmospheric dispersion models for national nuclear emergency predictions of cross-boundaryconsequences. The background of RTMOD was the 1994...... ETEX project that involved about 50 models run in several Institutes around the world to simulate two real tracer releases involving a large part of the European territory. In the preliminary phase ofETEX, three dry runs (i.e. simulations in real-time of fictitious releases) were carried out...... would be recalculated to include the influence by all available predictions. The new web-based RTMOD concept has proven useful as a practical decision-making tool for real-time communicationbetween dispersion modellers around the World and for fast and standardised information exchange on the most...

  17. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  18. Real Time Linux - The RTOS for Astronomy?

    Science.gov (United States)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  19. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  20. Real-Time Mesoscale Prediction on workstations.

    Science.gov (United States)

    Cotton, William R.; Thompson, Gregory; Mieike, Paul W., Jr.

    1994-03-01

    Experience in performing real-time mesoscale numerical prediction forecasts using the Regional Atmospheric Modeling System (RAMS) over Colorado for a winter season on high-performance workstations is summarized. Performance evaluation is done for specific case studies and, statistically, for the entire winter season. RAMS forecasts are also compared with nested grid model forecasts. In addition, RAMS precipitation forecasts with a simple "dump bucket" scheme are compared with explicit, bulk microphysics parameterization schemes. The potential applications and political/ social problems of having a readily accessible, real-time mesoscale forecasting capability on low-cost, high-performance workstations is discussed.

  1. SignalR real time application development

    CERN Document Server

    Ingebrigtsen, Einar

    2013-01-01

    This step-by-step guide gives you practical advice, tips, and tricks that will have you writing real-time apps quickly and easily.If you are a .NET developer who wants to be at the cutting edge of development, then this book is for you. Real-time application development is made simple in this guide, so as long as you have basic knowledge of .NET, a copy of Visual Studio, and NuGet installed, you are ready to go.

  2. Real-Time Thevenin Impedance Computation

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Jóhannsson, Hjörtur

    2013-01-01

    Stable and secure operation of power systems becomes increasingly difficult when a large share of the power production is based on distributed and non-controllable renewable energy sources. Real-time stability assessment is dependent on very fast computation of different properties of the grid...... operating state, and strict time constraints are difficult to adhere to as the complexity of the grid increases. Several suggested approaches for real-time stability assessment require Thevenin impedances to be determined for the observed system conditions. By combining matrix factorization, graph reduction...... grids at millisecond time scale....

  3. Real-time Shakemap implementation in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus

    2017-04-01

    ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.

  4. Machine vision for real time orbital operations

    Science.gov (United States)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  5. Studying Complex Interactions in Real Time

    DEFF Research Database (Denmark)

    Mønster, Dan

    2017-01-01

    The study of human behavior must take into account the social context, and real-time, networked experiments with multiple participants is one increasingly popular way to achieve this. In this paper a framework based on Python and XMPP is presented that aims to make it easy to develop such behavio......The study of human behavior must take into account the social context, and real-time, networked experiments with multiple participants is one increasingly popular way to achieve this. In this paper a framework based on Python and XMPP is presented that aims to make it easy to develop...

  6. Real-Time, Interactive Sonic Boom Display

    Science.gov (United States)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  7. Real-Time Elastography of the Prostate

    Directory of Open Access Journals (Sweden)

    D. Junker

    2014-01-01

    Full Text Available Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, real-time elastography has been used for several years for prostate cancer detection. This review introduces the different techniques of ultrasound elastography and furthermore summarises its limitations and potentials.

  8. Collecting data in real time with postcards

    DEFF Research Database (Denmark)

    Yee, Kwang Chien; Kanstrup, Anne Marie; Bertelsen, Pernille

    2013-01-01

    Systems. These methods often involve cross-sectional, retrospective data collection. This paper describes the postcard method for prospective real-time data collection, both in paper format and electronic format. This paper then describes the results obtained using postcard techniques in Denmark...

  9. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  10. Real-Time Polymerase Chain Reaction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Real-Time Polymerase Chain Reaction - A Revolution in ... Author Affiliations. Simarjot Singh Pabla1 Sarabjot Singh Pabla1. GH Patel Post Graduate Department of Computer Science and Technology Sardar Patel University Gujarat.

  11. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  12. Tactical AI in Real Time Strategy Games

    Science.gov (United States)

    2015-03-26

    critical for increasing the speed of online testing of the RTS tactical decision making problem. Base development is unnecessary for tac- tics ...cosecivi14_submission_24.pdf, Ac- cessed: March 10, 2015. 37. Ben George Weber, Michael Mateas , and Arnav Jhala, “Building human-level AI for real-time strategy games

  13. Metric semantics for true concurrent real time

    NARCIS (Netherlands)

    Katoen, Joost P.; Baier, Christel; Latella, Diego

    2001-01-01

    This paper investigates the use of a complete metric space framework for providing denotational semantics to a real-time process algebra. The study is carried out in a non-interleaving setting and is based on a timed extension of Langerak's bundle event structures, a variant of Winskel's event

  14. Metric semantics for true concurrent real time

    NARCIS (Netherlands)

    Baier, Christel; Larsen, K.G.; Skyum, S.; Katoen, Joost P.; Latella, Diego; Winskel, G.

    1998-01-01

    This paper investigates the use of a complete metric space framework for providing denotational semantics to a real-time process algebra. The study is carried out in a non-interleaving setting and is based on a timed extension of Langerak's bundle event structures, a variant of Winskel's event

  15. Real-Time Operating System/360

    Science.gov (United States)

    Hoffman, R. L.; Kopp, R. S.; Mueller, H. H.; Pollan, W. D.; Van Sant, B. W.; Weiler, P. W.

    1969-01-01

    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing.

  16. Real-time optoacoustic monitoring during thermotherapy

    Science.gov (United States)

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Motamedi, Massoud

    2000-05-01

    Optoacoustic monitoring of tissue optical properties and speed of sound in real time can provide fast and accurate feedback information during thermotherapy performed with various heating or cooling agents. Amplitude and temporal characteristics of optoacoustic pressure waves are dependent on tissue properties. Detection and measurement of the optoacoustic waves may be used to monitor the extent of tissue hyperthermia, coagulation, or freezing with high resolution and contrast. We studied real-time optoacoustic monitoring of thermal coagulation induced by conductive heating and laser radiation and cryoablation with liquid nitrogen. Q-switched Nd:YAG laser pulses were used as probing radiation to induce optoacoustic waves in tissues. Dramatic changes in optoacoustic signal parameters were detected during tissue freezing and coagulation due to sharp changes in tissue properties. The dimensions of thermally- induced lesions were measured in real time with the optoacoustic technique. Our studies demonstrated that the laser optoacoustic technique is capable of real-time monitoring of tissue coagulation and freezing front with submillimeter spatial resolution. This may allow accurate thermal ablation or cryotherapy of malignant and benign lesions with minimal damage to normal tissues.

  17. Real-time analysis of telemetry data

    Science.gov (United States)

    Kao, Simon A.; Laffey, Thomas J.; Schmidt, James L.; Read, Jackson Y.; Dunham, Larry L.

    1987-01-01

    This paper descibes a knowledge-based system for performing real-time monitoring and analysis of telemetry data from the NASA Hubble Space Telescope (HST). In order to handle asynchronous inputs and perform in real time the system consists of three or more separate processes, which run concurrently and communicate via a message passing scheme. The data management process gathers, compresses, and scales the incoming telemetry data befoe sending it to the other tasks. The inferencing process uses the incoming data to perform a real-time analysis of the state and health of the Space Telescope. The I/O process receives telemetry monitors from the data management process, updates its graphical displays in real time, and acts as the interface to the console operator. The three processes may run on the same or different computers. This system is currently under development and is being used to monitor testcases produced by the Bass Telemetry System in the Hardware/Software Integration Facility at Lockheed Missile and Space Co. in Sunnyvale, California.

  18. Advances in Real-Time Systems

    CERN Document Server

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  19. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  20. Real-time brute force SAR processing

    NARCIS (Netherlands)

    Vlothuizen, W.J.; Ditzel, M.

    2009-01-01

    This paper presents a brute force method to perform real-time SAR processing. The method has several advantages over traditional so-called fast SAR implementations, as it does not make any approximations to alleviate the processing burden. However, the method does allow efficient implementation on

  1. Scene independent real-time indirect illumination

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Falster, Peter

    2005-01-01

    -time rendering of arbitrary dynamic environments and for interactive preview of feature animations. Through DRM we simulate two diffuse reflections of light, but can also, in combination with traditional real-time methods for specular reflections, simulate more complex light paths. DRM is a GPU-based method...

  2. Real-time executives for microprocessors

    NARCIS (Netherlands)

    Linden, F. van der; Wilson, I.

    1980-01-01

    Principles of real-time executives for microcomputer systems are discussed, together with some secondary functions. Salient features and limitations of three commercially available executives for 8080/5 and Z80 systems are described. An example is given illustrating the use of an executive in a

  3. Refactoring Real-Time Java Profiles

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders P.

    2011-01-01

    Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes...

  4. Real-time PCR detection chemistry.

    Science.gov (United States)

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. ALMA Correlator Real-Time Data Processor

    Science.gov (United States)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  6. Real-time imaging of quantum entanglement.

    Science.gov (United States)

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  7. Real Time Radiation Exposure And Health Risks

    Science.gov (United States)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  8. Real Time Radiation Monitoring Using Nanotechnology

    Science.gov (United States)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  9. Real time gamma-ray signature identifier

    Science.gov (United States)

    Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA

    2012-05-15

    A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.

  10. Real time computer controlled weld skate

    Science.gov (United States)

    Wall, W. A., Jr.

    1977-01-01

    A real time, adaptive control, automatic welding system was developed. This system utilizes the general case geometrical relationships between a weldment and a weld skate to precisely maintain constant weld speed and torch angle along a contoured workplace. The system is compatible with the gas tungsten arc weld process or can be adapted to other weld processes. Heli-arc cutting and machine tool routing operations are possible applications.

  11. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Louis-Marie

    2014-01-01

    specification to an implementation, we need to reason about the possibility to effectively implement the theoretical specifications on physical systems, despite their limited precision. In the literature, this implementation problem has been linked to the robustness problem that analyzes the consequences......Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract...

  12. Real-Time Elastography of the Prostate

    OpenAIRE

    Junker, D; T. De Zordo; Quentin, M.; Ladurner, M; Bektic, J.; Horniger, W.; Jaschke, W.; Aigner, F.

    2014-01-01

    Palpation of organs is one of the oldest clinical examination techniques, for instance, if you think of the palpation of the breast or the digital rectal examination of the prostate, where hard palpable regions are suspicious for cancer. This is the basic principle of real-time elastography, an ultrasound technique, which is able to visualise tissue elasticity. Since prostate cancer features an increased stiffness due to the higher cell and vessel density than the normal surrounding tissue, r...

  13. A Real-Time Specification Patterns Language

    OpenAIRE

    Abid, Nouha; Dal Zilio, Silvano; Le Botlan, Didier

    2011-01-01

    We propose a real-time extension to the patterns specification language of Dwyer et al. Our contributions are twofold. First, we provide a formal patterns specification language that is simple enough to ease the specification of requirements by non-experts and rich enough to express general temporal constraints commonly found in reactive systems, such as compliance to deadlines, bounds on the worst-case execution time, etc. For each pattern, we give a precise definition based on three differe...

  14. Boundary Correct Real-Time Soft Shadows

    DEFF Research Database (Denmark)

    Jacobsen, Bjarke; Christensen, Niels Jørgen; Larsen, Bent Dalgaard

    2004-01-01

    This paper describes a method to determine correct shadow boundaries from an area light source using umbra and penumbra volumes. The light source is approximated by a circular disk as this gives a fast way to extrude the volumes. The method also gives a crude estimate of the visibility of the area...... for implementation on most programmable hardware. Though some crude approximations are used in the visibility function, the method can be used to produce soft shadows with correct boundaries in real time....

  15. Real-time Interactive Tree Animation.

    Science.gov (United States)

    Quigley, Ed; Yu, Yue; Huang, Jingwei; Lin, Winnie; Fedkiw, Ronald

    2017-01-30

    We present a novel method for posing and animating botanical tree models interactively in real time. Unlike other state of the art methods which tend to produce trees that are overly flexible, bending and deforming as if they were underwater plants, our approach allows for arbitrarily high stiffness while still maintaining real-time frame rates without spurious artifacts, even on quite large trees with over ten thousand branches. This is accomplished by using an articulated rigid body model with as-stiff-as-desired rotational springs in conjunction with our newly proposed simulation technique, which is motivated both by position based dynamics and the typical O(N) algorithms for articulated rigid bodies. The efficiency of our algorithm allows us to pose and animate trees with millions of branches or alternatively simulate a small forest comprised of many highly detailed trees. Even using only a single CPU core, we can simulate ten thousand branches in real time while still maintaining quite crisp user interactivity. This has allowed us to incorporate our framework into a commodity game engine to run interactively even on a low-budget tablet. We show that our method is amenable to the incorporation of a large variety of desirable effects such as wind, leaves, fictitious forces, collisions, fracture, etc.

  16. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Raja Vara Prasad Y

    2011-06-01

    Full Text Available Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for sensing concentration of gases like CO2, NO2, CO and O2 are calibrated using appropriate calibration technologies. These pre-calibrated gas sensors are then integrated with the wireless sensor motes for field deployment at the campus and the Hyderabad city using multi hop data aggregation algorithm. A light weight middleware and a web interface to view the live pollution data in the form of numbers and charts from the test beds was developed and made available from anywhere on the internet. Other parameters like temperature and humidity were also sensed along with gas concentrations to enable data analysis through data fusion techniques. Experimentation carried out using the developed wireless air pollution monitoring system under different physical conditions show that the system collects reliable source of real time fine-grain pollution data.

  17. Raptor -- Mining the Sky in Real Time

    Science.gov (United States)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  18. Real-time full field laser Doppler imaging

    Science.gov (United States)

    Leutenegger, Marcel; Harbi, Pascal; Thacher, Tyler; Raffoul, Wassim; Lasser, Theo

    2012-06-01

    We present a full field laser Doppler imaging instrument that enables real-time in vivo assessment of blood flow in dermal tissue and skin. The instrument monitors the blood perfusion in an area of about 50cm2 with 480 × 480 pixels per frame at a rate of 12-14 frames per second. Smaller frames can be monitored at much higher frame rates. We recorded the microcirculation in healthy skin before, during and after arterial occlusion. In initial clinical case studies, we imaged the microcirculation in burned skin and monitored the recovery of blood flow in a skin flap during reconstructive surgery indicating the high potential of LDI for clinical applications.

  19. Acting to gain information: Real-time reasoning meets real-time perception

    Science.gov (United States)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  20. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  1. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  2. Real-time microwave remote laboratory architecture

    OpenAIRE

    Farah, Said; Benachenhou, A.; Neveux, Guillaume; ANDRIEU, Guillaume; Thomas, fredon; Barataud, Denis

    2015-01-01

    International audience; An advanced software/hardware flexible and realtime microwave and optical REmote-LABoratory (LABoratoire d'ENseignement VIrtuel: LAB-EN-VI) architecture is presented in this paper. The software part is based on the use of a free license server Node.js written in JavaScript. It offers lightweight Hypertext Markup Language (HTML) and JavaScript clients. The integration of socket.io module enables a real-time operation mode of this Client/Server communication. Associated ...

  3. A real-time Global Warming Index.

    Science.gov (United States)

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  4. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  5. Real-time teleteaching in medical physics.

    Science.gov (United States)

    Woo, M; Ng, Kh

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts.Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up.The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication.The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops.Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  6. Real time analysis of voiced sounds

    Science.gov (United States)

    Hong, J. P. (Inventor)

    1976-01-01

    A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.

  7. Low cost real time interactive analysis system

    Science.gov (United States)

    Stetina, F.

    1988-01-01

    Efforts continue to develop a low cost real time interactive analysis system for the reception of satellite data. A multi-purpose ingest hardware software frame formatter was demonstrated for GOES and TIROS data and work is proceeding on extending the capability to receive GMS data. A similar system was proposed as an archival and analysis system for use with INSAT data and studies are underway to modify the system to receive the planned SeaWiFS (ocean color) data. This system was proposed as the core of a number of international programs in support of U.S. AID activities. Systems delivered or nearing final testing are listed.

  8. Real-time modeling of heat distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas

    2018-01-02

    Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.

  9. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  10. Open Source Real Time Operating Systems Overview

    Energy Technology Data Exchange (ETDEWEB)

    Straumann, Till

    2001-12-11

    Modern control systems applications are often built on top of a real time operating system (RTOS) which provides the necessary hardware abstraction as well as scheduling, networking and other services. Several open source RTOS solutions are publicly available, which is very attractive, both from an economic (no licensing fees) as well as from a technical (control over the source code) point of view. This contribution gives an overview of the RTLinux and RTEMS systems (architecture, development environment, API etc.). Both systems feature most popular CPUs, several APIs (including Posix), networking, portability and optional commercial support. Some performance figures are presented, focusing on interrupt latency and context switching delay.

  11. Real-time teleteaching in medical physics

    Science.gov (United States)

    Woo, M; Ng, KH

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts. Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up. The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication. The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops. Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and

  12. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  13. Real-time virtual room acoustic simulation

    Science.gov (United States)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  14. Real Time Simulation of Power Grid Disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [ORNL; Dimitrovski, Aleksandar D [ORNL; Fernandez, Steven J [ORNL; Groer, Christopher S [ORNL; Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Omitaomu, Olufemi A [ORNL; Shankar, Mallikarjun [ORNL; Spafford, Kyle L [ORNL; Vacaliuc, Bogdan [ORNL

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  15. An efficient real time superresolution ASIC system

    Science.gov (United States)

    Reddy, Dikpal; Yue, Zhanfeng; Topiwala, Pankaj

    2008-04-01

    Superresolution of images is an important step in many applications like target recognition where the input images are often grainy and of low quality due to bandwidth constraints. In this paper, we present a real-time superresolution application implemented in ASIC/FPGA hardware, and capable of 30 fps of superresolution by 16X in total pixels. Consecutive frames from the video sequence are grouped and the registered values between them are used to fill the pixels in the higher resolution image. The registration between consecutive frames is evaluated using the algorithm proposed by Schaum et al. The pixels are filled by averaging a fixed number of frames associated with the smallest error distances. The number of frames (the number of nearest neighbors) is a user defined parameter whereas the weights in the averaging process are decided by inverting the corresponding smallest error distances. Wiener filter is used to post process the image. Different input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as the hardware, which gives us a fine balance between the number of bits and performance. The algorithm performs with real time speed with very impressive superresolution results.

  16. Reconfigurable real-time distributed processing network

    Science.gov (United States)

    Page, S. F.; Seely, R. D.; Hickman, D.

    2011-06-01

    This paper describes a novel real-time image and signal processing network, RONINTM, which facilitates the rapid design and deployment of systems providing advanced geospatial surveillance and situational awareness capability. RONINTM is a distributed software architecture consisting of multiple agents or nodes, which can be configured to implement a variety of state-of-the-art computer vision and signal processing algorithms. The nodes operate in an asynchronous fashion and can run on a variety of hardware platforms, thus providing a great deal of scalability and flexibility. Complex algorithmic configuration chains can be assembled using an intuitive graphical interface in a plug-and- play manner. RONINTM has been successfully exploited for a number of applications, ranging from remote event detection to complex multiple-camera real-time 3D object reconstruction. This paper describes the motivation behind the creation of the network, the core design features, and presents details of an example application. Finally, the on-going development of the network is discussed, which is focussed on dynamic network reconfiguration. This allows to the network to automatically adapt itself to node or communications failure by intelligently re-routing network communications and through adaptive resource management.

  17. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  18. Near real-time traffic routing

    Science.gov (United States)

    Yang, Chaowei (Inventor); Cao, Ying (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  19. Multiagent organizations for real-time operations

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.; Ramesh, V.C. (Engineering Design Research Center, Carnegie Mellon Univ., Pittsburgh, Pa (US)); Quadrel, R. (Battelle, Pacific Northwest Lab., Richland, WA (US)); Christie, R. (Dept. of Electrical Engineering, Univ. of Washington, Seattle, WA (US))

    1992-05-01

    The real-time operations of electric power networks are subject to two sets of forces. The first, including deregulation movements and growing environmental concerns, is acting to increase the complexity of operations. The second, including new computer technologies and emerging knowledge-based agents, provides some means for handling additional complexity. This paper argues that organizational changes will have to be made before the second set of forces can be applied to effectively counter the first. To make this argument, the paper presents a framework for discussing organizational structures. Then it reviews the structures of the two generations of computer-based, multiagent systems that have been developed for operations. It points out that these structures are well-suited to the algorithmic tasks involved in operations but not to the knowledge-based tasks. The paper concludes with some suggestions for research into alternative structures.

  20. Kalman Filtering with Real-Time Applications

    CERN Document Server

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  1. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    As volcano monitoring involves more and different sensors from seismic to GPS receivers, from video and thermal cameras to multi-parameter probes measuring temperature, ph values and humidity in the ground and the air, it becomes important to design real-time networks that integrate and leverage the multitude of available parameters. In order to do so some simple principles need to be observed: a) a common time base for all measurements, b) a packetized general data communication protocol for acquisition and distribution, c) an open and well documented interface to the data permitting standard and emerging innovative processing, and d) an intuitive visualization platform for scientists and civil defense personnel. Although mentioned as simple principles, the list above does not necessarily lead to obvious solutions or integrated systems, which is, however, required to take advantage of the available data. Only once the different data streams are put into context to each other in terms of time and location can a broader view be obtained and additional information extracted. The presentation is a summary of currently available technologies and how they can achieve the goal of an integrated real-time volcano monitoring system. A common time base are standard for seismic and GPS networks. In different projects we extended this to video feeds and time-lapse photography. Other probes have been integrated with vault interface enclosures (VIE) as used in the Transportable Array (TA) of the USArray. The VIE can accommodate the sensors employed in volcano monitoring. The TA has shown that Antelope is a versatile and robust middleware. It provides the required packetized general communication protocol that is independent from the actual physical communication link leaving the network design to adopt appropriate and possible hybrid solutions. This applies for the data acquisition and the data/information dissemination providing both a much needed collaboration platform, as

  2. CONSIDERATIONS ON REAL TIME DATA WAREHOUSING (RTDW

    Directory of Open Access Journals (Sweden)

    Marius Bogdan DINU

    2014-05-01

    Full Text Available The RTDW concept originated in the early 2000s. By that time, computing power had increased to a level that was allowing extraction of data collections for reporting purposes. Such collections were used almost in real time and at speeds nearly comparable to what an operation system was capable to deliver. The main idea will be to eliminate some of the components of the classic extraction process which is basically the most costly factor less time - consuming. We anticipate that the following factors will be decisive: elimination of batch-type processes [1], data compression techniques, data capture techniques, ability to keep in cache a large volume of data, parallel processing, and data mining algorithms that can adapt to such applications.

  3. REAL TIME DATA FOR REMEDIATION ACTIVITIES [11505

    Energy Technology Data Exchange (ETDEWEB)

    BROCK CT

    2011-01-13

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  4. Real-time, face recognition technology

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S.

    1995-11-01

    The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory recently developed the real-time, face recognition technology KEN. KEN uses novel imaging devices such as silicon retinas developed at Caltech or off-the-shelf CCD cameras to acquire images of a face and to compare them to a database of known faces in a robust fashion. The KEN-Online project makes that recognition technology accessible through the World Wide Web (WWW), an internet service that has recently seen explosive growth. A WWW client can submit face images, add them to the database of known faces and submit other pictures that the system tries to recognize. KEN-Online serves to evaluate the recognition technology and grow a large face database. KEN-Online includes the use of public domain tools such as mSQL for its name-database and perl scripts to assist the uploading of images.

  5. Refactoring Real-Time Java Profiles

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Thomsen, Bent; Ravn, Anders Peter

    2011-01-01

    it a suitable foundation for the proposed levels of SCJ. The ongoing work of specifying the SCJ profile builds on sub classing of RTSJ. This spurred our interest in a refactoring approach. It starts by extracting the common kernel of the specifications in a core package, which defines interfaces only......Just like other software, Java profiles benefits from refactoring when they have been used and have evolved for some time. This paper presents a refactoring of the Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile (JSR-302). It highlights core concepts and makes....... It is then possible to refactor SCJ with its three levels and RTSJ in such a way that each profile is in a separate package. This refactoring results in cleaner class hierarchies with no superfluous methods, well defined SCJ levels, elimination of SCJ annotations like @SCJAllowed, thus making the profiles easier...

  6. Operational and real-time Business Intelligence

    Directory of Open Access Journals (Sweden)

    Daniela Ioana SANDU

    2008-01-01

    Full Text Available A key component of a company’s IT framework is a business intelligence (BI system. BI enables business users to report on, analyze and optimize business operations to reduce costs and increase revenues. Organizations use BI for strategic and tactical decision making where the decision-making cycle may span a time period of several weeks (e.g., campaign management or months (e.g., improving customer satisfaction.Competitive pressures coming from a very dynamic business environment are forcing companies to react faster to changing business conditions and customer requirements. As a result, there is now a need to use BI to help drive and optimize business operations on a daily basis, and, in some cases, even for intraday decision making. This type of BI is usually called operational business intelligence and real-time business intelligence.

  7. A Flexible Real-Time Architecture

    Energy Technology Data Exchange (ETDEWEB)

    WICKSTROM,GREGORY L.

    2000-08-17

    Assuring hard real-time characteristics of I/O associated with embedded software is often a difficult task. Input-Output related statements are often intermixed with the computational code, resulting in I/O timing that is dependent on the execution path and computational load. One way to mitigate this problem is through the use of interrupts. However, the non-determinism that is introduced by interrupt driven I/O may be so difficult to analyze that it is prohibited in some high consequence systems. This paper describes a balanced hardware/software solution to obtain consistent interrupt-free I/O timing, and results in software that is much more amenable to analysis.

  8. Real-Time Optical Antimicrobial Susceptibility Testing

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Andersen, Klaus R; Jørgensen, Erik

    2013-01-01

    Rapid antibiotic susceptibility testing is in highly demand in health-care fields as antimicrobial resistant bacterial strains emerge and spread. Here we describe an optical screening system (oCelloScope), which based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time, introdu......Rapid antibiotic susceptibility testing is in highly demand in health-care fields as antimicrobial resistant bacterial strains emerge and spread. Here we describe an optical screening system (oCelloScope), which based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time......, introduces real-time detection of bacterial growth and antimicrobial susceptibility, with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effect within 6 minutes and within 30 minutes...

  9. Embedded and real-time operating systems

    CERN Document Server

    Wang, K C

    2017-01-01

    This book covers the basic concepts and principles of operating systems, showing how to apply them to the design and implementation of complete operating systems for embedded and real-time systems. It includes all the foundational and background information on ARM architecture, ARM instructions and programming, toolchain for developing programs, virtual machines for software implementation and testing, program execution image, function call conventions, run-time stack usage and link C programs with assembly code. It describes the design and implementation of a complete OS for embedded systems in incremental steps, explaining the design principles and implementation techniques. For Symmetric Multiprocessing (SMP) embedded systems, the author examines the ARM MPcore processors, which include the SCU and GIC for interrupts routing and interprocessor communication and synchronization by Software Generated Interrupts (SGIs). Throughout the book, complete working sample systems demonstrate the design principles and...

  10. Real-time monitoring of swimming performance.

    Science.gov (United States)

    Delgado-Gonzalo, R; Lemkaddem, A; Renevey, Ph; Calvo, E Muntane; Lemay, M; Cox, K; Ashby, D; Willardson, J; Bertschi, M

    2016-08-01

    This article presents the performance results of a novel algorithm for swimming analysis in real-time within a low-power wrist-worn device. The estimated parameters are: lap count, stroke count, time in lap, total swimming time, pace/speed per lap, total swam distance, and swimming efficiency (SWOLF). In addition, several swimming styles are automatically detected. Results were obtained using a database composed of 13 different swimmers spanning 646 laps and 858.78 min of total swam time. The final precision achieved in lap detection ranges between 99.7% and 100%, and the classification of the different swimming styles reached a sensitivity and specificity above 98%. We demonstrate that a swimmers performance can be fully analyzed with the smart bracelet containing the novel algorithm. The presented algorithm has been licensed to ICON Health & Fitness Inc. for their line of wearables under the brand iFit.

  11. Near real-time stereo vision system

    Science.gov (United States)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  12. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous oral interaction and asynchronous text-based interaction mediated by digital media....

  13. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    The article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very...... instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal......, system-relative construction, different teaching environments offer diverse conditions for feedback constructions. The final section of this article explores this idea with the help of examples from both synchronous, oral interaction and asynchronous, text-based interaction mediated by digital media....

  14. PCs stir reliability, real-time concerns

    Energy Technology Data Exchange (ETDEWEB)

    Strothman, J. [ed.

    1994-11-01

    While pre-Christmas price wars regularly boost personal computer sales this time of year, price cuts alone won`t cause process control systems designers to open their wallets and buy PCs. User studies and user feedback to process control equipment suppliers show several other issues continue to rank higher than price including: (1) Hardware and software reliability; (2) easy-to-use user interfaces; (3) ability to do multitasking; (4) need for real-time updates. These and several other non-price issues - including open versus proprietary systems, slower scan rates from PCs compared to programmable controllers, and assurances that the PC will work in an industrial environment - scored high in a study authored earlier this year by Jesse Yoder, owner of Idea Network, Clinton, NJ. The report, titled {open_quotes}The World Market for Process Control Equipment,{close_quotes} was written for FIND/SVP, a New York City market research firm.

  15. REAL TIME SPEED ESTIMATION FROM MONOCULAR VIDEO

    Directory of Open Access Journals (Sweden)

    M. S. Temiz

    2012-07-01

    Full Text Available In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In order to estimate the speed of a moving vehicle from a video camera, rectification of video images is performed to eliminate the perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are computed. Computed velocity vectors are defined in the video image coordinate system and displacement vectors are measured by the means of pixel units. Then the magnitudes of the computed vectors in the image space are transformed to the object space to find the absolute values of these magnitudes. The accuracy of the estimated speed is approximately ±1 – 2 km/h. In order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. This software system has been used for all of the computations and test applications.

  16. A class of kernel based real-time elastography algorithms.

    Science.gov (United States)

    Kibria, Md Golam; Hasan, Md Kamrul

    2015-08-01

    In this paper, a novel real-time kernel-based and gradient-based Phase Root Seeking (PRS) algorithm for ultrasound elastography is proposed. The signal-to-noise ratio of the strain image resulting from this method is improved by minimizing the cross-correlation discrepancy between the pre- and post-compression radio frequency signals with an adaptive temporal stretching method and employing built-in smoothing through an exponentially weighted neighborhood kernel in the displacement calculation. Unlike conventional PRS algorithms, displacement due to tissue compression is estimated from the root of the weighted average of the zero-lag cross-correlation phases of the pair of corresponding analytic pre- and post-compression windows in the neighborhood kernel. In addition to the proposed one, the other time- and frequency-domain elastography algorithms (Ara et al., 2013; Hussain et al., 2012; Hasan et al., 2012) proposed by our group are also implemented in real-time using Java where the computations are serially executed or parallely executed in multiple processors with efficient memory management. Simulation results using finite element modeling simulation phantom show that the proposed method significantly improves the strain image quality in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and mean structural similarity (MSSIM) for strains as high as 4% as compared to other reported techniques in the literature. Strain images obtained for the experimental phantom as well as in vivo breast data of malignant or benign masses also show the efficacy of our proposed method over the other reported techniques in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Real-time data flow and product generating for GNSS

    Science.gov (United States)

    Muellerschoen, Ronald J.; Caissy, Mark

    2004-01-01

    The last IGS workshop with the theme 'Towards Real-Time' resulted in the design of a prototype for real-time data and sharing within the IGS. A prototype real-time network is being established that will serve as a test bed for real-time activities within the IGS. We review the developments of the prototype and discuss some of the existing methods and related products of real-time GNSS systems. Recommendations are made concerning real-time data distribution and product generation.

  18. Clinical experience with real-time ultrasound

    Science.gov (United States)

    Chimiak, William J.; Wolfman, Neil T.; Covitz, Wesley

    1995-05-01

    After testing the extended multimedia interface (EMMI) product which is an asynchronous transmission mode (ATM) user to network interface (UNI) of AT&T at the Society for Computer Applications in Radiology conference in Winston-Salem, the Department of Radiology together with AT&T are implementing a tele-ultrasound system to combine real- time ultrasound with the static imaging features of more traditional digital ultrasound systems. Our current ultrasound system archives digital images to an optical disk system. Static images are sent using our digital radiology systems. This could be transferring images from one digital imaging and communications (DICOM)-compliant machine to another, or the current image transfer methodologies. The prototype of a live ultrasound system using the EMMI demonstrated the feasibility of doing live ultrasound. We now are developing the scenarios using a mix of the two methodologies. Utilizing EMMI technology, radiologists at the BGSM review at a workstation both static images and real-time scanning done by a technologist on patients at a remote site in order to render on-line primary diagnosis. Our goal is to test the feasibility of operating an ultrasound laboratory at a remote site utilizing a trained technologist without the necessity of having a full-time radiologist at that site. Initial plans are for a radiologist to review an initial set of static images on a patient taken by the technologist. If further scanning is required, the EMMI is used to transmit real-time imaging and audio using the audio input of a standard microphone system and the National Television Standards Committee (NTSC) output of the ultrasound equipment from the remote site to the radiologist in the department review station. The EMMI digitally encodes this data and places it in an ATM format. This ATM data stream goes to the GCNS2000 and then to the other EMMI where the ATM data stream is decoded into the live studies and voice communication which are then

  19. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  20. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    Science.gov (United States)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  1. RTMOD: Real-Time MODel evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, G; Galmarini, S. [Joint Research centre, Ispra (Italy); Mikkelsen, T. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept. (Denmark)

    2000-01-01

    The 1998 - 1999 RTMOD project is a system based on an automated statistical evaluation for the inter-comparison of real-time forecasts produced by long-range atmospheric dispersion models for national nuclear emergency predictions of cross-boundary consequences. The background of RTMOD was the 1994 ETEX project that involved about 50 models run in several Institutes around the world to simulate two real tracer releases involving a large part of the European territory. In the preliminary phase of ETEX, three dry runs (i.e. simulations in real-time of fictitious releases) were carried out. At that time, the World Wide Web was not available to all the exercise participants, and plume predictions were therefore submitted to JRC-Ispra by fax and regular mail for subsequent processing. The rapid development of the World Wide Web in the second half of the nineties, together with the experience gained during the ETEX exercises suggested the development of this project. RTMOD featured a web-based user-friendly interface for data submission and an interactive program module for displaying, intercomparison and analysis of the forecasts. RTMOD has focussed on model intercomparison of concentration predictions at the nodes of a regular grid with 0.5 degrees of resolution both in latitude and in longitude, the domain grid extending from 5W to 40E and 40N to 65N. Hypothetical releases were notified around the world to the 28 model forecasters via the web on a one-day warning in advance. They then accessed the RTMOD web page for detailed information on the actual release, and as soon as possible they then uploaded their predictions to the RTMOD server and could soon after start their inter-comparison analysis with other modelers. When additional forecast data arrived, already existing statistical results would be recalculated to include the influence by all available predictions. The new web-based RTMOD concept has proven useful as a practical decision-making tool for realtime

  2. The INGV Real Time Strong Motion Database

    Science.gov (United States)

    Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo

    2017-04-01

    The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121

  3. Real-time determination of interconnect metrology

    Science.gov (United States)

    AbuGhazaleh, Shadi A.; Christie, Phillip

    1996-09-01

    Poor control of wire geometry can result in unacceptable variations in signal propagation velocity and cross-talk. A novel laser diffraction technique for the real-time determination of global interconnect metrology is presented and tested on several different types of chips. Analysis of the diffraction patterns produced by He-Cd (lambda equals 442 nm) and He-Ne (lambda equals 633 nm) laser irradiation of the interconnect structure is shown to reveal global information on variations in wiring parameters. The diffraction intensity profile for a commercial microprocessor fabricated using 2 micrometer design rules is used to test the validity of the approach. Standard diffraction theory reveals that the process variation in wire pitch is of the order of 9%, a value confirmed by examination under a phase contrast microscope. In addition to wire pitch variations the diffraction technique is also used for the measurement of the characteristic fractal dimension of the wiring. Initial results indicate that these measurements may provide an extremely rapid method of assessing important wiring figures of merit, such as the on- chip Rent exponent.

  4. Business Hypervisors for Real-time Applications

    Directory of Open Access Journals (Sweden)

    L. Perneel

    2015-08-01

    Full Text Available System virtualization is one of the hottest trends in information technology today. It is not just another nice to use technology but has become fundamental across the business world. It is successfully used with many business application classes where cloud computing is the most visual one. Recently, it started to be used for soft Real-Time (RT applications such as IP telephony, media servers, audio and video streaming servers, automotive and communication systems in general. Running these applications on a traditional system (Hardware + Operating System guarantee their Quality of Service (QoS; virtualizing them means inserting a new layer between the hardware and the (virtual Operating System (OS, and thus adding extra overhead. Although these applications’ areas do not always demand hard time guarantees, they require the underlying virtualization layer supports low latency and provide adequate computational resources for completion within a reasonable or predictable timeframe. These aspects are intimately intertwined with the logic of the hypervisor scheduler. In this paper, a series of tests are conducted on three hypervisors (VMware ESXi, Hyper-V server and Xen to provide a benchmark of the latencies added to the applications running on top of them. These tests are conducted for different scenarios (use cases to take into consideration all the parameters and configurations of the hypervisors’ schedulers. Finally, this benchmark can be used as a reference for choosing the best hypervisor-application combination.

  5. The Colliderscope: a real-time show

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    Ninety-six LED lights distributed over the facade of the Niels Bohr Institute (NBI) in Blegdamsvej (Denmark) reproduce the actual signals coming from the Transition Radiation Detector (TRT) in ATLAS. Thanks to the Colliderscope, when a collision occurs below the ground in Geneva, people passing by in Blegdamsvej will be aware of it almost in real-time.   Niels Bohr Institute facade lit up to reflect the latest data from ATLAS-TRT . The pattern, intensity and duration of the Colliderscope’s flashes of light depend on the physical parameters of particles crossing the ATLAS TRT detector. “At the Colliderscope very little happens randomly”, explains Troels Petersen, a physicist at NBI and one of the people who conceived it. “Particularly interesting events, such as electrons, are shown by a bright light that remains on the facade for several seconds”. The Niels Bohr Institute has participated in the development of the TRT detector, and this is why t...

  6. Formal Specification of Real-Time Systems

    Energy Technology Data Exchange (ETDEWEB)

    Groven, Arne-Kristian

    1996-07-01

    This report presents the results of a study on formal specification of real-time distributed control systems. Emphasis has been but on the ability to describe both system architecture, system functionality and timed system behaviour inside the same formal framework. A timed extension of the ISO standardized formal description language LOTOS (ISO 8807), called TE-LOTOS, has been used for describing the timed behaviour. The functionality can be described in LOTOS, which is a subset of the timed extension. A graphical notation has been used for describing system architecture, transformable to a subset of LOTOS. This methodology has been used to specify a test example, a steam-boiler control system. Modularization of the specification is an important issue. This is achieved by isolating the time-dependent aspect in one part of the specification, and the system functionality in another. This modularization facilitates the separation of general aspect from the more specific aspects. This is demonstrated by comparison with another type of control systems, the APRM system (HWR-397). (author)

  7. Real-Time Principal-Component Analysis

    Science.gov (United States)

    Duong, Vu; Duong, Tuan

    2005-01-01

    A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in Method of Real-Time Principal-Component Analysis (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59. To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

  8. Real time model for public transportation management

    Directory of Open Access Journals (Sweden)

    Ireneusz Celiński

    2014-03-01

    Full Text Available Background: The article outlines managing a public transportation fleet in the dynamic aspect. There are currently many technical possibilities of identifying demand in the transportation network. It is also possible to indicate legitimate basis of estimating and steering demand. The article describes a general public transportation fleet management concept based on balancing demand and supply. Material and methods: The presented method utilizes a matrix description of demand for transportation based on telemetric and telecommunication data. Emphasis was placed mainly on a general concept and not the manner in which data was collected by other researchers.  Results: The above model gave results in the form of a system for managing a fleet in real-time. The objective of the system is also to optimally utilize means of transportation at the disposal of service providers. Conclusions: The presented concept enables a new perspective on managing public transportation fleets. In case of implementation, the project would facilitate, among others, designing dynamic timetables, updated based on observed demand, and even designing dynamic points of access to public transportation lines. Further research should encompass so-called rerouting based on dynamic measurements of the characteristics of the transportation system.

  9. Real-Time Optical Antimicrobial Susceptibility Testing

    Science.gov (United States)

    Andersen, Klaus R.; Jørgensen, Erik; Droce, Aida; Olesen, Tom; Jensen, Bent B.; Rosenvinge, Flemming S.; Sondergaard, Teis E.

    2013-01-01

    Rapid antibiotic susceptibility testing is in high demand in health care fields as antimicrobial-resistant bacterial strains emerge and spread. Here, we describe an optical screening system (oCelloScope) which, based on time-lapse imaging of 96 bacteria-antibiotic combinations at a time, introduces real-time detection of bacterial growth and antimicrobial susceptibility with imaging material to support the automatically generated graphs. Automated antibiotic susceptibility tests of a monoculture showed statistically significant antibiotic effects within 6 min and within 30 min in complex samples from pigs suffering from catheter-associated urinary tract infections. The oCelloScope system provides a fast high-throughput screening method for detecting bacterial susceptibility that might entail an earlier diagnosis and introduction of appropriate targeted therapy and thus combat the threat from multidrug-resistant pathogenic bacteria. The oCelloScope system can be employed for a broad range of applications within bacteriology and might present new vistas as a point-of-care instrument in clinical and veterinary settings. PMID:23596243

  10. Mobility and language change in real time

    DEFF Research Database (Denmark)

    Monka, Malene

    Diachronic studies of the interrelationship between mobility and language change leave us with some unanswered questions of causation. The most important question is whether language change is caused by mobility, or if mobile informants mark themselves linguistically different than their non-mobi...... mobile and non-mobile informants. I also suggest a human geographic approach to place to explain the differences between the language change of the mobile informants (e.g. Britain 2009; Johnstone 2004).......Diachronic studies of the interrelationship between mobility and language change leave us with some unanswered questions of causation. The most important question is whether language change is caused by mobility, or if mobile informants mark themselves linguistically different than their non-mobile...... peers prior to being geographically and socially mobile (e.g. Andersson & Thelander 1994). In the presentation I discuss this question by presenting a real time panel-study of language change in 23 speakers from three municipalities in distinct dialect areas in Denmark. The language change of six mobile...

  11. Real-time control of beam parameters

    CERN Document Server

    Dehler, M

    2008-01-01

    This article gives an overview of the theory and application of real-time control of accelerator beams. The design and structure of orbit feedbacks are described, going from basic local feedbacks to modern state-of-the art global systems. The time domain behaviour is analysed for the building blocks of the systems as well as from the spectrum of random sources driving the orbit perturbations. The use of predictive ltering is shown for the design of the control algorithm. A second important class is the control of tunes and chromaticities. Advanced tune measurements are performed using a digital phase-locked loop. The feedback systems are typically hybrid, simultaneously working on tune and coupling and chromaticity. Adaptive feed-forward algorithms are shown to be a suitable approach for use in energy ramping. For application in a high-speed bunch-by-bunch feedback system, ef cient low-noise data processing is presented for a digital lter. Also here, predictive ltering is shown to give well-adapted high-order...

  12. The Fast Tracker Real Time Processor

    CERN Document Server

    Annovi, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the SLHC Phase I level and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting massive parallelism of associative memories [2] that ...

  13. Near real-time skin deformation mapping

    Science.gov (United States)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  14. A UML Package for Specifying Real-Time Objects

    National Research Council Canada - National Science Library

    DiPippo, Lisa C; Ma, Lynn

    1999-01-01

    .... This paper presents a UML package for specifying real-time objects called RT-Object. The constructs in the package are based on the objects of the RTSORAC "Real-Time Semantic Objects Relationships And Constraints" model...

  15. Application of real-time GPS to earthquake early warning

    National Research Council Canada - National Science Library

    Richard M. Allen; Alon Ziv

    2011-01-01

      Real-time GPS can provide static-offset observations during an earthquake Real-time GPS provides a robust constrain on magnitude for warnings GPS networks should be used as a companion to seismic...

  16. Specification and Automated Verification of Real-Time Behaviour

    DEFF Research Database (Denmark)

    Andersen, J.H.; Kristensen, C.H.; Skou, A.

    1996-01-01

    In this paper we sketch a method for specification and automatic verification of real-time software properties.......In this paper we sketch a method for specification and automatic verification of real-time software properties....

  17. Specification and Automated Verification of Real-Time Behaviour

    DEFF Research Database (Denmark)

    Kristensen, C.H.; Andersen, J.H.; Skou, A.

    1995-01-01

    In this paper we sketch a method for specification and automatic verification of real-time software properties.......In this paper we sketch a method for specification and automatic verification of real-time software properties....

  18. ClockWork: a Real-Time Feasibility Analysis Tool

    NARCIS (Netherlands)

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  19. Congestion Management Strategies of Real-Time Market

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2014-01-01

    market among different regions. For handling this, the Real-Time Market is proposed for balancing capacity trading against congestions. Several strategies for Real-Time Market dealing with congestions are proposed. The strategy of two-stage crossborder markets in Day-ahead, Intra-day and Real Time Market...

  20. A Real-Time Ethernet Network at Home

    NARCIS (Netherlands)

    Harbour, M.G.; Hanssen, F.T.Y.; Hartel, Pieter H.; Hattink, T.; Jansen, P.G.; Wijnberg, J.; Scholten, Johan

    This paper shows the current state of our research into a home network which provides both real-time and non-real-time capabilities for one coherent, distributed architecture. It is based on a new type of real-time token protocol that uses scheduling to achieve optimal token-routing in the network.

  1. A test generation framework for quiescent real-time systems

    NARCIS (Netherlands)

    Brandan Briones, L.; Brinksma, Hendrik; Grabowski, J.; Nielsen, B.

    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal

  2. The real-time price elasticity of electricity

    NARCIS (Netherlands)

    Lijesen, M.G.

    2007-01-01

    The real-time price elasticity of electricity contains important information on the demand response of consumers to the volatility of peak prices. Despite the importance, empirical estimates of the real-time elasticity are hardly available. This paper provides a quantification of the real-time

  3. Public Science with Real-Time Experiments

    Science.gov (United States)

    Lenardic, A.

    2013-12-01

    One of the best ways for professional scientists to engage in public outreach is to get outside of the university and/or lab walls and go out into the public. That is, go to public spaces to do some science experiments with the public - this includes students of all ages that constitute that public. Technological advance in portable measurement gear now allow one to do real, or near real, time experiments in outdoor, public spaces. We have been running a meta-experiment of this sort, aimed at the public display of science, for about a year now in Houston TX at the Lee and Joe Jamail Skatepark. The project goes under the title of Sk8Lab Houston and has introduced students of all ages to the power of scientific experimentation. We bring a portable science pack with us to the park. The pack has a range of wireless measurement gear that allow experiments to be done on the spot. Some of the experiments are designed by us but many are designed on by whoever suggests them to us that day. Over time the Sk8Lab scientists have built up a level of "trust" with the people who frequent the park (no one feels like we are gonna grade them at the park and they know that the learning is not on some regimented clock). This has broken down some learning walls and allowed for a more informal mode of exploration and a more genuine mode of experimentation (as compared to what often happens in class labs when students feel like they are just being forced to reproduce some known result). We will describe some of the test case experiments we have run and also discuss some of the trials, tribulations, and happy successes (many unplanned) along the way.

  4. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  5. A real-time prediction of UTC

    Science.gov (United States)

    Thomas, Claudine; Allan, David W.

    1994-01-01

    The reference time scale for all scientific and technologic applications on the Earth, the Universal Coordinated Time (UTC), must be as stable, reliable, and accurate as possible. With this in view the BIPM and before it the BIH, have always calculated and then disseminated UTC with a delay of about 80 days. There are three fundamental reasons for doing this: (1) It takes some weeks for data, gathered from some 200 clocks spread world-wide, to be collected and for errors to be eliminated; (2) changes in clock rates can only be measured with high precision well after the fact; and (3) the measurement noise originating in time links, in particular using Loran-C, is smoothed out only when averaging over an extended period. Until mid-1992, the ultimate stability of UTC was reached at averaging times of about 100 days and corresponded to an Allan deviation sigma(sub y)(tau) of about 1,5x10(exp -14) then compared to the best primary clock in the world, the PTB CS2. For several years now, a predicted UTC has been computed by the USNO through an extrapolation of the values as published in deferred time by the BIPM. This is made available through the USNO Series 4, through the USNO Automated Data Service, and through GPS signals. Due to the instability of UTC, the poor predictability of the available clocks, and the intentional SA degradation of GPS signals, the real-time access to this extrapolated UTC has represented the true deferred-time UTC only to within several hundreds of nanoseconds.

  6. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  7. The evolution of real-time PCR machines to real-time PCR chips.

    Science.gov (United States)

    Lee, Dasheng; Chen, Pei-Jer; Lee, Gwo-Bin

    2010-03-15

    Development of Micro-Electro-Mechanical Systems (MEMS) technology has recently allowed the migration of real-time polymerase chain reaction (PCR) machines to lab-on-a-chip systems. The miniaturization of biological instruments has been studied extensively, with several prototypes constructed and tested. In this study, the lab-on-a-chip system is evaluated; its DNA quantification is estimated by theorems, and the specifications of proposed chip prototypes are compared with the original machines. The analysis results suggest five hypotheses. Using experiments and the data collected from published papers, these hypotheses were either verified or rejected, and the advantages and shortcomings of real-time PCR chips were identified. The proven advantages of the lab-on-a-chip system are its compact size, low sample volume to nano-liter, and short analysis time-less than 10s to complete one PCR cycle and 370 s for completing the whole quantification process. However, the detection limits, quantification uncertainties, and melting analysis ability of the chip prototypes are at best comparable to, and perhaps worse than, those of commercial instruments. Real-time PCR chips are not perfectly accurate diagnostic tools for a laboratory but they have advantages over traditional techniques for point-of-care testing. (c) 2009 Elsevier B.V. All rights reserved.

  8. Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

    Science.gov (United States)

    Lal-Nag, Madhu; McGee, Lauren; Titus, Steven A; Brimacombe, Kyle; Michael, Sam; Sittampalam, Gurusingham; Ferrer, Marc

    2017-06-01

    Two-dimensional monolayer cell proliferation assays for cancer drug discovery have made the implementation of large-scale screens feasible but only seem to reflect a simplified view that oncogenes or tumor suppressor genes are the genetic drivers of cancer cell proliferation. However, there is now increased evidence that the cellular and physiological context in which these oncogenic events occur play a key role in how they drive tumor growth in vivo and, therefore, in how tumors respond to drug treatments. In vitro 3D spheroid tumor models are being developed to better mimic the physiology of tumors in vivo, in an attempt to improve the predictability and efficiency of drug discovery for the treatment of cancer. Here we describe the establishment of a real-time 3D spheroid growth, 384-well screening assay. The cells used in this study constitutively expressed green fluorescent protein (GFP), which enabled the real-time monitoring of spheroid formation and the effect of chemotherapeutic agents on spheroid size at different time points of sphere growth and drug treatment. This real-time 3D spheroid assay platform represents a first step toward the replication in vitro of drug dosing regimens being investigated in vivo. We hope that further development of this assay platform will allow the investigation of drug dosing regimens, efficacy, and resistance before preclinical and clinical studies.

  9. ControlShell - A real-time software framework

    Science.gov (United States)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  10. Real Time Wide Area Radiation Surveillance System

    Science.gov (United States)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  11. Instrumentation development for real time brainwave monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could

  12. Real-time Forensic Disaster Analysis

    Science.gov (United States)

    Wenzel, F.; Daniell, J.; Khazai, B.; Mühr, B.; Kunz-Plapp, T.; Markus, M.; Vervaeck, A.

    2012-04-01

    The Center for Disaster Management and Risk Reduction Technology (CEDIM, www.cedim.de) - an interdisciplinary research center founded by the German Research Centre for Geoscience (GFZ) and Karlsruhe Institute of Technology (KIT) - has embarked on a new style of disaster research known as Forensic Disaster Analysis. The notion has been coined by the Integrated Research on Disaster Risk initiative (IRDR, www.irdrinternational.org) launched by ICSU in 2010. It has been defined as an approach to studying natural disasters that aims at uncovering the root causes of disasters through in-depth investigations that go beyond the reconnaissance reports and case studies typically conducted after disasters. In adopting this comprehensive understanding of disasters CEDIM adds a real-time component to the assessment and evaluation process. By comprehensive we mean that most if not all relevant aspects of disasters are considered and jointly analysed. This includes the impact (human, economy, and infrastructure), comparisons with recent historic events, social vulnerability, reconstruction and long-term impacts on livelihood issues. The forensic disaster analysis research mode is thus best characterized as "event-based research" through systematic investigation of critical issues arising after a disaster across various inter-related areas. The forensic approach requires (a) availability of global data bases regarding previous earthquake losses, socio-economic parameters, building stock information, etc.; (b) leveraging platforms such as the EERI clearing house, relief-web, and the many sources of local and international sources where information is organized; and (c) rapid access to critical information (e.g., crowd sourcing techniques) to improve our understanding of the complex dynamics of disasters. The main scientific questions being addressed are: What are critical factors that control loss of life, of infrastructure, and for economy? What are the critical interactions

  13. Real time UAV autonomy through offline calculations

    Science.gov (United States)

    Jung, Sunghun

    . Once one or several targets are detected, UAVs near the target are manipulated to approach to the target. If the number of detected targets is more than one, UAVs are evenly grouped to track targets. After a specific period of time, UAVs hand off and continue their original tasks. Thirdly, Emergency algorithm is generated to avoid losses of UAVs when UAVs have system failures. If one UAV is out of fuel or control during the mission, the Emergency algorithm brings the malfunctioning UAV to the point of departure and let the rest UAVs to continue an aerial reconnaissance. An UAV which finishes its task the earliest will continue to search a region which the failed UAV is supposed to search. In addition, Emergency algorithm prevents UAVs colliding into each other by using emergency altitude. Overall, the framework developed here facilitates the solution of several mission planning problems. The robustness built into our discretization of space and time permits feedback corrections on real-time to vehicle trajectories. The library of off-line solutions proposed and developed here minimizes computational overhead during operations.

  14. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the

  15. Advancements in real-time engine simulation technology

    Science.gov (United States)

    Szuch, J. R.

    1982-01-01

    The approaches used to develop real-time engine simulations are reviewed. Both digital and hybrid (analog and digital) techniques are discussed and specific examples of each are cited. These approaches are assessed from the standpoint of their usefulness for digital engine control development. A number of NASA-sponsored simulation research activities, aimed at exploring real-time simulation techniques, are described. These include the development of a microcomputer-based, parallel processor system for real-time engine simulation.

  16. Multiprocessor Real-Time Locking Protocols for Replicated Resources

    Science.gov (United States)

    2016-07-01

    11. [3] G. Elliott. Real - Time Scheduling of GPUs , with Applications in Ad- vanced Automotive Systems. PhD thesis, University of North Car- olina... schedulability . In RTSS ’15. [16] M. Yang, H. Lei, Y. Liao, and F. Rabee. PK-OMLP: An OMLP based k-exclusion real - time locking protocol for multi- GPU ...B. Brandenburg. Scheduling and Locking in Multiprocessor Real - Time Operating Systems. PhD thesis, University of North Carolina, Chapel Hill, NC

  17. UML for real design of embedded real-time systems

    CERN Document Server

    Martin, Grant; Selic, Bran

    2003-01-01

    Models, Software Models and UML.- UML for Real-Time.- Structural Modeling with UML 2.0.- Message Sequence Charts.- UML and Platform-based Design.- UML for Hardware and Software Object Modeling.- Fine Grained Patterns for Real-Time Systems.- Architectural Patterns for Real-Time Systems.- Modeling Quality of Service with UML.- Modeling Metric Time.- Performance Analysis with UML.- Schedulability Analysis with UML.- Automotive UML.- Specifying Telecommunications Systems with UML.- Leveraging UML to Deliver Correct Telecom Applications.- Software Performance Engineering.

  18. Advanced real-time manipulation of video streams

    CERN Document Server

    Herling, Jan

    2014-01-01

    Diminished Reality is a new fascinating technology that removes real-world content from live video streams. This sensational live video manipulation actually removes real objects and generates a coherent video stream in real-time. Viewers cannot detect modified content. Existing approaches are restricted to moving objects and static or almost static cameras and do not allow real-time manipulation of video content. Jan Herling presents a new and innovative approach for real-time object removal with arbitrary camera movements.

  19. Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time bioluminescence imaging

    DEFF Research Database (Denmark)

    Bartkova, Simona; Kokotovic, Branko; Dalsgaard, Inger

    2017-01-01

    Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here...

  20. Building Real-Time Collaborative Applications with a Federated Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Ojanguren-Menendez

    2015-12-01

    Full Text Available Real-time collaboration is being offered by multiple libraries and APIs (Google Drive Real-time API, Microsoft Real-Time Communications API, TogetherJS, ShareJS, rapidly becoming a mainstream option for webservices developers. However, they are offered as centralised services running in a single server, regardless if they are free/open source or proprietary software. After re-engineering Apache Wave (former Google Wave, we can now provide the first decentralised and federated free/open source alternative. The new API allows to develop new real-time collaborative web applications in both JavaScript and Java environments.

  1. Real time laser speckle imaging monitoring vascular targeted photodynamic therapy

    Science.gov (United States)

    Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor

    2017-02-01

    Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.

  2. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    Science.gov (United States)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  3. An image retrieval framework for real-time endoscopic image retargeting.

    Science.gov (United States)

    Ye, Menglong; Johns, Edward; Walter, Benjamin; Meining, Alexander; Yang, Guang-Zhong

    2017-08-01

    Serial endoscopic examinations of a patient are important for early diagnosis of malignancies in the gastrointestinal tract. However, retargeting for optical biopsy is challenging due to extensive tissue variations between examinations, requiring the method to be tolerant to these changes whilst enabling real-time retargeting. This work presents an image retrieval framework for inter-examination retargeting. We propose both a novel image descriptor tolerant of long-term tissue changes and a novel descriptor matching method in real time. The descriptor is based on histograms generated from regional intensity comparisons over multiple scales, offering stability over long-term appearance changes at the higher levels, whilst remaining discriminative at the lower levels. The matching method then learns a hashing function using random forests, to compress the string and allow for fast image comparison by a simple Hamming distance metric. A dataset that contains 13 in vivo gastrointestinal videos was collected from six patients, representing serial examinations of each patient, which includes videos captured with significant time intervals. Precision-recall for retargeting shows that our new descriptor outperforms a number of alternative descriptors, whilst our hashing method outperforms a number of alternative hashing approaches. We have proposed a novel framework for optical biopsy in serial endoscopic examinations. A new descriptor, combined with a novel hashing method, achieves state-of-the-art retargeting, with validation on in vivo videos from six patients. Real-time performance also allows for practical integration without disturbing the existing clinical workflow.

  4. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical....... The upper and lower bounds for a 95% confidence interval of 0.974 and 0.792 respectively, were calculated. The MSTDA was below 25 for the common carotid artery and above 25 for the carotid bulb. Thus, the MSTDA value can distinguishing complex flow from non-complex flow and can be used as the basis...

  5. Preliminary comparison between real-time in-vivo spectral and transverse oscillation velocity estimates

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2011-01-01

    Spectral velocity estimation is considered the gold standard in medical ultrasound. Peak systole (PS), end diastole (ED), and resistive index (RI) are used clinically. Angle correction is performed using a flow angle set manually. With Transverse Oscillation (TO) velocity estimates the flow angle.......87±0.05 ; 0.79±0.21 ; 0.79±0.06 }, and spectral RI { 0.77 ; 0.88 ; 0.73 }. Vector angles are within ±two std of the spectral angle. TO velocity estimates are within ±three std of the spectral estimates. RITO are within ±two std of the spectral estimates. Preliminary data indicates that the TO and spectral...

  6. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  7. An algorithm for learning real-time automata

    NARCIS (Netherlands)

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2007-01-01

    We describe an algorithm for learning simple timed automata, known as real-time automata. The transitions of real-time automata can have a temporal constraint on the time of occurrence of the current symbol relative to the previous symbol. The learning algorithm is similar to the redblue fringe

  8. Real-Time PCR for Universal Phytoplasma Detection and Quantification

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Nyskjold, Henriette; Nicolaisen, Mogens

    2013-01-01

    Currently, the most efficient detection and precise quantification of phytoplasmas is by real-time PCR. Compared to nested PCR, this method is less sensitive to contamination and is less work intensive. Therefore, a universal real-time PCR method will be valuable in screening programs and in other...

  9. Innovative Tools for Real-Time Simulation of Dynamic Systems

    NARCIS (Netherlands)

    Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio

    In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the

  10. Energy efficient approach for transient fault recovery in real time ...

    African Journals Online (AJOL)

    DR OKE

    in which missing the deadline may cause a failure and soft real time system, in which missing deadline may be consider. Most of these systems are time critical ..... of experience in teaching and research. His current area of research includes Real Time System, Algorithm, Microprocessor, Embedded System and Computer.

  11. Operational and logical semantics for polling real-time systems

    NARCIS (Netherlands)

    Anders, P.R.; Dierks, Henning; Fehnker, Ansgar; Rischel, H.; Fehnker, Ansgar; Mader, Angelika H.; Vaandrager, Frits

    PLC-Automata are a class of real-time automata suitable to describe the behavior of polling real-time systems. PLC-Automata can be compiled to source code for PLCs, a hardware widely used in industry to control processes. Also, PLC-Automata have been equipped with a logical and operational

  12. Amplification of real-time high resolution melting analysis PCR ...

    African Journals Online (AJOL)

    In this study, we assessed the usefulness of eight common primers amplifying the respective genes in real-time high resolution melting analysis PCR (real-time HRMA PCR) in terms of time, cost and sensitivity with respect to PCR-SSCP method. We found that case sample can easily be differentiated from control sample by ...

  13. Real-Time Global Illumination using Topological Information

    OpenAIRE

    Noël, Laurent; Biri, Venceslas

    2014-01-01

    International audience; Indirect Illumination is a key element to achieve realistic rendering. Unfortunately, since computing this effect is costly, there are few methods that render it with real-time frame rates. In this paper we present a new method based on virtual point lights and topological information about the scene to render indirect illumination in real-time.

  14. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian

    2009-01-01

    subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking...

  15. A Real-Time Ethernet Network at Home

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Hartel, Pieter H.; Hattink, T.; Jansen, P.G.; Scholten, Johan; Wijnberg, J.

    This paper shows the current state of our research into a home network which provides both real-time and non-realtime capabilities for one coherent, distributed architecture. It is based on a new type of real-time token protocol that uses scheduling to achieve optimal token-routing in the network.

  16. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  17. Innovative tools for real-time simulation of dynamic systems

    NARCIS (Netherlands)

    Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio

    2008-01-01

    In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the

  18. Real Time Synchronization for Creativity in Distributed Innovation Teams

    DEFF Research Database (Denmark)

    Peitersen, Dennis Kjaersgaard; Dolog, Peter; Pedersen, Esben Staunsbjerg

    2009-01-01

    In this paper we introduce a synchronization approach for real time collaborative sketching for creativity in distributed innovation teams. We base our approach on reverse AJAX. This way we ensure scalable solution for real time drawing and sketching important in creativity settings....

  19. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  20. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  1. Real-time garbage collection for a multithreaded Java microcontroller

    OpenAIRE

    Pfeffer, Matthias

    2001-01-01

    Real-time garbage collection for a multithreaded Java microcontroller / M. Pfeffer ... - In: International Symposium on Object Oriented Real Time Distributed Computing : Proceedings : 2 - 4 May 2001, Magdeburg, Germany. - Los Alamitos, Calif. [u.a.] : IEEE Computer Soc., 2001. - S. 69-76

  2. Real-Time Adaptation of Influence Strategies in Online Selling

    NARCIS (Netherlands)

    Kaptein, M.C.; Parvinen, P.

    2014-01-01

    Real-time adjustments in online selling are becoming increasingly common. In this paper we describe a novel method of real-time adaptation, and introduce influence strategies as a useful level of analysis for personalization of online selling. The proposed method incorporates three perspectives on

  3. 75 FR 68418 - Real-Time System Management Information Program

    Science.gov (United States)

    2010-11-08

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... System Management Information Program that provides, in all States, the capability to monitor, in real... traveler information. The purposes of the Real-Time System Management Information Program are to: (1...

  4. Compilation and synthesis for real-time embedded controllers

    DEFF Research Database (Denmark)

    Fränzle, Martin; Müller-Olm, Markus

    1999-01-01

    This article provides an overview over two constructive approaches to provably correct hard real-time code generation where hard real-time code is generated from abstract requirements rather than verified against the timing requirements a posteriori. The first, more pragmatic approach is concerne...

  5. Real-Time Simulation of a Smart Inverter

    Science.gov (United States)

    Thiagarajan, Ramanathan

    With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power and communication capabilities. The inverter should be able to communicate with the grid utility and other inverter modules. This thesis studies the real time simulation of smart inverters using PLECS Real Time Box. The real time simulation is performed as a Controller Hardware in the Loop (CHIL) real time simulation. In this thesis, the power stage of the smart inverter is emulated in the PLECS Real Time Box and the controller stage of the inverter is programmed in the Digital Signal Processor (DSP) connected to the real time box. The power stage emulated in the real time box and the controller implemented in the DSP form a closed loop smart inverter. This smart inverter, with power stage and controller together, is then connected to an OPAL-RT simulator which emulates the power distribution system of the Arizona State University Poly campus. The smart inverter then sends and receives commands to supply power and support the grid. The results of the smart inverter with the PLECS Real time box and the smart inverter connected to an emulated distribution system are discussed under various conditions based on the commands received by the smart inverter.

  6. Process algebra with timing: Real time and discrete time

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    1999-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The startingpoint is a new real time version with absolute timing, called ACPsat , featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  7. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  8. Formalizing Real-Time Embedded System into Promela

    Directory of Open Access Journals (Sweden)

    Sukvanich Punwess

    2015-01-01

    Full Text Available We propose an alternative of formalization of the real-time embedded system into Promela model. The proposed formal model supports the essential features of the real-time embedded system, including system resource-constrained handling, task prioritization, task synchronization, real-time preemption, the parallelism of resources via DMA. Meanwhile, the model is also fully compatible with the partial order reduction algorithm for model checking. The timed automata of the real-time embedded system are considered and transformed into Promela, in our approach, by replacing time ticking into the repeated cycle of the timed values to do the conditional guard to enable the synchronization among the whole system operations. Our modeling approach could satisfactorily verify a small real-time system with parameterized dependent tasks and different scheduling topologies.

  9. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  10. A real-time photogrammetry system based on embedded architecture

    Directory of Open Access Journals (Sweden)

    S. Y. Zheng

    2014-06-01

    Full Text Available In order to meet the demand of real-time spatial data processing and improve the online processing capability of photogrammetric system, a kind of real-time photogrammetry method is proposed in this paper. According to the proposed method, system based on embedded architecture is then designed: using FPGA, ARM+DSP and other embedded computing technology to build specialized hardware operating environment, transplanting and optimizing the existing photogrammetric algorithm to the embedded system, and finally real-time photogrammetric data processing is realized. At last, aerial photogrammetric experiment shows that the method can achieve high-speed and stable on-line processing of photogrammetric data. And the experiment also verifies the feasibility of the proposed real-time photogrammetric system based on embedded architecture. It is the first time to realize real-time aerial photogrammetric system, which can improve the online processing efficiency of photogrammetry to a higher level and broaden the application field of photogrammetry.

  11. Academic Training: Real Time Process Control - Lecture series

    CERN Document Server

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 7, 8 and 9 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Real Time Process Control T. Riesco / CERN-TS What exactly is meant by Real-time? There are several definitions of real-time, most of them contradictory. Unfortunately the topic is controversial, and there does not seem to be 100% agreement over the terminology. Real-time applications are becoming increasingly important in our daily lives and can be found in diverse environments such as the automatic braking system on an automobile, a lottery ticket system, or robotic environmental samplers on a space station. These lectures will introduce concepts and theory like basic concepts timing constraints, task scheduling, periodic server mechanisms, hard and soft real-time.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  12. A SiPM based real time dosimeter for radiotherapic beams

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Conti, V. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Lietti, D.; Milan, L.; Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria, Como (Italy); Prest, M.; Romanó, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2015-02-11

    This paper describes the development of a scintillator dosimeter prototype for radiotherapic applications based on plastic scintillating fibers readout by Silicon PhotoMultipliers. The dosimeter, whose probes are water equivalent, could be used for quality control measurements, beam characterization and in vivo dosimetry, allowing a real time measurement of the dose spatial distribution. This paper describes the preliminary percentual depth dose scan performed with clinical 6 and 18 MV photon beams, comparing the results with a reference curve. The measurements were performed using a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT). The prototype has given promising results, allowing real time measurements of relative dose without applying any correction factors.

  13. An IR navigation system for real-time treatment guidance of Pleural PDT

    Science.gov (United States)

    Zhu, Timothy C.; Liang, Xing; Chang, Chang; Sandell, Julia; Finlay, Jarod C.; Dimofte, Andreea; Rodrigeus, Carmen; Cengel, Keith; Friedberg, Joseph; Glatstein, Eli; Hahn, Stephen M.

    2015-01-01

    Uniform light fluence distribution for patients undergoing photodynamic therapy (PDT) is critical to ensure predictable PDT outcome. However, common practice uses a point source to deliver light to the pleural cavity with the light uniformity monitored by 7 detectors placed within the pleural cavity. To improve the uniformity of light fluence rate distribution, we have used a real-time infrared (IR) tracking camera to track the movement of the light point source. The same tracking device is used to determine the surface contour of the treatment area. This study examines the light fluence (rate) delivered between the measurement and calculation in phantom studies. Isotropic detectors were used for in-vivo light dosimetry. Light fluence rate in the pleural cavity is calculated and compared with the in-vivo calculation. Phantom studies show that the surface contour can be determined with an accuracy of 2 mm, with maximum deviation of 5 mm. We can successfully match the calculated light fluence rates with the in-vivo measurements. Preliminary results indicate that the light fluence rate can have up to 50% deviation compared to the prescription in phantom experiments. The IR camera has been used successfully in pleural PDT patient treatment to track the motion of light source in real-time. We concluded that it is feasible to develop an IR camera based system to guide the motion of the light source to improve the uniformity of light distribution. PMID:26005244

  14. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  15. Space Shuttle Main Engine real time stability analysis

    Science.gov (United States)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  16. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  17. Development of real-time GNSS ZTD products

    Science.gov (United States)

    Dousa, Jan; Vaclavovic, Pavel; Gyori, Gabriel; Kostelecky, Jan

    2013-04-01

    Geodetic Observatory Pecný (GOP) has been routinely estimating near real-time zenith total delay (ZTD) parameters from GPS permanent stations since 2001. Currently, the GOP ZTDs are assimilated in several meteorological institutions. During last years new other tropospheric products were developed at GOP: 1) global hourly ZTD product, 2) multi-GNSS (GPS+GLONASS) regional ZTD product and 3) real-time ZTD product. All operationally running hourly updated ZTD solutions (stand-alone GPS, multi-GNSS and global) are based on the processing of batch data in a differential mode and using Bernese GNSS software and IGS ultra-rapid orbits. New real-time ZTD solution is implemented with completely different strategy - the Precise Point Positioning (PPP) and filtering technique - using real-time data streams and products and applying new developed software in GOP. Firstly, the presentation gives a brief introduction into the in-house software library (G-Nut) development and into the specific end-user application Tefnut, which was implemented for PPP-based tropospheric estimates in post-processing, near real-time and real-time modes. Tefnut is ready for its first release, which will be available through www.pecny.cz. Secondly, ZTDs based on new software and strategy were evaluated with respect to the precise products from EUREF and IGS using a benchmark campaing over 40 days. Statistical evaluation included both post-processing and real-time (simulated) mode. Finally, an operational real-time performance of new product is demonstrated, which is aimed for the now-casting and severe weather monitoring applications. Statistical ZTD results (standard deviations of 5-8 mm) proved that PPP using IGS real-time orbit and clock products are already well suitable to fulfill the requirements of now-casting applications. Ongoing work is assessing an optimal balance between the timelines and the product quality.

  18. Expert systems for real-time monitoring and fault diagnosis

    Science.gov (United States)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  19. Real-time embedded systems design principles and engineering practices

    CERN Document Server

    Fan, Xiaocong

    2015-01-01

    This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you

  20. Quantification using real-time PCR technology: applications and limitations.

    Science.gov (United States)

    Klein, Dieter

    2002-06-01

    The introduction of real-time PCR technology has significantly improved and simplified the quantification of nucleic acids, and this technology has become an invaluable tool for many scientists working in different disciplines. Especially in the field of molecular diagnostics, real-time PCR-based assays have gained favour in the recent past. However, the wide use of real-time PCR methods has also highlighted some of the critical points and limitations of these assays. These aspects must be considered to increase the reliability of the obtained data.

  1. Method for Real-Time Model Based Structural Anomaly Detection

    Science.gov (United States)

    Smith, Timothy A. (Inventor); Urnes, James M., Sr. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  2. Real Time Target Tracking in a Phantom Using Ultrasonic Imaging

    Science.gov (United States)

    Xiao, X.; Corner, G.; Huang, Z.

    In this paper we present a real-time ultrasound image guidance method suitable for tracking the motion of tumors. A 2D ultrasound based motion tracking system was evaluated. A robot was used to control the focused ultrasound and position it at the target that has been segmented from a real-time ultrasound video. Tracking accuracy and precision were investigated using a lesion mimicking phantom. Experiments have been conducted and results show sufficient efficiency of the image guidance algorithm. This work could be developed as the foundation for combining the real time ultrasound imaging tracking and MRI thermometry monitoring non-invasive surgery.

  3. Real-time simulation of hand motion for prosthesis control.

    Science.gov (United States)

    Blana, Dimitra; Chadwick, Edward K; van den Bogert, Antonie J; Murray, Wendy M

    2017-04-01

    Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control.

  4. Unified Modeling of Complex Real-Time Control Systems

    OpenAIRE

    Hai, He; Yi-Fang, Zhong; Chi-lan, Cai

    2005-01-01

    Submitted on behalf of EDAA (http://www.edaa.com/); International audience; Complex real-time control system is a software dense and algorithms dense system, which needs modern software engineering techniques to design. UML is an object-oriented industrial standard modeling language, used more and more in real-time domain. This paper first analyses the advantages and problems of using UML for real-time control systems design. Then, it proposes an extension of UML-RT to support time-continuous...

  5. Information display and interaction in real-time environments

    Science.gov (United States)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  6. The real-time interactive 3-D-DVA for robust coronary MRA.

    Science.gov (United States)

    Sachs, T S; Meyer, C H; Pauly, J M; Hu, B S; Nishimura, D G; Macovski, A

    2000-02-01

    A graphical user interface (GUI) has been developed which enables interactive feedback and control to the real-time diminishing variance algorithm (DVA). This interactivity allows the user to set scan parameters, view scan statistics, and view image updates during the course of the scan. In addition, the DVA has been extended to simultaneously reduce motion artifacts in three dimensions using three orthogonal navigators. Preliminary in vivo studies indicate that these improvements to the standard DVA allow for significantly improved consistency and robustness in eliminating respiratory motion artifacts from MR images, particularly when imaging the coronary arteries.

  7. The Effects of Real-Time Interactive Multimedia Teleradiology System.

    Science.gov (United States)

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care.

  8. Optical Real-Time Space Radiation Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  9. Real-Time Smart Tools for Processing Spectroscopy Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose novel and real-time smart software tools to process spectroscopy data. Material abundance or compositional maps will be generated for rover guidance,...

  10. Real Time Control Software for Electromagnetic Formation Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  11. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  12. Specification and Compilation of Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Geuns, S.J.

    2015-01-01

    This thesis is concerned with the specification, compilation and corresponding temporal analysis of real-time stream processing applications that are executed on embedded multiprocessor systems. An example of such applications are software defined radio applications. These applications typically

  13. Real-time Position Control of Concentric Tube Robots.

    Science.gov (United States)

    Dupont, Pierre E; Lock, Jesse; Itkowitz, Brandon

    2010-05-03

    A novel approach to constructing robots is based on concentrically combining pre-curved elastic tubes. By rotating and extending the tubes with respect to each other, their curvatures interact elastically to position and orient the robot's tip, as well as to control the robot's shape along its length. Since these robots form slender curves, they are well suited for minimally invasive medical procedures. A substantial challenge to their practical use is the real-time solution of their kinematics that are described by differential equations with split boundary equations. This paper proposes a numerically efficient approach to real-time position control. It is shown that the forward kinematics are smooth functions that can be pre-computed and accurately approximated using Fourier series. The inverse kinematics can be solved in real time using root finding applied to the functional approximation. Experimental demonstration of real-time position control using this approach is also described.

  14. Algorithm Development for a Real-Time Military Noise Monitor

    National Research Council Canada - National Science Library

    Vipperman, Jeffrey S; Bucci, Brian

    2006-01-01

    The long-range goal of this 1-year SERDP Exploratory Development (SEED) project was to create an improved real-time, high-energy military impulse noise monitoring system that can detect events with peak levels (Lpk...

  15. True Time API Link (real time arrival info)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This link will take you to the site where you can create an account to access Port Authority's real time arrival information. To request access to Port Authority's...

  16. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  17. A reliable information management for real-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Takuo; Tomita, Seiji [Nippon Telegraph and Telephone Corp., Yokosuka, Kanagawa (Japan). Information and Communication Systems Labs.

    1995-08-01

    In this paper, we propose a system configuration suitable for the hard realtime systems in which integrity and durability of information are important. On most hard real-time systems, where response time constraints are critical, the data which program access are volatile, and may be lost in case the systems are down. But for some real-time systems, the value-added intelligent network (IN) systems, e.g., integrity and durability of the stored data are very important. We propose a distributed system configuration for such hard real-time systems, comprised of service control modules and data management modules. The service control modules process transactions and responses based on deadline control, and the data management modules deal the stored data based on information recovery schemes well-restablished in fault real-time systems. (author).

  18. Real-time PCR in the microbiology laboratory

    National Research Council Canada - National Science Library

    Mackay I.M

    2004-01-01

    .... However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised...

  19. Real-time data compression of broadcast video signals

    Science.gov (United States)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  20. 3D Flash LIDAR Real-Time Embedded Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  1. A Real-Time Embedded Kernel for Nonvisual Robotic Sensors

    Directory of Open Access Journals (Sweden)

    Kristijan Lenac

    2008-04-01

    Full Text Available We describe a novel and flexible real-time kernel, called Yartek, with low overhead and low footprint suitable for embedded systems. The motivation of this development was due to the difficulty to find a free and stable real-time kernel suitable for our necessities. Yartek has been developed on a Coldfire microcontroller. The real-time periodic tasks are scheduled using nonpreemptive EDF, while the non-real-time tasks are scheduled in background. It uses a deferred interrupt mechanism, and memory is managed using contiguous allocation. Also, a design methodology was devised for the nonpreemptive EDF scheduling, based on the computation of bounds on the periodic task durations. Finally, we describe a case study, namely, an embedded system developed with Yartek for the implementation of nonvisual perception for mobile robots. This application has been designed using the proposed design methodology.

  2. A Real-Time Embedded Kernel for Nonvisual Robotic Sensors

    Directory of Open Access Journals (Sweden)

    Mumolo Enzo

    2008-01-01

    Full Text Available Abstract We describe a novel and flexible real-time kernel, called Yartek, with low overhead and low footprint suitable for embedded systems. The motivation of this development was due to the difficulty to find a free and stable real-time kernel suitable for our necessities. Yartek has been developed on a Coldfire microcontroller. The real-time periodic tasks are scheduled using nonpreemptive EDF, while the non-real-time tasks are scheduled in background. It uses a deferred interrupt mechanism, and memory is managed using contiguous allocation. Also, a design methodology was devised for the nonpreemptive EDF scheduling, based on the computation of bounds on the periodic task durations. Finally, we describe a case study, namely, an embedded system developed with Yartek for the implementation of nonvisual perception for mobile robots. This application has been designed using the proposed design methodology.

  3. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  4. NOAA Ship Nancy Foster Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  5. Real-time logo detection and tracking in video

    Science.gov (United States)

    George, M.; Kehtarnavaz, N.; Rahman, M.; Carlsohn, M.

    2010-05-01

    This paper presents a real-time implementation of a logo detection and tracking algorithm in video. The motivation of this work stems from applications on smart phones that require the detection of logos in real-time. For example, one application involves detecting company logos so that customers can easily get special offers in real-time. This algorithm uses a hybrid approach by initially running the Scale Invariant Feature Transform (SIFT) algorithm on the first frame in order to obtain the logo location and then by using an online calibration of color within the SIFT detected area in order to detect and track the logo in subsequent frames in a time efficient manner. The results obtained indicate that this hybrid approach allows robust logo detection and tracking to be achieved in real-time.

  6. Real-Time Engineering Simulation of Lunar Excavation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Damer, George Tompkins, Sheldon Freid, Dave Rasmussen, Peter Newman, Brad Blair

    2007-06-12

    DigitalSpace Corporation has been building an open source real-time three-dimensional (3-D) collaborative design engineering and training platform called Digital Spaces (DSS) in support of the Exploration Vision of the National Aeronautics and Space Administration (NASA). Real-time 3-D simulation has reached a level of maturity where it is capable of supporting engineering design and operations using off-the-shelf game chipsets and open source physics and rendering technologies. This paper will illustrate a state-of-the-art real-time engineering simulation utilizing DSS in support of NASA lunar excavation studies. During the project DigitalSpace building driveable 3-D models of lunar excavators and South Polar terrain, and added a soil mechanics physics model as well as a random failure generator to the repertoire of standard mobility platform physics in prior use for real-time engineering and operational analysis at NASA.

  7. Practical Implementations of Real-Time Heart Rate Variability

    National Research Council Canada - National Science Library

    Sastre, Antonio

    2004-01-01

    ... interventions, but to date it has not been possible to use it in real-time (RT) . Because HRV reflects homeostasis in thermoregulation and blood pressure control, it provides a non-invasive "window" into these processes...

  8. Design, real-time modelling, simulation and digital implementation ...

    Indian Academy of Sciences (India)

    locked loop-based auto-synchronising current-sourced converter for an induction heating prototype. MOLAY ROY MAINAK SENGUPTA ... Keywords. Induction heating; current source inverter (CSI); phase-locked loop; FPGA; real-time simulation.

  9. RadNet Real-Time Monitoring Spectrometry Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The RadNet Real-Time Monitoring Spectrometry Data Inventory contains measured data used to identify and measure specific radioactive materials in the atmosphere at...

  10. Real-time video codec using reversible wavelets

    Science.gov (United States)

    Huang, Gen Dow; Chiang, David J.; Huang, Yi-En; Cheng, Allen

    2003-04-01

    This paper describes the hardware implementation of a real-time video codec using reversible Wavelets. The TechSoft (TS) real-time video system employs the Wavelet differencing for the inter-frame compression based on the independent Embedded Block Coding with Optimized Truncation (EBCOT) of the embedded bit stream. This high performance scalable image compression using EBCOT has been selected as part of the ISO new image compression standard, JPEG2000. The TS real-time video system can process up to 30 frames per second (fps) of the DVD format. In addition, audio signals are also processed by the same design for the cost reduction. Reversible Wavelets are used not only for the cost reduction, but also for the lossless applications. Design and implementation issues of the TS real-time video system are discussed.

  11. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    In recent years, real-time processing and analytics systems for big data–in the context of Business Intelligence (BI)–have received a growing attention. The traditional BI platforms that perform regular updates on daily, weekly or monthly basis are no longer adequate to satisfy the fast-changing...... emerging in recent years. This paper presents a survey of the open source technologies that support big data processing in a real-time/near real-time fashion, including their system architectures and platforms....... business environments. However, due to the nature of big data, it has become a challenge to achieve the real-time capability using the traditional technologies. The recent distributed computing technology, MapReduce, provides off-the-shelf high scalability that can significantly shorten the processing time...

  12. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from...... communicating real-time systems can be modeled and specified with LSC. By translating LSC to timed automata (TAs), we reduce scenario-based model consistency checking and property verification to CTL real-time model checking problems, and reduce scenario-based synthesis to a timed game solving problem....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...

  13. 3D Flash LIDAR Real-Time Embedded Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — 3D Flash LIDAR (3DFL) is ideal for determining real-time spacecraft trajectory, speed and orientation to the planet surface, as well as evaluating potential hazards...

  14. RadNet-Air Near Real Time Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet-Air is a national network of air monitoring stations that regularly collect air samples for near real time analysis of radioactivity. The data is transmitted...

  15. Real-Time Multi-Directional Equipment Site

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) Program, Lehigh University has established the Real-Time Multi-Directional...

  16. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  17. NOAA Ship Ronald Brown Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  18. NOAA Ship Fairweather Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  19. NOAA Ship Rainier Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  20. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  1. NOAA Ship Pisces Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  2. NOAA Ship Okeanos Explorer Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  3. Real-Time Course of Action Analysis (Briefing Charts)

    National Research Council Canada - National Science Library

    Gilmour, Duane; Hanna, Jim; McKeever, Bill; Walter, Mart

    2005-01-01

    .... The challenge is to be able to process real-time situational data and at the same time use that data to generate force structure simulations for multiple predictive effects based courses of action...

  4. Real-time remote monitoring system for aquaculture water quality

    National Research Council Canada - National Science Library

    Luo Hongpin; Li Guanglin; Peng Weifeng; Song Jie; Bai Qiuwei

    2015-01-01

      A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality, in order to improve the quality of aquaculture products...

  5. Real-Time Measurements of Sediment Modification by Large Macrofauna

    Science.gov (United States)

    2003-09-30

    sediment acoustic properties? Our research has two thrusts: (1) the development of new technologies to measure, in real-time, organism movements and the...properties. As such, we are measuring rates of movement of large macrofauna in real-time via recently developed technologies and altering these...with PIT tags. Tags were injected into the coelom of the polychaetes and were glued on the shell of the clams. The adults were returned to the

  6. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  7. Real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Buecherl et al., 2009 ). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  8. Impact of ICT Innovative Momentum on Real-Time Accounting

    Directory of Open Access Journals (Sweden)

    Belfo Fernando

    2015-09-01

    Full Text Available Background: Enterprises are entering into the era of the real-time economy, also called the “now economy”, which can be characterized by a substantive acceleration of business measurement, assessment and decision processes. The real-time reporting, as a phenomenon of the now economy, presents a new challenge to the Accounting Information Systems. The current long wave of prosperity is characterized by an innovative momentum of ICT, with several disruptive innovations, far from being completely utilized.

  9. Real-Time Facial Expression Transfer with Single Video Camera

    OpenAIRE

    Liu, S.; Yang, Xiaosong; Wang, Z.; Xiao, Zhidong; Zhang, J.

    2016-01-01

    Facial expression transfer is currently an active research field. However, 2D image wrapping based methods suffer from depth ambiguity and specific hardware is required for depth-based methods to work. We present a novel markerless, real time online facial transfer method that requires only a single video camera. Our method adapts a model to user specific facial data, computes expression variances in real time and rapidly transfers them to another target. Our method can be applied to videos w...

  10. Implementation of real-time duplex synthetic aperture ultrasonography

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Larsen, Lee; Kjeldsen, Thomas

    2015-01-01

    This paper presents a real-time duplex synthetic aperture imaging system, implemented on a commercially available tablet. This includes real-time wireless reception of ultrasound signals and GPU processing for B-mode and Color Flow Imaging (CFM). The objective of the work is to investigate the im...... and that the required bandwidth between the probe and processing unit is within the current Wi-Fi standards....

  11. High speed, real-time, camera bandwidth converter

    Science.gov (United States)

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  12. Generate stepper motor linear speed profile in real time

    Science.gov (United States)

    Stoychitch, M. Y.

    2018-01-01

    In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.

  13. Developing infrared array controller with software real time operating system

    Science.gov (United States)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  14. Evaluation of Real-Time Services in Mobile WIMAX

    Directory of Open Access Journals (Sweden)

    Z. Naumoski

    2010-06-01

    Full Text Available In this paper we provide a performance analysis for real-time services with a limited bandwidth in a single-cell Mobile WiMAX network. We analyze the most critical performance parameters for real-time services, such as voice over IP. Since the throughput is a given constraint for a real-time service, the focus is on delay and jitter introduced by the Mobile WiMAX technology. We have used different user velocities, including nomadic users as well as mobile users. The main contribution of this paper is that we have shown that Mobile WiMAX can be efficiently used for real-time services with applied admission control and priority over non-real-time traffic, because it is adding a very small portion to the delay budget for the real-time service, as well as it keeps the jitter far below the end-to-end jitter threshold for telephony in a Mobile WiMAX network.

  15. FTA real-time transit information assessment : white paper on literature review of real-time transit information systems.

    Science.gov (United States)

    Real-time transit information systems are key technology applications within the transit industry designed to provide better customer service by disseminating timely and accurate information. Riders use this information to make various decisions abou...

  16. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  17. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.

    Science.gov (United States)

    Bosisio, Mattéo R; Hasquenoph, Jean-Michel; Sandrin, Laurent; Laugier, Pascal; Bridal, S Lori; Yon, Sylvain

    2010-03-01

    Ultrasound biomicroscopy (UBM) of mice can provide a testing ground for new imaging strategies. The UBM system presented in this paper facilitates the development of imaging and measurement methods with programmable design, arbitrary waveform coding, broad bandwidth (2-80 MHz), digital filtering, programmable processing, RF data acquisition, multithread/multicore real-time display, and rapid mechanical scanning (real time. Chirp and conventional impulse imaging (31 and 46 MHz center frequencies) of a wire phantom at fast sectorial scanning (0.7 degrees ms(-1), 20 frames/s one-way image rate) are compared. Axial and lateral resolutions at the focus with chirps approach impulse imaging resolutions. Chirps yield 10-15 dB gain in SNR and a 2-3 mm gain in imaging depth. Real-time impulse and chirp-coded imaging (at 10-5 frames/s) are demonstrated in the mouse, in vivo. The system's open structure favors test and implementation of new sequences.

  18. Computational modeling and real-time control of patient-specific laser treatment of cancer.

    Science.gov (United States)

    Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J

    2009-04-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.

  19. A framework for real-time glycosylation monitoring (RT-GM) in mammalian cell culture.

    Science.gov (United States)

    Tharmalingam, Tharmala; Wu, Chao-Hsiang; Callahan, Susan; T Goudar, Chetan

    2015-06-01

    Glycosylation is a critical characteristic of biotherapeutics because of its central role in in vivo efficacy. Multiple factors including medium composition and process conditions impact protein glycosylation and characterizing cellular response to these changes is essential to understand the underlying relationships. Current practice typically involves glycosylation characterization at the end of a fed-batch culture, which in addition to being an aggregate of the process, reflects a bias towards the end of the culture where a majority of the product is made. In an attempt to rigorously characterize the entire time-course of a fed-batch culture, a real-time glycosylation monitoring (RT-GM) framework was developed. It involves using the micro sequential injection (μSI) system as a sample preparation platform coupled with an ultra-performance liquid chromatography (UPLC) system for real-time monitoring of the antibody glycan profile. Automated sampling and sample preparations were performed using the μSI system and this framework was used to study manganese (Mn)-induced glycosylation changes over the course of a fed-batch culture. As expected, Mn-supplemented cultures exhibited higher galactosylation levels compared to control while the fucosylation and mannosylation were consistent for both supplemented and control cultures. Overall, the approach presented in the study allows real time monitoring of glycosylation changes and this information can be rapidly translated into process control and/or process optimization decisions to accelerate process development. © 2014 Wiley Periodicals, Inc.

  20. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  1. Real-time liver uptake and biodistribution of magnetic nanoparticles determined by AC biosusceptometry.

    Science.gov (United States)

    Quini, Caio C; Próspero, André G; Calabresi, Marcos F F; Moretto, Gustavo M; Zufelato, Nicholas; Krishnan, Sunil; Pina, Diana R; Oliveira, Ricardo B; Baffa, Oswaldo; Bakuzis, Andris F; Miranda, Jose R A

    2017-05-01

    We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Real-time ultrasound to predict rabbit carcass composition and volume of longissimus dorsi muscle

    Directory of Open Access Journals (Sweden)

    Severiano José Cruz da Rocha e Silva

    2012-12-01

    Full Text Available Real-time ultrasonography (RTU was used to measure the longissimus dorsi muscle (LM volume in vivo and to predict the carcass composition of rabbits. For this, 63 New Zealand White × Californian rabbits with 2093±63 g live weight were used. Animals were scanned between the 6th and 7th lumbar vertebrae using an RTU equipment with a 7.5 MHz probe. Measurements of LM volume were obtianed both in vivo and on carcass. Regression equations were used for the prediction of carcass composition and LM volume using the LM volume measured obtained with RTU (LMVU as independent variable. Carcass meat, bone and total dissectible fat weights represented 780, 164 and 56 g/kg of the reference carcass weight, respectively. Regression equations showed a strong relationship between LMVU and the correspondent volume in carcass. Furthermore, LMVU was also useful in predicting the amounts of carcass tissues. It is possible to predict LM volume in the carcass using the LM volume measured in vivo by RTU. The amount of carcass tissues can be predicted by the LM volume measured in vivo by RTU.

  3. Real-time Position Reconstruction with Hippocampal Place Cells

    Directory of Open Access Journals (Sweden)

    Christoph Guger

    2011-06-01

    Full Text Available Brain-computer interfaces (BCI are using the EEG (Electroencephalogram, the ECoG (Electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80x80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat’s trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat’s position in real-time.The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4 % using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9 % for 3 rats and real-time experiments (mean error of 14.7% were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that place cells were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  4. Real-Time Tropospheric Delay Estimation using IGS Products

    Science.gov (United States)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  5. Real-time logic modelling on SpaceWire

    Science.gov (United States)

    Zhou, Qiang; Ma, Yunpeng; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. However, it cannot meet the deterministic requirement for safety/time critical application in spacecraft, where the delay of real-time (RT) message streams must be guaranteed. Therefore, SpaceWire-D is developed that provides deterministic delivery over a SpaceWire network. Formal analysis and verification of real-time systems is critical to their development and safe implementation, and is a prerequisite for obtaining their safety certification. Failure to meet specified timing constraints such as deadlines in hard real-time systems may lead to catastrophic results. In this paper, a formal verification method, Real-Time Logic (RTL), has been proposed to specify and verify timing properties of SpaceWire-D network. Based on the principal of SpaceWire-D protocol, we firstly analyze the timing properties of fundamental transactions, such as RMAP WRITE, and RMAP READ. After that, the RMAP WRITE transaction structure is modeled in Real-Time Logic (RTL) and Presburger Arithmetic representations. And then, the associated constraint graph and safety analysis is provided. Finally, it is suggested that RTL method can be useful for the protocol evaluation and provision of recommendation for further protocol evolutions.

  6. Development of automated system for real-time LIBS analysis

    Science.gov (United States)

    Mazalan, Elham; Ali, Jalil; Tufail, Kashif; Haider, Zuhaib

    2017-03-01

    Recent developments in Laser Induced Breakdown Spectroscopy (LIBS) instrumentation allow the acquisition of several spectra in a second. The dataset from a typical LIBS experiment can consist of a few thousands of spectra. To extract the useful information from that dataset is painstaking effort and time consuming process. Most of the currently available softwares for spectral data analysis are expensive and used for offline data analysis. LabVIEW software compatible with spectrometer (in this case Ocean Optics Maya pro spectrometer), can be used to for data acquisition and real time analysis. In the present work, a LabVIEW based automated system for real-time LIBS analysis integrated with spectrometer device is developed. This system is capable of performing real time analysis based on as-acquired LIBS spectra. Here, we have demonstrated the LIBS data acquisition and real time calculations of plasma temperature and electron density. Data plots and variations in spectral intensity in response to laser energy were observed on LabVIEW monitor interface. Routine laboratory samples of brass and calcine bone were utilized in this experiment. Developed program has shown impressive performance in real time data acquisition and analysis.

  7. Real-time Simulation of Turboprop Engine Control System

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  8. Lightweight distributed computing for intraoperative real-time image guidance

    Science.gov (United States)

    Suwelack, Stefan; Katic, Darko; Wagner, Simon; Spengler, Patrick; Bodenstedt, Sebastian; Röhl, Sebastian; Dillmann, Rüdiger; Speidel, Stefanie

    2012-02-01

    In order to provide real-time intraoperative guidance, computer assisted surgery (CAS) systems often rely on computationally expensive algorithms. The real-time constraint is especially challenging if several components such as intraoperative image processing, soft tissue registration or context aware visualization are combined in a single system. In this paper, we present a lightweight approach to distribute the workload over several workstations based on the OpenIGTLink protocol. We use XML-based message passing for remote procedure calls and native types for transferring data such as images, meshes or point coordinates. Two different, but typical scenarios are considered in order to evaluate the performance of the new system. First, we analyze a real-time soft tissue registration algorithm based on a finite element (FE) model. Here, we use the proposed approach to distribute the computational workload between a primary workstation that handles sensor data processing and visualization and a dedicated workstation that runs the real-time FE algorithm. We show that the additional overhead that is introduced by the technique is small compared to the total execution time. Furthermore, the approach is used to speed up a context aware augmented reality based navigation system for dental implant surgery. In this scenario, the additional delay for running the computationally expensive reasoning server on a separate workstation is less than a millisecond. The results show that the presented approach is a promising strategy to speed up real-time CAS systems.

  9. A Practical Approach to Implementing Real-Time Semantics

    Science.gov (United States)

    Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance

    1999-01-01

    This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.

  10. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  11. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  12. Magnetic resonance thermometry at 7T for real-time monitoring and correction of ultrasound induced mild hyperthermia.

    Science.gov (United States)

    Fite, Brett Z; Liu, Yu; Kruse, Dustin E; Caskey, Charles F; Walton, Jeffrey H; Lai, Chun-Yen; Mahakian, Lisa M; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W

    2012-01-01

    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C.

  13. Evaluation of Real-time operating systems for FGC controls

    CERN Document Server

    Chalas, Konstantinos

    2015-01-01

    Power Converter Control for various experiments at CERN, is con- ducted using a machine called Function Generator Controller. The cur- rent generation of FGCs being deployed is FGC3. A certain number of FGCs require very fast and precise control, and for these systems, there is uncertainty of whether the existing hardware will be able to provide the level of determinism required. I have worked in the CCS section as a summer student on a project to study the potential of ARM-based CPUs to provide a real time behaviour fit for a future high-performance FGC4. In this paper, i will present the results of my research into real-time vari- ants of Linux and other real-time operating systems on two different ARM CPUs.

  14. Real time capable infrared thermography for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S. [Max-Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany)

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  15. Analysis of hybrid viscous damper by real time hybrid simulations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker

    2016-01-01

    Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....

  16. Continuous real-time water information: an important Kansas resource

    Science.gov (United States)

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  17. Effective Product Recommendation using the Real-Time Web

    Science.gov (United States)

    Esparza, Sandra Garcia; O'Mahony, Michael P.; Smyth, Barry

    The so-called real-time web (RTW) is a web of opinions, comments, and personal viewpoints, often expressed in the form of short, 140-character text messages providing abbreviated and highly personalized commentary in real-time. Today, Twitter is undoubtedly the king of the RTW. It boasts 190 million users and generates in the region of 65m tweets per day1. This RTW data is far from the structured data (movie ratings, product features, etc.) that is familiar to recommender systems research but it is useful to consider its applicability to recommendation scenarios. In this paper we consider harnessing the real-time opinions of users, expressed through the Twitter-like short textual reviews available on the Blippr service (www.blippr.com). In particular we describe how users and products can be represented from the terms used in their associated reviews and describe experiments to highlight the recommendation potential of this RTW data-source and approach.

  18. Training recurrent neurocontrollers for real-time applications.

    Science.gov (United States)

    Prokhorov, Danil V

    2007-07-01

    In this paper, we introduce a new approach to train recurrent neurocontrollers for real-time applications. We begin with training a recurrent neurocontroller for robustness on high-fidelity models of physical systems. For training, we use a recently developed derivative-free Kalman filter method which we enhance for controller training. After training, we fix weights of our recurrent neurocontroller and deploy it in an embedded environment. Then, we carry out additional training of the neurocontroller by adapting in real time its internal state (short-term memory), rather than its weights (long-term memory). Such real-time training is done with a new combination of simultaneous perturbation stochastic approximation (SPSA) and adaptive critic. Our critic is also a recurrent neural network (RNN), and it is trained by stochastic meta-descent (SMD) for increased efficiency. Our approach is applied to two important practical problems, electronic throttle control and hybrid electric vehicle control, with apparent performance improvement.

  19. Real time lobster posture estimation for behavior research

    Science.gov (United States)

    Yan, Sheng; Alfredsen, Jo Arve

    2017-02-01

    In animal behavior research, the main task of observing the behavior of an animal is usually done manually. The measurement of the trajectory of an animal and its real-time posture description is often omitted due to the lack of automatic computer vision tools. Even though there are many publications for pose estimation, few are efficient enough to apply in real-time or can be used without the machine learning algorithm to train a classifier from mass samples. In this paper, we propose a novel strategy for the real-time lobster posture estimation to overcome those difficulties. In our proposed algorithm, we use the Gaussian mixture model (GMM) for lobster segmentation. Then the posture estimation is based on the distance transform and skeleton calculated from the segmentation. We tested the algorithm on a serials lobster videos in different size and lighting conditions. The results show that our proposed algorithm is efficient and robust under various conditions.

  20. Towards Real Time Simulation of Ship-Ship Interaction

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    We present recent and preliminary work directed towards the development of a simplified, physics-based model for improved simulation of ship-ship interaction that can be used for both analysis and real-time computing (i.e. with real-time constraints due to visualization). The goal is to implement...... accurate (realistic) and much faster ship-wave and ship-ship simulations than are currently possible. The coupling of simulation with visualization should improve the visual experience such that it can be perceived as more realistic in training. Today the state-of-art in real-time ship-ship interaction...... is for efficiency reasons and time-constraints in visualization based on model experiments in towing tanks and precomputed force tables. We anticipate that the fast, and highly parallel, algorithm described by Engsig-Karup et al. [2011] for execution on affordable modern high-throughput Graphics Processing Units...

  1. Inorganic scintillator detectors for real-time verification during brachytherapy

    Science.gov (United States)

    Kertzscher, G.; Beddar, S.

    2017-05-01

    Widespread use of real-time dose measurement technology to verify brachytherapy (BT) treatments is currently limited because only few detectors exhibit the large dynamic range and signal intensities that is required to accurately report the data. Inorganic scintillator detectors (ISDs) are promising for real-time BT verification because they can exhibit large signal intensities. Luminescence properties of ISDs based on ruby, Y2O3:Eu and CsI:Tl were compared with BCF-60 plastic scintillators to determine their potential for BT verification. Measurements revealed that ISDs can exhibit signal intensities 1800 times larger than BCF-60 and that the Čerenkov and fluorescence light contamination is negligible. The favourable luminescence properties of ISDs opens the possibility to manufacture simplified detector systems that can lead to more widespread real-time verification during BT treatment deliveries.

  2. Real-Time GNSS Positioning with JPL's new GIPSYx Software

    Science.gov (United States)

    Bar-Sever, Y. E.

    2016-12-01

    The JPL Global Differential GPS (GDGPS) System is now producing real-time orbit and clock solutions for GPS, GLONASS, BeiDou, and Galileo. The operations are based on JPL's next generation geodetic analysis and data processing software, GIPSYx (also known at RTGx). We will examine the impact of the nascent GNSS constellations on real-time kinematic positioning for earthquake monitoring, and assess the marginal benefits from each constellation. We will discus the options for signal selection, inter-signal bias modeling, and estimation strategies in the context of real-time point positioning. We will provide a brief overview of the key features and attributes of GIPSYx. Finally we will describe the current natural hazard monitoring services from the GDGPS System.

  3. Real-time measurement of mental workload: A feasibility study

    Science.gov (United States)

    Kramer, Arthur; Humphrey, Darryl; Sirevaag, Erik; Mecklinger, Axel

    1990-01-01

    The primary goal of the study was to explore the utility of event-related brain potentials (ERP) as real-time measures of workload. To this end, subjects performed two different tasks both separately and together. One task required that subjects monitor a bank of constantly changing gauges and detect critical deviations. Difficulty was varied by changing the predictability of the gauges. The second task was mental arithmetic. Difficulty was varied by requiring subjects to perform operations on either two or three columns of numbers. Two conditions that could easily be distinguished on the basis of performance measures were selected for the real-time evaluation of ERPs. A bootstrapping approach was adopted in which one thousand samples of n trials (n = 1, 3, 5 ...65) were classified using several measures of P300 and Slow Wave amplitude. Classification accuracies of 85 percent were achieved with 25 trials. Results are discussed in terms of potential enhancements for real-time recording.

  4. FPGA Implementation of Real-Time Ethernet for Motion Control

    Directory of Open Access Journals (Sweden)

    Chen Youdong

    2013-01-01

    Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.

  5. Real-time target tracking and locating system for UAV

    Science.gov (United States)

    Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen

    2017-07-01

    In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.

  6. Real-Time Multiprocessor Programming Language (RTMPL) user's manual

    Science.gov (United States)

    Arpasi, D. J.

    1985-01-01

    A real-time multiprocessor programming language (RTMPL) has been developed to provide for high-order programming of real-time simulations on systems of distributed computers. RTMPL is a structured, engineering-oriented language. The RTMPL utility supports a variety of multiprocessor configurations and types by generating assembly language programs according to user-specified targeting information. Many programming functions are assumed by the utility (e.g., data transfer and scaling) to reduce the programming chore. This manual describes RTMPL from a user's viewpoint. Source generation, applications, utility operation, and utility output are detailed. An example simulation is generated to illustrate many RTMPL features.

  7. Infrared Signature Analysis: Real Time Monitoring Of Manufacturing Processes

    Science.gov (United States)

    Bangs, Edmund R.

    1988-01-01

    The ability to monitor manufacturing processes in an adaptive control mode and perform an inspection in real time is of interest to fabricators in the pressure vessel, aerospace, automotive, nuclear and shipbuilding industries. Results of a series of experiments using infrared thermography as the principal sensing mode are presented to show how artificial intelligence contained in infrared isotherm, contains vast critical process variables. Image processing computer software development has demonstrated in a spot welding application how the process can be monitored and controlled in real time. The IR vision sensor program is now under way. Research thus far has focused on fusion welding, resistance spot welding and metal removal.

  8. Formal Verification and Implementation of Real-Time Applications

    Directory of Open Access Journals (Sweden)

    Liviu Haţegan

    2009-12-01

    Full Text Available This paper presents a method for the formal description, verification and automatic source code generation of embedded real-time multitasking applications, based on a model consisting of networks of timed automata. The model describes a real-time operating system kernel and application tasks, taking into consideration both non-preemptive and preemptive scheduling. The timing properties of theproposed model can be verified using a modelchecking tool. We also provide a solution for C source code generation based on the application’s model. For this purpose a unified resource access interface was implemented.

  9. A heterogeneous hierarchical architecture for real-time computing

    Energy Technology Data Exchange (ETDEWEB)

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  10. System security assessment in real-time using synchrophasor measurements

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Wache, Markus

    2013-01-01

    assessment and sheds light on ongoing research activities that focus on exploiting wide-area synchrophasor measurements for real-time security assessment of sustainable power systems. At last, an mathematical mapping enabling informative visualization of the system state in respect to aperiodic rotor angle...... measures to ensure stable and secure operation of the system are necessary. Time stamped synchrophasor measurements lay the foundation for development of new real-time applications for security and stability assessment. The paper provides overview of existing solutions for synchrophasor based security...

  11. Real-time PCR in Food Science: Introduction.

    Science.gov (United States)

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  12. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  13. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  14. Real-time systems design principles for distributed embedded applications

    CERN Document Server

    Kopetz, Hermann

    1997-01-01

    The book explains the relevance of recent scientific insights to the solution of everyday problems in the design and implementation of distributed and embedded real-time systems. Thus, as a reference source the book presents real-time technology in a concise and understandable manner. Because the cost-effectiveness of a particular method is of major concern in an industrial setting, design decisions are examined from an economic viewpoint. The recent appearance of cost-effective powerful system chips has tremendous influence on the architecture and economics of future distributed system soluti

  15. Development of real-time x-ray microtomography system

    Science.gov (United States)

    Takano, H.; Morikawa, M.; Konishi, S.; Azuma, H.; Shimomura, S.; Tsusaka, Y.; Nakano, S.; Kosaka, N.; Yamamoto, K.; Kagoshima, Y.

    2013-10-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a "zoom resolution" procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays.

  16. Interfacing Agents to Real-Time Strategy Games

    DEFF Research Database (Denmark)

    Jensen, Andreas Schmidt; Kaysø-Rørdam, Christian; Villadsen, Jørgen

    2015-01-01

    In real-time strategy games players make decisions and control their units simultaneously. Players are required to make decisions under time pressure and should be able to control multiple units at once in order to be successful. We present the design and implementation of a multi-agent interface...... for the real-time strategy game STARCRAFT: BROOD WAR. This makes it possible to build agents that control each of the units in a game. We make use of the Environment Interface Standard, thus enabling different agent programming languages to use our interface, and we show how agents can control the units...

  17. Real time microcontroller implementation of an adaptive myoelectric filter.

    Science.gov (United States)

    Bagwell, P J; Chappell, P H

    1995-03-01

    This paper describes a real time digital adaptive filter for processing myoelectric signals. The filter time constant is automatically selected by the adaptation algorithm, giving a significant improvement over linear filters for estimating the muscle force and controlling a prosthetic device. Interference from mains sources often produces problems for myoelectric processing, and so 50 Hz and all harmonic frequencies are reduced by an averaging filter and differential process. This makes practical electrode placement and contact less critical and time consuming. An economic real time implementation is essential for a prosthetic controller, and this is achieved using an Intel 80C196KC microcontroller.

  18. Real-time digital signal processing fundamentals, implementations and applications

    CERN Document Server

    Kuo, Sen M; Tian, Wenshun

    2013-01-01

    Combines both the DSP principles and real-time implementations and applications, and now updated with the new eZdsp USB Stick, which is very low cost, portable and widely employed at many DSP labs. Real-Time Digital Signal Processing introduces fundamental digital signal processing (DSP) principles and will be updated to include the latest DSP applications, introduce new software development tools and adjust the software design process to reflect the latest advances in the field. In the 3rd edition of the book, the key aspect of hands-on experiments will be enhanced to make the DSP principle

  19. Real-time pitch shifting using a general purpose microcontroller

    Science.gov (United States)

    Buś, Szymon; Jedrzejewski, Konrad

    2017-08-01

    In this paper, a real-time implementation of pitch shifting with use of phase vocoder algorithm is presented. The goal was to create a system that would allow to process audio signal in real time with use of a general purpose microcontroller. The task was a challenge due to relative complexity of the algorithm and limited computational capacity of the microcontroller, whose architecture is by nature much more universal than that of dedicated digital signal processors. The results of experiments with the developed system are presented and discussed in the paper.

  20. Real-time Social Internet Data to Guide Forecasting Models

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, Sara Y. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematical approaches and heterogeneous data streams.

  1. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    Science.gov (United States)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  2. In vivo

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  3. Real-time optimisation of the Hoa Binh reservoir, Vietnam

    DEFF Research Database (Denmark)

    Richaud, Bertrand; Madsen, Henrik; Rosbjerg, Dan

    2011-01-01

    Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real-time optimis...

  4. Robust real-time synchronization between textual and graphical editors

    NARCIS (Netherlands)

    Van Rest, O.; Wachsmuth, G.H.; Steel, J.; Süss, J.G.; Visser, E.

    2013-01-01

    This paper is a pre-print of: Oskar van Rest, Guido Wachsmuth, Jim Steel, Jörn Guy Süß, Eelco Visser. Robust Real-Time Synchronization between Textual and Graphical Editors. In Keith Duddy, Gerti Kappel, editors, Theory and Practice of Model Transformations, Sixth International Conference, ICMT

  5. Model Checking Real Time Java Using Java PathFinder

    Science.gov (United States)

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  6. Real-time rescheduling and disruption management for public transit

    NARCIS (Netherlands)

    Lai, D.S.W.; Leung, Janny M.Y.

    2017-01-01

    This research is motivated by the operations of a public transit company in Hong Kong. We investigate how real-time information can be utilized in combination with historical data to improve routing and scheduling decisions practically. A dynamic integrated vehicle and crew scheduling problem is

  7. Optimal capacitor sizing and placement based on real time analysis ...

    African Journals Online (AJOL)

    In this paper, optimal capacitor sizing and placement method was used to improve energy efficiency. It involves the placement of capacitors in a specific location with suitable sizing based on the current load of the electrical system. The optimization is done in real time scenario where the sizing and placement of the ...

  8. Rattlesnake: a network for real-time Multimedia Communication

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Havinga, Paul J.M.; Smit, Michel J.P.; Smit, M.J.P.

    1992-01-01

    In this extended abstract we describe the design of a local area network suitable for distributed multimedia communications. Multimedia applications require a communication infrastructure with capabilities beyond the current state of the art : real-time stream traffic, small end-to-end latency with

  9. Species identification in meat products using real-time PCR.

    Science.gov (United States)

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  10. Planning to cheat: EU fiscal policy in real time

    NARCIS (Netherlands)

    Beetsma, R.; Giuliodori, M.; Wierts, P.

    2009-01-01

    Using real-time data from Europe's Stability and Convergence Programs, we explore how fiscal plans and their implementation in the EU are determined. We find that (1) implemented budgetary adjustment falls systematically short of planned adjustment and this shortfall increases with the projection

  11. Introducing Undergraduate Students to Real-Time PCR

    Science.gov (United States)

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  12. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160pM an...

  13. Real-time analytics with Storm and Cassandra

    CERN Document Server

    Saxena, Shilpi

    2015-01-01

    If you want to efficiently use Storm and Cassandra together and excel at developing production-grade, distributed real-time applications, then this book is for you. No prior knowledge of using Storm and Cassandra together is necessary. However, a background in Java is expected.

  14. The Design of a Real-Time Distributed System

    NARCIS (Netherlands)

    Hertzberger, L.O.; Mullender, S.J.; Poletiek, G.; van Renesse, R.; Tanenbaum, A.S.; Tuynman, F.; Vermeulen, J.C.

    1986-01-01

    In modern physics experiments an increasing number and variety of programmable processors is used. As a consequence, a software environment is needed that provides an integrated approach to development, testing and use of real-time distributed software. This contribution is based on work being done

  15. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  16. Real-time multiprocessor architecture for sharing stream processing accelerators

    NARCIS (Netherlands)

    Dekens, B.H.J.; Bekooij, Marco Jan Gerrit; Smit, Gerardus Johannes Maria

    2015-01-01

    Stream processing accelerators are often applied in MPSoCs for software defined radios. Sharing of these accelerators between different streams could improve their utilization and reduce thereby the hardware cost but is challenging under real-time constraints. In this paper we introduce entry- and

  17. Real-time control using open source RTOS

    Science.gov (United States)

    Irwin, Philip C.; Johnson, Richard L., Jr.

    2002-12-01

    Complex telescope systems such as interferometers tend to rely heavily on hard real-time operating systems (RTOS). It has been standard practice at NASA's Jet Propulsion Laboratory (JPL) and many other institutions to use costly commercial RTOSs and hardware. After developing a real-time toolkit for VxWorks on the PowerPC platform (dubbed RTC), the interferometry group at JPL is porting this code to the real-time Application Interface (RTAI), an open source RTOS that is essentially an extension to the Linux kernel. This port has the potential to reduce software and hardware costs for future projects, while increasing the level of performance. The goals of this paper are to briefly describe the RTC toolkit, highlight the successes and pitfalls of porting the toolkit from VxWorks to Linux-RTAI, and to discuss future enhancements that will be implemented as a direct result of this port. The first port of any body of code is always the most difficult since it uncovers the OS-specific calls and forces "red flags" into those portions of the code. For this reason, It has also been a huge benefit that the project chose a generic, platform independent OS extension, ACE, and its CORBA counterpart, TAO. This port of RTC will pave the way for conversions to other environments, the most interesting of which is a non-real-time simulation environment, currently being considered by the Space Interferometry Mission (SIM) and the Terrestrial Planet Finder (TPF) Projects.

  18. Real time Aanderaa current meter data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    in laboratory. In this paper a method is described to read the real time current meter data and display/print/store on cartridge. For this, binary coded electrical signal available at the top end plate of the current meter is connectEd. by underwater cable...

  19. Real-time image fusion involving diagnostic ultrasound

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Săftoiu, Adrian; Gruionu, Lucian G

    2013-01-01

    The aim of our article is to give an overview of the current and future possibilities of real-time image fusion involving ultrasound. We present a review of the existing English-language peer-reviewed literature assessing this technique, which covers technical solutions (for ultrasound and endosc...

  20. Real-time multi-model decadal climate predictions

    NARCIS (Netherlands)

    Smith, D.M.; Scaife, A.A.; Boer, G.J.; Caian, M.; Doblas-Reyes, F.J.; Guemas, V.; Hawkins, E.; Hazeleger, W.; Hermanson, L.; Ho, C.K.; Ishii, M.; Kharin, V.; Kimoto, M.; Kirtman, B.; Lean, J.; Matei, D.; Merryfield, W.J.; Muller, W.A.; Pohlmann, H.; Rosati, A.; Wouters, B.; Wyser, K.

    2013-01-01

    We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus

  1. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  2. Smart Shopping Carts: How Real-Time Feedback Influences Spending

    NARCIS (Netherlands)

    Ittersum, van K.; Wansink, B.; Pennings, J.M.E.; Sheehan, D.

    2013-01-01

    Although interest in smart shopping carts is increasing, both retailers and consumer groups have concerns about how real-time spending feedback will influence shopping behavior. Building on budgeting and spending theories, the authors conduct three lab and grocery store experiments that robustly

  3. Towards real-time feedback in high performance speed skating

    NARCIS (Netherlands)

    van der Eb, Jeroen; Zandee, Willem; van den Bogaard, Timo; Geraets, Sjoerd; Veeger, H.E.J.; Beek, Peter; Potthast, Wolfgang; Niehoff, Anja; David, Sina

    2017-01-01

    The aim of the current study is to evaluate several performance indicators to be used as real-time feedback in the coming experiments to enhance performance of elite speeds skaters. Six speed skaters, wearing one IMU per skate, collected data over one full training season to evaluate and pinpoint

  4. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup

    2013-01-01

    The Synthetic Aperture Real-time Ultrasound System (SARUS) for acquiring and processing synthetic aperture (SA) data for research purposes is described. The specifications and design of the system are detailed, along with its performance for SA, nonlinear, and 3-D flow estimation imaging. SARUS a...

  5. Real-time PCR quantitative assessment of hepatitis A virus ...

    African Journals Online (AJOL)

    We applied real-time RT-PCR (reverse transcription-polymerase chain reaction) to assess the incidence of hepatitis A virus, rotaviruses and enteroviruses in the Tyume River, an important water resource in the impoverished Eastern Cape Province of South Africa. Detection of noroviruses was done using conventional ...

  6. Representing real time semantics for distributed application integration

    NARCIS (Netherlands)

    Poon, P.M.S.; Dillon, T.S.; Chang, E.; Feng, L.

    Traditional real time system design and development are driven by technological requirements. With the ever growing complexity of requirements and the advances in software design, the alignment of focus has gradually been shifted to the perspective of business and industrial needs. This paper

  7. Model-Checking Real-Time Control Programs

    DEFF Research Database (Denmark)

    Iversen, T. K.; Kristoffersen, K. J.; Larsen, Kim Guldstrand

    2000-01-01

    of UPPAAL. The fixed scheduling algorithm used by the LEGO(R) RCX(TM) processor is modeled in UPPALL, and supply of similar (sufficient) timed automata models for the environment allows analysis of the overall real-time system using the tools of UPPALL. To illustrate our technique for sorting LEGO(R) bricks...

  8. Modeling and Analyzing Real-Time Multiprocessor Systems

    NARCIS (Netherlands)

    Wiggers, M.H.; Thiele, Lothar; Lee, Edward A.; Schlieker, Simon; Bekooij, Marco Jan Gerrit

    2010-01-01

    Researchers have proposed approaches to verify that real-time multiprocessor systems meet their timeliness constraints. These approaches make assumptions on the model of computation, the load placed on the multiprocessor system, and the faults that can arise. This heterogeneous set of assumptions

  9. Smart shopping carts : How real-time feedback influences spending

    NARCIS (Netherlands)

    van Ittersum, Koert; Wansink, B.; Pennings, J.M.E.; Sheehan, D.

    2013-01-01

    Although interest in smart shopping carts is increasing, both retailers and consumer groups have concerns about how real-time spending feedback will influence shopping behavior. Building on budgeting and spending theories, the authors conduct three lab and grocery store experiments that robustly

  10. Real time process algebra with time-dependent conditions

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier

  11. Real time PCR mediated determination of the spontaneous ...

    African Journals Online (AJOL)

    The study evaluates the utility of Real Time PCR (RT-PCR) in quantitative and qualitative analysis of alleles in sorghum populations and the spontaneous occurrence of Sorghum bicolor alleles in wild populations of sorghum. Leaf and seed material from wild sorghum accesions were sampled in Homabay, Siaya and Busia ...

  12. Programming Real-Time Motion Control Robot Prototype

    Directory of Open Access Journals (Sweden)

    A. Medina-Santiago

    2013-12-01

    Full Text Available This item presents the real-time programming of a prototype robot to control its movement from one moment to another without showing response delays. Contributing to this is the communication protocol developed in our laboratories and feasibility of being implemented in the future with wireless control via radio frequency, and to present the progress to date have been obtained.

  13. Real time avalanche detection for high risk areas.

    Science.gov (United States)

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  14. Rattlesnake: A Network for Real-Time Multimedia Communications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Havinga, Paul J.M.; Smit, M.J.P.; Smit, Michel J.P.

    In this extended abstract we describe the design of a local area network suitable for distributed multimedia communications. Multimedia applications require a communication infrastructure with capabilities beyond the current state of the art : real-time stream traffic, small end-to-end latency with

  15. Specifying and verifying requirements of real-time systems

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Rischel, Hans; Hansen, Kirsten Mark

    1993-01-01

    , a real-time interval logic, where predicates define durations of states. Requirements define safety and functionality constraints on the system or a component. A top-level design is given by a control law: a predicate that defines an automation controlling the transition between phases of operation. Each...

  16. Real-time keypoint recognition using restricted Boltzmann machine.

    Science.gov (United States)

    Yuan, Miaolong; Tang, Huajin; Li, Haizhou

    2014-11-01

    Feature point recognition is a key component in many vision-based applications, such as vision-based robot navigation, object recognition and classification, image-based modeling, and augmented reality. Real-time performance and high recognition rates are of crucial importance to these applications. In this brief, we propose a novel method for real-time keypoint recognition using restricted Boltzmann machine (RBM). RBMs are generative models that can learn probability distributions of many different types of data including labeled and unlabeled data sets. Due to the inherent noise of the training data sets, we use an RBM to model statistical distributions of the training data. Furthermore, the learned RBM can be used as a competitive classifier to recognize the keypoints in real-time during the tracking stage, thus making it advantageous to be employed in applications that require real-time performance. Experiments have been conducted under a variety of conditions to demonstrate the effectiveness and generalization of the proposed approach.

  17. A real time genotyping PCR assay for polyomavirus BK

    NARCIS (Netherlands)

    Gard, Lilli; Niesters, Hubert G. M.; Riezebos-Brilman, Annelies

    2015-01-01

    Background: Polyomavirus BK (BKV) may cause nephropathy in renal transplant recipients and hemorrhagic cystitis in bone marrow recipients. We developed real-time PCRs (RT-PCR) to determine easily and rapidly the different BKV genotypes (BKGT) (I-IV) Methods: On the VP1 gene a duplex of RT-PCRs was

  18. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    An important application area for real time computing is embedded systems where the computing system provides intelligent control of a mechanical, chemical etc. plant or device. The software requirements for such applications depend heavily on the properties of the plant. These properties...

  19. Compiling graphical real-time specifications into silicon

    DEFF Research Database (Denmark)

    Fränzle, Martin; Lüth, Karsten

    1998-01-01

    real-time constraints have to be dealt with. While automata-theoretic methods based on translating the specification to a finite automaton and constructing a winning strategy in the resulting omega-regular game could in principle be used, and do indeed provide the core algorithm, complexity withstands...

  20. Diagnosing herpesvirus infections by real time amplification and rapid culture.

    NARCIS (Netherlands)

    J. Guldemeester; A.D.M.E. Osterhaus (Albert); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard)

    2003-01-01

    textabstractProcedures using real-time technique were developed to demonstrate the presence of herpes simplex virus type 1 (HSV-1) and HSV-2, varicella zoster virus (VZV), and cytomegalovirus (CMV) in miscellaneous clinical specimens. The assays were compared to rapid culture using centrifugation

  1. Statistical aspects of quantitative real-time PCR experiment design

    Czech Academy of Sciences Publication Activity Database

    Kitchen, R.R.; Kubista, Mikael; Tichopád, Aleš

    2010-01-01

    Roč. 50, č. 4 (2010), s. 231-236 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809 Institutional research plan: CEZ:AV0Z50520701 Keywords : Real-time PCR * Experiment design * Nested analysis of variance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  2. A new real-time tsunami detection algorithm

    Science.gov (United States)

    Chierici, Francesco; Embriaco, Davide; Pignagnoli, Luca

    2017-01-01

    Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of seabed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on 28 October 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard abyssal observatories, deployed in the Gulf of Cadiz and in the Western Ionian Sea.

  3. Development and implementation of a rapid real-time polymerase ...

    African Journals Online (AJOL)

    Assays which use real-time polymerase chain reaction (PCR) technology can be developed for the rapid identification of genetic sequences carried by waterborne pathogens. Rand Water has established facilities within which a selection of PCR assays will be developed. This paper reports on the optimisation and ...

  4. TaqMan Real-Time Polymerase Chain Reaction and ...

    African Journals Online (AJOL)

    TaqMan Real-Time Polymerase Chain Reaction and. Pyrosequencing using Single Nucleotide Polymorphism. Protocol for Rapid Determination of ALDH2 *2 in a Chinese. Population. Ju-yi Li1, Jin-hu Wu2, Yan Zhang2, Xiu-fang Wang2, Jie Jin2 and Yi Wang1*. 1Department of Pharmacy, The Central Hospital of Wuhan, ...

  5. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    Science.gov (United States)

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Operational real-time GPS-enhanced earthquake early warning

    National Research Council Canada - National Science Library

    R Grapenthin; I A Johanson; R M Allen

    2014-01-01

    .... Recently, a range of high-rate GPS strategies have been demonstrated on off-line data. Here we present the first operational system for real-time GPS-enhanced earthquake early warning as implemented at the Berkeley Seismological Laboratory (BSL...

  7. Real-time optoacoustic monitoring of temperature in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Larina, Irina V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Larin, Kirill V [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Esenaliev, Rinat O [Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States); Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555-0456 (United States)

    2005-08-07

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser ({lambda} = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1{sup 0}C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy.

  8. Real-Time Beam Control at the LHC

    OpenAIRE

    Steinhagen, R

    2011-01-01

    At the LHC, real-time feedback systems continually control the orbit, tune, coupling, and chromaticity. Reliable and precise control of these parameters is essential for a safe and reliable machine operation. This contribution summarises the feedback performance during LHC’s first full year of operation.

  9. Kalman filters for real-time magnetic island phase tracking

    NARCIS (Netherlands)

    Borgers, D. P.; Lauret, M.; M.R. de Baar,

    2013-01-01

    For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX

  10. Knowledge exchange between agents in real-time environments

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter; Møller, Gert Lykke

    2005-01-01

    To obtain unpredictable social interaction between autonomous agents in real-time environments, we present a simple method for logic-based knowledge exchange. A method which is able to form new knowledge rather than do simple exchange of particular rules found in predetermined rule sets. The appl...

  11. Real-Time Case Method: Analysis of a Second Implementation

    Science.gov (United States)

    Theroux, James M.

    2009-01-01

    In 2005, M. Hopkins and J. Theroux implemented the second example of an experimental case study, at 11 business schools in the United States and Canada. The new type of case study, named the "real-time case (RTC) study," uses the Internet to bring business reality to business courses and to facilitate communication among faculty,…

  12. PIMS Real-Time Data Reception and Environment Characterization

    Science.gov (United States)

    McPherson, Kevin M.; Hrovat, Kenneth

    2000-01-01

    The methodology and system concepts developed by the PI Microgravity Services (PIMS) project to process real-time ISS microgravity acceleration data will be presented. The characterization of these data and analyses into information meaningful to microgravity scientists will also be described.

  13. A distributed real-time Java system based on CSP

    NARCIS (Netherlands)

    Bakkers, André; Hilderink, G.H.; Broenink, Johannes F.

    1999-01-01

    Real-time embedded systems in general require a reliability that is orders of magnitude higher than what is presently obtainable with state of the art C programs. The reason for the poor reliability of present day software is the unavailability of a formalism to design sequential C programs. The use

  14. Programming Models for Concurrency and Real-Time

    Science.gov (United States)

    Vitek, Jan

    Modern real-time applications are increasingly large, complex and concurrent systems which must meet stringent performance and predictability requirements. Programming those systems require fundamental advances in programming languages and runtime systems. This talk presents our work on Flexotasks, a programming model for concurrent, real-time systems inspired by stream-processing and concurrent active objects. Some of the key innovations in Flexotasks are that it support both real-time garbage collection and region-based memory with an ownership type system for static safety. Communication between tasks is performed by channels with a linear type discipline to avoid copying messages, and by a non-blocking transactional memory facility. We have evaluated our model empirically within two distinct implementations, one based on Purdue’s Ovm research virtual machine framework and the other on Websphere, IBM’s production real-time virtual machine. We have written a number of small programs, as well as a 30 KLOC avionics collision detector application. We show that Flexotasks are capable of executing periodic threads at 10 KHz with a standard deviation of 1.2us and have performance competitive with hand coded C programs.

  15. Energy efficient approach for transient fault recovery in real time ...

    African Journals Online (AJOL)

    DR OKE

    Department of Computer Engineering, Faculty of Engineering and Technology, JamiaMilliaIslamia New Delhi-110025, INDIA. *Corresponding Author: e-mail: arvinddagur@gmail.com. Abstract. Due to increase in complexity of systems, failure rate is increasing in real time systems. A failure in a system can occurs due to.

  16. A Semantics for a Real-Time Actor Language

    DEFF Research Database (Denmark)

    Knoll, Istvan; Ravn, Anders Peter; Skou, Arne

    2008-01-01

    In order to develop simulators and analysis tools for an actor based real-time language, we define its semantics. The semantics is interesting in itself, as it models the functional, communication, and timing aspects separately, allowing several variants of the language to be investigated....

  17. Performance evaluation of real time control in urban wastewater systems

    NARCIS (Netherlands)

    van Daal-Rombouts, P.M.M.

    2017-01-01

    This thesis deals with real time control (RTC) in urban wastewater systems, where
    urban wastewater systems are defined as a combination of combined sewer systems and wastewater treatment plants (WWTPs). Urban wastewater systems discharge, through combined sewer over flows (CSOs) and WWTP

  18. Real time traffic models, decision support for traffic management

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; de Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  19. Development and implementation of a rapid real-time polymerase ...

    African Journals Online (AJOL)

    6–10 May 2012. * To whom all correspondence should be addressed. ☎ +27 16 430-8403; fax: +27 16 455-2055; e-mail: nleat@randwater.co.za. Development and implementation of a rapid real-time polymerase chain reaction assay for the detection of toxigenic Vibrio cholerae in water. Neil Leat* and Monique Grundlingh.

  20. Real-time change detection in data streams with FPGAs

    Energy Technology Data Exchange (ETDEWEB)

    Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avda. Complutense, 22, 28040 Madrid (Spain); Dormido-Canto, S.; Cruz, T. [Departamento de Informática y Automática, UNED, Madrid (Spain); Ruiz, M.; Barrera, E. [Grupo de Investigación en Instrumentación y Acústica Aplicada, Universidad Politécnica de Madrid, Madrid (Spain); Castro, R. [Asociación EURATOM/CIEMAT para Fusión, Avda. Complutense, 22, 28040 Madrid (Spain); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, I-35127 Padova (Italy); Ochando, M. [Asociación EURATOM/CIEMAT para Fusión, Avda. Complutense, 22, 28040 Madrid (Spain)

    2014-05-15

    Highlights: • Automatic recognition of changes in data streams of multidimensional signals. • Detection algorithm based on testing exchangeability on-line. • Real-time and off-line applicability. • Real-time implementation in FPGAs. - Abstract: The automatic recognition of changes in data streams is useful in both real-time and off-line data analyses. This article shows several effective change-detecting algorithms (based on martingales) and describes their real-time applicability in the data acquisition systems through the use of Field Programmable Gate Arrays (FPGA). The automatic event recognition system is absolutely general and it does not depend on either the particular event to detect or the specific data representation (waveforms, images or multidimensional signals). The developed approach provides good results for change detection in both the temporal evolution of profiles and the two-dimensional spatial distribution of volume emission intensity. The average computation time in the FPGA is 210 μs per profile.

  1. Real-time hostile attribution measurement and aggression in children.

    Science.gov (United States)

    Yaros, Anna; Lochman, John E; Rosenbaum, Jill; Jimenez-Camargo, Luis Alberto

    2014-01-01

    Hostile attributions are an important predictor of aggression in children, but few studies have measured hostile attributions as they occur in real-time. The current study uses an interactive video racing game to measure hostile attributions while children played against a presumed peer. A sample of 75 children, ages 10-13, used nonverbal and verbal procedures to respond to ambiguous provocation by their opponent. Hostile attributions were significantly positively related to parent-rated reactive aggression, when controlling for proactive aggression. Hostile attributions using a nonverbal response procedure were negatively related to proactive aggression, when controlling for reactive aggression. Results suggest hostile attributions in real-time occur quickly and simultaneously with social interaction, which differs from the deliberative, controlled appraisals measured with vignette-based instruments. The relation between real-time hostile attributions and reactive aggression could be accounted for by the impulsive response style that is characteristic of reactive aggression, whereas children exhibiting proactive aggression may be more deliberate and intentional in their responding, resulting in a negative relation with real-time hostile attributions. These findings can be used both to identify children at risk for aggression and to enhance preventive interventions. © 2014 Wiley Periodicals, Inc.

  2. Real-Time Continuous Response Spectra Exceedance Calculation

    Science.gov (United States)

    Vernon, Frank; Harvey, Danny; Lindquist, Kent; Franke, Mathias

    2017-04-01

    A novel approach is presented for near real-time earthquake alarms for critical structures at distributed locations using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, a module included in the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Examples of response spectra from several M 5 events recorded by the ANZA seismic network in southern California will be presented.

  3. Real-time PCR for the detection of Giardia lamblia

    NARCIS (Netherlands)

    Verweij, Jaco J.; Schinkel, Janke; Laeijendecker, Daphne; van Rooyen, Marianne A. A.; van Lieshout, Lisette; Polderman, Anton M.

    2003-01-01

    Microscopy is considered to be the gold standard for diagnosis of Giardia lamblia infection. However, this method is time-consuming and not very sensitive. We developed a real-time PCR assay based on the small subunit ribosomal RNA gene of G. lamblia for the specific detection of G. lamblia DNA in

  4. Addressing Software Engineering Issues in Real-Time Software ...

    African Journals Online (AJOL)

    Real-time systems are normally deployed in a wide range of applications such as transportation systems, manufacturing process, process control, military, space exploration, and telecommunications. These systems must satisfy not only logical functional requirements but also physical properties such as timeliness, Quality ...

  5. Design Methodology for Real-Time Distributed Systems.

    Science.gov (United States)

    1983-12-01

    a methodology for the design of complex real-time digital systems. These systems are dedicated to a single objective, such as flight -guidace...evelp etopent ertan s~etected acquizition pLog’%w in .6uppo’tt o6 Command, ContLot Cornmuncaton, and In-tetJigence (C31) activitieA. Technc.. .and

  6. Real-time measurement of soil stiffness during static compaction.

    Science.gov (United States)

    2009-01-01

    Is continuous sensing of soil properties during static pad foot roller compaction achievable? A new pad-based, rollerintegrated system for real-time measurement of the elastic modulus of fine- and mixed-grain soils is the goal of Development of So...

  7. Een real time indicator van het bruto binnenlands product

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2005-01-01

    Op basis van data van uitzendwerk is het mogelijk om een betrouwbare real time indicator van het bruto binnenlands product (bbp) te construeren. In dit artikel wordt de EICIE-indicator (Econometric Institute Current Indicator of the Economy) gepresenteerd. Voor zover bekend wordt nergens ter wereld

  8. Real-time color measurement using active illuminant

    Science.gov (United States)

    Tominaga, Shoji; Horiuchi, Takahiko; Yoshimura, Akihiko

    2010-01-01

    This paper proposes a method for real-time color measurement using active illuminant. A synchronous measurement system is constructed by combining a high-speed active spectral light source and a high-speed monochrome camera. The light source is a programmable spectral source which is capable of emitting arbitrary spectrum in high speed. This system is the essential advantage of capturing spectral images without using filters in high frame rates. The new method of real-time colorimetry is different from the traditional method based on the colorimeter or the spectrometers. We project the color-matching functions onto an object surface as spectral illuminants. Then we can obtain the CIE-XYZ tristimulus values directly from the camera outputs at every point on the surface. We describe the principle of our colorimetric technique based on projection of the color-matching functions and the procedure for realizing a real-time measurement system of a moving object. In an experiment, we examine the performance of real-time color measurement for a static object and a moving object.

  9. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A.

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  10. Dynamic Web Expression for Near-real-time Sensor Networks

    Science.gov (United States)

    Lindquist, K. G.; Newman, R. L.; Nayak, A.; Vernon, F. L.; Nelson, C.; Hansen, T. S.; Yuen-Wong, R.

    2003-12-01

    As near-real-time sensor grids become more widespread, and processing systems based on them become more powerful, summarizing the raw and derived information products and delivering them to the end user become increasingly important both for ongoing monitoring and as a platform for cross-disciplinary research. We have re-engineered the dbrecenteqs program, which was designed to express real-time earthquake databases into dynamic web pages, with several powerful new technologies. While the application is still most fully developed for seismic data, the infrastructure is extensible (and being extended) to create a real-time information architecture for numerous signal domains. This work provides a practical, lightweight approach suitable for individual seismic and sensor networks, which does not require a full 'web-services' implementation. Nevertheless, the technologies here are extensible to larger applications such as the Storage-Resource-Broker based VORB project. The technologies included in the new system blend real-time relational databases as a focus for processing and data handling; an XML->XSLT architecture as the core of the web mirroring; PHP extensions to Antelope (the environmental monitoring-system context adopted for RoadNET) in order to support complex, user-driven interactivity; and VRML output for expression of information as web-browsable three-dimensional worlds.

  11. Real-time Java for flight applications: an update

    Science.gov (United States)

    Dvorak, D.

    2003-01-01

    The RTSJ is a specification for supporting real-time execution in the Java programming language. The specification has been shaped by several guiding principles, particularly: predictable execution as the first priority in all tradeoffs, no syntactic extensions to Java, and backward compatibility.

  12. BOXTO as a real-time thermal cycling reporter dye

    Indian Academy of Sciences (India)

    PRAKASH

    BOXTO as a real-time thermal cycling reporter dye. ASHRAF I AHMAD. Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology,. 405 30 Göteborg, Sweden. (Fax, 46 31 773 3910; Email, ashraf.ahmad@molbiotech.chalmers.se). The unsymmetrical cyanine dyes ...

  13. Real-Time Communication in Wireless Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.

    This paper describes a medium access protocol for real-time communication in wireless networks. Medium access is controlled by a scheduler, which utilizes a pre-emptive earliest deadline first (PEDF) scheduling algorithm. The scheduler prevents collisions in the network, where normally only

  14. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  15. A Real-Time Multimedia Streaming Protocol for Wireless Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Mank, Wietse; Zwikker, Arjan

    This paper describes a new token-based medium access protocol for real-time networks and its implementation on a wireless network. Originally, the protocol is developed for use in low cost domestic or home networks that are based on Ethernet hardware. In contrast to existing protocols the token is

  16. HAMLET: HPCN Technology for Real-Time, Embedded Applications

    NARCIS (Netherlands)

    Mager, J.W.L.J.; Dam, A. ten

    1995-01-01

    Building an application by using HPCN technology makes the solution scalable and therefore more flexible. The uptake of HPCN technology for real-time, embedded applications, however, is severely hampered by the lack of real application development support. Within the Esprit project HAMLET,

  17. Efficiently identifying deterministic real-time automata from labeled data

    NARCIS (Netherlands)

    Verwer, S.E.; De Weerdt, M.M.; Witteveen, C.

    2011-01-01

    We develop a novel learning algorithm RTI for identifying a deterministic real-time automaton (DRTA) from labeled time-stamped event sequences. The RTI algorithm is based on the current state of the art in deterministic finite-state automaton (DFA) identification, called evidence-driven

  18. Integrating Real-time Earthquakes into Natural Hazard Courses

    Science.gov (United States)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  19. Real-Time IRI driven by GIRO data

    Science.gov (United States)

    Galkin, Ivan; Huang, Xueqin; Reinisch, Bodo; Bilitza, Dieter; Vesnin, Artem

    Real-time extensions of the empirical International Reference Ionosphere (IRI) model are based on assimilative techniques that preserve the IRI formalism which is optimized for the description of climatological ionospheric features. The Global Ionosphere Radio Observatory (GIRO) team has developed critical parts of an IRI Real Time Assimilative Model (IRTAM) for the global ionospheric plasma distribution using measured data available in real time from ~50 ionosondes of the GIRO network, The current assimilation results present global assimilative maps of foF2 and hmF2 that reproduce available data at the sensor sites and smoothly return to the climatological specifications when and where the data are missing, and are free from artificial sharp gradients and short-lived artifacts when viewed in time progression. Animated real-time maps of foF2 and hmF2 are published with a few minutes latency at http://giro.uml.edu/IRTAM/. Our real-time IRI modeling uses morphing, a technique that transforms the climatological ionospheric specifications to match the observations by iteratively computing corrections to the original coefficients of the diurnal/spatial expansions, used in IRI to map the key ionospheric characteristics, while keeping the IRI expansion basis formalism intact. Computation of the updated coefficient set for a given point in time includes analysis of the latest 24-hour history of observations, which allows the morphing technique to sense evolving ionospheric dynamics even with a sparse sensor network. A Non-linear Error Compensation Technique for Associative Restoration (NECTAR), one of the features in our morphing approach, has been in operation at the Lowell GIRO Data Center since 2013. The cornerstone of NECTAR is a recurrent neural network optimizer that is responsible for smoothing the transitions between the grid cells where observations are available. NECTAR has proved suitable for real-time operations that require the assimilation code to be

  20. Real-Time Communication Support for Underwater Acoustic Sensor Networks†.

    Science.gov (United States)

    Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos

    2017-07-14

    Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.