WorldWideScience

Sample records for real option-based simulation

  1. Real vs. simulated relativistic jets

    CERN Document Server

    Gómez, J L; Agudo, I; Marscher, A P; Jorstad, S G; Aloy, M A

    2005-01-01

    Intensive VLBI monitoring programs of jets in AGN are showing the existence of intricate emission patterns, such as upstream motions or slow moving and quasi-stationary componentes trailing superluminal features. Relativistic hydrodynamic and emission simulations of jets are in very good agreement with these observations, proving as a powerful tool for the understanding of the physical processes taking place in the jets of AGN, microquasars and GRBs. These simulations show that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or ambient medium. Both observations and simulations suggest that shock-in-jet models may be an overly simplistic idealization when interpreting the emission structure observed in actual jets.

  2. System Equivalent for Real Time Digital Simulator

    Science.gov (United States)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  3. Numerical simulation of real-world flows

    Science.gov (United States)

    Hayase, Toshiyuki

    2015-10-01

    Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc.

  4. Numerical simulation of real-world flows

    Energy Technology Data Exchange (ETDEWEB)

    Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)

    2015-10-15

    Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)

  5. Illumination discrimination in real and simulated scenes

    Science.gov (United States)

    Radonjić, Ana; Pearce, Bradley; Aston, Stacey; Krieger, Avery; Dubin, Hilary; Cottaris, Nicolas P.; Brainard, David H.; Hurlbert, Anya C.

    2016-01-01

    Characterizing humans' ability to discriminate changes in illumination provides information about the visual system's representation of the distal stimulus. We have previously shown that humans are able to discriminate illumination changes and that sensitivity to such changes depends on their chromatic direction. Probing illumination discrimination further would be facilitated by the use of computer-graphics simulations, which would, in practice, enable a wider range of stimulus manipulations. There is no a priori guarantee, however, that results obtained with simulated scenes generalize to real illuminated scenes. To investigate this question, we measured illumination discrimination in real and simulated scenes that were well-matched in mean chromaticity and scene geometry. Illumination discrimination thresholds were essentially identical for the two stimulus types. As in our previous work, these thresholds varied with illumination change direction. We exploited the flexibility offered by the use of graphics simulations to investigate whether the differences across direction are preserved when the surfaces in the scene are varied. We show that varying the scene's surface ensemble in a manner that also changes mean scene chromaticity modulates the relative sensitivity to illumination changes along different chromatic directions. Thus, any characterization of sensitivity to changes in illumination must be defined relative to the set of surfaces in the scene.

  6. CUDA-based real time surgery simulation.

    Science.gov (United States)

    Liu, Youquan; De, Suvranu

    2008-01-01

    In this paper we present a general software platform that enables real time surgery simulation on the newly available compute unified device architecture (CUDA)from NVIDIA. CUDA-enabled GPUs harness the power of 128 processors which allow data parallel computations. Compared to the previous GPGPU, it is significantly more flexible with a C language interface. We report implementation of both collision detection and consequent deformation computation algorithms. Our test results indicate that the CUDA enables a twenty times speedup for collision detection and about fifteen times speedup for deformation computation on an Intel Core 2 Quad 2.66 GHz machine with GeForce 8800 GTX.

  7. [Real life simulations to train nurses].

    Science.gov (United States)

    Alonso Felpete, Alberto Jesús; Abajas Bustillo, Rebeca; De la Horra Gutiérrez, Inmaculada; Hoz Cuerno, Verónica; Llata Agüero, Gema; López López, Luis Mariano; Sánchez Herrán, Beatriz

    2004-01-01

    Nurses must confront critical potential life threatening situations daily. These are very tense situations which must be solved in a rapid, adequate manner in coordination with the rest of the professional health team. How to deal with these crises, which usually follow an established protocol, must be learned and practiced in a safe environment which provides the greatest possible guarantee of success. The best way to acquire this knowledge and skill is through a real life simulation. Nurses from various disciplines carry out their work in the Training Center for Critical Crises at the Marqués de Valdecilla University Hospital in Santander, the only center in Spain which runs this type of simulation. In 2003, this center initiated a specific training simulation for nurses whose purpose is to increase scientific-technical knowledge to the maximum and accelerate the learning of non-technical social and cognitive fundamentals within the working environment of a professional health team. The following article describes a simulation meeting these characteristics, its teaching methods, advantages, importance for professional health teams, and its repercussions on patients.

  8. Disclosed Values of Option-Based Compensation

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Hjortshøj, Toke Lilhauge

    New accounting standards require firms to expense the costs of option-based compensation (OBC), but the associated valuations offer many challenges for firms. Earlier research has documented that firms in the U.S. generally underreport the values of OBC by manipulating the inputs used for valuation......-Scholes parameters in their valuations. Furthermore, firms determine the expected time to maturity in a way that is generally consistent with the guidelines provided by the new accounting standards. The findings differ from those of the U.S., but is consistent with the more limited use of OBC and the lower level...

  9. Does Training Learners on Simulators Benefit Real Patients?

    Science.gov (United States)

    Teteris, Elise; Fraser, Kristin; Wright, Bruce; McLaughlin, Kevin

    2012-01-01

    Despite limited data on patient outcomes, simulation training has already been adopted and embraced by a large number of medical schools. Yet widespread acceptance of simulation should not relieve us of the duty to demonstrate if, and under which circumstances, training learners on simulation benefits real patients. Here we review the data on…

  10. Simulating and Visualizing Real-Time Crowds on GPU Clusters

    OpenAIRE

    Benjamín Hernández; Hugo Pérez; Isaac Rudomin; Sergio Ruiz; Oriam de Gyves; Leonel Toledo

    2014-01-01

    We present a set of algorithms for simulating and visualizing real-time crowds in GPU (Graphics Processing Units) clusters. First we present crowd simulation and rendering techniques that take advantage of single GPU machines. Then, using as an example a wandering crowd behavior simulation algorithm, we explain how this kind of algorithms can be extended for their use in GPU cluster environments. We also present a visualization architecture that renders the simulation results using detailed 3...

  11. Real-time simulation of thermal shadows with EMIT

    Science.gov (United States)

    Klein, Andreas; Oberhofer, Stefan; Schätz, Peter; Nischwitz, Alfred; Obermeier, Paul

    2016-05-01

    Modern missile systems use infrared imaging for tracking or target detection algorithms. The development and validation processes of these missile systems need high fidelity simulations capable of stimulating the sensors in real-time with infrared image sequences from a synthetic 3D environment. The Extensible Multispectral Image Generation Toolset (EMIT) is a modular software library developed at MBDA Germany for the generation of physics-based infrared images in real-time. EMIT is able to render radiance images in full 32-bit floating point precision using state of the art computer graphics cards and advanced shader programs. An important functionality of an infrared image generation toolset is the simulation of thermal shadows as these may cause matching errors in tracking algorithms. However, for real-time simulations, such as hardware in the loop simulations (HWIL) of infrared seekers, thermal shadows are often neglected or precomputed as they require a thermal balance calculation in four-dimensions (3D geometry in one-dimensional time up to several hours in the past). In this paper we will show the novel real-time thermal simulation of EMIT. Our thermal simulation is capable of simulating thermal effects in real-time environments, such as thermal shadows resulting from the occlusion of direct and indirect irradiance. We conclude our paper with the practical use of EMIT in a missile HWIL simulation.

  12. Migrating to a real-time distributed parallel simulator architecture

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-07-01

    Full Text Available DEVS. Ogata, et al. [7] tested the real-time performance of DIS and different versions of the RTI-NG HLA Run-Time Infrastructure (RTI). Their real-time vehicle model simulation within a 3D graphi- cal environment reached a frame rate ceiling... to mili- tary training simulation: A guide for discrete event sim- ulationists. In Proceedings of the 1998 Winter Simula- tion Conference, 1998. [7] Michihiko Ogata, Akira Higashide, Mike Cammarano, and Toshinao Takagi. Rti performance...

  13. Real time simulator with Ti floating point digital signal processor

    Energy Technology Data Exchange (ETDEWEB)

    Razazian, K.; Bobis, J.P.; Dieckman, S.L.; Raptis, A.C.

    1994-08-01

    This paper describes the design and operation of a Real Time Simulator using Texas Instruments TMS320C30 digital signal processor. This system operates with two banks of memory which provide the input data to digital signal processor chip. This feature enables the TMS320C30 to be utilized in variety of applications for which external connections to acquire input data is not needed. In addition, some practical applications of this Real Time Simulator are discussed.

  14. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  15. Towards Real Time Simulation of Ship-Ship Interaction

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    We present recent and preliminary work directed towards the development of a simplified, physics-based model for improved simulation of ship-ship interaction that can be used for both analysis and real-time computing (i.e. with real-time constraints due to visualization). The goal is to implement...... the model into a large maritime simulator for training of naval officers, in particular tug boat helmsmen. Tug boat simulators are used for training of communication and situation awareness during manoeuvre involved with towing of large vessels. A main objective of the work is to improve and enable more...... accurate (realistic) and much faster ship-wave and ship-ship simulations than are currently possible. The coupling of simulation with visualization should improve the visual experience such that it can be perceived as more realistic in training. Today the state-of-art in real-time ship-ship interaction...

  16. Development of nuclear power plant real-time engineering simulator

    Institute of Scientific and Technical Information of China (English)

    LIN Meng; YANG Yan-Hua; ZHANG Rong-Hua; HU Rui

    2005-01-01

    A nuclear power plant real-time engineering simulator was developed based on general-purpose thermal-hydraulic system simulation code RELAP5. It main1y consists of three parts: improved thermal-hydraulic system simulation code RELAP5, control and protection system and human-machine interface. A normal transient of CHASHMA nuclear power plant turbine step load change from 100% to 90% of full power, was simulated by the engineering simulator as an application example. This paper presents structure and main features of the engineering simulator, and application results are shown and discussed.

  17. Real-time simulation of hand motion for prosthesis control.

    Science.gov (United States)

    Blana, Dimitra; Chadwick, Edward K; van den Bogert, Antonie J; Murray, Wendy M

    2017-04-01

    Individuals with hand amputation suffer substantial loss of independence. Performance of sophisticated prostheses is limited by the ability to control them. To achieve natural and simultaneous control of all wrist and hand motions, we propose to use real-time biomechanical simulation to map between residual EMG and motions of the intact hand. Here we describe a musculoskeletal model of the hand using only extrinsic muscles to determine whether real-time performance is possible. Simulation is 1.3 times faster than real time, but the model is locally unstable. Methods are discussed to increase stability and make this approach suitable for prosthesis control.

  18. Option-based valuation of mortgage-backed securities

    Directory of Open Access Journals (Sweden)

    Manola Ana

    2010-01-01

    Full Text Available Pure econometric approaches to pricing mortgage-backed securities (MBSs - principal pricing vehicles used by financial practitioners - fail to capture their true risks. This point was powerfully driven home by the global financial crisis. Since prior to the crisis default rates of MBSs were quite modest, econometric pricing models systematically underestimated the possibility of default. As a result, MBSs were severely overvalued. It is widely believed that the global crisis was largely triggered by incorrect valuation of mortgage-backed securities. In the aftermath, it is important to revisit the foundations for pricing MBSs and to pay much closer attention to default risk. This paper introduces a comprehensive model for valuation of fixed-rate pass-through mortgagebacked securities in a simple option-based framework. In the model, we use bivariate binomial tree approach to simultaneously model prepayment and default options. Our simulation results demonstrate that the proposed model has sufficient flexibility to capture the two principal risks.

  19. Basic technology development of a real-time graphic simulator

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae Wook; Hong, Soon Hyuk; Lee, Kyung Hoon; Lee, Sang-Hyun; Lee, Hee Sub [Sungkyunkwan Univ., Seoul (Korea)

    2001-04-01

    In this research, we developed the basic technology of a Real-time graphic simulator for remote monitoring in hostile environment, the Spent Fuel Disassembling facility. The use of a real-time graphic simulator is very useful for building virtual workcell and simulating the virtual devices to preview the behavior of real devices in order to reduce the error in design step of devices and to evaluate and optimize the work processes. And also, it can be used to provide the visualization of operation information from working devices to ensure the reliable monitoring in the teleoperation system. Thus, the development of basic technology related to these is needed. In this system, because the Spent Fuel Disassembling facility should be managed in remote environment due to its characteristics, the transmission of operational information through the network should be used. And for real-time monitoring, the real-time visualization of operational information from real system should be available. Therefore, we defined the efficient message protocol format for real-time transmission of operational information to visualize these in the 3D graphic simulator. 14 refs., 44 figs., 2 tabs. (Author)

  20. Real-time simulation of large-scale floods

    Science.gov (United States)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  1. ADA and multi-microprocessor real-time simulation

    Science.gov (United States)

    Feyock, S.; Collins, W. R.

    1983-01-01

    The selection of a high-order programming language for a real-time distributed network simulation is described. The additional problem of implementing a language on a possibly changing network is addressed. The recently designed language ADA (trademarked by DoD) was chosen since it provides the best model of the underlying application to be simulated.

  2. ATLAS Simulation using Real Data: Embedding and Overlay

    CERN Document Server

    Haas, Andy; The ATLAS collaboration

    2016-01-01

    For some physics processes studied with the ATLAS detector, a more accurate simulation in some respects can be achieved by including real data into simulated events, with substantial potential improvements in the CPU, disk space, and memory usage of the standard simulation configuration, at the cost of significant database and networking challenges. Real proton-proton background events can be overlaid (at the detector digitization output stage) on a simulated hard-scatter process, to account for pileup background (from nearby bunch crossings), cavern background, and detector noise. A similar method is used to account for the large underlying event from heavy ion collisions, rather than directly simulating the full collision. Embedding replaces the muons found in Z->mumu decays in data with simulated taus at the same 4-momenta, thus preserving the underlying event and pileup from the original data event. In all these cases, care must be taken to exactly match detector conditions (beamspot, magnetic fields, ali...

  3. ATLAS Simulation using Real Data: Embedding and Overlay

    CERN Document Server

    Haas, Andrew; The ATLAS collaboration

    2017-01-01

    For some physics processes studied with the ATLAS detector, a more accurate simulation in some respects can be achieved by including real data into simulated events, with substantial potential improvements in the CPU, disk space, and memory usage of the standard simulation configuration, at the cost of significant database and networking challenges. Real proton-proton background events can be overlaid (at the detector digitization output stage) on a simulated hard-scatter process, to account for pileup background (from nearby bunch crossings), cavern background, and detector noise. A similar method is used to account for the large underlying event from heavy ion collisions, rather than directly simulating the full collision. Embedding replaces the muons found in Z→mumu decays in data with simulated taus at the same 4-momenta, thus preserving the underlying event and pileup from the original data event. In all these cases, care must be taken to exactly match detector conditions (beamspot, magnetic fields, al...

  4. Modeling and Real-Time Simulation of UPFC

    Science.gov (United States)

    Kimura, Misao; Takahashi, Choei; Kishibe, Hideto; Miyazaki, Yasuyuki; Noro, Yasuhiro; Iio, Naotaka

    We have developed a digital real time simulator of Power Electronics Controllers, so called FACTS (Flexible AC Transmission Systems) Controllers and/or Custom Power by using MATLABTM/SIMULINKTM and dSPACETM System. This paper describes the modeling and the calculation accuracy of a UPFC (Unified Power Flow Controller) model. Hence the developed simulator operates at a large time step, in order to improve simulation accuracy, a correction processing of the switching delay is implemented into the UPFC model. Calculation accuracy of the real time UPFC model is the same level as EMTDCTM results. We confirm stable operation of the developed UPFC model with connecting a commercial real time digital simulator (RTDSTM).

  5. A simulation of diesel hydrotreating process with real component method

    Institute of Scientific and Technical Information of China (English)

    Zengzhi Du; Chunxi Li; Wei Sun; Jianhong Wang

    2015-01-01

    Computer simulation is a good guide and reference for development and research on petroleum refining process-es. Traditionally, pseudo-components are used in the simulation, in which their physical properties are estimated by empirical relations and cannot be associated with actual chemical reactions, as no molecular structure is avail-able for pseudo-components. This limitation can be overcome if real components are used. In this paper, a real component based method is proposed for the simulation of a diesel hydrotreating process by using the software of Unisim Design. This process includes reaction units and distillation units. The chemical reaction network is established by analyzing the feedstock. The feedstock is characterized by real components, which are obtained based on true boiling point curve. Simulation results are consistent with actual data.

  6. Analysis of hybrid viscous damper by real time hybrid simulations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Ou, Ge; Høgsberg, Jan Becker

    2016-01-01

    Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance...... of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift...... in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations....

  7. Real-time Desktop Flying Qualities Evaluation Simulator

    Directory of Open Access Journals (Sweden)

    Kamali C.

    2014-01-01

    Full Text Available This paper presents the application of model based design for the development of a real-time flying quality evaluation simulator named NALSim, built around Windows platform. NALSim is a novel rapid prototyping system based on MatlabR, SimulinkR and the Real-Time-Windows TargetR, applicable for fighter, transport and unmanned air vehicles/micro air vehicles simulations. The simulator uses state of the art modeling and simulation technologies to validate various design and flying quality concepts. NALSim is developed such that it is scalable and low cost. The paper presents the simulator architecture and its application for flying qualities. A novel non linear Least Squares optimization based methodology is proposed for efficient handling quality studies.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.4961

  8. Real-time simulation of dissipation-driven quantum systems

    CERN Document Server

    Banerjee, Debasish; Jiang, Fu-Jiun; Kon, Mark; Wiese, Uwe-Jens

    2015-01-01

    We set up a real-time path integral to study the evolution of quantum systems driven in real-time completely by the coupling of the system to the environment. For specifically chosen interactions, this can be interpreted as measurements being performed on the system. For a spin-1/2 system, in particular, when the measurement results are averaged over, the resulting sign problem completely disappears, and the system can be simulated with an efficient cluster algorithm.

  9. Decentralized real-time simulation of forest machines

    Science.gov (United States)

    Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael

    2000-10-01

    To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.

  10. Evolving mobile robots in simulated and real environments.

    Science.gov (United States)

    Miglino, O; Lund, H H; Nolfi, S

    1995-01-01

    The problem of the validity of simulation is particularly relevant for methodologies that use machine learning techniques to develop control systems for autonomous robots, as, for instance, the artificial life approach known as evolutionary robotics. In fact, although it has been demonstrated that training or evolving robots in real environments is possible, the number of trials needed to test the system discourages the use of physical robots during the training period. By evolving neural controllers for a Khepera robot in computer simulations and then transferring the agents obtained to the real environment we show that (a) an accurate model of a particular robot-environment dynamics can be built by sampling the real world through the sensors and the actuators of the robot; (b) the performance gap between the obtained behaviors in simulated and real environments may be significantly reduced by introducing a "conservative" form of noise; (c) if a decrease in performance is observed when the system is transferred to a real environment, successful and robust results can be obtained by continuing the evolutionary process in the real environment for a few generations.

  11. Real-time Simulation of Turboprop Engine Control System

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  12. Real-Time Simulation of Ship Impact for Crew Training

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2003-01-01

    Real-time simulation of marine accidents and representation in a realistic, virtual environment may be an efficient way to train emergency procedures for ship?s crews and thus improve safety at sea. However, although various fast, simplified methods have been presented over the past decades...... be advantageous to use in other types of time simulation where it is desirable to switch between direct time integration and some other known, stabilized solution, without a major redesign of the program architecture....

  13. Real versus Simulated Mobile Phone Exposures in Experimental Studies

    Directory of Open Access Journals (Sweden)

    Dimitris J. Panagopoulos

    2015-01-01

    Full Text Available We examined whether exposures to mobile phone radiation in biological/clinical experiments should be performed with real-life Electromagnetic Fields (EMFs emitted by commercially available mobile phone handsets, instead of simulated EMFs emitted by generators or test phones. Real mobile phone emissions are constantly and unpredictably varying and thus are very different from simulated emissions which employ fixed parameters and no variability. This variability is an important parameter that makes real emissions more bioactive. Living organisms seem to have decreased defense against environmental stressors of high variability. While experimental studies employing simulated EMF-emissions present a strong inconsistency among their results with less than 50% of them reporting effects, studies employing real mobile phone exposures demonstrate an almost 100% consistency in showing adverse effects. This consistency is in agreement with studies showing association with brain tumors, symptoms of unwellness, and declines in animal populations. Average dosimetry in studies with real emissions can be reliable with increased number of field measurements, and variation in experimental outcomes due to exposure variability becomes less significant with increased number of experimental replications. We conclude that, in order for experimental findings to reflect reality, it is crucially important that exposures be performed by commercially available mobile phone handsets.

  14. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...

  15. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  16. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    Science.gov (United States)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  17. Monitor for displaying the status of Real-Time simulation.

    OpenAIRE

    2014-01-01

    This paper presents a design and implementation of a monitor to display the status of real-time simulation and modelling for discrete event dynamic systems, DEDS. The modelling and simulation of DEDS in this thesis are implemented using two kinds tools called Petri net and GpenSIM. Petri Nets are tools that are widely used now a day to model and simulate discrete events of concurrent and dynamic systems. [1] Petri net has a graphical formalism that is getting popularity in recent years as a t...

  18. Simplified Model of Brushless Synchronous Generator for Real Time Simulation

    CERN Document Server

    Lopez, M D; Rebollo, E; Blanquez, F R

    2015-01-01

    This paper presents a simplified model of brushless synchronous machine for saving hardware resources in a real time simulation system. Firstly, a brushless excitation system model is described. Thereafter, the simplified transfer function of an AC exciter and rotating diodes of the brushless excitation system is estimated. Finally, the complete system is simulated, comparing the main generator's voltage with both detailed and simplified excitation systems in several scenarios. These results show the accuracy of the simplified model against the detailed simulation model, resulting on an important hardware resources savings.

  19. Molecular simulation of the surface tension of real fluids

    CERN Document Server

    Werth, Stephan; Hasse, Hans

    2016-01-01

    Molecular models of real fluids are validated by comparing the vapor-liquid surface tension from molecular dynamics (MD) simulation to correlations of experimental data. The considered molecular models consist of up to 28 interaction sites, including Lennard-Jones sites, point charges, dipoles and quadrupoles. They represent 38 real fluids, such as ethylene oxide, sulfur dioxide, phosgene, benzene, ammonia, formaldehyde, methanol and water, and were adjusted to reproduce the saturated liquid density, vapor pressure and enthalpy of vaporization. The models were not adjusted to interfacial properties, however, so that the present MD simulations are a test of model predictions. It is found that all of the considered models overestimate the surface tension. In most cases, however, the relative deviation between the simulation results and correlations to experimental data is smaller than 20 %. This observation corroborates the outcome of our previous studies on the surface tension of 2CLJQ and 2CLJD fluids where a...

  20. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... to demonstrate modeling, system disturbances of various types, and proper recovery actions, as well as to illustrate complex power system concepts. The Kundur power system consists of two fully symmetrical areas linked together by two 230kV lines is modeled by using RSCAD in order to carry out simulations...

  1. Simulation-based learning: Just like the real thing

    Directory of Open Access Journals (Sweden)

    Lateef Fatimah

    2010-01-01

    Full Text Available Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology to replace and amplify real experiences with guided ones, often "immersive" in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals′ knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors.

  2. Simulation-based learning: Just like the real thing.

    Science.gov (United States)

    Lateef, Fatimah

    2010-10-01

    Simulation is a technique for practice and learning that can be applied to many different disciplines and trainees. It is a technique (not a technology) to replace and amplify real experiences with guided ones, often "immersive" in nature, that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Simulation-based learning can be the way to develop health professionals' knowledge, skills, and attitudes, whilst protecting patients from unnecessary risks. Simulation-based medical education can be a platform which provides a valuable tool in learning to mitigate ethical tensions and resolve practical dilemmas. Simulation-based training techniques, tools, and strategies can be applied in designing structured learning experiences, as well as be used as a measurement tool linked to targeted teamwork competencies and learning objectives. It has been widely applied in fields such aviation and the military. In medicine, simulation offers good scope for training of interdisciplinary medical teams. The realistic scenarios and equipment allows for retraining and practice till one can master the procedure or skill. An increasing number of health care institutions and medical schools are now turning to simulation-based learning. Teamwork training conducted in the simulated environment may offer an additive benefit to the traditional didactic instruction, enhance performance, and possibly also help reduce errors.

  3. Real-Time Incompressible Fluid Simulation on the GPU

    Directory of Open Access Journals (Sweden)

    Xiao Nie

    2015-01-01

    Full Text Available We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible smoothed particle hydrodynamics (PCISPH on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search is the major performance obstacle because this process is performed several times at each time step. To eliminate this bottleneck, an efficient parallel sorting method for this time-consuming step is introduced. Moreover, we discuss several optimization techniques including using fast on-chip shared memory to avoid global memory bandwidth limitations and thus further improve performance on modern GPU hardware. With our framework, the realism of real-time fluid simulation is significantly improved since our method enforces incompressibility constraint which is typically ignored due to efficiency reason in previous GPU-based SPH methods. The performance results illustrate that our approach can efficiently simulate realistic incompressible fluid in real time and results in a speed-up factor of up to 23 on a high-end NVIDIA GPU in comparison to single-threaded CPU-based implementation.

  4. On validating remote sensing simulations using coincident real data

    Science.gov (United States)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  5. Real-Time Design Patterns for LVC Simulation

    Science.gov (United States)

    2009-01-15

    Possible. (But Must Get Done at Some Point) MVC Pattern (Tailored for LVC) MVC Pattern  Model is the Application’s Domain Logic  It’s the Simulation...View is the Application’s Graphical Displays  Controller Connects Model to View(s) Adapted MVC Pattern  Asynchronous Execution of Simulated System...Graphics and Network I/O  Architecture Maps to Real-time Design Paradigms  Good “Fit” for LVC Requirements  Leverages Multi-CPU & Multi-core

  6. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...... simulator. We then present two applications based on this method. The first one is an agent based controller used to increase the penetration of wind energy in a weak grid, and the second one is the controller of a gas micro turbine connected to the distribution grid....

  7. Simulation Optimization for Transportation System: A Real Case Application

    Directory of Open Access Journals (Sweden)

    Muhammet Enes Akpınar

    2017-02-01

    Full Text Available Simulation applications help decision makers to give right decisions to eliminate some problems such as: create a new firm, need some changes inside a factory; improve the process of a hospital etc. In this engineering simulation study, there are two points which are used by students to arrive at the University. Initial point is the train station and the final point is the arrival point. Students’ transportation is provided with buses. The main problem is to decide the number of buses by taking number of student into consideration. To be able to solve this real-life application PROMODEL pack software is used.

  8. Real-time numerical simulation of the Carnot cycle

    Science.gov (United States)

    Hurkala, J.; Gall, M.; Kutner, R.; Maciejczyk, M.

    2005-09-01

    We developed a highly interactive, multi-windows Java applet which made it possible to simulate and visualize within any platform and internet the Carnot cycle (or engine) in a real-time computer experiment. We extended our previous model and algorithm (Galant et al 2003 Heat Transfer, Newton's Law of Cooling and the Law of Entropy Increase Simulated by the Real-Time Computer Experiments in Java (Lecture Notes in Computer Science vol 2657) pp 45-53, Gall and Kutner 2005 Molecular mechanisms of heat transfer: Debye relaxation versus power-law Physica A 352 347-78) to simulate not only the heat flow but also the macroscopic movement of the piston. Since in reality it is impossible to construct a reversible Carnot engine, the question arises whether it is possible to simulate it at least in a numerical experiment? The positive answer to this question which we found is related to our model and algorithm which make it possible to omit the many-body problem arising when many gas particles simultaneously interact with the mobile piston. As usual, the considerations of phenomenological thermodynamics began with a study of the basic properties of heat engines, hence our approach, besides intrinsic physical significance, is also important from the educational, technological and even environmental points of view. .

  9. Real-time, interactive, visually updated simulator system for telepresence

    Science.gov (United States)

    Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.

    1991-01-01

    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.

  10. Simulating Photon Mapping for Real-time Applications

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Christensen, Niels Jørgen

    2004-01-01

    This paper introduces a novel method for simulating photon mapping for real-time applications. First we introduce a new method for selectively redistributing photons. Then we describe a method for selectively updating the indirect illumination. The indirect illumination is calculated using a new...... GPU accelerated final gathering method and the illumination is then stored in light maps. Caustic photons are traced on the CPU and then drawn using points in the framebuffer, and finally filtered using the GPU. Both diffuse and non-diffuse surfaces can be handled by calculating the direct...... illumination on the GPU and the photon tracing on the CPU. We achieve real-time frame rates for dynamic scenes....

  11. A comparison of real and simulated airborne multisensor imagery

    Science.gov (United States)

    Bloechl, Kevin; De Angelis, Chris; Gartley, Michael; Kerekes, John; Nance, C. Eric

    2014-06-01

    This paper presents a methodology and results for the comparison of simulated imagery to real imagery acquired with multiple sensors hosted on an airborne platform. The dataset includes aerial multi- and hyperspectral imagery with spatial resolutions of one meter or less. The multispectral imagery includes data from an airborne sensor with three-band visible color and calibrated radiance imagery in the long-, mid-, and short-wave infrared. The airborne hyperspectral imagery includes 360 bands of calibrated radiance and reflectance data spanning 400 to 2450 nm in wavelength. Collected in September 2012, the imagery is of a park in Avon, NY, and includes a dirt track and areas of grass, gravel, forest, and agricultural fields. A number of artificial targets were deployed in the scene prior to collection for purposes of target detection, subpixel detection, spectral unmixing, and 3D object recognition. A synthetic reconstruction of the collection site was created in DIRSIG, an image generation and modeling tool developed by the Rochester Institute of Technology, based on ground-measured reflectance data, ground photography, and previous airborne imagery. Simulated airborne images were generated using the scene model, time of observation, estimates of the atmospheric conditions, and approximations of the sensor characteristics. The paper provides a comparison between the empirical and simulated images, including a comparison of achieved performance for classification, detection and unmixing applications. It was found that several differences exist due to the way the image is generated, including finite sampling and incomplete knowledge of the scene, atmospheric conditions and sensor characteristics. The lessons learned from this effort can be used in constructing future simulated scenes and further comparisons between real and simulated imagery.

  12. Fuzzy-based simulation of real color blindness.

    Science.gov (United States)

    Lee, Jinmi; dos Santos, Wellington P

    2010-01-01

    About 8% of men are affected by color blindness. That population is at a disadvantage since they cannot perceive a substantial amount of the visual information. This work presents two computational tools developed to assist color blind people. The first one tests color blindness and assess its severity. The second tool is based on Fuzzy Logic, and implements a method proposed to simulate real red and green color blindness in order to generate synthetic cases of color vision disturbance in a statistically significant amount. Our purpose is to develop correction tools and obtain a deeper understanding of the accessibility problems faced by people with chromatic visual impairment.

  13. Could optical lattices be used to simulate real materials?

    CERN Document Server

    Hague, J P

    2015-01-01

    With the aim of understanding whether it is possible to build a quantum simulator that can probe multiband effects, we make DFT calculations for a system of cold atoms/ions. These move in a 1/r periodic potential convoluted by resolution effects, which represent the closest form of optical lattice to the nuclear potential in materials, that could be generated with painted potentials or holograms. We demonstrate that while resolution effects in optical lattices affect bandstructures, the physics of the bands closest to the fermi surface is sufficiently similar to that in real materials that they could give useful insight into complex multi-band processes. We determine that decoherence effects are sufficiently small that they do not destroy multiband effects, however there are strict constraints on the temperature and strength of interactions in experimental systems. The interaction form investigated here is most appropriate for cold ions, since inter-ion potentials have a native 1/r form. While a scaling argum...

  14. Cosmic Atlas: A Real-Time Universe Simulation

    Science.gov (United States)

    Yu, K. C.; Jenkins, N. E.

    2004-05-01

    Cosmic Atlas is a software program produced at the Denver Museum of Nature & Science to generate real-time digital content for the Museum's Gates Planetarium. Created by in-house staff, Cosmic Atlas is designed to be scientifically accurate, flexible, easily updated to stay current with new discoveries, and portable to multiple platforms. It is currently developed using desktop computers running a Linux OS, and is also installed on a multi-graphics pipe SGI visualization computer running the IRIX OS in the Gates Planetarium. The software can be used in real-time presentations via traditional ``star talks'' and classes, but can also be used to devise flightpaths, perform timeline-based editing, play back flightpaths in real-time, and save out image renders for creating video files to be shown on additional playback systems. The first version of the program is meant to replicate the functionality of a traditional optical-mechanical star ball, and hence creates a replica of the night time sky, with constellations, deep sky objects, and didactic information and grids. The Solar System is a realistic, three-dimensional, navigable simulation, updated with the latest moon and minor planet discoveries, and with motions over time determined by a customized orrery. Additional modules can show traditional astronomical imagery, including an application for loading in FITS files to create three-color composites. A three-dimensional model of the Milky Way is in development, populated with HIPPARCOS stars for the local galactic neighborhood, and with molecular clouds constructed from large-scale CO survey data; more distant regions are filled with statistically generated stellar and interstellar medium distributions.

  15. Real-Time Simulation Computation System. [for digital flight simulation of research aircraft

    Science.gov (United States)

    Fetter, J. L.

    1981-01-01

    The Real-Time Simulation Computation System, which will provide the flexibility necessary for operation in the research environment at the Ames Research Center is discussed. Designing the system with common subcomponents and using modular construction techniques enhances expandability and maintainability qualities. The 10-MHz series transmission scheme is the basis of the Input/Output Unit System and is the driving force providing the system flexibility. Error checking and detection performed on the transmitted data provide reliability measurements and assurances that accurate data are received at the simulators.

  16. Tsunamis obey Snell's Law: Simulations and Real Data

    Science.gov (United States)

    Okal, Emile; Synolakis, Costas

    2017-04-01

    We study the effect of a wide continental shelf at the receiver end of a far-field tsunami, by using conventional seismic beaming techniques across arrays of receivers, in order to define a two-dimensional slowness vector expressing the phase velocity of the tsunami and its azimuth of passage over the array. In the Pacific Ocean, we first target two wide shelves fronting the Alaska Panhandle and Central America, and simulate tsunamis based on recent events in Chile and Japan, across arrays of several hundred virtual gauges located both on the shelves and in the nearby abyssal plains. In all cases, we recover phase velocities compatible with their values expected under the SWA (160-185 m/s in deep water and 30-40 m/s on the shelf), while the azimuths of arrival show severe refraction (of up to 55 degrees) between the two environments. The resulting ray parameters (p = sin i / v) are found to vary by less than 20%, and thus to verify Snell's law, despite the grossly simplified model of a linear continental shelf break separating two homogeneous media. We also apply this approach to real data recorded by ad hoc arrays of hydrophones operated as part of temporary OBS/OBH deployments during the past ten years in various coastal and abyssal areas of the Pacific Basin.

  17. Decoupling Kinematic Loops for Real-Time Multibody Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Omar Mohamed

    2016-01-01

    Full Text Available Earth moving equipment are typically equipped with hydraulic cylinder actuators to perform the designated tasks. Multibody modelling of such systems results in models with kinematic loops that couples the motion variables of the loop bodies. Iterative solutions will be needed to satisfy the loop constraints and the applied constraints, which require evaluation of the constraint Jacobean matrix. The size of the Jacobean matrix and the associated projections depends on the number of motion variables in each kinematic loop. Consequently, the computational cost significantly increases as the number of variables in the kinematic loop increases. Real-time control and hybrid hardware-in-the-loop systems both require efficient and fast computational algorithms. Eliminating the kinematic loops can improve the computational efficiency and effectiveness of the control algorithms. This paper presents an efficient approach to eliminate the coupling due to the cylinder-rod connections and consequently the kinematic loops in the multibody models leading to efficient simulation. The proposed approach calculates the spatial accelerations and inertia forces of the actuator bodies and the interaction forces with other components. The actuator forces are then projected onto the connecting bodies leading to exact dynamics of the system.

  18. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  19. Real-Time Human in the Loop MBS Simulation in the Fraunhofer Robot-Based Driving Simulator

    Directory of Open Access Journals (Sweden)

    Kleer Michael

    2014-08-01

    Full Text Available The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.

  20. Driver headway choice : A comparison between driving simulator and real-road driving

    NARCIS (Netherlands)

    Risto, M.; Martens, M.H.

    2014-01-01

    Driving simulators have become an established tool in driver behaviour research by offering a controllable, safe and cost-effective alternative to real world driving. A challenge for using driving simulators as a research tool has been to elicit driving behaviour that equals real world driving. With

  1. Driver headway choice: a comparison between driving simulator and real-road driving

    NARCIS (Netherlands)

    Risto, Malte; Martens, Marieke Hendrikje

    2014-01-01

    Driving simulators have become an established tool in driver behaviour research by offering a controllable, safe and cost-effective alternative to real world driving. A challenge for using driving simulators as a research tool has been to elicit driving behaviour that equals real world driving. With

  2. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing

    Institute of Scientific and Technical Information of China (English)

    Ji Xu; Jing hai Li; Hua biao Qi; Xiao jian Fang; Li qiang Lu; Wei Ge; Xiao wei Wang; Ming Xu; Fei guo Chen; Xian feng He

    2011-01-01

    Real-time simulation of industrial equipment is a huge challenge nowadays.The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals.In this article,an industrial-scale rotating drum is simulated using simplified discrete element method (DEM) without consideration of the tangential components of contact force and particle rotation.A single GPU is used first to simulate a small model system with about 8000 particles in real-time,and the simulation is then scaled up to industrial scale using more than 200 GPUs in a 1D domain-decomposition parallelization mode.The overall speed is about 1/11 of the real-time.Optimization of the communication part of the parallel GPU codes can speed up the simulation further,indicating that such real-time simulations have not only methodological but also industrial implications in the near future.

  3. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  4. Real-Time Simulation of Oil Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jørgen Opdal

    1982-01-01

    Full Text Available This paper contains the basic numeric model for the oil drilling simulator WELLSIM. As a case study it presents an example from well pressure control. Figure 1 shows a picture of the simulator.

  5. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    DEFF Research Database (Denmark)

    Schiffer, Christian; Jacobsen, B. H.; Balling, N.

    There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally...... seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic...... seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal...

  6. Monte Carlo simulation of secondary electron images for real sample structures in scanning electron microscopy.

    Science.gov (United States)

    Zhang, P; Wang, H Y; Li, Y G; Mao, S F; Ding, Z J

    2012-01-01

    Monte Carlo simulation methods for the study of electron beam interaction with solids have been mostly concerned with specimens of simple geometry. In this article, we propose a simulation algorithm for treating arbitrary complex structures in a real sample. The method is based on a finite element triangular mesh modeling of sample geometry and a space subdivision for accelerating simulation. Simulation of secondary electron image in scanning electron microscopy has been performed for gold particles on a carbon substrate. Comparison of the simulation result with an experiment image confirms that this method is effective to model complex morphology of a real sample.

  7. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  8. Pilot Control Behavior Discrepancies Between Real and Simulated Flight Caused by Limited Motion Stimuli

    NARCIS (Netherlands)

    Zaal, P.M.T.

    2011-01-01

    Flight simulators provide a flexible, efficient, and safe environment for research and training at much lower costs than real flight. The ultimate validity of any simulation would be achieved when – for a particular task – human cognitive and psychomotor behavior in the simulator corresponds precise

  9. Pilot Control Behavior Discrepancies Between Real and Simulated Flight Caused by Limited Motion Stimuli

    NARCIS (Netherlands)

    Zaal, P.M.T.

    2011-01-01

    Flight simulators provide a flexible, efficient, and safe environment for research and training at much lower costs than real flight. The ultimate validity of any simulation would be achieved when – for a particular task – human cognitive and psychomotor behavior in the simulator corresponds

  10. Reduction Methods for Real-time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian

    2016-01-01

    Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...... without introducing further unknowns into the system. The basis formulation is shown to exhibit high precision and to reduce the computational cost significantly. Furthermore, the basis formulation exhibits a significant higher stability, than standard nonlinear algorithms. A real-time hybrid test...

  11. ALICES: advanced software engineering workshop for real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Noel, A.; Rouault, G. [Tractebel, Brussels (Belgium)

    1997-12-01

    The ALICES software workshop is presently being applied for the development of a multifunctional simulator for Belgium`s Tihange-1 nuclear power unit. This will be the best validation for all the functions included in the tools. It is believed that ALICES will permit the development of quality realtime simulators at a significantly lower price.

  12. Real-time simulation based on a high-speed signal processing system VHS-ADC

    Science.gov (United States)

    Fu, Zhihong; Ma, Jing; Sun, Rui

    2006-11-01

    Real-time simulation for power electronics needs high-speed data processing and sampling, but most real-time simulation systems, such as dSPACE, can't meet the high-speed demands. Lyrtech's VHS-ADC, a high-speed signal processing system based on FPGA, is configured with multi-channels A/D, D/A and GPIO port, seamless interoperability with MATLAB, which has been applied widely in communication, audio, video and radar high-speed signal processing fields. However, VHS-ADC doesn't support real-time controller modeling. By constructing real-time control models including PI, PWM, Limiter and Reset-integrator model, this paper constructs a high-speed real-time simulation platform suitable for power electronics field. Further, the PWM-based Boost converter experiments prove the feasibility of real-time simulation by the rebuilt system, with Boost's switching frequency 100 kHz and its cycle 10μs. At frequency 100MHz, the corresponding simulation cycle is no more than 300ns, much less than switching cycle. Compared with TL494's waveform, it is proved that, as a novel way, VHS-ADC can support flexibly modeling process in real-time simulations with significant performance.

  13. Real-time visual simulation of APT system based on RTW and Vega

    Science.gov (United States)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  14. Keeping It Real: Revisiting a Real-Space Approach to Running Ensembles of Cosmological N-body Simulations

    CERN Document Server

    Orban, Chris

    2012-01-01

    In setting up initial conditions for cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to the real-space clustering. As a stringent test of both approaches, I perform ensembles of simulations using power law models and exploit the self-similarity of these initial conditions to quantify the accuracy of the results. Originally proposed by Pen 1997 and implemented by Sirko 2005, I show that the real-space motivated approach, which allows the DC mode to vary, performs well in exhibiting the expected self-similar behavior in the mean xi(r) and P(k) and in both methods this behavior extends below the scale of the initial mean interparticle spacing. I also test the real-space method with simulations of a simplified, powerlaw model for baryon acoustic oscillations, again with success, and mindful of the need to generate mock catalogs using simulations I show extensive po...

  15. Handbook of Real-World Applications in Modeling and Simulation

    CERN Document Server

    Sokolowski, John A

    2012-01-01

    This handbook provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas, such as transportation, homeland security, medicine, operational research, military science, and business modeling.  The authors offer a concise look at the key concepts and techniques of modeling and simulation and then discuss how and why the presented domains have become leading applications.  The book begins with an introduction of why modeling and simulation is a reliable analysis assessment tool for complex syste

  16. On modeling approach for embedded real-time software simulation testing

    Institute of Scientific and Technical Information of China (English)

    Yin Yongfeng; Liu Bin; Zhong Deming; Jiang Tongrain

    2009-01-01

    Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, and automated system testing for embedded real-time software.

  17. A Novel FPGA-Based Real-Time Simulator for Micro-Grids

    Directory of Open Access Journals (Sweden)

    Bingda Zhang

    2017-08-01

    Full Text Available To meet the requirements of micro-grid real-time simulation, a novel real-time simulator for micro-grids based on Field-Programmable Gate Array (FPGA and orders (FO-RTDS is designed. We describe the design idea of the real-time solver and the order generator. Multi-valued parameter prestorage and multi-rate simulation are introduced to reduce the computational pressure. The data scheduling is carried out following the principle of saving the resources and the minimizing the average distance between variables. An example is performed on XC7VX690T-2FFG1761 chip, which proves the novel FO-RTDS method greatly improves the scale of real-time simulation of micro-grids.

  18. Simulation of the ultrasonic array response from real branched cracks using an efficient finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)

    2014-02-18

    A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.

  19. Simulating Photon Mapping for Real-time Applications

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Christensen, Niels Jørgen

    2004-01-01

    GPU accelerated final gathering method and the illumination is then stored in light maps. Caustic photons are traced on the CPU and then drawn using points in the framebuffer, and finally filtered using the GPU. Both diffuse and non-diffuse surfaces can be handled by calculating the direct...... illumination on the GPU and the photon tracing on the CPU. We achieve real-time frame rates for dynamic scenes....

  20. Challenges when using real-world bio-data to calibrate simulation systems.

    Science.gov (United States)

    Blount, Elaine M; Ringleb, Stacie I; Tolk, Andreas

    2011-01-01

    Computer simulations allow us to gain insight into biological systems that would not be possible without destroying or changing the system in significant ways. To ensure that results are relevant, real-world bio-data should be used to calibrate simulations. Real-world data contain uncertainty due to the nature of how it is obtained. This chapter provides various sources on uncertainty and methods to cope with this challenge.

  1. A Preliminary Real-Time and Realistic Simulation Environment for Percutaneous Coronary Intervention

    Directory of Open Access Journals (Sweden)

    Jianhuang Wu

    2015-01-01

    Full Text Available Percutaneous coronary intervention (PCI is a minimally invasive surgery procedure that is widely used in the treatment of coronary artery disease. This procedure requires interventional cardiologists to have high proficiency and therefore demands an extensive training period in order to ensure successful surgical outcome. In this paper, a realistic and real-time interactive simulator for training PCI procedure is presented. A set of new approaches for core simulation components is devised and integrated into the simulator. Trainees can interact with the virtual simulation environment with real instruments and essential maneuvers encountered in real PCI procedure. Although presently targeted at PCI, our simulator could be easily extended to mimic the necessities of any vascular interventional radiology procedures by updating vascular anatomy. Preliminary validation of the proposed physical model of instruments is conducted on vascular phantom to demonstrate its performance and effectiveness.

  2. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  3. Real time numerical simulation and visualization of electrochemical drilling

    NARCIS (Netherlands)

    Noot, M.J.; Telea, A.C.; Jansen, J.K.M.; Mattheij, R.M.M.

    1998-01-01

    Gas turbines have to be provided with holes in order to provide cooling; these holes are made using an electrochemical drilling technique. Since this process is tedious and expensive, computer simulations are very useful. Such a model needs to incorporate the relevant physical processes. A simulatio

  4. Real-Time Density-Based Crowd Simulation

    NARCIS (Netherlands)

    van Toll, W.G.; Cook IV, A.F.; Geraerts, R.J.

    2012-01-01

    Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid

  5. Teaching Real-World Political Economy: Simulating a WTO Negotiation

    Science.gov (United States)

    Steagall, Jeffrey W.; Jares, Timothy E.; Gallo, Andres

    2012-01-01

    "If free trade is a no-brainer, why isn't trade free?" Students often express such sentiments at the conclusion of a typical international trade course, during which they have learned that free trade is optimal, but that countries continue to restrict trade substantially. This article describes a simulation of a round of trade liberalization under…

  6. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  7. Real-Time Density-Based Crowd Simulation

    NARCIS (Netherlands)

    van Toll, W.G.; Cook IV, A.F.; Geraerts, R.J.

    2012-01-01

    Virtual characters in games and simulations often need to plan visually convincing paths through a crowded environment. This paper describes how crowd density information can be used to guide a large number of characters through a crowded environment. Crowd density information helps characters avoid

  8. Real-time simulation of energy management in a domestic consumer

    DEFF Research Database (Denmark)

    Fernandes, F.; Silva, M.; Faria, P.

    2013-01-01

    . The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real......-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer....

  9. Mechanisms of Orthostatic Intolerance During Real and Simulated Microgravity

    Science.gov (United States)

    1997-01-01

    Session MP1 includes short reports on: (1) Orthostatic Tests after 42 Days of Simulated Weightlessness; (2) Effects of 12 Days Exposure to Simulated Microgravity on Central Circulatory Hemodynamics in the Rhesus Monkey; (3) Increased Sensitivity and Resetting of Baroflex Control of Exercise Heart Rate After Prolonged Bed-Rest; (4) Complex Cardiovascular Dynamics and Deconditioning During Head-down Bed Rest; (5) The Cardiovascular Effects of 6 Hours of Head-down Tilt Upon Athletes and Non-athletes; (6) Individual Susceptibility to Post-spaceflight Orthostatic Intolerance: Contributions of Gender-related and Microgravity-related Factors; (7) Cassiopee Mission 1996: Comparison of Cardiovascular Alteration after Short and Long-term Spaceflights; (8) Cerebral and Femoral Flow Response to LBNP during 6 Month MIR Spaceflights (93-95); and (9) Cerebrovascular Changes due to Spaceflight and Postflight Presyncope.

  10. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...

  11. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  12. Real-time volumetric deformable models for surgery simulation using finite elements and condensation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Cotin, S.

    1996-01-01

    This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...

  13. Realistic soft tissue deformation strategies for real time surgery simulation.

    Science.gov (United States)

    Shen, Yunhe; Zhou, Xiangmin; Zhang, Nan; Tamma, Kumar; Sweet, Robert

    2008-01-01

    A volume-preserving deformation method (VPDM) is developed in complement with the mass-spring method (MSM) to improve the deformation quality of the MSM to model soft tissue in surgical simulation. This method can also be implemented as a stand-alone model. The proposed VPDM satisfies the Newton's laws of motion by obtaining the resultant vectors form an equilibrium condition. The proposed method has been tested in virtual surgery systems with haptic rendering demands.

  14. Real-time simulation requirements for study and optimization of power system controls

    Energy Technology Data Exchange (ETDEWEB)

    Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d`Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.

  15. Computer Simulation as a Tool for Analyzing and Optimizing Real-Life Processes

    Directory of Open Access Journals (Sweden)

    Tomáš Domonkos

    2010-06-01

    Full Text Available In some real-life situations, the analysis of complicated systems using standard analytical methods of operational research represents a particularly difficult endeavor, due to the system's complicated structure or the impossibility of reaching a mathematical solution. In cases when we are not able to use the standard methods of operational research, we can use simulation modeling. Sometimes simulation modeling as a tool for supporting practical decision-making offers a possible solution for this problem. The aim of this paper is to characterize briefly the development of discrete-event simulation methodology over the past 50 years on the grounds of the evolution of various simulation programs, describe the essentials of the simulation program tool Simul8 and present, on the basis of a case study, how we can analyze and optimize complicated real-life systems.

  16. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    Science.gov (United States)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  17. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF DRAGREDUCING SURFACE OF A REAL SHARK SKIN*

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-yuan; LUO Yue-hao; LI Xiang; CHEN Hua-wei

    2011-01-01

    It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction,but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool.In this article, based on the real biological shark skin,the model of real shark skin is built through high-accurate scanning and data processing.The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed.In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.

  18. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    Science.gov (United States)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  19. Real-time infrared signature model validation for hardware-in-the-loop simulations

    Science.gov (United States)

    Sanders, Jeffrey S.; Peters, Trina S.

    1997-07-01

    Techniques and tools for validation of real-time infrared target signature models are presented. The model validation techniques presented in this paper were developed for hardware-in-the-loop (HWIL) simulations at the U.S. Army Missile Command's Research, Development, and Engineering Center. Real-time target model validation is a required deliverable to the customer of a HWIL simulation facility and is a critical part of ensuring the fidelity of a HWIL simulation. There are two levels of real-time target model validation. The first level is comparison of the target model to some baseline or measured data which answers the question `are the simulation inputs correct?'. The second level of validation is a simulation validation which answers the question `for a given target model input is the simulation hardware and software generating the correct output?'. This paper deals primarily with the first level of target model validation. IR target signature models have often been validated by subjective visual inspection or by objective, but limited, statistical comparisons. Subjective methods can be very satisfying to the simulation developer but offer little comfort to the simulation customer since subjective methods cannot be documented. Generic statistical methods offer a level of documentation, yet are often not robust enough to fully test the fidelity of an IR signature. Advances in infrared seeker and sensor technology have led to the necessity of system specific target model validation. For any HWIL simulation it must be demonstrated that the sensor responds to the real-time signature model in a manner which is functionally equivalent to the sensor's response to a baseline model. Depending on the application, a baseline method can be measured IR imagery or the output of a validated IR signature prediction code. Tools are described that generate validation data for HWIL simulations at MICOM and example real-time model validations are presented.

  20. Dynamic Modeling and Simulation of a Real World Billiard

    CERN Document Server

    Hartl, Alexandre E; Mazzoleni, Andre P

    2011-01-01

    Gravitational billiards provide an experimentally accessible arena for testing formulations of nonlinear dynamics. We present a mathematical model that captures the essential dynamics required for describing the motion of a realistic billiard for arbitrary boundaries. Simulations of the model are applied to parabolic, wedge and hyperbolic billiards that are driven sinusoidally. Direct comparisons are made between the model's predictions and previously published experimental data. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence.

  1. Real time modeling, simulation and control of dynamical systems

    CERN Document Server

    Mughal, Asif Mahmood

    2016-01-01

    This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.

  2. A real-time, dual processor simulation of the rotor system research aircraft

    Science.gov (United States)

    Mackie, D. B.; Alderete, T. S.

    1977-01-01

    A real-time, man-in-the loop, simulation of the rotor system research aircraft (RSRA) was conducted. The unique feature of this simulation was that two digital computers were used in parallel to solve the equations of the RSRA mathematical model. The design, development, and implementation of the simulation are documented. Program validation was discussed, and examples of data recordings are given. This simulation provided an important research tool for the RSRA project in terms of safe and cost-effective design analysis. In addition, valuable knowledge concerning parallel processing and a powerful simulation hardware and software system was gained.

  3. Real-time Global Illumination by Simulating Photon Mapping

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard

    2004-01-01

    This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually in a progr......This thesis introduces a new method for simulating photon mapping in realtime. The method uses a variety of both CPU and GPU based algorithms for speeding up the different elements in global illumination. The idea behind the method is to calculate each illumination element individually...... in a progressive and efficient manner. This has been done by analyzing the photon mapping method and by selecting efficient methods, either CPU based or GPU based, which replaces the original photon mapping algorithms. We have chosen to focus on the indirect illumination and the caustics. In our method we first...... divide the photon map into several photon maps in order to make local updates possible. Then indirect illumination is added using light maps that are selectively updated by using selective photon tracing on the CPU. The final gathering step is calculated by using fragment programs and GPU based...

  4. Simulation of mixture microstructures via particle packing models and their direct comparison with real mixtures

    Science.gov (United States)

    Gulliver, Eric A.

    The objective of this thesis to identify and develop techniques providing direct comparison between simulated and real packed particle mixture microstructures containing submicron-sized particles. This entailed devising techniques for simulating powder mixtures, producing real mixtures with known powder characteristics, sectioning real mixtures, interrogating mixture cross-sections, evaluating and quantifying the mixture interrogation process and for comparing interrogation results between mixtures. A drop and roll-type particle-packing model was used to generate simulations of random mixtures. The simulated mixtures were then evaluated to establish that they were not segregated and free from gross defects. A powder processing protocol was established to provide real mixtures for direct comparison and for use in evaluating the simulation. The powder processing protocol was designed to minimize differences between measured particle size distributions and the particle size distributions in the mixture. A sectioning technique was developed that was capable of producing distortion free cross-sections of fine scale particulate mixtures. Tessellation analysis was used to interrogate mixture cross sections and statistical quality control charts were used to evaluate different types of tessellation analysis and to establish the importance of differences between simulated and real mixtures. The particle-packing program generated crescent shaped pores below large particles but realistic looking mixture microstructures otherwise. Focused ion beam milling was the only technique capable of sectioning particle compacts in a manner suitable for stereological analysis. Johnson-Mehl and Voronoi tessellation of the same cross-sections produced tessellation tiles with different the-area populations. Control charts analysis showed Johnson-Mehl tessellation measurements are superior to Voronoi tessellation measurements for detecting variations in mixture microstructure, such as altered

  5. Web-Enabled Framework for Real-Time Scheduler Simulator: A Teaching Too

    Directory of Open Access Journals (Sweden)

    C. Yaashuwanth

    2010-01-01

    Full Text Available Problem statement: A Real-Time System (RTS is one which controls an environment by receiving data, processing it, and returning the results quickly enough to affect the functioning of the environment at that time. The main objective of this research was to develop an architectural model for the simulation of real time tasks to implement in distributed environment through web, and to make comparison between various scheduling algorithms. The proposed model can be used for preprogrammed scheduling policies for uniprocessor systems. This model provided user friendly Graphical User Interface (GUI. Approach: Though a lot of scheduling algorithms have been developed, just a few of them are available to be implemented in real-time applications. In order to use, test and evaluate a scheduling policy it must be integrated into an operating system, which is a complex task. Simulation is another alternative to evaluate a scheduling policy. Unfortunately, just a few real-time scheduling simulators have been developed to date and most of them require the use of a specific simulation language. Results: Task ID, deadline, priority, period, computation time and phase are the input task attributes to the scheduler simulator and chronograph imitating the real-time execution of the input task set and computational statistics of the schedule are the output. Conclusion: The Web-enabled framework proposed in this study gave the developer to evaluate the schedulability of the real time application. Numerous benefits were quoted in support of the Web-based deployment. The proposed framework can be used as an invaluable teaching tool. Further, the GUI of the framework will allow for easy comparison of the framework of existing scheduling policies and also simulate the behavior and verify the suitability of custom defined schedulers for real-time applications.

  6. Real single ion solvation free energies with quantum mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, Timothy TS; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Christopher J.

    2017-09-01

    Single ion solvation free energies are one of the most important properties of electrolyte solution and yet there is ongoing debate about what these values are. Experimental methods can only determine the values for neutral ion pairs. Here, we use DFT interaction potentials with molecular dynamics simulation (DFT-MD) combined with a modified version of the quasi chemical theory (QCT) to calculate these energies for the lithium and fluoride ions. A new method to rigorously correct for the error in the DFT functional is developed and very good agreement with the experimental value for the lithium fluoride pair is obtained. Moreover, this method partitions the energies into physically intuitive terms such as surface potential, cavity and charging energies which are amenable to descriptions with reduced models. Our research suggests that lithium’s solvation energy is dominated by the free energetics of a charged hard sphere, whereas fluoride exhibits significant quantum mechanical behavior that cannot be simply described with a reduced model. We would like to thank Thomas Beck, Shawn Kathmann and Sotiris Xantheas for helpful discussions. Computing resources were generously allocated by PNNLs Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.

  7. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  8. A real-time infrared imaging simulation method with physical effects modeling of infrared sensors

    Science.gov (United States)

    Li, Ni; Huai, Wenqing; Wang, Shaodan; Ren, Lei

    2016-09-01

    Infrared imaging simulation technology can provide infrared data sources for the development, improvement and evaluation of infrared imaging systems under different environment, status and weather conditions, which is reusable and more economic than physical experiments. A real-time infrared imaging simulation process is established to reproduce a complete physical imaging process. Our emphasis is put on the modeling of infrared sensors, involving physical effects of both spatial domain and frequency domain. An improved image convolution method is proposed based on GPU parallel processing to enhance the real-time simulation ability with ensuring its simulation accuracy at the same time. Finally the effectiveness of the above methods is validated by simulation analysis and result comparison.

  9. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  10. Real-time simulation of aeroelastic rotor loads for horizontal axis wind turbines

    Science.gov (United States)

    Marnett, M.; Wellenberg, S.; Schröder, W.

    2014-06-01

    Wind turbine drivetrain research and test facilities with hardware-in-the-loop capabilities require a robust and accurate aeroelastic real-time rotor simulation environment. Recent simulation environments do not guarantee a computational response at real-time. Which is why a novel simulation tool has been developed. It resolves the physical time domain of the turbulent wind spectra and the operational response of the turbine at real-time conditions. Therefore, there is a trade-off between accuracy of the physical models and the computational costs. However, the study shows the possibility to preserve the necessary computational accuracy while simultaneously granting dynamic interaction with the aeroelastic rotor simulation environment. The achieved computational costs allow a complete aeroelastic rotor simulation at a resolution frequency of 100 Hz on standard computer platforms. Results obtained for the 5-MW reference wind turbine by the National Renewable Energy Laboratory (NREL) are discussed and compared to NREL's fatigue, aerodynamics, structures, and turbulence (FAST)- Code. The rotor loads show a convincing match. The novel simulation tool is applied to the wind turbine drivetrain test facility at the Center for Wind Power Drives (CWD), RWTH Aachen University to show the real-time hardware-in-the-loop capabilities.

  11. Application of real time digital simulation in modeling wind turbines with reduced and full converter schemes

    Energy Technology Data Exchange (ETDEWEB)

    Protsenko, K.; Badrzadeh, B. [Vestas Technology R and D, Aarhus (Denmark); Mayer, P.F. [Vestas Technology R and D, Singapore (Singapore); Luo, Z. [Vestas Americas, Houston, TX (United States)

    2011-07-01

    This paper presents the application of a real-time digital simulation program for wind turbine modeling of a doubly-fed induction generator (type 3) and a fully-converted permanent magnet synchronous generator (type 4). Vestas type 3 and type 4,3 MW turbines are taken as representative for the two turbine types, respectively. The paper begins with an overview of the hardware details used for the simulation studies, outlines the assumptions applied to derive the models, and highlights the limitations imposed by the use of a real time digital simulation program. The implementation of both types of turbine models is then discussed. The validation of both models against electromagnetic time domain simulation results obtained from PSCAD is shown. The validation test performed is the evaluation of low voltage ride through capability of the turbine. Results obtained from the real time digital simulation provide a good match with the PSCAD simulation results, which have in turn been validated against field measurements. This gives confidence in the future application of such real time models, for example in wind power plant protection relay coordination. (orig.)

  12. High correlation between performance on a virtual-reality simulator and real-life cataract surgery

    DEFF Research Database (Denmark)

    Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif

    2017-01-01

    -tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). CONCLUSION: Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data......PURPOSE: To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. METHODS: Cataract surgeons with varying levels of experience were included in the study. All...... antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. RESULTS: Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion...

  13. Virtual- and real-world operation of mobile robotic manipulators: integrated simulation, visualization, and control environment

    Science.gov (United States)

    Chen, ChuXin; Trivedi, Mohan M.

    1992-03-01

    This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  14. Real-time Process Simulator of Wind Turbine Control Systems. Modelling and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hooft, E.L.; Van Engelen, T.G.; Pierik, J.T.G.; Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2007-06-15

    The development of a real-time simulator for a complete wind turbine system has been carried out for the evaluation of the overall control system. The real-time simulator software has been developed in Matlab/Simulink and supports automated real-time compilation (Real Time Workshop) to a real-time code for use at a hardware platform (dSpace, xPC-target). The following program modules were developed and implemented: efficient integrated linear structural models for the rotor, drive-train and support structure in a working point range; an interpolation method between these models has been derived; non-linear aerodynamic (BEM) and hydrodynamic (Morison) conversion models; a blade effective windspeed model, which account for the rotational sampling of spatial turbulence, for tower shadow and wind shear, and for oblique inflow; a wave generation model (Airy) in order to cope with offshore situations; an electric system model in a rotating reference frame (Park) consisting of a doubly fed induction generator, converter, transformer and cabling; quasi-steady and easy to parametrise models for turbine specific peripheral devices like pumps, motors, valves, brakes, heat exchangers; models of peripheral devices which comprise discontinuous behaviour such as switching and Coulomb friction; generic models for the thermic behaviour of the heat generating systems like gearbox, brake and generator. These subsystem models were integrated in an overall Simulink scheme for time-domain simulation and compilation to real-time code.

  15. Real-time modeling and simulation of distribution feeder and distributed resources

    Science.gov (United States)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  16. OpenGL Based Real Time&Inline Simulation of CNC Cams Grinding

    Directory of Open Access Journals (Sweden)

    Hu Zhanqi

    2013-06-01

    Full Text Available OpenGL based NC machining real time simulation model is proposed in the paper, and some key techniques of the system are investigated, including input and compiling of NC program, building of display model, real time displaying procedure of machining. With this technique, operator can view the machining process at screen of CNC machining real time, without stopping machine tool, which is very convenient for operating of machining. At last of the paper, an example of CNC cams grinding machine tool is given in order to proving the algorithm.

  17. A real-time simulation facility for advanced digital guidance and control system research

    Science.gov (United States)

    Bryant, W. H.; Downing, D. R.; Ostroff, A. J.

    1979-01-01

    A real-time simulation facility built at NASA's Langley Research Center to support digital guidance and control research and development activities is examined. The unit has recently been used to develop autoland systems for VTOL. The paper describes the autoland experiment and the flight environment, the simulation facility hardware and software, and presents typical simulation data to illustrate the type of data analysis carried out during software development. Finally, flight data for a later version of the autoland system are presented to demonstrate the simulation's capability to predict overall system behavior.

  18. Simulation Model of the ANC System for Noise Reduction in the Real Ambient

    Directory of Open Access Journals (Sweden)

    STOJANOVIC, V. O.

    2013-08-01

    Full Text Available The simulation model of ANC system for noise reduction caused by rotating machines in a room was described in the first part of this paper. This simulation model was presented in an acoustic-electrical diagram. The detailed mathematical analysis of the adaptive algorithm was performed. The second part of the paper presents the simulation results of the application of the ANC system for the noise reduction of fans in a room intended for a classroom. Simulation was performed for sine and real aroused signal. The results are presented both numerically and graphically and the comparative analysis was also done.

  19. Class of modified parallel combined methods of real-time numerical simulation for a stiff system

    Institute of Scientific and Technical Information of China (English)

    朱珍民; 刘德贵; 陈丽容

    2004-01-01

    A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.

  20. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  1. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  2. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  3. Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback

    Science.gov (United States)

    Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.

    2014-01-01

    Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200

  4. Real-time Simulation of Large Aircraft Flying Through Microburst Wind Field

    Institute of Scientific and Technical Information of China (English)

    Gao Zhenxing; Gu Hongbin; Liu Hui

    2009-01-01

    This article deals with real-time hi-fi simulation of large aircraft flying in turbulent wind in a simulator to study its takeoff and landing behavior in microburst wind shear. A parameterized three-dimensional (3D) microburst model is built up on the basis of vortex ring and Rankine vortex principle. Complicated microburst wind fields are simulated by means of vortex ring declination and multi-vortex superposition. Based on the modeling data of Boeing 747-100, a dynamic model with wind shear effects considered is established and a general method to modify the aerodynamic model is proposed. A controller for longitudinal and lateral escapes is designed and verified in simulated microburst wind field. Results indicate that, with high extensibility, reasonability and effectiveness, the 3D microburst model with wind shear effects considered is fit to simulate real wind fields. Different escape schemes can be adopted to fly through a wind field from different locations. The model can be used for real-time flight simulation in a flight simulator.

  5. Microscale Simulation on Mechanical Properties of Al/PTFE Composite Based on Real Microstructures

    Directory of Open Access Journals (Sweden)

    Chao Ge

    2016-07-01

    Full Text Available A novel numerical method at the microscale for studying the mechanical behavior of an aluminum-particle-reinforced polytetrafluoroethylene (Al/PTFE composite is proposed and validated experimentally in this paper. Two types of 2D representative volume elements (RVEs, real microstructure-based and simulated microstructures, are established by following a series of image processing procedures and on a statistical basis considering the geometry and the distribution of particles and microvoids, respectively. Moreover, 3D finite element modelling based on the same statistical information as the 2D simulated microstructure models is conducted to show the efficiency and effectiveness of the 2D models. The results of all simulations and experiments indicate that real microstructure-based models and simulated microstructure models are efficient methods to predict elastic and plastic constants of particle-reinforced composites.

  6. Parallel Motion Simulation of Large-Scale Real-Time Crowd in a Hierarchical Environmental Model

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available This paper presents a parallel real-time crowd simulation method based on a hierarchical environmental model. A dynamical model of the complex environment should be constructed to simulate the state transition and propagation of individual motions. By modeling of a virtual environment where virtual crowds reside, we employ different parallel methods on a topological layer, a path layer and a perceptual layer. We propose a parallel motion path matching method based on the path layer and a parallel crowd simulation method based on the perceptual layer. The large-scale real-time crowd simulation becomes possible with these methods. Numerical experiments are carried out to demonstrate the methods and results.

  7. Collecting real-time data with a behavioral simulation: A new methodological trait

    DEFF Research Database (Denmark)

    Jespersen, Kristina Risom

    interactive methods of collecting data [1, 2]. To collect real-time data as opposed to retrospective data, new methodological traits are needed. The paper proposes that a behavioral simulation supported by Web technology is a valid new research strategy to handle the collection of real-time data. Adapting....... The Web technology is the key to make a simulation for data collection objectives 'light'. Additionally, Web technology can be a solution to some of the challenges facing the traditional research methodologies such as time, ease, flexibility and cost, but perhaps more interesting, a possible solution...... to 'survey fatigues' and the lack of interaction [1, 12-16]. The concerns of the paper are the contributions of a simulation, the opportunities and challenges with Web technology, ensuring the validity and reliability of the data collected, and finally, a designed behavioral simulation is presented...

  8. Do Computer Simulations Allow a Better Understanding of Basic Electrical Circuits than Real Lab Experiments?

    CERN Document Server

    Schmekel, Bjoern S

    2010-01-01

    Several Authors have demonstrated that substituting computer simulations for real experiments conducted in a lab may help to improve students' understanding of the material. In the present work we try to understand the reasons for this intriguing finding and investigate possible prerequisites necessary to achieve this outcome. The study was conducted in an introductory college-level physics class in Germany. All simulations were performed using PSPICE.

  9. A Class of Real-Time Parallel Combined Methods of Digital Simulation for Large Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, re spectively. Their construction, convergence and numerical stability are discussed, and the digital simulation experiments are conducted.

  10. Contribution of static and dynamic load balancing in a real-time distributed air defence simulation

    CSIR Research Space (South Africa)

    Duvenhage, B

    2008-05-01

    Full Text Available and Dynamic Load Balancing In A Real-Time Distributed Air Defence Simulation Mr Bernardt Duvenhage; Mr Jan J. Nel Council for Scientific and Industrial Research (CSIR) bduvenhage@csir.co.za, cnel@csir.co.za Abstract. Simulations with a large number... system. The measure to which dynamic load balancing could further enhance the performance is then explored. Such knowledge forms the basis for further load balance research. 1. INTRODUCTION The South African Council for Scientific and Industrial...

  11. Real time process simulation for evaluation of wind turbine control systems

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hooft, E.L.; Verbruggen, T.W.; Schaak, P.; Van Engelen, T.G. [ECN Wind Energy, Petten (Netherlands)

    2003-06-01

    This paper describes intermediate results of the development of a generic real-time process simulator for verification of wind turbine control systems. The objective of the project is to reduce commissioning time and increase safety and reliability of prototype and modified industrial turbines. The simulator is aimed to simulate the behaviour of wind turbine components and environmental influences in real-time, in particular for abnormal and extreme situations. Proper acting of turbine controls can then be verified easily by connecting the controller direct to the configurable process simulator. 'Hardware in the loop' is added to evaluate real components instead of simulating them. The first project phase has been finished and was focussed on exploration and analysis. A development methodology has been established based on a case with a simplified turbine. Inventorying two different industrial wind turbines, as well as external influences, specifies general turbine components. The second phase involves modelling and implementation and is currently in execution. The simulator is foreseen to be available for industrial use before end 2005.

  12. Real Time Wind Turbine Simulator Based On Frequency Controlled AC Servomotor

    Directory of Open Access Journals (Sweden)

    Emil CEANGÃ

    2002-12-01

    Full Text Available This paper is a contribution to the development of a real time wind turbine simulator. The simulator is designed to generate wind power on its shaft, and provide the static and dynamic characteristics of a given turbine. The general structure of the simulator is composed of two subsystems: a “soft simulator” which realizes the real time simulation of the wind turbine, on the basis of the mathematical model, an electromechanical tracking system which receives the reference signal from the softsimulator, and provides a measurable output variable transmitted as response variable to the soft-simulator. The work concerns a wind turbine simulator using a tracking system realized on the basis on a frequency controlled AC servo-motor. This servo-motor is mechanically coupled with a pendulum machine, which realises the shaft torque of the electrical generator. The experimental system is built around the DS1103 PPC Controlled Board (dSPACE, which offers a rapid control prototyping, by Matlab-Simulink software tools. Experimental results from the real time WTS are presented.

  13. Review of Real-Time Simulator and the Steps Involved for Implementation of a Model from MATLAB/SIMULINK to Real-Time

    Science.gov (United States)

    Mikkili, Suresh; Panda, Anup Kumar; Prattipati, Jayanthi

    2014-07-01

    Nowadays the researchers want to develop their model in real-time environment. Simulation tools have been widely used for the design and improvement of electrical systems since the mid twentieth century. The evolution of simulation tools has progressed in step with the evolution of computing technologies. In recent years, computing technologies have improved dramatically in performance and become widely available at a steadily decreasing cost. Consequently, simulation tools have also seen dramatic performance gains and steady cost decreases. Researchers and engineers now have the access to affordable, high performance simulation tools that were previously too cost prohibitive, except for the largest manufacturers. This work has introduced a specific class of digital simulator known as a real-time simulator by answering the questions "what is real-time simulation", "why is it needed" and "how it works". The latest trend in real-time simulation consists of exporting simulation models to FPGA. In this article, the Steps involved for implementation of a model from MATLAB to REAL-TIME are provided in detail.

  14. A comparative study of psychophysiological reactions during simulator and real flight

    NARCIS (Netherlands)

    Veltman, J.A.

    2002-01-01

    During selection tests in a flight simulator and a real aircraft, physiological workload measures were evaluated. The selection context guaranteed high motivation in the participant to exert additional effort during difficult flight tasks. The aim of the study was to obtain information about the sen

  15. Real Experiments versus Phet Simulations for Better High-School Students' Understanding of Electrostatic Charging

    Science.gov (United States)

    Ajredini, Fadil; Izairi, Neset; Zajkov, Oliver

    2014-01-01

    This research investigates the influence of computer simulations (virtual experiments) on one hand and real experiments on the other hand on the conceptual understanding of electrical charging. The investigated sample consists of students in the second year (10th grade) of three gymnasiums in Macedonia. There were two experimental groups and one…

  16. DiSC-OPAL: A Simulation Framework For Real-time Assessment of Distribution Grids

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Pedersen, Rasmus; Iov, Florin

    2017-01-01

    Smart grid functionalities require developing, testing and verification of complex systems in a realistic environment that captures the three main domains: Control, ICT, and Electrical Grid. Real-time simulations that can support hardware in the loop methods have a pivotal role for modeling of su...

  17. Implementation of SoC Based Real-Time Electromagnetic Transient Simulator

    Directory of Open Access Journals (Sweden)

    I. Herrera-Leandro

    2017-01-01

    Full Text Available Real-time electromagnetic transient simulators are important tools in the design stage of new control and protection systems for power systems. Real-time simulators are used to test and stress new devices under similar conditions that the device will deal with in a real network with the purpose of finding errors and bugs in the design. The computation of an electromagnetic transient is complex and computationally demanding, due to features such as the speed of the phenomenon, the size of the network, and the presence of time variant and nonlinear elements in the network. In this work, the development of a SoC based real-time and also offline electromagnetic transient simulator is presented. In the design, the required performance is met from two sides, (a using a technique to split the power system into smaller subsystems, which allows parallelizing the algorithm, and (b with specialized and parallel hardware designed to boost the solution flow. The results of this work have shown that for the proposed case studies, based on a balanced distribution of the node of subsystems, the proposed approach has decreased the total simulation time by up to 99 times compared with the classical approach running on a single high performance 32-bit embedded processor ARM-Cortex A9.

  18. A comparative study of psychophysiological reactions during simulator and real flight

    NARCIS (Netherlands)

    Veltman, J.A.

    2002-01-01

    During selection tests in a flight simulator and a real aircraft, physiological workload measures were evaluated. The selection context guaranteed high motivation in the participant to exert additional effort during difficult flight tasks. The aim of the study was to obtain information about the sen

  19. Comparison of a Local Linearization Algorithm with Standard Numerical Integration Methods for Real-Time Simulation

    DEFF Research Database (Denmark)

    Cook, Gerald; Lin, Ching-Fang

    1980-01-01

    The local linearization algorithm is presented as a possible numerical integration scheme to be used in real-time simulation. A second-order nonlinear example problem is solved using different methods. The local linearization approach is shown to require less computing time and give significant...... improvement in accuracy over the classical second-order integration methods....

  20. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells

    NARCIS (Netherlands)

    C. Ulbrich; M. Wehland; J. Pietsch; G. Aleshcheva; P. Wise; J. van Loon; N. Magnusson; M. Infanger; J. Grosse; C. Eilles; A. Sudaresan; D. Grimm

    2014-01-01

    How microgravity affects the biology of human cells and the formation of 3D cell cultures in real and simulated microgravity (r- and s- ) is currently a hot topic in biomedicine. In r- and s- , various cell types were found to form 3D structures. This review will focus on the current knowledge of ti

  1. HAPI: An event-driven simulator for real-time multiprocessor systems

    NARCIS (Netherlands)

    Kurtin, Philip S.; Hausmans, Joost P.H.M.; Bekooij, Marco J.G.

    2016-01-01

    Many embedded multiprocessor systems have hard real-time requirements which should be guaranteed at design time by means of analytical techniques that cover all cases. It is desirable to evaluate the correctness and tightness of the analysis results by means of simulation. However, verification of t

  2. Computational Method for the Retarded Potential in the Real-Time Simulation of Quantum Electrodynamics

    CERN Document Server

    Fukuda, Masahiro; Ichikawa, Kazuhide; Tachibana, Akitomo

    2016-01-01

    We discuss the method to compute the integrals which appear in the retarded potential term for a real-time simulation based on QED (Quantum Electrodynamics). We show that the oscillatory integrals over the infinite interval involved in them can be efficiently performed by the method developed by Ooura and Mori based on the double exponential (DE) formula.

  3. Bringing Reality into Calculus Classrooms: Mathematizing a Real-life Problem Simulated in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    Olga V. Shipulina

    2013-01-01

    Full Text Available The study explores how students, who had completed the AP calculus course, mathematized the optimal navigation real-life problem simulated in the Second Life Virtual Environment. The particular research interest was to investigate whether/how students’ empirical activity in VE influences the way of their mathematizing.

  4. project SENSE : multimodal simulation with full-body real-time verbal and nonverbal interactions

    NARCIS (Netherlands)

    Miri, Hossein; Kolkmeier, Jan; Taylor, Paul Jonathon; Poppe, Ronald; Heylen, Dirk; Poppe, Ronald; Meyer, John-Jules; Veltkamp, Remco; Dastani, Mehdi

    2016-01-01

    This paper presents a multimodal simulation system, project-SENSE, that combines virtual reality and full-body motion capture technologies with real-time verbal and nonverbal communication. We introduce the technical setup and employed hardware and software of a first prototype. We discuss the

  5. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    Science.gov (United States)

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  6. Design and Construction of the TOPAZ II Reactor System Real-Time Dynamic Simulator

    Science.gov (United States)

    Kwok, Kwan S.

    1994-07-01

    A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The CPU is an 80486 DX2 processor operating at 66 MHz. The data acquisition system also employs an 80486 processor at 24 MHz on board. The data acquisition system is capable of providing 128 channels of analog-to-digital inputs at 1.3 MHz simultaneously, 64 channels of digital inputs at 1.6 MHz on a single channel, 64 channels of digital outputs at 1.6 MHz on a single channel, and 66 digital-to-analog channels at 1.6 MHz on a single channel. The simulator software operates in the Windows environment. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. It has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system.

  7. Construction Simulation and Real-Time Control for High Arch Dam

    Institute of Scientific and Technical Information of China (English)

    ZHONG Denghua; REN Bingyu; WU Kangxin

    2008-01-01

    A method of combining dynamic simulation with real-time control was proposed to fit the randomness and uncertainty in the high arch dam construction process. The mathematical logic model of high arch dam construction process was established. By combining dynamic con-struction simulation with schedule analysis, the process of construction schedule forecasting and analysis based on dynamic simulation was studied. The process of real-time schedule control was constructed and some measures for dynamic adjustment and control of construction schedule were provided. A system developed with the method is utilized in a being constructed hydroelectric pro-ject located at the Yellow River in northwest China, which can make the pouring plan of the dam in the next stage (a month, cluarter or year) to guide the practical construction. The application result shows that the system provides an effective technical support for the construction and manage-ment of the dam.

  8. Simulation of Emergency Medical Services Delivery Performance Based on Real Map

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Azizan

    2013-06-01

    Full Text Available Performance of Emergency Medical Services (EMS delivery is normally measured via ambulance response time. Quick ambulance response can effectively reduce the disability, morbidity and mortality of the emergency patients. Ambulance dispatch policy and ambulance location model both have a significant impact on the ambulance response time. In this paper, we present a prototype of simulation framework to study the performance of local EMS delivery in terms of a simulation model that consists of both ambulance dispatch policy and ambulance location model. Several real-life dispatch policies are simulated in a real map to evaluate the efficiency of local EMS delivery in Johor Bahru. By using a suitable dispatch policy, the results show an improvement in average response time for higher priority call. The total calls covered are also found to increase significantly with the application of Maximal Covering Location Problem (MCLP, especially at a bigger fleet size.

  9. Validation of the real and simulated data of the pierre auger fluorescence telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Ewers, A.; Greenen, H.; Kampert, K-H.; Perrone, L.; Robbins, S.; Scherini, V.; /Wuppertal U.; Unger, M.; /Karlsruhe, Forschungszentrum

    2005-07-01

    The fluorescence detector (FD) of the Pierre Auger Observatory is currently operating 18 fluorescence telescopes of the 24 that will be employed in the completed detector. These telescopes, grouped in 4 eyes each consisting of 6 telescopes, measure the longitudinal profile of cosmic ray showers with a 14% duty cycle. The reconstruction capability and triggering efficiency have been studied using a complete simulation and reconstruction production chain, employing both simulated CORSIKA showers and parameterized Gaisser-Hillas profiles. The propagation through the atmosphere and the detector response are taken into account and simulated in detail. These simulated data have been generated in a preliminary analysis using the method of importance sampling to efficiently cover the energy region of 0.3-300 EeV, various shower geometries and impact points and different primary particles. The distributions of observables have then been investigated in both real and simulated data, facilitating the validation of the reconstruction and simulation software. Comparisons of real and simulated data are discussed and used to assess their impact on the data analysis.

  10. Real and Simulated Waveform Recording LIDAR Data in Boreal Juvenile Forest Vegetation

    Science.gov (United States)

    Hovi, A.; Korpela, I.

    2013-05-01

    Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF) recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR) systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT) -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.

  11. Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems

    Science.gov (United States)

    Quartier, F.; Delatte, B.; Joubert, M.

    2009-05-01

    Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the

  12. Study on Forward-Facing Model and Real-Time Simulation for a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2011-10-01

    Full Text Available To shorten design period and reduce development costs, computer modeling and simulation is important for HEV design and development. In this paper, real-time simulation for a Series Hybrid Electric Vehicle (SHEV is made to verify its fuzzy logic control strategy based on dSPACE-DS1103 development kits. The whole real-time simulation schematic is designed and the vehicle forward-facing simulation model is set up. Modeling methods for the driver, controller and vehicle (includes engine, generator, motor, battery, etc. under MATLAB/Simulink environment are discussed in detail. Driver behavior is simulated by two potentiometers and introduced into the real-time system to realize close-loop control. A real-time monitoring interface is also developed to observe the experiment results. Experiment results show that the real-time simulation platform works well and the SHEV fuzzy logic control strategy is effective.

  13. Control-Oriented Models for Real-Time Simulation of Automotive Transmission Systems

    Directory of Open Access Journals (Sweden)

    Cavina N.

    2015-01-01

    Full Text Available A control-oriented model of a Dual Clutch Transmission (DCT was developed for real-time Hardware In the Loop (HIL applications, to support model-based development of the DCT controller and to systematically test its performance. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a simulation step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, which was then implemented in a HIL system and connected to the Transmission Control Unit (TCU. Several tests have been performed on the HIL simulator, to verify the TCU performance: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control actions performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. A test automation procedure has finally been developed to permit the execution of a pattern of tests without the interaction of the user; perfectly repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

  14. First experience with classical-statistical real-time simulations of anomalous transport with overlap fermions

    CERN Document Server

    Buividovich, P V

    2016-01-01

    We present first results of classical-statistical real-time simulations of anomalous transport phenomena with overlap fermions. We find that even on small lattices overlap fermions reproduce the real-time anomaly equation with much better precision than Wilson-Dirac fermions on an order of magnitude larger lattices. The difference becomes much more pronounced for quickly changing electromagnetic fields, especially if one takes into account the back-reaction of fermions on electromagnetism. As test cases, we consider chirality pumping in parallel electric and magnetic fields and mixing between the plasmon and the Chiral Magnetic Wave.

  15. Vision-Based Reaching Using Modular Deep Networks: from Simulation to the Real World

    OpenAIRE

    Zhang, Fangyi; Leitner, Jürgen; Upcroft, Ben; Corke, Peter

    2016-01-01

    In this paper we describe a deep network architecture that maps visual input to control actions for a robotic planar reaching task with 100% reliability in real-world trials. Our network is trained in simulation and fine-tuned with a limited number of real-world images. The policy search is guided by a kinematics-based controller (K-GPS), which works more effectively and efficiently than $\\varepsilon$-Greedy. A critical insight in our system is the need to introduce a bottleneck in the networ...

  16. Real-time ECG emulation: a multiple dipole model for electrocardiography simulation.

    Science.gov (United States)

    Abkai, Ciamak; Hesser, Jürgen

    2009-01-01

    A new model for describing electrocardiography (ECG) is presented, which is based on multiple dipoles compared to standard single dipole approaches in vector electrocardiography. The multiple dipole parameters are derived from real data (e.g. four dipoles from 12-channel ECG) by solving the backward problem of ECG numerically. Results are transformed to a waveform description based on Gaussian mixture for every dimension of each dipole. These compact parameterized descriptors are used for a very realistic real-time simulation applying the forward solution of the proposed model.

  17. FPGA-based real-time simulation of power converters of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Kokenyesi, Tamas; Varjasi, Istvan [Budapest University of Technology and Economics, Department of Automation and Applied Informatics (Hungary)], e-mail: kokenyesi.tamas@gmail.com, email: varjasi@aut.bme.hu

    2011-07-01

    This paper presents a hardware-in-the-loop testing (HIL) approach based on a field programmable gate array (FPGA) real-time simulation with real measured signals designed to reduce the cost and time for testing the main circuit of a power converter significantly. This method allows the control unit to measure its outputs on the same signal level in a completely transparent way, unlike other computer based simulation methods. As an example, a simulator for a three-phase inverter used for DC/AC conversion or frequency control is described and the simulated network illustrated. The calculation procedure and relative equations are also detailed, with simulation parameters and some measurement results being presented. It was found that the main advantage of this method is speed, which was only limited by the actual capabilities of the FPGA used. This method can be applied to a wide variety of analog circuits, reducing time to market. More complex circuits and higher frequencies could be simulated in the future with the evolution of FPGAs.

  18. Towards Online Visualization and Interactive Monitoring of Real-Time CFD Simulations on Commodity Hardware

    Directory of Open Access Journals (Sweden)

    Nils Koliha

    2015-09-01

    Full Text Available Real-time rendering in the realm of computational fluid dynamics (CFD in particular and scientific high performance computing (HPC in general is a comparably young field of research, as the complexity of most problems with practical relevance is too high for a real-time numerical simulation. However, recent advances in HPC and the development of very efficient numerical techniques allow running first optimized numerical simulations in or near real-time, which in return requires integrated and optimized visualization techniques that do not affect performance. In this contribution, we present concepts, implementation details and several application examples of a minimally-invasive, efficient visualization tool for the interactive monitoring of 2D and 3D turbulent flow simulations on commodity hardware. The numerical simulations are conducted with ELBE, an efficient lattice Boltzmann environment based on NVIDIA CUDA (Compute Unified Device Architecture, which provides optimized numerical kernels for 2D and 3D computational fluid dynamics with fluid-structure interactions and turbulence.

  19. Simulations parameter estimation in near real-time from a future VGOS network

    Science.gov (United States)

    Nilsson, Tobias; Karbon, Maria; Soja, Benedikt; Glaser, Susanne; Schuh, Harald

    2016-04-01

    The new geodetic Very Long Baseline Interferometry (VLBI) system, the VLBI Global Observing System (VGOS), will present a number of opportunities and challenges for VLBI data analysis. For example, there will be an increase in the number of observations per day by a factor of 10-30 or more compared to today. Furthermore, another goal of VGOS is to reduce the latency between observation and availability of the results, like the Earth Orientation Parameters (EOP), to less than one day. Ideally, the results should be available in real-time. Thus, every part of the VLBI processing chain, e.g. observation, data transfer, correlation, and data analysis, needs to be able to operate autonomous in real-time. To meet the challenges that VGOS will put on the VLBI data analysis, we have implemented a Kalman filter module in to our software, VieVS@GFZ, which is able to analyze VLBI data fully automated in near real-time. In this contribution, we present this module, in particular the setup for real-time analysis, and we test its performance through simulation of a real-time estimation scenario from a potential future 30 station VGOS network. We investigate what real-time precision can be obtained for the estimated parameters, like the EOP, station coordinates, and tropospheric delays. Furthermore, we study how well the Kalman filter is able to autonomously cope with potential problems in the VLBI data, such as clock breaks.

  20. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    Science.gov (United States)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  1. When Learning about the Real World is Better Done Virtually: A Study of Substituting Computer Simulations for Laboratory Equipment

    Science.gov (United States)

    Finkelstein, N. D.; Adams, W. K.; Keller, C. J.; Kohl, P. B.; Perkins, K. K.; Podolefsky, N. S.; Reid, S.; LeMaster, R.

    2005-01-01

    This paper examines the effects of substituting a computer simulation for real laboratory equipment in the second semester of a large-scale introductory physics course. The direct current circuit laboratory was modified to compare the effects of using computer simulations with the effects of using real light bulbs, meters, and wires. Two groups of…

  2. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    Science.gov (United States)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  3. Development and Validation in Air Traffic Control by Means of Real-Time Simulations

    Directory of Open Access Journals (Sweden)

    Stephan Herr

    2009-02-01

    Full Text Available The airspace in Central Europe is already one of the busiest airspaces in the world and the forecasts predict further traffic increases. The current air transport system is reaching its capacity limits, not only at airports but also in parts of the en-route area. This is mainly due to the workload constraints of air traffic controllers. In the past, many technical system functionalities were developed with the aim of reducing controller workload and thus enabling the safe handling of the predicted traffic growth. But these new functionalities alone will not provide adequate relief to air traffic controllers. Their working procedures and the airspace structure will have to be adapted accordingly. In order to obtain real operational benefits, these technical innovations must be integrated into an overall concept which – in addition to the above-mentioned factors – also takes account of ergonomic aspects and human-machine interfaces. When developing such an overall concept, additional evaluation and validation measures are indispensable to ensure that the desired operational benefits are achieved. This is why DFS has for many years used fast- and real-time simulations to assess and optimise any changes to be made to the air traffic control system. The working methods of DFS in this context are in keeping with the European Operational Concept Validation Methodology of 2007, in short E-OCVM. This paper outlines the development and validation activities of DFS using the MSP D/L project as an example. The project deals with the introduction of the new role of air traffic controllers as multi-sector planners (MSP and new system functionalities, such as air/ground data link (D/L. The project included the development of an operational concept for using the new functionalities as well as for defining working procedures and the airspace structure. This concept was subsequently evaluated by means of a fast-time simulation and two real-time simulations

  4. Design of a real-time wind turbine simulator using a custom parallel architecture

    Science.gov (United States)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  5. Measurement of the Driver Response Time in the Simulated and Real Emergency Driving Situations

    Directory of Open Access Journals (Sweden)

    Tone Magister

    2006-01-01

    Full Text Available Since the real reaction time of a driver involved in an accidentwill always be unknown to reconstruction experts, and becausethe driver's reaction time databases published in the respectiveliterature have become almost obscure and hard tocompare with the everyday practice of the accident reconstruction,expert decision was made at Transport Safety Laboratoryto engage in research of the driver's reaction time and in the reactiontime measurement techniques as well and to develop aPC-based simulator for measurements of the driver reactiontime. The structure of the Driver Reaction Timer simulator andits components are described as well as its measuring algorithm.The measurements of the driver's reaction time in thereal and simulated driving environment were performed, andthe results obtained are discussed. By comparing these results,the quality evaluation of the current stage of development of thesimulator is addressed and the necessary further developmentof the simulator defined.

  6. Orbiting in rotors. Modeling for real time simulation; Orbitacion en rotores. Modelado para simulacion en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Romero Navarrete, Jose Antonio

    1988-09-01

    In the operation of complicated systems the simulation has been transformed into an important resource, as much for the aid in the operation of the real plant as for the previous training of the personnel who will have the operation responsibility of the different systems. In this general frame, and particularly in the field referring to the development of models to be used in the simulators for thermal and nuclear power stations future operators training, in this work a general modeling of the rotors orbiting amplitudes of turbogroups, carrying out as a part of the methodology a general typification of the conditions and modifying effects of the dynamic behavior of the rotors of the turbogroups. The mathematical model consists of the handling of an abstracted system of the real system, considering discreet masses united by mass devoid flexible sections. In the bearings, average cutting moments are considered, sensible to linear misalignments of the bearing, as well as to the lubricating oil pressure and temperature. The three-axial states of stresses are taken into account as far as the parameters of the material hardening are set out for each considered segment, leaving this phenomenon based on the radius of the section as well as on the rotation speed. As an influence of the environment, a diminution of the elasticity modulus of the material as the temperature increases, is considered. As faults are studied, on one hand, the influence that the diminution of the diametric moment of inertia, as the result of a cross-sectional fissure has on the critical speeds values and the rotor configurations. The other evaluated fault consists of the linear misalignment of the bearing pedestals, and its influence appears on the orbitation amplitude. The calculation method applied is the one of Prohl, since the alternative method for the mathematical model applied, the one of the transference matrixes, consumes longer run time and memory, which is demonstrated by means of an

  7. Enhancing the NS-2 Network Simulator for Near Real-Time Control Feedback and Distributed Simulation

    Science.gov (United States)

    2009-03-21

    introduction of a mediator to synchronize events is often used. Branicky et al [5] outlines a framework for co-simulation with a networked control system providing...accessed on Nov 4, 2008. Http://www.boost.org/. 5. Branicky, Michael, Vincenzo Liberatore, and Stephen M. Phillips. “ Networked Control System Co

  8. Simulation study of real-time monitor for BEPC-Ⅱ luminosity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A fast and real time luminosity monitor system will be used in the BEPC-Ⅱ(Beijing Electron Positron Collider,China).Photons generated in radiative Bhabha scattering at the interaction point are transformed into charged particles,and then the luminosity of each bunch pair is measured through collecting the Cherenkov light produced by charged particles in fused silica.The whole process happening in the detector is simulated.The physics acceptance and detection threshold with the monitor accu-racy of 1% are set based on the simulation spectra of photoelectron yield calibrated by e-beam data.

  9. Methods and tools for simplified dynamic simulations in real time based on expression approximation

    Directory of Open Access Journals (Sweden)

    Štefan M.

    2007-10-01

    Full Text Available The core of this paper is the methodology of the dynamicalmodels’ simplification for the real time simulation. The simplified simulation models are based on neuro-fuzzymodelling approach, which was originally designed for predictive control-orientedmodelling of nonlinear dynamical systems. The two ways of the neuro-fuzzymodelling utilization are presented. First, the training of the predictive dynamical neuro-fuzzymodel and, second, the training of the statical approximation of the right-hand side of the system’s state space description. We demonstrate the results on the examples of nonlinear spring damper system and double pendulum.

  10. Study of silicon+6LiF thermal neutron detectors: GEANT4 simulations versus real data

    Science.gov (United States)

    Meo, S. Lo; Cosentino, L.; Mazzone, A.; Bartolomei, P.; Finocchiaro, P.

    2017-09-01

    Research and development on alternative thermal neutron detection technologies and methods are nowadays needed as a possible replacement of 3He-based ones. Commercial solid state silicon detectors, coupled with neutron converter layers containing 6Li, have been proved to represent a viable solution for several applications as present in the literature. In order to better understand the detailed operation and the response and efficiency of such detectors, a series of dedicated GEANT4 simulations were performed and compared with real data collected in a few different configurations. The results show an excellent agreement between data and simulations, indicating that the behavior of the detector is fully understood.

  11. A simulation method of aircraft plumes for real-time imaging

    Science.gov (United States)

    Li, Ni; Lv, Zhenhua; Huai, Wenqin; Gong, Guanghong

    2016-07-01

    Real-time infrared simulation technology can provide a large number of infrared images under different conditions to support the design, test and evaluation of a system having infrared imaging equipment with very low costs. By synthesizing heat transfer, infrared physics, fluid mechanics and computer graphics, a real-time infrared simulation method is proposed based on the method of characteristics to predict the infrared feature of aircraft plumes, which tries to obtain a good balance between simulation precision and computation efficiency. The temperature and pressure distribution in the under-expansion status can be rapidly solved with dynamically changing flight statuses and engine working states. And a modified C-G (Curtis-Godson) spectral band model that combines the plume streamlines with the conventional C-G spectral band model was implemented to calculate the non-uniformly distributed radiation parameters inside a plume field. The simulation result was analyzed and compared with the CFD++, which validates the credibility and efficiency of the proposed simulation method.

  12. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  13. Real-time Model Development of Core Protection and Monitoring System for SMART Simulator Application

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonseung; Hwang, Daehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Important features of the software models are described for the application to SMART simulator. A real-time performance of the models was examined for various simulation scenarios. Areal-time model development of core protection and monitoring algorithms for SMART simulator is being studied. Software algorithms as well as design bases and requirements for core protection and monitoring are developed and various performance tests are done. From test results, it is judged that SCOPS{sub S}SIM and SCOMS{sub S}SIM algorithms and calculational capabilities are appropriate for core protection and monitoring program in SMART simulator. A multi-purpose best-estimate simulator for the SMART is being established which is purposed to be used as a tool to evaluate the impacts of design changes on the safety performance, and to improve and/or optimize the operating procedure of the SMART. In keeping with these purposes, a real-time model of the digital core protection and monitoring systems was developed on the basis of SCOPS and SCOMS algorithms of SMART.

  14. Real-time Performance Verification of Core Protection and Monitoring System with Integrated Model for SMART Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon-Seung; Kim, Sung-Jin; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In keeping with these purposes, a real-time model of the digital core protection and monitoring systems for simulator implementation was developed on the basis of SCOPS and SCOMS algorithms. In addition, important features of the software models were explained for the application to SMART simulator, and the real-time performance of the models linked with DLL was examined for various simulation scenarios. In this paper, performance verification of core protection and monitoring software is performed with integrated simulator model. A real-time performance verification of core protection and monitoring software for SMART simulator was performed with integrated simulator model. Various DLL connection tests were done for software algorithm change. In addition, typical accident scenarios of SMART were simulated with 3KEYMASTER and simulated results were compared with those of DLL linked core protection and monitoring software. Each calculational result showed good agreements.

  15. Using the Simulation Modeling Methods for the Designing Real-Time Integrated Expert Systems

    OpenAIRE

    Rybina, Galina; Rybin, Victor

    2003-01-01

    Certain theoretical and methodological problems of designing real-time dynamical expert systems, which belong to the class of the most complex integrated expert systems, are discussed. Primary attention is given to the problems of designing subsystems for modeling the external environment in the case where the environment is represented by complex engineering systems. A specific approach to designing simulation models for complex engineering systems is proposed and examples of...

  16. EDUCATIONAL COMPUTER SIMULATION EXPERIMENT «REAL-TIME SINGLE-MOLECULE IMAGING OF QUANTUM INTERFERENCE»

    Directory of Open Access Journals (Sweden)

    Alexander V. Baranov

    2015-01-01

    Full Text Available Taking part in the organized project activities students of the technical University create virtual physics laboratories. The article gives an example of the student’s project-computer modeling and visualization one of the most wonderful manifestations of reality-quantum interference of particles. The real experiment with heavy organic fluorescent molecules is used as a prototype for this computer simulation. The student’s software product can be used in informational space of the system of open education.

  17. Selective Real-time Detection of Gaseous Nerve Agent Simulants Using Multiwavelength Photoacoustics

    Science.gov (United States)

    2012-08-15

    Selective real-time detection of gaseous nerve agent simulants using multiwavelength photoacoustics Kristan P. Gurton,* Melvin Felton, and Richard...concentrations. The technique is based on a modified version of conventional laser photoacoustic (PA) spectroscopy, in which optical absorption is typically...spec- troscopic approach [1–4]. One of the more direct methods to implement in prac- tice (without sacrificing sensitivity) is laser photoacoustic

  18. Predictability of Pilot Performance from Simulated to Real Flight in the UH-60 (Black Hawk) Helicopter

    Science.gov (United States)

    2008-02-01

    making two 90-degree turns to the downwind leg of the traffic pattern, was required to hold the aircraft to straight and level flight at 1000 ft MSL and...simulator, there were no delays caused by heavy aircraft traffic in the area or maintenance delays from equipment malfunctions or failures. Despite all...vibration exposures, or true depth of field/ stereopsis , might only be meaningful in the real aircraft environment. Conclusions The use of operational

  19. A microprocessor-based real-time simulator of a turbofan engine

    Science.gov (United States)

    Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.

    1988-01-01

    A real-time digital simulator of a Pratt and Whitney F 100 engine is discussed. This self-contained unit can operate in an open-loop stand-alone mode or as part of a closed-loop control system. It can also be used in control system design and development. It accepts five analog control inputs and its sixteen outputs are returned as analog signals.

  20. Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    OpenAIRE

    Wenbo Wu; Jiahong Liang; Xinyu Yao; Baohong Liu

    2014-01-01

    This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA) to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improv...

  1. Team Training and Retention of Skills Acquired Above Real Time Training on a Flight Simulator

    Science.gov (United States)

    Ali, Syed Friasat; Guckenberger, Dutch; Crane, Peter; Rossi, Marcia; Williams, Mayard; Williams, Jason; Archer, Matt

    2000-01-01

    Above Real-Time Training (ARTT) is the training acquired on a real time simulator when it is modified to present events at a faster pace than normal. The experiments related to training of pilots performed by NASA engineers (Kolf in 1973, Hoey in 1976) and others (Guckenberger, Crane and their associates in the nineties) have shown that in comparison with the real time training (RTT), ARTT provides the following benefits: increased rate of skill acquisition, reduced simulator and aircraft training time, and more effective training for emergency procedures. Two sets of experiments have been performed; they are reported in professional conferences and the respective papers are included in this report. The retention of effects of ARTT has been studied in the first set of experiments and the use of ARTT as top-off training has been examined in the second set of experiments. In ARTT, the pace of events was 1.5 times the pace in RTT. In both sets of experiments, university students were trained to perform an aerial gunnery task. The training unit was equipped with a joystick and a throttle. The student acted as a nose gunner in a hypothetical two place attack aircraft. The flight simulation software was installed on a Universal Distributed Interactive Simulator platform supplied by ECC International of Orlando, Florida. In the first set of experiments, two training programs RTT or ART7 were used. Students were then tested in real time on more demanding scenarios: either immediately after training or two days later. The effects of ARTT did not decrease over a two day retention interval and ARTT was more time efficient than real time training. Therefore, equal test performance could be achieved with less clock-time spent in the simulator. In the second set of experiments three training programs RTT or ARTT or RARTT, were used. In RTT, students received 36 minutes of real time training. In ARTT, students received 36 minutes of above real time training. In RARTT, students

  2. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    Science.gov (United States)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  3. Real-time modelling and simulation of an active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, S.; Ouhrouche, M. [Quebec Univ., Chicoutimi, PQ (Canada); Dufour, C.; Allaire, P.F. [Opal RT Technologies Inc., Montreal, PQ (Canada)

    2007-07-01

    Power electronics converters generate harmonics and cause electromagnetic compatibility problems. Active power filter (APF) technology has advanced to the point that it can compensate for harmonics in electrical networks and provide reactive power and neutral current in AC networks. This paper presented a contribution in the design of a shunt APF for harmonics compensation in real-time simulation using the RT-LAB software package running on a simple personal computer. Real-time simulations were performed to validate the effectiveness of the proposed model. Several high-tech industries have adopted this tool for rapid control prototyping and for Hardware-in-the-Loop applications. The switching signals of the APF are determined by the hysteresis band current controller. The suitable current reference signals were determined by the algorithm based on synchronous reference frame. Real-time simulation runs showed good performance in harmonics compensation, thus satisfying the requirements of IEEE Standard 519-1992. The rate of total harmonic distortion for the source current decreased from 30 to 5 per cent. 12 refs., 1 tab., 9 figs.

  4. When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment

    Directory of Open Access Journals (Sweden)

    S. Reid

    2005-10-01

    Full Text Available This paper examines the effects of substituting a computer simulation for real laboratory equipment in the second semester of a large-scale introductory physics course. The direct current circuit laboratory was modified to compare the effects of using computer simulations with the effects of using real light bulbs, meters, and wires. Two groups of students, those who used real equipment and those who used a computer simulation that explicitly modeled electron flow, were compared in terms of their mastery of physics concepts and skills with real equipment. Students who used the simulated equipment outperformed their counterparts both on a conceptual survey of the domain and in the coordinated tasks of assembling a real circuit and describing how it worked.

  5. Dynamic simulation and optimal real-time operation of CHP systems for buildings

    Science.gov (United States)

    Cho, Hee Jin

    Combined Cooling, Heating, and Power (CHP) systems have been widely recognized as a key alternative for electric and thermal energy generation because of their outstanding energy efficiency, reduced environmental emissions, and relative independence from centralized power grids. The systems provide simultaneous onsite or near-site electric and thermal energy generation in a single, integrated package. As CHP becomes increasingly popular worldwide and its total capacity increases rapidly, the research on the topics of CHP performance assessment, design, and operational strategy become increasingly important. Following this trend of research activities to improve energy efficiency, environmental emissions, and operational cost, this dissertation focuses on the following aspects: (a) performance evaluation of a CHP system using a transient simulation model; (b) development of a dynamic simulation model of a power generation unit that can be effectively used in transient simulations of CHP systems; (c) investigation of real-time operation of CHP systems based on optimization with respect to operational cost, primary energy consumption, and carbon dioxide emissions; and (d) development of optimal supervisory feed-forward control that can provide realistic real-time operation of CHP systems with electric and thermal energy storages using short-term weather forecasting. The results from a transient simulation of a CHP system show that technical and economical performance can be readily evaluated using the transient model and that the design, component selection, and control of a CHP system can be improved using this model. The results from the case studies using optimal real-time operation strategies demonstrate that CHP systems with an energy dispatch algorithm have the potential to yield savings in operational cost, primary energy consumption, and carbon dioxide emissions with respect to a conventional HVAC system. Finally, the results from the case study using a

  6. Computing the total atmospheric refraction for real-time optical imaging sensor simulation

    Science.gov (United States)

    Olson, Richard F.

    2015-05-01

    Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.

  7. Simulation and experimental study of high pressure switching expansion reduction considering real gas effect

    Institute of Scientific and Technical Information of China (English)

    罗语溪; 张彦军; 高玉宝; 王宣银; 徐志鹏

    2014-01-01

    Switching expansion reduction (SER) uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics. A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built. The mathematical model considers heat exchanges, source air pressure and temperature, environmental temperatures and heat transfer coefficients variations. In addition, the compensation for real gas effect is used in the model building. The comparison between experiments and simulations of SER indicates that, to compensate the real gas effect in high pressure discharging process, the thermal capacity of air supply container in simulation should be less than the actual value. The higher the pressure range, the greater the deviation. Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s, which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.

  8. ZERO PHASE ERROR REAL TIME CONTROL FOR FLIGHT SIMULATOR SERVO SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liu Jinkun; Liu Qiang; Er Lianjie

    2004-01-01

    Flight simulator is an important device and a typical high performance position servo system used in the hardware-in-the-loop simulation of flight control system.Without using the future desired output, zero phase error controller makes the overall system's frequency response exhibit zero phase shift for all frequencies and a very small gain error at low frequency range can be achieved.A new algorithm to design the feedforward controller is presented, in order to reduce the phase error, the design of proposed feedforward controller uses a modified plant model, which is a closed loop transfer function, through which the system tracking precision performance can be improved greatly.Real-time control results show the effectiveness of the proposed approach in flight simulator servo system.

  9. A real-time blade element helicopter simulation for handling qualities analysis

    Science.gov (United States)

    Du Val, Ronald W.

    1989-01-01

    A simulation model which utilizes parallel processing platforms is described in terms of its contributions to improved real-time helicopter simulation. The FLIGHTLAB parallel processing environment is explained, and the relative advantages of the blade element and rotor map models for rigid and elastic articulated blades are discussed. A UH-60 simulation is conducted by means of a rigid model with 14 degrees of freedom, as well as an elastic model with 26 degrees of freedom, to compare trim conditions, longitudinal static margins, and longitudinal and lateral frequency responses. The FLIGHTLAB system is shown to facilitate restructuring for parallel processing as well as the systematic comparison of a variety of models. The system can facilitate the comparison of rigid and elastic blade element rotor models at NASA-Ames and other research facilities.

  10. Real-time simulation of ground displacement by digital accelerograph record

    Institute of Scientific and Technical Information of China (English)

    金星; 马强; 李山有

    2005-01-01

    With the development of accelerograph, strong ground motion data can be widely applied to many fields. Especially, it is an important milestone for strong motion observation to expand application fields into earthquake monitoring that real-time simulation of ground displacement can be obtained by strong motion records for determining three earthquake parameters. For the purpose of application, on the basis of principle of seismic response of single-degree-of-freedom (SDOF) system, this paper presents a suit of formula of simulating ground displacement records by using strong ground motion records with the help of simulator of SDOF system. The research results show that the technique is very efficient and can be widely applied to earthquake monitoring.

  11. Implementation of a blade element UH-60 helicopter simulation on a parallel computer architecture in real-time

    Science.gov (United States)

    Moxon, Bruce C.; Green, John A.

    1990-01-01

    A high-performance platform for development of real-time helicopter flight simulations based on a simulation development and analysis platform combining a parallel simulation development and analysis environment with a scalable multiprocessor computer system is described. Simulation functional decomposition is covered, including the sequencing and data dependency of simulation modules and simulation functional mapping to multiple processors. The multiprocessor-based implementation of a blade-element simulation of the UH-60 helicopter is presented, and a prototype developed for a TC2000 computer is generalized in order to arrive at a portable multiprocessor software architecture. It is pointed out that the proposed approach coupled with a pilot's station creates a setting in which simulation engineers, computer scientists, and pilots can work together in the design and evaluation of advanced real-time helicopter simulations.

  12. Temporal modulation transfer functions for listeners with real and simulated hearing loss.

    Science.gov (United States)

    Desloge, Joseph G; Reed, Charlotte M; Braida, Louis D; Perez, Zachary D; Delhorne, Lorraine A

    2011-06-01

    A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment. © 2011 Acoustical Society of America

  13. Real-time simulations of photoinduced coherent charge transfer and proton-coupled electron transfer.

    Science.gov (United States)

    Eisenmayer, Thomas J; Buda, Francesco

    2014-10-20

    Photoinduced electron transfer (ET) and proton-coupled electron transfer (PCET) are fundamental processes in natural phenomena, most noticeably in photosynthesis. Time-resolved spectroscopic evidence of coherent oscillatory behavior associated with these processes has been reported both in complex biological environments, as well as in biomimetic models for artificial photosynthesis. Here, we consider a few biomimetic models to investigate these processes in real-time simulations based on ab initio molecular dynamics and Ehrenfest dynamics. This allows for a detailed analysis on how photon-to-charge conversion is promoted by a coupling of the electronic excitation with specific vibrational modes and with proton displacements. The ET process shows a characteristic coherence that is linked to the nuclear motion at the interface between donor and acceptor. We also show real-time evidence of PCET in a benzimidazole-phenol redox relay. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Real-time retrieval for case-based reasoning in interactive multiagent-based simulations

    CERN Document Server

    De Loor, Pierre; Pierre, Chevaillier; 10.1016/j.eswa.2010.10.048

    2011-01-01

    The aim of this paper is to present the principles and results about case-based reasoning adapted to real- time interactive simulations, more precisely concerning retrieval mechanisms. The article begins by introducing the constraints involved in interactive multiagent-based simulations. The second section pre- sents a framework stemming from case-based reasoning by autonomous agents. Each agent uses a case base of local situations and, from this base, it can choose an action in order to interact with other auton- omous agents or users' avatars. We illustrate this framework with an example dedicated to the study of dynamic situations in football. We then go on to address the difficulties of conducting such simulations in real-time and propose a model for case and for case base. Using generic agents and adequate case base structure associated with a dedicated recall algorithm, we improve retrieval performance under time pressure compared to classic CBR techniques. We present some results relating to the perfor...

  15. Importance of leadership in cardiac arrest situations: from simulation to real life and back.

    Science.gov (United States)

    Hunziker, Sabnina; Tschan, Franziska; Semmer, Norbert K; Marsch, Stephan

    2013-04-18

    The 2010 American Heart Association guidelines now recommend leadership training in Advanced Cardiac Life Support courses. In this review we provide a comprehensive summary of data derived from clinical studies that investigated the importance of leadership in cardiopulmonary resuscitation (CPR). Only a few, mostly observational, studies have been conducted under real-life conditions because of the high heterogeneity of the situations, difficulties in capturing the initial phase of CPR, and ethical issues. Well-controlled studies in the human simulator can fill existing gaps and provide important insights. High-fidelity video-assisted simulator studies from different research groups have shown that a prolonged process of teambuilding is associated with significant shortcomings in CPR, whereas effective leadership improves team performance. In addition, randomised controlled studies have provided evidence that medical students receiving leadership training subsequently showed improved CPR performance, which was sustained after a follow up of 4 months. In addition, leadership is influenced by gender and other factors such as emotional stress. Future studies are needed to investigate cultural differences and how findings from the simulator can be transferred to real-life situations.

  16. The Real-Time Simulation of Doppler Spread in Wireless Mobile Environment by RF Circuits

    Institute of Scientific and Technical Information of China (English)

    LI Zhen; ZHU Xiang; JI Wenli; ZHENG Guoxin

    2015-01-01

    The time-varying characteristic of wireless channel under the high-speed mobile environments in tun-nels causes the Doppler spread to the transmitted signals, which aff ects the performance of wireless communication systems. The real-time Doppler eff ect simulation method-ology directly based on Radio frequency (RF) circuits is proposed to simulate diff erent Doppler spread eff ects in real environments. Mixers and a Digital-to-analog (DA) converter circuit are utilized to spread the spectrum of RF signals. A PC platform with the interface written in C# is configured to control the spectrum spread parameters. This radio channel emulator with the proposed method-ology can replace the expensive fading simulating instru-ments with only 25.1ns system delay. Such an emulator has been applied to test the Multi-carrier wireless information local loop (McWiLL) wireless vehicle communication sys-tem in the laboratory to meet the requirement of metro Communication based train control (CBTC) system.

  17. Simulation of the densification of real open-celled foam microstructures

    Science.gov (United States)

    Brydon, A. D.; Bardenhagen, S. G.; Miller, E. A.; Seidler, G. T.

    2005-12-01

    Ubiquitous in nature and finding applications in engineering systems, cellular solids are an increasingly important class of materials. Foams are an important subclass of cellular solids with applications as packing materials and energy absorbers due to their unique properties. A better understanding of foam mechanical properties and their dependence on microstructural details would facilitate manufacture of tailored materials and development of constitutive models for their bulk response. Numerical simulation of these materials, while offering great promise toward furthering understanding, has also served to convincingly demonstrate the inherent complexity and associated modeling challenges. The large range of deformations which foams are subjected to in routine engineering applications is a fundamental source of complication in modeling the details of foam deformation on the scale of foam struts. It requires accurate handling of large material deformations and complex contact mechanics, both well established numerical challenges. A further complication is the replication of complex foam microstructure geometry in numerical simulations. Here various advantages of certain particle methods, in particular their compatibility with the determination of three-dimensional geometry via X-ray microtomography, are exploited to simulate the compression of "real" foam microstructures into densification. With attention paid to representative volume element size, predictions are made regarding bulk response, dynamic effects, and deformed microstructural character, for real polymeric, open-cell foams. These predictions include a negative Poisson's ratio in the stress plateau, and increased difficulty in removing residual porosity during densification.

  18. Real-World-Time Simulation of Memory Consolidation in a Large-Scale Cerebellar Model.

    Science.gov (United States)

    Gosui, Masato; Yamazaki, Tadashi

    2016-01-01

    We report development of a large-scale spiking network model of the cerebellum composed of more than 1 million neurons. The model is implemented on graphics processing units (GPUs), which are dedicated hardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation of cerebellar activity for 1 s completes within 1 s in the real-world time, with temporal resolution of 1 ms. This allows us to carry out a very long-term computer simulation of cerebellar activity in a practical time with millisecond temporal resolution. Using the model, we carry out computer simulation of long-term gain adaptation of optokinetic response (OKR) eye movements for 5 days aimed to study the neural mechanisms of posttraining memory consolidation. The simulation results are consistent with animal experiments and our theory of posttraining memory consolidation. These results suggest that realtime computing provides a useful means to study a very slow neural process such as memory consolidation in the brain.

  19. The use of a formal simulator to verify a simple real time control program

    Science.gov (United States)

    Boyer, R. S.; Green, M. W.; Moore, J. S.

    1983-01-01

    The authors present an initial and elementary investigation of the formal specification and mechanical verification of programs that interact with environments. They describe a mechanical proof that a simple, real time control program keeps a vehicle on a straightline course in a variable crosswind. To formalize the specification they define a mathematical function which models the interaction of the program and its environment. They then state and proved two theorems about this function: the simulated vehicle never gets farther than three units away from the intended course, and it comes to the course if the wind ever remains steady for at least four sampling units.

  20. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  1. High-power graphic computers for visual simulation: a real-time--rendering revolution

    Science.gov (United States)

    Kaiser, M. K.

    1996-01-01

    Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.

  2. Simulated evaluation of an intraoperative surface modeling method for catheter ablation by a real phantom simulation experiment

    Science.gov (United States)

    Sun, Deyu; Rettmann, Maryam E.; Packer, Douglas; Robb, Richard A.; Holmes, David R.

    2015-03-01

    In this work, we propose a phantom experiment method to quantitatively evaluate an intraoperative left-atrial modeling update method. In prior work, we proposed an update procedure which updates the preoperative surface model with information from real-time tracked 2D ultrasound. Prior studies did not evaluate the reconstruction using an anthropomorphic phantom. In this approach, a silicone heart phantom (based on a high resolution human atrial surface model reconstructed from CT images) was made as simulated atriums. A surface model of the left atrium of the phantom was deformed by a morphological operation - simulating the shape difference caused by organ deformation between pre-operative scanning and intra-operative guidance. During the simulated procedure, a tracked ultrasound catheter was inserted into right atrial phantom - scanning the left atrial phantom in a manner mimicking the cardiac ablation procedure. By merging the preoperative model and the intraoperative ultrasound images, an intraoperative left atrial model was reconstructed. According to results, the reconstruction error of the modeling method is smaller than the initial geometric difference caused by organ deformation. As the area of the left atrial phantom scanned by ultrasound increases, the reconstruction error of the intraoperative surface model decreases. The study validated the efficacy of the modeling method.

  3. Performance Evaluation of an Option-Based Learning Algorithm in Multi-Car Elevator Systems

    Science.gov (United States)

    Valdivielso Chian, Alex; Miyamoto, Toshiyuki

    In this letter, we present the evaluation of an option-based learning algorithm, developed to perform a conflict-free allocation of calls among cars in a multi-car elevator system. We evaluate its performance in terms of the service time, its flexibility in the task-allocation, and the load balancing.

  4. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  5. An improved real-time endovascular guidewire position simulation using shortest path algorithm.

    Science.gov (United States)

    Qiu, Jianpeng; Qu, Zhiyi; Qiu, Haiquan; Zhang, Xiaomin

    2016-09-01

    In this study, we propose a new graph-theoretical method to simulate guidewire paths inside the carotid artery. The minimum energy guidewire path can be obtained by applying the shortest path algorithm, such as Dijkstra's algorithm for graphs, based on the principle of the minimal total energy. Compared to previous results, experiments of three phantoms were validated, revealing that the first and second phantoms overlap completely between simulated and real guidewires. In addition, 95 % of the third phantom overlaps completely, and the remaining 5 % closely coincides. The results demonstrate that our method achieves 87 and 80 % improvements for the first and third phantoms under the same conditions, respectively. Furthermore, 91 % improvements were obtained for the second phantom under the condition with reduced graph construction complexity.

  6. Simulation to track 3D location in GSM through NS2 and real life

    CERN Document Server

    Gupta, Anand; Bosco, MS Don; Shashidhar, Vinay; 10.5121/jgraphhoc.2010.2103

    2010-01-01

    In recent times the cost of mobile communication has dropped significantly leading to a dramatic increase in mobile phone usage. The widespread usage has led mobiles to emerge as a strong alternative for other applications one of which is tracking. This has enabled law-enforcing agencies to detect overspeeding vehicles and organizations to keep track its employees. The 3 major ways of tracking being employed presently are (a) via GPS [1] (b) signal attenuation property of a packet [3] and (c) using GSM Network [2]. The initial cost of GPS is very high resulting in low usage whereas (b) needs a very high precision measuring device. The paper presents a GSM-based tracking technique which eliminates the above mentioned overheads, implements it in NS2 and shows the limitations of the real life simulation. An accuracy of 97% was achieved during NS2 simulation which is comparable to the above mentioned alternate methods of tracking.

  7. Accurate Simulation of 802.11 Indoor Links: A "Bursty" Channel Model Based on Real Measurements

    Directory of Open Access Journals (Sweden)

    Agüero Ramón

    2010-01-01

    Full Text Available We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the "bursty" behavior which characterizes indoor wireless scenarios, having a great impact on the behavior of upper layer protocols. We compare this channel model, integrated within the Network Simulator (ns-2 platform, with other traditional approaches, showing that it is able to better reflect the real behavior which was empirically assessed.

  8. Development of Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Capability 2 and Experimental Plans

    Science.gov (United States)

    Lehmer, R.; Ingram, C.; Jovic, S.; Alderete, J.; Brown, D.; Carpenter, D.; LaForce, S.; Panda, R.; Walker, J.; Chaplin, P.; hide

    2006-01-01

    The Virtual Airspace Simulation Technology - Real-Time (VAST-RT) Project, an element cf NASA's Virtual Airspace Modeling and Simulation (VAMS) Project, has been developing a distributed simulation capability that supports an extensible and expandable real-time, human-in-the-loop airspace simulation environment. The VAST-RT system architecture is based on DoD High Level Architecture (HLA) and the VAST-RT HLA Toolbox, a common interface implementation that incorporates a number of novel design features. The scope of the initial VAST-RT integration activity (Capability 1) included the high-fidelity human-in-the-loop simulation facilities located at NASA/Ames Research Center and medium fidelity pseudo-piloted target generators, such as the Airspace Traffic Generator (ATG) being developed as part of VAST-RT, as well as other real-time tools. This capability has been demonstrated in a gate-to-gate simulation. VAST-RT's (Capability 2A) has been recently completed, and this paper will discuss the improved integration of the real-time assets into VAST-RT, including the development of tools to integrate data collected across the simulation environment into a single data set for the researcher. Current plans for the completion of the VAST-RT distributed simulation environment (Capability 2B) and its use to evaluate future airspace capacity enhancing concepts being developed by VAMS will be discussed. Additionally, the simulation environment's application to other airspace and airport research projects is addressed.

  9. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.

    Science.gov (United States)

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments.

  10. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks

    Science.gov (United States)

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments. PMID:28293163

  11. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    Science.gov (United States)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  12. Effects of real and simulated microgravity on response of sympathoadrenal system to various stress stimuli.

    Science.gov (United States)

    Macho, Ladislav; Koska, Juraj; Ksínantová, Lucia; Vigas, Milan; Blazícek, Pavel; Noskov, Vitalij B; Grigoriev, Anatolij I; Pacák, Karel; Kvetnanský, Richard

    2004-06-01

    Changes in plasma levels of epinephrine (EPI) and norepinephrine (NE) were investigated in humans exposed to physical exercise (WL), to psychic stressor (mental arithmetic test, MAT), and to oral glucose administration (oGTT) before and during a stay in microgravity (real space flight, SF) or in simulated microgravity (head-down bed rest, HDBR). A permanent cannula inserted into the cubital vein and a special appliance, Plasma-03, were used for blood collection, plasma separation, and freezing of samples during SF. Plasma EPI, NE, dihydroxyphenylglycol (DHPG), and dihydroxyphenylalanine (DOPA) levels were measured by the high-pressure liquid chromatography (HPLC) method. Basal plasma EPI, NE, DHPG, and DOPA levels were found within the range of control values during SF. Preflight WL produced high increase in plasma NE and moderate elevation of plasma EPI, DHPG, and DOPA levels. Exaggerated exercise induced increases in plasma NE, DHPG, EPI, and DOPA levels were demonstrated in real microgravity. A return to preflight responses of sympathoadrenal system was seen after the landing. Plasma EPI, NE, and DHPG responses to MAT were relatively small, but increased during SF. During the oGTT the plasma EPI levels were slightly reduced in microgravity. Similarly as in SF, WL in HDBR was followed by significantly exaggerated responses of plasma catecholamines. These results show that both somatic and psychological stressors are able to induce an increased activation of sympathoadrenal system during SF or simulated microgravity in HDBR.

  13. A Practical Infrastructure for Real-Time Simulation across Timing Domains

    Directory of Open Access Journals (Sweden)

    Yao-fei Ma

    2015-01-01

    Full Text Available A real-time infrastructure, called MLRTI, is proposed in this paper to fulfill the requirement of real-time simulation in distributed environment. There are two novel contributions in this work. Firstly, a flexible timing mechanism is proposed to integrate external time source and local timer utility, enabling the distributed nodes to advance their timeline simultaneously at different speeds with high precision. A data transmission solution is also presented in which the reflective memory card (VMIC is employed to provide fast data transmission with minimum delay. Secondly, a system partition schema is proposed in MLRTI to reduce the solution errors introduced by transforming a continuous system into distribution system, which is common in a class of control applications where the system is designed in centralized model but simulated in distributed environment for constrains on system structure or the need to balance computation load. Experiments are conducted and the results show this schema effectively reduces the possible errors by properly partitioning the system into parts that are suitable to be deployed in distributed environment.

  14. Feasibility of the integration of CRONOS, a 3-D neutronics code, into real-time simulators

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, J.C. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In its effort to contribute to nuclear power plant safety, CEA proposes the integration of an engineering grade 3-D neutronics code into a real-time plant analyser. This paper describes the capabilities of the neutronics code CRONOS to achieve a fast running performance. First, we will present current core models in simulators and explain their drawbacks. Secondly, the mean features of CRONOS's spatial-kinetics methods will be reviewed. We will then present an optimum core representation with respect to mesh size, choice of finite elements (FE) basis and execution time, for accurate results as well as the multi 1-D thermal-hydraulics (T/H) model developed to take into account 3-D effects in updating the cross-sections. A Main Steam Line Break (MSLB) End-of-Life (EOL) Hot-Zero-Power (HZP) accident will be used as an example, before we conclude with the perspectives of integrating CRONOS's 3-D core model into real-time simulators. (author)

  15. An inexpensive underwater mine countermeasures simulator with real-time 3D after action review

    Directory of Open Access Journals (Sweden)

    Robert Stone

    2016-10-01

    Full Text Available This paper presents the results of a concept capability demonstration pilot study, the aim of which was to investigate how inexpensive gaming software and hardware technologies could be exploited in the development and evaluation of a simulator prototype for training Royal Navy mine clearance divers, specifically focusing on the detection and accurate reporting of the location and condition of underwater ordnance. The simulator was constructed using the Blender open source 3D modelling toolkit and game engine, and featured not only an interactive 3D editor for underwater scenario generation by instructors, but also a real-time, 3D After Action Review (AAR system for formative assessment and feedback. The simulated scenarios and AAR architecture were based on early human factors observations and briefings conducted at the UK's Defence Diving School (DDS, an organisation that provides basic military diving training for all Royal Navy and Army (Royal Engineers divers. An experimental pilot study was undertaken to determine whether or not basic navigational and mine detection components of diver performance could be improved as a result of exposing participants to the AAR system, delivered between simulated diving scenarios. The results suggest that the provision of AAR was accompanied by significant performance improvements in the positive identification of simulated underwater ordnance (in contrast to non-ordnance objects and on participants' description of their location, their immediate in-water or seabed context and their structural condition. Only marginal improvements were found with participants' navigational performance in terms of their deviation accuracies from a pre-programmed expert search path. Overall, this project contributes to the growing corpus of evidence supporting the development of simulators that demonstrate the value of exploiting open source gaming software and the significance of adopting established games design

  16. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, Michael Rygaard; Ballebye, Morten

    2010-01-01

    This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme...

  17. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  18. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.

    2014-05-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.

  19. Advanced Research and Education in Electrical Drives by Using Digital Real-Time Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Bojoi, R.; Profumo, F.; Griva, G.

    2002-01-01

    The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...

  20. Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation

    Science.gov (United States)

    Qian, Yili; Ou, Ge; Maghareh, Amin; Dyke, Shirley J.

    2014-10-01

    In a typical Real-time Hybrid Simulation (RTHS) setup, servo-hydraulic actuators serve as interfaces between the computational and physical substructures. Time delay introduced by actuator dynamics and complex interaction between the actuators and the specimen has detrimental effects on the stability and accuracy of RTHS. Therefore, a good understanding of servo-hydraulic actuator dynamics is a prerequisite for controller design and computational simulation of RTHS. This paper presents an easy-to-use parametric identification procedure for RTHS users to obtain re-useable actuator parameters for a range of payloads. The critical parameters in a linearized servo-hydraulic actuator model are optimally obtained from genetic algorithms (GA) based on experimental data collected from various specimen mass/stiffness combinations loaded to the target actuator. The actuator parameters demonstrate convincing convergence trend in GA. A key feature of this parametric modeling procedure is its re-usability under different testing scenarios, including different specimen mechanical properties and actuator inner-loop control gains. The models match well with experimental results. The benefit of the proposed parametric identification procedure has been demonstrated by (1) designing an H∞ controller with the identified system parameters that significantly improves RTHS performance; and (2) establishing an analysis and computational simulation of a servo-hydraulic system that help researchers interpret system instability and improve design of experiments.

  1. Real time hybrid simulation with online model updating: An analysis of accuracy

    Science.gov (United States)

    Ou, Ge; Dyke, Shirley J.; Prakash, Arun

    2017-02-01

    In conventional hybrid simulation (HS) and real time hybrid simulation (RTHS) applications, the information exchanged between the experimental substructure and numerical substructure is typically restricted to the interface boundary conditions (force, displacement, acceleration, etc.). With additional demands being placed on RTHS and recent advances in recursive system identification techniques, an opportunity arises to improve the fidelity by extracting information from the experimental substructure. Online model updating algorithms enable the numerical model of components (herein named the target model), that are similar to the physical specimen to be modified accordingly. This manuscript demonstrates the power of integrating a model updating algorithm into RTHS (RTHSMU) and explores the possible challenges of this approach through a practical simulation. Two Bouc-Wen models with varying levels of complexity are used as target models to validate the concept and evaluate the performance of this approach. The constrained unscented Kalman filter (CUKF) is selected for using in the model updating algorithm. The accuracy of RTHSMU is evaluated through an estimation output error indicator, a model updating output error indicator, and a system identification error indicator. The results illustrate that, under applicable constraints, by integrating model updating into RTHS, the global response accuracy can be improved when the target model is unknown. A discussion on model updating parameter sensitivity to updating accuracy is also presented to provide guidance for potential users.

  2. Real Virtuality: Power and Simulation in the Age of Neoliberal Crisis

    Directory of Open Access Journals (Sweden)

    Emil André Røyrvik

    2012-12-01

    Full Text Available Departing from a discussion of transformations in the premises of managerial rationality and “managementality” as a pacemaker of the (postmodern social order, as it is steeped in economic crisis, the paper critiques and extends Baudrillard’s constructs of “simulation” and “hyperreality” to illuminate significant developments in the global culture complex of neoliberalization. With empirical illustrations of superfinancialization, transparency and surveillance, the paper explores converging patterns of how models of “neo-management” are created by and constructs new post-political and simulated social worlds. The paper concludes that a key feature of the contemporary “managementalities” that orchestrate and give rise to major models of the neoliberal culture complex, is their capacity for constructing new simulated, yet ontologically distinct, spaces that lie beyond the power of representation. We conceptualize this ontological space as “real virtuality”. The templates of neo-management not only constantly “conquer new land” and subsume it under simulated hyperrealities, they actively “create new lands” with differential ontological statuses of varying gravity.

  3. Modelization and Simulation of an Electric and Fuel Cell Hybrid Vehicle under Real Conditions

    Directory of Open Access Journals (Sweden)

    Victor Alfonsin

    2015-06-01

    Full Text Available This paper presents a toolbox for the simulation of a zero emission urban hybrid bus, which combines batteries and fuel cells. This type of vehicle performs predefined routes with a certain frequency, then they are an ideal option to the replacement of combustion engines with renewable energy systems. The simulation of these vehicles can be made for different standard driving cycles (ECE-15, EUDC, NEDC, SFUDS or for real routes from GPS device data. This will allow to consider the orography of the route, considering the slope that overcomes the vehicle at each time, generally this parameter is not included in other models, and it could become a determining factor for the applicability of these vehicles on certain specified routes. Moreover, this tool lets to study and to analyse other not easily quantifiable factors, such as the weather or peak-hour traffic. Finally, the performance of an urban hybrid bus was investigated to assess its theoretical range and the technical feasibility of zero-emission vehicles. Keywords: Electric vehicle; Battery; Fuel cell; Hydrogen; Simulation 

  4. Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation

    Science.gov (United States)

    Oshiro, Yukio; Yano, Hiroaki; Mitani, Jun; Kim, Sangtae; Kim, Jaejeong; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2015-01-01

    AIM: To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver. METHODS: We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software. RESULTS: There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically

  5. The Value and Incentives of Option-based Compensation in Danish Listed Companies

    DEFF Research Database (Denmark)

    Bechmann, Ken; Jørgensen, Peter Løchte

    2003-01-01

    contracts issuedby the complete sample of Danish companies listed on the Copenhagen Stock Exchange.A newly constructed database containing all publicly available information on details of DanishOBC contracts allows us to present, for example, results regarding contract values at an aggregated aswell...... as at firm, personnel group, and individual level. The paper also contains a section which discussesand presents evidence on the incentive effects provided by the option-based compensation contractsadopted by Danish listed companies....

  6. A comparison of nonlinear mixing models for vegetated areas using simulated and real hyperspectral data

    CERN Document Server

    Dobigeon, Nicolas; Somers, Ben; Altmann, Yoann; Coppin, Pol

    2013-01-01

    Spectral unmixing is a crucial processing step when analyzing hyperspectral data. In such analysis, most of the work in the literature relies on the widely acknowledged linear mixing model to describe the observed pixels. Unfortunately, this model has been shown to be of limited interest for specific scenes, in particular when acquired over vegetated areas. Consequently, in the past few years, several nonlinear mixing models have been introduced to take nonlinear effects into account. These models have been proposed empirically, however without any thorough validation. In this paper, the authors take advantage of two sets of real and physical-based simulated data to validate the accuracy of various nonlinear models in vegetated areas. These physics-based and analysis models, and their corresponding unmixing algorithms, are evaluated with respect to their ability of fitting the measured spectra and of providing an accurate estimation of the abundance coefficients, considered as the spatial distribution of the ...

  7. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  8. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    Science.gov (United States)

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.

  9. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    CERN Document Server

    Laine, M; Tassler, M

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.

  10. Near Real-time Data Analysis of Core-Collapse Supernova Simulations With Bellerophon

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, Eric J [ORNL; Messer, Bronson [ORNL; Desai, Sharvari S [University of Tennessee, Knoxville (UTK); Holt, Chastity A [Appalachian State University; Lentz, Eric J [University of Tennessee, Knoxville (UTK)

    2014-01-01

    We present an overview of a software system, Bellerophon, built to support a production-level HPC application called CHIMERA, which simulates core-collapse supernova events at the petascale. Developed over the last four years, Bellerophon enables CHIMERA s geographically dispersed team of collaborators to perform data analysis in near real-time. Its n-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a web-deliverable, cross-platform desktop application. In addition, Bellerophon addresses software engineering tasks for the CHIMERA team by providing an automated mechanism for performing regression testing on a variety of supercomputing platforms. Elements of the team s workflow management needs are met with software tools that dynamically generate code repository statistics, access important online resources, and monitor the current status of several supercomputing resources.

  11. Power Flow Analysis of Island Business District 33KV Distribution Grid System with Real Network Simulations

    Directory of Open Access Journals (Sweden)

    Adesina, L.M

    2015-07-01

    Full Text Available The solution to power flow is one of the most important problems in electrical power systems. Traditional methods have been previously used for power flow analysis, but with prevalent drawbacks such as abnormal operating solutions and divergences in heavy loads. This paper presents power flow analysis in a power system, by modelling a typical 33kV Distribution Network, and simulating using the NEPLAN software for power flow studies. Island Business Unit’s (IBU 33kV network of Eko Electricity Distribution Plc (EKEDP for a scenario day is taken as case study in the analysis. The most important parameters of power flow analysis is utilized to find the magnitude and phase angles of the voltages at each Busbar, as well as the real and reactive power flowing through each distribution line within the network under consideration.

  12. Large-eddy simulations of real-fluid effects in rocket engine combustors

    Science.gov (United States)

    Ma, Peter C.; Hickey, Jean-Pierre; Ihme, Matthias

    2013-11-01

    This study is concerned with the LES-modeling of real-fluid effects in rocket combustors. The non-ideal fluid behavior is modeled using the Peng-Robinson equation of state, and high-pressure effects on the thermo-viscous transport properties are also considered. An efficient and robust algorithm is developed to evaluate the thermodynamic state-vector. The highly non-linear coupling of the primitive thermodynamic variables in regions near the critical point requires special consideration to avoid spurious numerical oscillations. To avoid these non-physical oscillations, a second-order essentially non-oscillatory (ENO) scheme is applied in regions that are identified by a density-based sensor. The resulting algorithm is applied in LES to a coaxial rocket-injector, and super- and transcritical operating conditions are considered. Simulation results and comparisons with experimental data will be presented, and the influence of boundary conditions on the mixing characteristics will be discussed.

  13. Comparing the effects of real versus simulated violence on dream imagery.

    Science.gov (United States)

    Dale, Allyson; Murkar, Anthony; Miller, Nicolle; Black, Joshua

    2014-08-01

    Participants in the current study were 75 males, including 25 Canadian soldiers, 25 heavy gamers who play military based video games such as "Call of Duty," and a control group comprised of 25 males. One dream per participant was analyzed using Hall and Van de Castle content analysis guidelines, including aggression, threat, and previously established scales for intensity of aggression and emotion. The dreams of soldiers had a higher frequency of both aggression and threat, and were also more intense in aggression and emotion than both the heavy gamers and the controls. These findings suggest that exposure to real life violence and threat (as well as the emotional significance of the experience) is more frequently incorporated into dream imagery than simulated or virtual threat. Limitations and directions for future studies are discussed.

  14. Real-time target recognition system simulation based on laser near-field detection

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-liang; MA Hui-min; XIAO Jian

    2009-01-01

    This paper constructs a simulation system of near-field laser imaging for 3D grid model of target, provides some methods for the key problems, such as the modeling of target and laser transceiver, the calculation of laser echo power, the imaging algorithms and so on. A target image h'brary is established by a new imaging method in any rendezvous conditions. The four real-time recognition algorithms which are efficient and suitable for hardware implementation are presented at the condi-tions of the image incompleteness, intensive noise and arbitrary attitude of target. The experimental results show that all the four algorithms can independently recognize the target effectively and a better recognition effect is obtained by the integra-tion of four algorithms.

  15. A real-time lattice simulation of the thermalization of a gluon plasma: first results

    CERN Document Server

    Attems, Maximilian; Schäfer, Christian; Wagenbach, Björn; Zafeiropoulos, Savvas

    2016-01-01

    To achieve an understanding of the thermalization of a quark-gluon plasma, starting from QCD without using model assumptions, is a formidable task. We study the early stage dynamics of a relativistic heavy ion collision in the framework of real time simulations of classical Yang-Mills theory in a static box with the color glass condensate as initial condition. Our study generalizes a previous one by Fukushima and Gelis from SU(2) to the realistic case of SU(3). We calculate the chromo-electric and chromo-magnetic energy densities as well as the ratio of longitudinal and transverse pressure as a function of time as probes for thermalization. Our preliminary results on coarse lattices show the occurrence of Weibel instabilities prior to thermalization.

  16. Real-time simulation of thermal stresses and creep in plates subjected to transient heat input

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Jacobsen, Torben Krogsdal; Hansen, P.N.

    1997-01-01

    This paper presents a novel numerical technique for solving the temperature and stress fields in a plate subjected to arbitrarily varying transient boundary conditions (transient temperature and heat-flux variations) on a surface. The numerical method is based on the control-volume finite......-difference approach. It applies a general formulation which takes into account nonconstant material properties (e.g. temperature, material, or time dependency), heat-transfer coefficients, and creep. The temperature calculation applies a one-dimensional numerical model, whereas the stress analysis is semi......-two-dimensional. Both plane stress and plane strain conditions are considered as extreme cases. It is shown that, by using the developed numerical technique, very fast real-time simulations can be performed. The method has proved its applicability in e.g. high-pressure die-casting, and applications to this industrial...

  17. Adaptive multi-rate interface: development and experimental verification for real-time hybrid simulation

    DEFF Research Database (Denmark)

    Maghareh, Amin; Waldbjørn, Jacob Paamand; Dyke, Shirley J.;

    2016-01-01

    Real-time hybrid simulation (RTHS) is a powerful cyber-physical technique that is a relatively cost-effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system-level behavior is the fidelity...... it employs different time steps in the numerical and the physical substructures while including rate-transitioning to link the components appropriately. Typically, a higher-order numerical substructure model is solved at larger time intervals, and is coupled with a physical substructure that is driven...... frequency between the numerical and physical substructures and for input signals with high-frequency content. Further, it does not induce signal chattering at the coupling frequency. The effectiveness of AMRI is also verified experimentally....

  18. Molecular modelling and simulation of the surface tension of real quadrupolar fluids

    CERN Document Server

    Werth, Stephan; Klein, Peter; Küfer, Karl-Heinz; Horsch, Martin; Hasse, Hans

    2014-01-01

    Molecular modelling and simulation of the surface tension of fluids with force fields is discussed. 29 real fluids are studied, including nitrogen, oxygen, carbon dioxide, carbon monoxide, fluorine, chlorine, bromine, iodine, ethane, ethylene, acetylene, propyne, propylene, propadiene, carbon disulfide, sulfur hexafluoride, and many refrigerants. The fluids are represented by two-centre Lennard-Jones plus point quadrupole models from the literature. These models were adjusted only to experimental data of the vapour pressure and saturated liquid density so that the results for the surface tension are predictions. The deviations between the predictions and experimental data for the surface tension are of the order of 20 percent. The surface tension is usually overestimated by the models. For further improvements, data on the surface tension can be included in the model development. A suitable strategy for this is multi-criteria optimization based on Pareto sets. This is demonstrated using the model for carbon d...

  19. Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    Directory of Open Access Journals (Sweden)

    Wenbo Wu

    2014-01-01

    Full Text Available This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improves SA algorithm via several adaptive schemes and continues to search the optimal based on the results of chaotic optimization. The effectiveness of XASA is evaluated by comparing with traditional SA algorithm and improved SA algorithm. The results show that XASA can achieve a satisfactory performance of speedup without loss of solution quality.

  20. On the comparison between physics-based numerical simulations and observations from real earthquakes

    Science.gov (United States)

    Smerzini, Chiara; Paolucci, Roberto; Pitilakis, Kyriazis

    2016-04-01

    Physics-based numerical simulations of earthquake ground motion, including a full 3D seismic wave propagation model from the source to the site, are expected to become, in near future, the most promising tool to generate ground shaking scenarios from future realistic earthquakes. These simulation methods are, in fact, able to model within a single computational domain all factors that affect earthquake ground motion, i.e.: the features of the seismic fault rupture, the propagation path in heterogeneous Earth media, directivity of seismic waves, complex site effects due to localized topographic and geologic irregularities, variability/specificity of soil properties at a regional and local scale. Stimulated by the increasing availability of computational resources, such sophisticated tools are now mature enough to provide realistic estimates of earthquake ground motion in a variety of geomorphological conditions and to favor a deeper understanding of the effect of the main physical parameters on ground shaking and on its spatial variability. Nevertheless, to be accepted and used by the engineering community as an alternative tool to standard empirical approaches (i.e., Ground Motion Prediction Equations) and within a Probabilistic Seismic Hazard Assessment (PSHA) framework, physics-based numerical simulations still need further validation studies, i.e. to compare with observations from real earthquakes. In this contribution, we summarize the experience and the most salient results of the 3D numerical modelling work carried out by a high-performance spectral element code, SPEED (http://speed.mox.polimi.it/), developed at Politecnico di Milano, to simulate real earthquakes which occurred in Europe. Specifically, the following case studies will be presented: the May 29 2012 MW 6.0 Po-Plain earthquake, Northeastern Italy; the April 6 2009 MW 6.3 L'Aquila earthquake, Central Italy; the June 20 1978 MW 6.5 Volvi earthquake, Northeastern Greece. In the discussion of the

  1. Real-time state estimation in a flight simulator using fNIRS.

    Directory of Open Access Journals (Sweden)

    Thibault Gateau

    Full Text Available Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task. It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load. These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity. The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.

  2. Real-time state estimation in a flight simulator using fNIRS.

    Science.gov (United States)

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.

  3. Real-Time Simulation and Analysis of the Induction Machine Performances Operating at Flux Constant

    Directory of Open Access Journals (Sweden)

    Aziz Derouich

    2014-05-01

    Full Text Available In this paper, we are interested, in a first time, at the study and the implementation of a V/f control for induction machine in real time. After, We are attached to a comparison of the results by simulation and experiment for, speed responses, flux and currents of the real machine, with a DSPACE card and model established by classical identification (Direct Current test , blocked-rotor test, no-load test , synchronous test, to ensure the validity of the established model. The scalar controlled induction motor allows operation of the motor with the maximum torque by simultaneous action on the frequency and amplitude of the stator voltage, with conservation of the ratio V/f. Speed reference imposes a frequency at the inverter supplying the voltages needed to power the motor, which determines the speed of rotation. The maximum torque of the machine is proportional to the square of the supply voltage and inversely proportional to the frequency voltage. So, Keep V/f constant implies a operating with maximum constant torque. The results obtained for the rotor flux and the stator currents are especially satisfactory steady.

  4. Gene expression variations during Drosophila metamorphosis in real and simulated gravity

    Science.gov (United States)

    Marco, R.; Leandro-García, L. J.; Benguría, A.; Herranz, R.; Zeballos, A.; Gassert, G.; van Loon, J. J.; Medina, F. J.

    Establishing the extent and significance of the effects of the exposure to microgravity of complex living organisms is a critical piece of information if the long-term exploration of near-by planets involving human beings is going to take place in the Future As a first step in this direction we have started to look into the patterns of gene expression during Drosophila development in real and simulated microgravity using microarray analysis of mRNA isolated from samples exposed to different environmental conditions In these experiments we used Affymetrix chips version 1 0 containing probes for more than 14 000 genes almost the complete Drosophila genome 55 of which are tagged with some molecular or functional designation while 45 are still waiting to be identified in functional terms The real microgravity exposure was imposed on the samples during the crew exchanging Soyuz 8 Mission to the ISS in October 2003 when after 11 days in Microgravity the Spanish-born astronaut Pedro Duque returned in the Soyuz 7 capsule carrying the experiments prepared by our Team Due to the constraints in the current ISS experiments in these Missions we limited the stages explored in our experiment to the developmental processes occurring during Drosophila metamorphosis As the experimental conditions at the launch site Baikonour were fairly limited we prepared the experiment in Madrid Toulouse and transp o rted the samples at 15 C in a temperature controlled container to slow down the developmental process a

  5. Dynamic fuel cell stack model for real-time simulation based on system identification

    Energy Technology Data Exchange (ETDEWEB)

    Meiler, M.; Schmid, O.; Schudy, M. [Department of MEA and Stack Technology, DaimlerChrysler AG, Neue Str. 95, D-73230 Kirchheim/Teck (Germany); Hofer, E.P. [Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm (Germany)

    2008-02-01

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R and D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests. (author)

  6. Dynamic fuel cell stack model for real-time simulation based on system identification

    Science.gov (United States)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  7. Interns' perceptions of performance and confidence in participating in and managing simulated and real cardiac arrest situations.

    Science.gov (United States)

    O'Brien, Gerard; Haughton, Andrew; Flanagan, Brendan

    2001-07-01

    This study attempts to describe the effects of a computerized patient simulator education program on interns' perceptions of their own performance and confidence in managing and/or participating in a cardiac arrest incident during simulated and real events. The study design was qualitative using thematic analysis of debriefing sessions and individual interviews. The setting for the research was an education program for interns working at Southern Health, Victoria, Australia utilising a high-fidelity patient simulator. The participants were junior doctors (n = 30) in the first three-month rotation of their first postgraduate year (interns). The results describe the interns' self-reported experiences and perceptions relating to: (1) cardiac arrest experiences prior to the simulation scenario; (2) a simulated cardiac arrest scenario; (3) real-life cardiac arrest experiences after the simulation scenario. The interns expressed perceptions of improved self-confidence in: managing this particular critical situation; their own decision making during a critical incident; their ability to prioritize tasks. They also reported improved awareness and understanding with regards to: the need for leadership and effective teamwork; and the need for effective communication with senior staff during a critical incident. The interns considered that they had improved their ability to effectively handle a cardiac arrest situation as a result of the simulator program. The interns interviewed expressed decreased levels of anxiety and improved confidence in their decision making and their ability to prioritize tasks during a similar real-world situation as a result of the simulator program.

  8. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    CERN Document Server

    Andrade, Xavier; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Ángel

    2015-01-01

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  9. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  10. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems.

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J T; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A L; Rubio, Angel

    2015-12-21

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

  11. Using GPU convolutions to correct optical distortion in closed-loop real-time missile simulations

    Science.gov (United States)

    Fronckowiak, Thomas, Jr.

    2009-05-01

    U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) has long been a leader in in-band high fidelity scientific scene generation. Recent efforts to harness and exploit the parallel power of the Graphics Processor Unit (GPU), for both graphics and general purpose processing, have been paramount. The emergence of sophisticated image generation software packages, such as the Common Scene Generator (CSG) and the Joint Signature Image Generator (JSIG), have lead to a sharp increase in the performance of digital simulations and signal injection and projection systems in both tactical and strategic programs. One area of missile simulations that benefits from this technology is real-time modeling of optical effects, such as seeker dome distortion, glint, blurring effects, and correcting for facility misalignment and distortion. This paper discusses the on-going research of applying convolution filters to the GPU multi-pass rendering process to compensate for spatial distortion in the optical projection path for synthetic environments.

  12. Simulation of energy barrier distributions using real particle parameters and comparison with experimental obtained results

    Energy Technology Data Exchange (ETDEWEB)

    Büttner, M., E-mail: Markus.Buettner@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena (Germany); Schiffler, M. [Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Burgweg 11, 07749 Jena (Germany); Weber, P.; Seidel, P. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2013-11-15

    Distributions of energy barriers in systems of magnetic nanoparticles have been calculated by means of the path integral method and the results have been compared with distributions previously obtained in our experiments by means of the temperature dependent magnetorelaxation method. The path integral method allowed to obtain energies of the interactions of magnetic moments of nanoparticles with axes of their easy magnetisation as well as energies of mutual interactions of magnetic moments. Calculated distributions of energy barriers have been described satisfactorily by curves of the lognormal distribution. We found an agreement between the theory and the experiment at temperatures above approximately 100 K. The influence of the volume concentration of nanoparticles and agglomeration on the energy barrier distribution has been investigated. - Highlights: • The path integral method of calculation allows to satisfactorily reproduce the quantitative experimental results. • The simulations of the energy barrier distributions reflect the lognormal distribution of the MNP found in real experiments. • Higher particle volume concentration leads to a broadening of the simulated energy barrier distribution. • At low particle concentration there is only anisotropy energy. • In case of agglomeration the energy barrier distribution broadens.

  13. Real-time measurements to characterize dynamics of emulsion interface during simulated intestinal digestion.

    Science.gov (United States)

    Pan, Yuanjie; Nitin, N

    2016-05-01

    Efficient delivery of bioactives remains a critical challenge due to their limited bioavailability and solubility. While many encapsulation systems are designed to modulate the digestion and release of bioactives within the human gastrointestinal tract, there is limited understanding of how engineered structures influence the delivery of bioactives. The objective of this study was to develop a real-time quantitative method to measure structural changes in emulsion interface during simulated intestinal digestion and to correlate these changes with the release of free fatty acids (FFAs). Fluorescence resonant energy transfer (FRET) was used for rapid in-situ measurement of the structural changes in emulsion interface during simulated intestinal digestion. By using FRET, changes in the intermolecular spacing between the two different fluorescent probes labeled emulsifier were characterized. Changes in FRET measurements were compared with the release of FFAs. The results showed that bile salts and pancreatic lipase interacted immediately with the emulsion droplets and disrupted the emulsion interface as evidenced by reduction in FRET efficacy compared to the control. Similarly, a significant amount of FFAs was released during digestion. Moreover, addition of a second layer of polymers at emulsion interface decreased the extent of interface disruption by bile salts and pancreatic lipase and impacted the amount or rate of FFA release during digestion. These results were consistent with the lower donor/acceptor ratio of the labeled probes from the FRET result. Overall, this study provides a novel approach to analyze the dynamics of emulsion interface during digestion and their relationship with the release of FFAs.

  14. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    Science.gov (United States)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  15. Real-time Solution via Dynamic Simulation for the Six Degree of Freedom Platform

    Directory of Open Access Journals (Sweden)

    Lin Lizong

    2017-01-01

    Full Text Available In order to provide a new way for dynamic simulation experiments, a real-time solution for the six degree of freedom platform was developed. The mathematical model of an improved Six-DOF Stewart platform was used to study positive solutions and inverse solutions. According to the parameters of different platforms, different function signals were selected to generate motion control data by using Visual C++ programming. Motion control card was embedded into industrial computer, data was sent automatically to the control card by the program when the platform ran. The output of the control card was analog voltage, and it was amplified to send to the proportional valve, then the flows of six hydraulic cylinders were controlled by the six proportional valves. So a closed-loop control CNC system was formed. The expected action could be realized by the platform. Experiments have proved that the method is simple, efficient and easy to operate. It can not only accompany the implementation moving of relevant actions in the 3D movie theater, but also provide the signal source for the road spectrum of simulated driving test of the automobile.

  16. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    Science.gov (United States)

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  17. Dynamic Voltage Frequency Scaling Simulator for Real Workflows Energy-Aware Management in Green Cloud Computing.

    Science.gov (United States)

    Cotes-Ruiz, Iván Tomás; Prado, Rocío P; García-Galán, Sebastián; Muñoz-Expósito, José Enrique; Ruiz-Reyes, Nicolás

    2017-01-01

    Nowadays, the growing computational capabilities of Cloud systems rely on the reduction of the consumed power of their data centers to make them sustainable and economically profitable. The efficient management of computing resources is at the heart of any energy-aware data center and of special relevance is the adaptation of its performance to workload. Intensive computing applications in diverse areas of science generate complex workload called workflows, whose successful management in terms of energy saving is still at its beginning. WorkflowSim is currently one of the most advanced simulators for research on workflows processing, offering advanced features such as task clustering and failure policies. In this work, an expected power-aware extension of WorkflowSim is presented. This new tool integrates a power model based on a computing-plus-communication design to allow the optimization of new management strategies in energy saving considering computing, reconfiguration and networks costs as well as quality of service, and it incorporates the preeminent strategy for on host energy saving: Dynamic Voltage Frequency Scaling (DVFS). The simulator is designed to be consistent in different real scenarios and to include a wide repertory of DVFS governors. Results showing the validity of the simulator in terms of resources utilization, frequency and voltage scaling, power, energy and time saving are presented. Also, results achieved by the intra-host DVFS strategy with different governors are compared to those of the data center using a recent and successful DVFS-based inter-host scheduling strategy as overlapped mechanism to the DVFS intra-host technique.

  18. The ADAQ framework: An integrated toolkit for data acquisition and analysis with real and simulated radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Zachary S., E-mail: hartwig@mit.edu

    2016-04-11

    The ADAQ framework is a collection of software tools that is designed to streamline the acquisition and analysis of radiation detector data produced in modern digital data acquisition (DAQ) systems and in Monte Carlo detector simulations. The purpose of the framework is to maximize user scientific productivity by minimizing the effort and expertise required to fully utilize radiation detectors in a variety of scientific and engineering disciplines. By using a single set of tools to span the real and simulation domains, the framework eliminates redundancy and provides an integrated workflow for high-fidelity comparison between experimental and simulated detector performance. Built on the ROOT data analysis framework, the core of the ADAQ framework is a set of C++ and Python libraries that enable high-level control of digital DAQ systems and detector simulations with data stored into standardized binary ROOT files for further analysis. Two graphical user interface programs utilize the libraries to create powerful tools: ADAQAcquisition handles control and readout of real-world DAQ systems and ADAQAnalysis provides data analysis and visualization methods for experimental and simulated data. At present, the ADAQ framework supports digital DAQ hardware from CAEN S.p.A. and detector simulations performed in Geant4; however, the modular design will facilitate future extension to other manufacturers and simulation platforms. - Highlights: • A new software framework for radiation detector data acquisition and analysis. • Integrated acquisition and analysis of real-world and simulated detector data. • C++ and Python libraries for data acquisition hardware control and readout. • Graphical program for control and readout of digital data acquisition hardware. • Graphical program for comprehensive analysis of real-world and simulated data.

  19. Development of an advanced real time simulation tool, ARTIST and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Cheol; Moon, S. K.; Yoon, B. J.; Sim, S. K.; Lee, W. J. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-10-01

    A real time reactor system analysis code ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensables), two energy equations (steam and mixture) and one mixture equation constituted with the drift flux model. The drift flux model of ARTIST has been validated against the THETIS experimental data by comparing the void distribution in the system. Especially, the calculated void fraction by Chexal-Lellouche void fraction correlation at low pressure and low flow, is better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. When noncondensable gas exists, thermal-hydraulic state solution scheme and the calculation methods of the partial derivatives are developed. Numerical consistency and convergence was tested with the one volume problems and the manometric oscillation was assessed to examine the calculation methods of the partial derivatives. Calculated thermal-hydraulic state for each test shows the consistent and expected behaviour. In order to evaluate the ARTIST code capability in predicting the two phase thermal-hydraulic phenomena of the loss of RHR accident during midloop operation, BETHSY test 6.9d is simulated. From the results, it is judged that the reflux condensation model and the critical flow model for the noncondensable gas are necessary to correctly predict the thermal-hydraulic behaviour. Finally, the verification run was performed without the drift flux model and the noncondensable gas model for the postulated accidents of the real plants. The ARTIST code well reproduces the parametric trends which are calculated by TASS code. Therefore, the integrity of ARTIST code was verified. 35 refs., 70 figs., 3 tabs. (Author)

  20. Development of a cross-section methodology and a real-time core model for VVER-1000 simulator application

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, Emiliya Lyudmilova

    2016-06-06

    The novel academic contributions are summarized as follows. A) A cross-section modelling methodology and a cycle-specific cross-section update procedure are developed to meet fidelity requirements applicable to a cycle-specific reactor core simulation, as well as particular customer needs and practices supporting VVER-1000 operation and safety. B) A real-time version of the Nodal Expansion Method code is developed and implemented into Kozloduy 6 full-scope replica control room simulator.

  1. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Mikkel M. Pedersen

    2010-10-01

    Full Text Available This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme is developed for the specific crane, considering the saturation phenomena of the system and practical implementation.

  2. Eye Movement Patterns during Locomotion in Real-World and Simulated Environments

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2012-05-01

    Full Text Available Eye movements in a search-and-count walking task were compared between a simulated (SE and real-world environment (RE. Eye movements were recorded using the mobile WearCam in either RE or the StroMoHab locomotion simulator, a treadmill-based system for gait mobility rehabilitation. For Experiment 1, a RE was prepared with objects (coloured balls and occluding barriers placed along a 38 m long corridor. A video was captured from a walker's viewpoint at 1.3 km/hr. Fifteen subjects per environment reported the total object count after completing a walk while viewing the video in the SE (at 0, 1.3, or 2.5 km/h and RE (at 1.3 km/h. Examining the number of eye transitions (TotET between objects in relation to walking speed in SE, revealed significant increases between 0 and 2.5 km/h (F3, 56 =20.62, p = .02 and 1.3 and 2.5 km/h (F3, 56 =20.62, p = .039, despite no change in video speed; no significant difference was found between 0 and 1.3 km/h. In Experiment 2, 15 subjects viewed a static checkered screen and were instructed to ‘view the screen’ while walking. TotET decreased significantly, between 1.3 km/h and 5.2 km/h (F2, 27 =3.437, p = .014; no significant differences were observed between 2.6 km/h and either 1.3 km/h or 5.2 km/h. In real-world conditions, walking faster increases the difficulty of search tasks, with a likely correlated increase in eye movements. Apparently, the expectation of increased difficulty carries over to SE, even if the visual task is not more difficult. The findings point to physiological and perceptual correlations between locomotion and eye movements.

  3. Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Fournier, Mathieu; Fournier, Mathieu;

    -neutral second moments, and the price of co-kurtosis risk corresponds to the spread between the physical and the risk-neutral third moments. The option-based estimates of the prices of risk lead to reasonable values of the associated risk premia. An out-of-sample analysis of factor models with co-skewness and co......-kurtosis risk indicates that the new estimates of the price of risk improve the models performance. Models with higher-order market moments also robustly outperform standard competitors such as the CAPM and the Fama-French model....

  4. Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Fournier, Mathieu; Jacobs, Kris;

    -neutral second moments, and the price of co-kurtosis risk corresponds to the spread between the physical and the risk-neutral third moments. The option-based estimates of the prices of risk lead to reasonable values of the associated risk premia. An out-of-sample analysis of factor models with co-skewness and co......-kurtosis risk indicates that the new estimates of the price of risk improve the models' performance. Models with higher-order market moments also robustly outperform standard competitors such as the CAPM and the Fama-French model....

  5. Simulation modeling based method for choosing an effective set of fault tolerance mechanisms for real-time avionics systems

    Science.gov (United States)

    Bakhmurov, A. G.; Balashov, V. V.; Glonina, A. B.; Pashkov, V. N.; Smeliansky, R. L.; Volkanov, D. Yu.

    2013-12-01

    In this paper, the reliability allocation problem (RAP) for real-time avionics systems (RTAS) is considered. The proposed method for solving this problem consists of two steps: (i) creation of an RTAS simulation model at the necessary level of abstraction and (ii) application of metaheuristic algorithm to find an optimal solution (i. e., to choose an optimal set of fault tolerance techniques). When during the algorithm execution it is necessary to measure the execution time of some software components, the simulation modeling is applied. The procedure of simulation modeling also consists of the following steps: automatic construction of simulation model of the RTAS configuration and running this model in a simulation environment to measure the required time. This method was implemented as an experimental software tool. The tool works in cooperation with DYANA simulation environment. The results of experiments with the implemented method are presented. Finally, future plans for development of the presented method and tool are briefly described.

  6. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.

  7. Comparison between lighting performance of a virtual natural lighting solutions prototype and a real window based on computer simulation

    Directory of Open Access Journals (Sweden)

    R.A. Mangkuto

    2014-12-01

    Full Text Available This article discusses the measurement and simulation of a first generation prototype of Virtual Natural Lighting Solutions (VNLS, which are systems that can artificially provide natural lighting as well as a realistic outside view, with properties comparable to those of real windows and skylights. Examples of employing Radiance as a simulation tool to predict the lighting performance of such solutions are shown, for a particular case study of a VNLS prototype displaying variations of a simplified view of overcast, clear, and partly cloudy skies. Measurement and simulation were conducted to evaluate the illuminance distribution on workplane level. The key point of this study is to show that simulations can be used to compare an actual VNLS prototype with a hypothetical real window under the same sky scenes, which was physically not possible, since the test room was not located at the building׳s façade. It is found that the investigated prototype yields a less rapidly drop illuminance distribution and a larger average illuminance than the corresponding real window, under the overcast (52 lx compared to 28 lx and partly cloudy (102 lx compared to 80 lx sky scenes. Under the clear sky scene, the real window yields a larger average illuminance (97 lx compared to the prototype (71 lx, due to the influence of direct sunlight.

  8. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    Ouhrouche, Mohand [Department of Applied Sciences, University of Quebec at Chicoutimi, Quebec, G7H2B1 (Canada)

    2009-03-15

    Due to its simple construction, ruggedness and low cost, the induction generator driven by a wind turbine and feeding power to the grid appears to be an attractive solution to the problem of growing energy demand in the context of environmental issues. This paper investigates the integration of such a system into the main utility using RT-Lab trademark (Trademark of Opal-RT Technologies) software package running on a simple off-the-shelf PC. This real-time simulation platform is now adopted by many high-tech industries as a real-time laboratory package for rapid control prototyping and for Hardware-in-the-Loop applications. Real-time digital simulation results obtained during contingencies, such as islanding and unbalanced faults are presented and analysed. (author)

  9. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  10. An electronic system for simulation of neural networks with a micro- second real time constraint

    CERN Document Server

    Chorti, A; Denby, B; Garda, P

    2001-01-01

    Neural networks implemented in hardware can perform pattern recognition very quickly, and as such have been used to advantage in the triggering systems of certain high energy physics experiments. Typically, time constants of the order of a few microseconds are required. We present a new system, MAHARADJA, for evaluating MLP and RBF neural network paradigms in real time. The system is tested on a possible ATLAS muon triggering application suggested by the Tel Aviv ATLAS group, consisting of a 4-8-8-4 MLP which must be evaluated in 10 microseconds. The inputs to the net are dx/dz, x(z=0), dy/dz, and y(z=0), whereas the outputs give pt, tan(phi), sin(theta), and q, the charge. With a 10 MHz clock, MAHARADJA calculates the result in 6.8 microseconds; at 20 MHz, which is readily attainable, this would be reduced to only 3.4 microseconds. The system can also handle RBF networks with 3 different distance metrics (Euclidean, Manhattan and Mahalanobis), and can simulate any MLP of 10 hidden layers or less. The electro...

  11. Realistic RF system and Beam Simulation in Real Time for a Synchrotron

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    Due to heavy beam loading with gaps in the LHC beams, RF and beam are intimately linked to a complex system with fast transients where the RF loops and their limitations play a decisive role. Such a system is difficult to assess with analytical methods. To learn about overall system stability and for the definition of RF components to be built it is essential to understand the complete system long before the machine really exists. Therefore the author has written a general purpose real time simulation program and applied it to model the LHC machine with its beam pattern and complete double RF system. The latter is equipped with fast RF vector feedback loops having loop delay, transmitter power limitation and limited amplifier bandwidth as well as including one-turn-delay feedback and longitudinal batch injection damping. The development of all RF and beam quantities can be displayed graphically turn by turn. These frames can be assembled to a realistic multi-trace scope movie.

  12. Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields

    Science.gov (United States)

    Yang, Lun; Dayal, Kaushik

    2012-04-01

    Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phase-field model to consistently simulate various PFM configurations. We model the PFM tip as a charged region that is external to the ferroelectric, and implement a boundary element method to efficiently and accurately account for the external stray fields that mediate the interactions between the tip and the ferroelectric. Our phase-field model and the solution method together are able to account for the electrical fields both within the specimen as well as those outside, and also consistently solve for the resulting electromechanical response with the same phase-field model. We apply this to various problems: first, the effect of crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning of a 90° domain wall that emerges at a free surface; third, the effect of closure domain microstructure on PFM response; fourth, the effect of surface modulations on PFM response; and fifth, the effect of surface charge compensation on PFM response.

  13. Faster-Than-Real-Time Simulation of Lithium Ion Batteries with Full Spatial and Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sandip Mazumder

    2013-01-01

    Full Text Available A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in a LixC6-LiyMn2O4 battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.

  14. Semi-active tuned liquid column damper implementation with real-time hybrid simulations

    Science.gov (United States)

    Riascos, Carlos; Marulanda Casas, Johannio; Thomson, Peter

    2016-04-01

    Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.

  15. The ADAQ framework: An integrated toolkit for data acquisition and analysis with real and simulated radiation detectors

    Science.gov (United States)

    Hartwig, Zachary S.

    2016-04-01

    The ADAQ framework is a collection of software tools that is designed to streamline the acquisition and analysis of radiation detector data produced in modern digital data acquisition (DAQ) systems and in Monte Carlo detector simulations. The purpose of the framework is to maximize user scientific productivity by minimizing the effort and expertise required to fully utilize radiation detectors in a variety of scientific and engineering disciplines. By using a single set of tools to span the real and simulation domains, the framework eliminates redundancy and provides an integrated workflow for high-fidelity comparison between experimental and simulated detector performance. Built on the ROOT data analysis framework, the core of the ADAQ framework is a set of C++ and Python libraries that enable high-level control of digital DAQ systems and detector simulations with data stored into standardized binary ROOT files for further analysis. Two graphical user interface programs utilize the libraries to create powerful tools: ADAQAcquisition handles control and readout of real-world DAQ systems and ADAQAnalysis provides data analysis and visualization methods for experimental and simulated data. At present, the ADAQ framework supports digital DAQ hardware from CAEN S.p.A. and detector simulations performed in Geant4; however, the modular design will facilitate future extension to other manufacturers and simulation platforms.

  16. A real-time interactive simulation framework for watershed decision making using numerical models and virtual environment

    Science.gov (United States)

    Zhang, ShangHong; Xia, ZhongXi; Wang, TaiWei

    2013-06-01

    Decision support systems based on a virtual environment (VE) are becoming a popular platform in watershed simulation and management. Simulation speed and data visualization is of great significance to decision making, especially in urgent events. Real-time interaction during the simulation process is also very important for dealing with different conditions and for making timely decisions. In this study, a VE-based real-time interactive simulation framework (VERTISF) is developed and applied to simulation and management of the Dujiangyan Project in China. In VERTISF development, a virtual reality platform and numerical models were hosted on different computers and connected by a network to improve simulation speed. Different types of numerical models were generalized in a unified architecture based on time step, and interactive control was realized by modifying model boundary conditions at each time step. The "instruction-response" method and data interpolation were used to synchronize virtual environment visualization and numerical model calculation. Implementation of the framework was based on modular software design; various computer languages can be used to develop the appropriate module. Since only slight modification was needed for current numerical model integration in the framework, VERTISF was easy to extend. Results showed that VERTISF could take full advantage of hardware development, and it was a simple and effective solution for complex watershed simulation.

  17. Hysteresis Current Control of the Single-Phase Voltage Source Inverter Using eMEGAsim Real-Time Simulator

    Directory of Open Access Journals (Sweden)

    BOTEZAN, A.

    2015-08-01

    Full Text Available The paper presents the hysteresis current control of the voltage source inverter. The eMEGAsim real-time simulator is developed by OPAL-RT. Real-time simulation is used in many cases because it allows the behavior of the industrial processes operation to be determined. Two research directions are developed in this case, Rapid Control Prototyping and Hardware-In-the-Loop. Using eMEGAsim simulator allows implementing the command and control strategy of a single-phase voltage source inverter. At this stage, the real-time behavior of operation is monitored, because the voltage source inverter will be the part of a single-phase shunt active filter. In order to command and control the voltage source inverter, the current and voltage signals are acquired, since these signals are necessary to estimate reference signal. Extension of the Instantaneous Reactive Power Theorem is used because this theorem is suitable for single-phase active filter control. To test the real-time command and control strategy implemented, it was used a low power single-phase voltage source inverter (full bridge.

  18. Development of a simulation-optimization model for multiphase systems in the subsurface: a challenge to real-world simulation-optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Hinkelmann, R.; Helmig, R. [Kyoto University, Kyoto (Japan). Inst. for Sustainable Science

    2008-04-15

    The main purpose of this paper is to demonstrate the capability of a new simulation-optimization model especially tailored to investigate the optimal management strategy of a closed coal mine in the Ruhr, Germany. This paper deals with the multiphase/multicomponent flow simulation; the optimization model (simulated annealing); the mesh generation function; the coupling of them; and the use of a parallel computer. Firstly, a mesh generation function is included in the total procedure for the modelling of complex system configurations often required when the real-world problem is dealt with. The multiphase/multicomponent flow simulator can simulate not only groundwater flow and a tracer in it but also the multiphase systems (e.g. gas-water, gas-water NAPL system). Moreover, a parallelization strategy for the optimization procedure is proposed and implemented to overcome the enormous CPU time problem always tagged to real-world simulation-optimizations. This strategy succeeded in enhancing the efficiency of the overall procedure almost linearly by the number of the processors in a parallel computer. This model is then applied to study how to install the passive extraction wells for controlling the migration of methane continuously desorbed from coal seams inside the closed coal mine in the Ruhr, Germany. The general rule proposed as the result of the application is rather simple although it is considered very useful in many practices of coal mining operations. This paper briefly outlines the overall procedure.

  19. Photo-Fenton treatment of a pesticide mixture simulating real wastewater and 4-nonylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Gernjak, W.; Mentler, A.; Rodriguez, R.; Furhacker, M.; Malato, S.

    2003-07-01

    A simulated real wastewater containing a mixture of nine commercial pesticide formulations was degraded by the Photo-Fenton method in concentrating parabolic trough collectors at pilot-plant scale (helio man reactor at PSA) with varying initial iron concentrations (10-60 mg/L) and at two different temperatures (30 and 45 degree centigree). Independent of temperature and iron concentration 85% of the TOC could be degreed. Although the pH value was adjusted to 2.8 prior to ferrous sulfate addition, iron precipitated during the Photo-Fenton treatment (between 20 and 80%), the effect being pronounced stronger at elevated temperatures. TOC degradation rates increased confirming to increase of temperature and of iron concentration, if referred to dissolved iron. Around 20% more hydrogen peroxide was consumed at 45 degree centigree. The high radiation intensity achieved in the concentrating collector did not negatively affect the TOC degradation rates, as this is the case for UiO{sub 2} COD and VOD{sub 5} measurements showed that biodegradability during the Photo-Fenton treatment is enhanced from 15 to 37% of COD. Finally, FT-IR and X-ray diffraction measurements of the precipitated iron revealed a goethite crystal structure. Almost saturated solutions of 4-nonylphenol (2-3 mg/L) could be degraded by two orders of magnitude (Analytical detection limit reached) as well by TiO{sub 2} photo catalysis as by the Photo-Fenton method, the latter one being much quicker. Fenton reaction in the dark transformed between 40 and 80% of initial 4-nonylphenol into oxidized intermediates (1-5 mg/L ferrous iron applied). (Author) 12 refs.

  20. Temperature Distribution Simulation of a Polymer Bearing Basing on the Real Tribological Tests

    Directory of Open Access Journals (Sweden)

    Artur Król

    2015-09-01

    Full Text Available Polymer bearings are widely used due to dry-lubrication mechanism, low weight, corrosion resistance and free maintenance. They are applied in different tribological pairs, i.e. household appliances, mechatronics systems, medical devices, food machines and many more. However their use is limited by high coefficient of thermal expansion and softening at elevated temperature, especially when working outside recommended pv factors. The modification of bearing design to achieve better characteristics at more demanding conditions, requires full understanding of mechanical and thermal phenomena of bearing work. The first step was to observe a thermal behavior of polymer bearing under real test conditions (50, 100, 150 rpm and 350 and 700N until constant values were achieved, i.e. temperature and moment of friction. Subsequently collected data were used in a design of temperature distribution model. Thermal simulations of the polymer bearing were done using commercial software package ANSYS Fluent, which is based on finite volume method. All calculations were performed for 3D geometrical model that included polymer bearing, its housing, shaft and some volume of the surrounding air. The heat generation caused by friction forces was implemented by volumetric heat source. All three main heat transfer mechanism (conduction, convection and radiation were included in heat transfer calculations and the air flow around the bearing and adjacent parts was directly solved. The unknown parameters of the numerical model were adjusted by comparison of the results from computer calculations with the measured temperature rise. In the presented work the calculations were limited to steady state conditions only, but the model may be also used in transient analysis.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7342

  1. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    Science.gov (United States)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  2. Fast analytic simulation toolkit for generation of 4D PET-MR data from real dynamic MR acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumpas, C; Buerger, C; Marsden, P K [Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King' s College London (United Kingdom); Mollet, P, E-mail: charalampos.tsoumpas@kcl.ac.uk [IBBT, University of Ghent (Belgium)

    2011-09-23

    This work introduces and evaluates a fast analytic simulation toolkit (FAST) for simulating dynamic PET-MR data from real MR acquisitions. Realistic radiotracer values are assigned to segmented MR images. PET data are generated using analytic forward-projections (including attenuation and Poisson statistics) with the reconstruction software STIR, which is also used to produce the PET images that are spatially and temporally correlated with the real MR images. The simulation is compared with the GATE Monte Carlo package, which has more accurate physical modelling but it is 150 times slower compared to FAST for ten respiratory positions and 7000x slower, when repeating the simulation. The region of interest for mean values and coefficients of variation obtained with FAST and GATE, from 65 million and 104 million coincidences, respectively, were compared. Agreement between the two different simulation methods is good. In particular, the percentage differences of the mean values are: 10% for liver, and 19% for the myocardium and a warm lesion. The utility of FAST is demonstrated with the simulation of multiple volunteers with different breathing patterns. The package will be used for studying the performance of reconstruction, motion correction and attenuation correction algorithms for dynamic simultaneous PET-MR data.

  3. Modelling, Simulation, Fabrication, Experiments and Real-Time Linear State Variable Feedback Control of Cuk Converter using Pole Placement Technique

    Science.gov (United States)

    Nanda, S.; Sengupta, M.; Sengupta, A.

    2014-01-01

    Using a suitable combination of some of the basic converter topologies representing the Buck, the Boost and the Buck-Boost converters, one may obtain some other useful dc-to-dc converters. A typical example is the cascade connection of the Boost and the Buck converter which produces the well known Cuk converter. This work emphasises on the modelling, real-time simulations, fabrication and closed-loop control of a Cuk converter. For the modelling and real time simulation, FPGA platform has been used. Small signal modelling and conventional control aspects (compensator) of Cuk converter are discussed. A 200W, 10kHz Cuk converter is designed, fabricated and tested in the laboratory. The converter model is of fourth order. The transfer function being a non-minimum phase one with two right-half plane zeroes, a limited work has been done on this. For such systems, conventional control methods are demonstrated to fail. Pole placement technique, which is envisaged to be a suitable control technique for a higher order non-minimum phase system has been adopted. Excellent correlation between off-line and real-time simulation results establishes the accuracy of the work. Agreement between open-loop results obtained from the experimental set-up under steady state vis-a-vis those obtained from simulation is also a major highlight of the paper.

  4. Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries and haptic feedback

    Science.gov (United States)

    Fenz, Wolfgang; Dirnberger, Johannes

    2015-03-01

    Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.

  5. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  6. The Ten Commandments for Translating Simulation Results into Real-Life Performance

    Science.gov (United States)

    Wenzler, Ivo

    2009-01-01

    Simulation designers are continuously facing the challenge of determining how much of the expected value the simulation has delivered to the client. Addressing this challenge is not easy, and it requires simulation designers to stretch their comfort zones. This article presents a ten-step approach for meeting simulation objectives and translating…

  7. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    Science.gov (United States)

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  8. ON AGENT-BASED REAL ESTATE PRICING SIMULATION%基于Agent的房价仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘聪

    2012-01-01

    Analysis and prediction of real estate pricing is the focus and difficulty at present. The Agent-based modelling and simulation technology is able to construct a quite intact model for real estate pricing model. The real estate market and land market, as well as various related Agents such as the land provider, the developer, the buyer, the seller, and the investor, etc. are included in the model. By depicting the actions, decision making and interactions of these Agents, one can observe the results and phenomena emerged macroscopically from various environmental policies. In the model simulation, the impacts of the factors such as land supply, investment behaviour, interest rate, inflation rate, etc. on a variety of real estate pricing are studied and analysed. The simulation result well reflects and explains the status quo of the real estate pricing.%房价分析和预测是当前的热点和难点.基于Agent建模仿真技术,构建了较为完整的房价模型.模型包括房产市场和土地市场,以及房价相关各种主体,如土地供应者、开发商、买房者、投资者.通过刻画这些主体的行为、决策及交互,观察在不同的环境政策下,宏观涌现出来的结果和现象.模型仿真中研究和分析了土地供应、投资行为、利率、通胀等因素对房价走势的影响.仿真结果能较好地反映和解释房价的现实状况.

  9. Big data to smart data in Alzheimer's disease: Real-world examples of advanced modeling and simulation.

    Science.gov (United States)

    Haas, Magali; Stephenson, Diane; Romero, Klaus; Gordon, Mark Forrest; Zach, Neta; Geerts, Hugo

    2016-09-01

    Many disease-modifying clinical development programs in Alzheimer's disease (AD) have failed to date, and development of new and advanced preclinical models that generate actionable knowledge is desperately needed. This review reports on computer-based modeling and simulation approach as a powerful tool in AD research. Statistical data-analysis techniques can identify associations between certain data and phenotypes, such as diagnosis or disease progression. Other approaches integrate domain expertise in a formalized mathematical way to understand how specific components of pathology integrate into complex brain networks. Private-public partnerships focused on data sharing, causal inference and pathway-based analysis, crowdsourcing, and mechanism-based quantitative systems modeling represent successful real-world modeling examples with substantial impact on CNS diseases. Similar to other disease indications, successful real-world examples of advanced simulation can generate actionable support of drug discovery and development in AD, illustrating the value that can be generated for different stakeholders.

  10. Comparison of disjunctive kriging to generalized probability kriging in application to the estimation of simulated and real data

    Energy Technology Data Exchange (ETDEWEB)

    Carr, J.R. (Nevada Univ., Reno, NV (United States). Dept. of Geological Sciences); Mao, Nai-hsien (Lawrence Livermore National Lab., CA (United States))

    1992-01-01

    Disjunctive kriging has been compared previously to multigaussian kriging and indicator cokriging for estimation of cumulative distribution functions; it has yet to be compared extensively to probability kriging. Herein, disjunctive kriging and generalized probability kriging are applied to one real and one simulated data set and compared for estimation of the cumulative distribution functions. Generalized probability kriging is an extension, based on generalized cokriging theory, of simple probability kriging for the estimation of the indicator and uniform transforms at each cutoff, Z{sub k}. The disjunctive kriging and the generalized probability kriging give similar results for simulated data of normal distribution, but differ considerably for real data set with non-normal distribution.

  11. Neural adaptation and perceptual learning using a portable real-time cochlear implant simulator in natural environments.

    Science.gov (United States)

    Smalt, Christopher J; Talavage, Thomas M; Pisoni, David B; Svirsky, Mario A

    2011-01-01

    A portable real-time speech processor that implements an acoustic simulation model of a cochlear implant (CI) has been developed on the Apple iPhone / iPod Touch to permit testing and experimentation under extended exposure in real-world environments. This simulator allows for both a variable number of noise band channels and electrode insertion depth. Utilizing this portable CI simulator, we tested perceptual learning in normal hearing listeners by measuring word and sentence comprehension behaviorally before and after 2 weeks of exposure. To evaluate changes in neural activation related to adaptation to transformed speech, fMRI was also conducted. Differences in brain activation after training occurred in the inferior frontal gyrus and areas related to language processing. A 15-20% improvement in word and sentence comprehension of cochlear implant simulated speech was also observed. These results demonstrate the effectiveness of a portable CI simulator as a research tool and provide new information about the physiological changes that accompany perceptual learning of degraded auditory input.

  12. Generalized Wind Turbine Actuator Disk Parameterization in the Weather Research and Forecasting (WRF) Model for Real-World Simulations

    Science.gov (United States)

    Marjanovic, N.; Mirocha, J. D.; Chow, F. K.

    2013-12-01

    In this work, we examine the performance of a generalized actuator disk (GAD) model embedded within the Weather Research and Forecasting (WRF) atmospheric model to study wake effects on successive rows of turbines at a North American wind farm. These wake effects are of interest as they can drastically reduce down-wind energy extraction and increase turbulence intensity. The GAD, which is designed for turbulence-resolving simulations, is used within downscaled large-eddy simulations (LES) forced with mesoscale simulations and WRF's grid nesting capability. The GAD represents the effects of thrust and torque created by a wind turbine on the atmosphere within a disk representing the rotor swept area. The lift and drag forces acting on the turbine blades are parameterized using blade-element theory and the aerodynamic properties of the blades. Our implementation permits simulation of turbine wake effects and turbine/airflow interactions within a realistic atmospheric boundary layer flow field, including resolved turbulence, time-evolving mesoscale forcing, and real topography. The GAD includes real-time yaw and pitch control to respond realistically to changing flow conditions. Simulation results are compared to SODAR data from operating wind turbines and an already existing WRF mesoscale turbine drag parameterization to validate the GAD parameterization.

  13. Combining driveline and suspension models for real-time simulations / Kombination von Antriebs- und Fahrwerksmodellen zur Echtzeit-Simulation

    NARCIS (Netherlands)

    Vis, M.A.; Venne, J.W.C.M. van de; Vink, W.J.; Steen, M. van der; Lupker, H.A.

    2000-01-01

    A Modular Vehicle (MoVe) library is presented, containing driveline and vehicle dynamics component models. The library is built in Matlab\\Simulink, taking advantage of its modular capabilities and real-time application possibilities. Its use is demonstrated with the construction of a 4-wheel car, co

  14. Working as simulated patient has effects on real patient life – Preliminary insights from a qualitative study

    Directory of Open Access Journals (Sweden)

    Simmenroth-Nayda, Anne

    2016-05-01

    Full Text Available Background: Persons who simulate patients during medical education understand the routines and the underlying script of medical consultations better. We aimed to explore how simulated patients (SPs integrated this new understanding into their daily life, how this work affected their private life as patients, and what we can learn from these changes for concepts of empowerment.Design, setting, and participants: A qualitative interview study. All SPs of Göttingen medical school who had been working longer than three semesters (n=14 were invited and agreed to take part in an open interview about their daily experience with real doctors. Documentary method was used to identify the main issues. Several cases were chosen according to maximum contrast and analysed by in-depth analysis to provide vivid examples of how simulations may affect the real life of the SPs as patients.Results: Our analysis revealed three main changes in the behaviour of SPs as real patients. They were more attentive, had a better understanding of the circumstances under which doctors work, and acted more self-confidently. From the selected cases it became apparent that working as a SP may lead to a constant and significant decrease of fear of hospitals and medical procedures or, in other cases, may enable the SPs to develop new abilities for giving feedback, questioning procedures, and explanations for real doctors.Conclusion: working as a simulated patient seems to be well-suited to understand own progression of diseases, to increase self-responsibility and to a confident attitude as patient.

  15. Effects of real or simulated microgravity on plant cell growth and proliferation

    Science.gov (United States)

    Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence

    Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the

  16. Implementing a low cost distributed architecture for real-time behavioural modelling and simulation

    CSIR Research Space (South Africa)

    Le Roux, WH

    2006-06-01

    Full Text Available As part of Modelling and Simulation-based Acquisition Decision Support to a Ground-Based Air Defence acquisition programme, dedicated simulations have been used to evaluate and develop tactical doctrine, define measures of performance...

  17. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  18. SOSPO-SP: Secure Operation of Sustainable Power Systems Simulation Platform for Real-Time System State Evaluation and Control

    DEFF Research Database (Denmark)

    Morais, Hugo; Vancraeyveld, Pieter; Pedersen, Allan Henning Birger

    2014-01-01

    New challenges are arising in managing power systems as these systems become more complex due to the use of high levels of distributed generation, mainly based on renewable energy sources, and due to the competitive environment within the power sector. At the same time, the use of Phasor Measurem...... in a closed-loop, integrating new real-time assessment methods to provide useful information to operators in power system control centers and to develop new control methodologies that handle emergency situations and avoid power system blackouts....... Measurement Units (PMUs) provides more information and enables wide-area monitoring with accurate timing. One of the challenges in the near future is converting the high quantity and quality of information provided by PMUs into useful knowledge about operational state of a global system. The use of real......-time simulation in closed-loop is essential to develop and validate new real-time applications of wide-area PMU data. This paper presents a simulation platform developed within the research project Secure Operation of Sustainable Power Systems (SOSPO). The SOSPO simulation platform (SOSPO-SP) functions...

  19. POD for Real-Time Simulation of Hyperelastic Soft Biological Tissue Using the Point Collocation Method of Finite Spheres

    Directory of Open Access Journals (Sweden)

    Suleiman Banihani

    2013-01-01

    Full Text Available The point collocation method of finite spheres (PCMFS is used to model the hyperelastic response of soft biological tissue in real time within the framework of virtual surgery simulation. The proper orthogonal decomposition (POD model order reduction (MOR technique was used to achieve reduced-order model of the problem, minimizing computational cost. The PCMFS is a physics-based meshfree numerical technique for real-time simulation of surgical procedures where the approximation functions are applied directly on the strong form of the boundary value problem without the need for integration, increasing computational efficiency. Since computational speed has a significant role in simulation of surgical procedures, the proposed technique was able to model realistic nonlinear behavior of organs in real time. Numerical results are shown to demonstrate the effectiveness of the new methodology through a comparison between full and reduced analyses for several nonlinear problems. It is shown that the proposed technique was able to achieve good agreement with the full model; moreover, the computational and data storage costs were significantly reduced.

  20. Full-digital real-time power system simulator conferred nation s top award

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On January 11, 2010, the grand ceremony to present the 2009 National Scientific and Technological Award was held in Beijing. The project—Development and Implementation of Full-Digital Real-Time Power

  1. Real-Time, Maneuvering Flight Noise Prediction for Rotorcraft Flight Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for developing new technology to provide accurate real-time noise prediction for rotorcraft in steady and maneuvering flight. Main...

  2. Using a simulated patient to transfer patient-centred skills from simulated practice to real patients in practice

    Directory of Open Access Journals (Sweden)

    Yolinda Uys

    2014-02-01

    Full Text Available Background: Simulation in healthcare education is common practice. Although this teaching strategy increases patient safety, it is not proven to enhance patient-centred care in practice. Simulated patients are used to teach communication skills and to contribute to the authenticity of the simulation. Could this enhanced authenticity help bridge the gap from simulated practice to practice with live patients where patient-centredness is of crucial importance? Objective: This study’s objective was to determine whether students who acquired a skill in simulation using a simulated patient displayed more patient-centredness in practice than students who used a mannikin. Method: A pre-experimental, post-test-only design with a comparison group was used. The population sample comprised all second-year B.Cur. students (N = 36 at a tertiary institution,who were divided into two cohorts. Cohort 1 was trained to administer an intramuscular injection using a simulated patient with a strap-on injectable device, whilst cohort 2 used an injection model. All participants were assessed on their procedural skills as well as patient centred care whilst administering an injection to a patient in hospital. A comparison was made of mean scores for patient-centred care rendered by the two cohorts. Results: Fisher’s exact test revealed that the mean score for patient-centredness of cohort 1 (88% was significantly higher (p = < 0.001 than that of cohort 2 (74%. Conclusion: Using a simulated patient to teach administration of an intramuscular injection enhanced students’ patient-centredness when performing the procedure in practice. Recommendations include making use of a bigger sample and including a pre-test the next time research of this nature is carried out.

  3. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, L [Centre Hospitalier Universityde Quebec, Quebec, QC (Canada); Universite Laval, Quebec, Quebec (Canada); Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D [Universite Laval, Quebec, Quebec (Canada)

    2014-06-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  4. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  5. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

    Science.gov (United States)

    González-Villar, Alberto J; Bonilla, F Mauricio; Carrillo-de-la-Peña, María T

    2016-10-01

    It has been suggested that mental rehearsal activates brain areas similar to those activated by real performance. Although inhibition is a key function of human behavior, there are no previous reports of brain activity during imagined response cancellation. We analyzed event-related potentials (ERPs) and time-frequency data associated with motor execution and inhibition during real and imagined performance of a stop-signal task. The ERPs characteristic of stop trials-that is, the stop-N2 and stop-P3-were also observed during covert performance of the task. Imagined stop (IS) trials yielded smaller stop-N2 amplitudes than did successful stop (SS) and unsuccessful stop (US) trials, but midfrontal theta power similar to that in SS trials. The stop-P3 amplitude for IS was intermediate between those observed for SS and US. The results may be explained by the absence of error-processing and correction processes during imagined performance. For go trials, real execution was associated with higher mu and beta desynchronization over motor areas, which confirms previous reports of lower motor activation during imagined execution and also with larger P3b amplitudes, probably indicating increased top-down attention to the real task. The similar patterns of activity observed for imagined and real performance suggest that imagination tasks may be useful for training inhibitory processes. Nevertheless, brain activation was generally weaker during mental rehearsal, probably as a result of the reduced engagement of top-down mechanisms and limited error processing.

  6. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru; Hoke, Andy; Asano, Marc; Ueda, Reid; Nepal, Shaili

    2017-06-15

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digital testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.

  7. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers

  8. Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics.

    Science.gov (United States)

    Lapeer, R J; Gasson, P D; Karri, V

    2010-12-01

    In this paper, we provide a summary of a number of experiments we conducted to arrive at a prototype real-time simulator for plastic surgical interventions such as skin flap repair and inguinal herniotomy. We started our research with a series of in-vitro tensile stress tests on human skin, harvested from female patients undergoing plastic reconstructive surgery. We then used the acquired stress-strain data to fit hyperelastic models. Three models were considered: General Polynomial, Reduced Polynomial and Ogden. Only Reduced Polynomial models were found to be stable, hence they progressed to the next stage to be used in an explicit finite element model aimed at real-time performance in conjunction with a haptic feedback device. A total Lagrangian formulation with the half-step central difference method was employed to integrate the dynamic equation of motion of the mesh. The mesh was integrated into two versions of a real-time skin simulator: a single-threaded version running on a computer's main central processing unit and a multi-threaded version running on the computer's graphics card. The latter was achieved by exploiting recent advances in programmable graphics technology.

  9. Development of a New Research Platform for Electrical Drive System Modelling for Real-Time Digital Simulation Applications

    Directory of Open Access Journals (Sweden)

    S. Umashankar

    2013-01-01

    Full Text Available This paper presents the research platform for real-time digital simulation applications which replaces the requirement for full-scale or partial-scale validation of physical systems. To illustrate this, a three-phase AC-DC-AC converter topology has been used consists of diode rectifier, DC link, and an IGBT inverter with inductive load. In this topology, rectifier as well as inverter decoupled and solved separately using decoupled method, which results in the reduced order system so that it is easy to solve the state equation. This method utilizes an analytical approach to formulate the state equations, and interpolation methods have been implemented to rectify the zero-crossing errors, with fixed step size of 100 μsec is used. The proposed algorithm and the model have been validated using MATLAB simulation as m-file program and also in real-time DSP controller domain. The performance of the real-time system model is evaluated based on accuracy, zero crossing, and step size.

  10. PARALLEL ROSENBROCK METHODS FOR SOLVING STIFF SYSTEMS IN REAL-TIME SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Li-rong Chen; De-gui Liu

    2000-01-01

    In this paper parallel Rosenbrock methods in reM-time simulation are presented on parallel computers. Their construction, their convergence and their numerical stability are studied, and the numerical simulation experiments are conducted on a personal computer and a parallel computer respectively.

  11. A Smart Home Development Tool combining Simulation, Emulation and Real-World IoT

    DEFF Research Database (Denmark)

    Lynggaard, Per

    and their embedded smart objects, because laboratory environments are costly and time consuming to create. This paper proposes a simulator with built-in emulator capabilities. It integrates smart home simulation and emulation capabilities into one device. In this way, smart home implementation models exist either...

  12. Towards a Real-Time Minimally-Invasive Vascular Intervention Simulation System

    NARCIS (Netherlands)

    Alderliesten, T.; Bosman, P.A.N.; Niessen, W.

    2007-01-01

    Recently, foundations rooted in physics have been laid down for the goal of simulating the propagation of a guide wire inside the vasculature. At the heart of the simulation lies the fundamental task of energy minimization. The energy comes from interaction with the vessel wall and the bending of th

  13. Office Construction in Singapore and Hong Kong: Testing Real Option Implications

    NARCIS (Netherlands)

    M.G.J. Jennen (Maarten); Y. Fu (Yuming)

    2009-01-01

    textabstractWe advance the real-option-based empirical analysis of commercial real estate investment in three respects. First, we test several real option implications for real estate construction that have not been examined in the commercial real estate investment literature. In particular and in l

  14. Office Construction in Singapore and Hong Kong: Testing Real Option Implications

    NARCIS (Netherlands)

    M.G.J. Jennen (Maarten); Y. Fu (Yuming)

    2009-01-01

    textabstractWe advance the real-option-based empirical analysis of commercial real estate investment in three respects. First, we test several real option implications for real estate construction that have not been examined in the commercial real estate investment literature. In particular and in

  15. Simulation of collaborative studies for real-time PCR-based quantitation methods for genetically modified crops.

    Science.gov (United States)

    Watanabe, Satoshi; Sawada, Hiroshi; Naito, Shigehiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro

    2013-01-01

    To study impacts of various random effects and parameters of collaborative studies on the precision of quantitation methods of genetically modified (GM) crops, we developed a set of random effects models for cycle time values of a standard curve-based relative real-time PCR that makes use of an endogenous gene sequence as the internal standard. The models and data from a published collaborative study for six GM lines at four concentration levels were used to simulate collaborative studies under various conditions. Results suggested that by reducing the numbers of well replications from three to two, and standard levels of endogenous sequence from five to three, the number of unknown samples analyzable on a 96-well PCR plate in routine analyses could be almost doubled, and still the acceptable repeatability RSD (RSDr crops by real-time PCR and their collaborative studies.

  16. RAPTOR: Optimization, real-time simulation and control of the tokamak q profile evolution using a simplified transport model

    Science.gov (United States)

    Felici, Federico; Sauter, Olivier; Goodman, Timothy; Paley, James

    2010-11-01

    Control of the plasma current density and safety factor profile evolution in a tokamak is crucial for accessing advanced regimes. The evolution of the current density profile is steered by a combination of inductive voltage and auxiliary current drive actuators, and is nonlinearly coupled to the evolution of the (ion/electron) temperature and density profiles. Using appropriate simplifications, a model has been obtained which can be simulated on time scales faster than the tokamak discharge itself, but still retains the essential physics describing the nonlinear coupling between the profiles. This model, dubbed RAPTOR (Rapid Plasma Transport simulatOR) has been implemented in the new real-time control system on the TCV tokamak at CRPP, and can be used for real-time reconstruction and model-based control of the q profile. It can also be used off-line to determine optimal actuator trajectories in open loop simulations to steer the plasma profiles towards their required steady-state shapes while remaining within a constrained set of allowable profiles.

  17. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes

    Science.gov (United States)

    Dorren, L. K. A.; Berger, F.; Putters, U. S.

    2006-02-01

    Only a few rockfall simulation models take into account the mitigating effect of existing forest cover. The objective of our study was to improve the generic rockfall simulation model RockyFor, which does take the effect of forest stands into account, thereby developing a clear method for quantifying and modelling slope surface characteristics based on quantitative field data. To obtain these data we carried out 218 real-size rockfall experiments on forested and non-forested sites on a mountain slope in the French Alps. On the basis of a polygon map representing different diameter classes of the material covering the slope, we determine the mean obstacle height (MOH) for each homogeneous unit at the experimental sites. We proposed an algorithm for calculating the tangential coefficient of restitution using the MOH. Comparing the simulated and observed data from the real-size rockfall experiments showed that the 3-D combined deterministic-probabilistic rockfall simulation model RockyFor accurately predicted rockfall events on a non-forested (Root Mean Square Error = 17%) and a forested site (Root Mean Square Error = 12%). We conclude that for further improvement of rockfall-forest simulation on different slope types more quantitative data is required on (1) the energy dissipative capacity of shrubs and bushes (e.g. in coppice stands), (2) the effect of the slope material, (3) the rock shape as well as the rock size, and (4) the tangential and normal coefficient of restitution. Based on the presented results we can state that the RockyFor model could contribute to better taking into account the mitigating effect of the existing forest cover when planning protective measures.

  18. Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes

    Directory of Open Access Journals (Sweden)

    L. K. A. Dorren

    2006-01-01

    Full Text Available Only a few rockfall simulation models take into account the mitigating effect of existing forest cover. The objective of our study was to improve the generic rockfall simulation model RockyFor, which does take the effect of forest stands into account, thereby developing a clear method for quantifying and modelling slope surface characteristics based on quantitative field data. To obtain these data we carried out 218 real-size rockfall experiments on forested and non-forested sites on a mountain slope in the French Alps. On the basis of a polygon map representing different diameter classes of the material covering the slope, we determine the mean obstacle height (MOH for each homogeneous unit at the experimental sites. We proposed an algorithm for calculating the tangential coefficient of restitution using the MOH. Comparing the simulated and observed data from the real-size rockfall experiments showed that the 3-D combined deterministic-probabilistic rockfall simulation model RockyFor accurately predicted rockfall events on a non-forested (Root Mean Square Error = 17% and a forested site (Root Mean Square Error = 12%. We conclude that for further improvement of rockfall-forest simulation on different slope types more quantitative data is required on (1 the energy dissipative capacity of shrubs and bushes (e.g. in coppice stands, (2 the effect of the slope material, (3 the rock shape as well as the rock size, and (4 the tangential and normal coefficient of restitution. Based on the presented results we can state that the RockyFor model could contribute to better taking into account the mitigating effect of the existing forest cover when planning protective measures.

  19. MONTE GENEROSO ROCKFALL FIELD TEST (SWITZERLAND): Real size experiment to constraint 2D and 3D rockfall simulations

    Science.gov (United States)

    Humair, F.; Matasci, B.; Carrea, D.; Pedrazzini, A.; Loye, A.; Pedrozzi, G.; Nicolet, P.; Jaboyedoff, M.

    2012-04-01

    In numerical rockfall simulation, the runout of rockfall is highly dependent of the restitution coefficients which are one of the key parameters to estimate the energy and simulate the rebounds of the blocks during their travel. Restitution coefficients values derived from literature may however not be adapted to every rockfall area as they do not integrate some of the influencing parameters as, among others, block shape rock size, soil cover… The aim is to illustrate how real size rockfall experiment can improve the reliability of computational trajectory simulations of rockfall propagation by calibrating these latter with experiment extracted results. Experimental rockfall tests were performed in the slopes of Monte Generoso area (lat 720850/ long 84830) which is located in the canton of Ticino in south Switzerland above a highway. The field site is a forested area with a thin soil cover on a bedrock characterized by massive carbonates. The elevation ranges between 894m and 322m above see level with a slope of 35 to 40° in the upper part, 60 to 89° in the medium part and 28 to 38° in the lower part. 22 blocks with different size and shape were manually released down, imparting little or no initial velocity. The failing blocks were coloured to make the impacts easier to recognize. The paths of the failing blocks are recorded using two high speed cameras and the impacts of the blocks were sampled using dGNSS. The rockfall trajectories were analysed based on the movies. As the movies have to be referenced in x and y direction, the distance between two known point in the terrain as well as the position of the cameras were measured prior to the blocks throws. Measurements of bounce height, angular and translational velocity (as well as energy) and restitution coefficients (normal kn and tangential kt) were attempt to be deduced from the movies. First, a-priori simulations are compared with the real size experiment throw. Then a-fortiori simulations taking into

  20. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  1. Real-Time Visualization of an HPF-based CFD Simulation

    Science.gov (United States)

    Kremenetsky, Mark; Vaziri, Arsi; Haimes, Robert; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Current time-dependent CFD simulations produce very large multi-dimensional data sets at each time step. The visual analysis of computational results are traditionally performed by post processing the static data on graphics workstations. We present results from an alternate approach in which we analyze the simulation data in situ on each processing node at the time of simulation. The locally analyzed results, usually more economical and in a reduced form, are then combined and sent back for visualization on a graphics workstation.

  2. A high fidelity video delivery system for real-time flight simulation research

    Science.gov (United States)

    Wilkins, Daniel A.; Roach, Carl C.

    1993-01-01

    The Flight Systems and Simulation Research Laboratory (Simlab) at the NASA Ames Research Center, utilizes an extensive network of video image generation, delivery, processing, and display systems coupled with a large amplitude Vertical Motion Simulator (VMS) to provide a high fidelity visual environment for flight simulation research. This paper will explore the capabilities of the current Simlab video distribution system architecture with a view toward technical solutions implemented to resolve a variety of video interface, switching, and distribution issues common to many simulation facilities. Technical discussions include a modular approach to a video switching and distribution system capable of supporting both coax and fiber optic video signal transmission, video scan conversion and processing techniques for lab observation and recording, adaptation of image generation and display system video interfaces to industry standards, an all raster solution for 'glass cockpit' configurations encompassing Head up, Head-down, and Out-the-Window display systems.

  3. A high fidelity video delivery system for real-time flight simulation research

    Science.gov (United States)

    Wilkins, Daniel A.; Roach, Carl C.

    The Flight Systems and Simulation Research Laboratory (Simlab) at the NASA Ames Research Center, utilizes an extensive network of video image generation, delivery, processing, and display systems coupled with a large amplitude Vertical Motion Simulator (VMS) to provide a high fidelity visual environment for flight simulation research. This paper will explore the capabilities of the current Simlab video distribution system architecture with a view toward technical solutions implemented to resolve a variety of video interface, switching, and distribution issues common to many simulation facilities. Technical discussions include a modular approach to a video switching and distribution system capable of supporting both coax and fiber optic video signal transmission, video scan conversion and processing techniques for lab observation and recording, adaptation of image generation and display system video interfaces to industry standards, an all raster solution for 'glass cockpit' configurations encompassing Head up, Head-down, and Out-the-Window display systems.

  4. Migrating to a real-time distributed parallel simulator architecture- An update

    CSIR Research Space (South Africa)

    Duvenhage, B

    2007-09-01

    Full Text Available A legacy non-distributed logical time simulator was previously migrated to a distributed architecture to parallelise execution. The existing Discrete Time System Specification (DTSS) modelling formalism was retained to simplify the reuse of existing...

  5. The Drive-Wise Project: Driving Simulator Training increases real driving performance in healthy older drivers

    Directory of Open Access Journals (Sweden)

    Gianclaudio eCasutt

    2014-05-01

    Full Text Available Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training.Methods: Ninety-one healthy active drivers (62 – 87 years were randomly assigned to either (1 a driving simulator training group, (2 an attention training group (vigilance and selective attention, or (3 a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85% completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned comparisons.Results: The driving simulator training group showed an improvement in on-road driving performance compared to the attention training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers’ safety on the road.

  6. Nonequilibrium study of the chiral magnetic effect from real-time simulations with dynamical fermions

    Science.gov (United States)

    Mace, Mark; Mueller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2017-02-01

    We present a real-time lattice approach to study the nonequilibrium dynamics of vector and axial charges in S U (N )×U (1 ) gauge theories. Based on a classical description of the non-Abelian and Abelian gauge fields, we include dynamical fermions and develop operator definitions for (improved) Wilson and overlap fermions that allow us to study real-time manifestations of the axial anomaly from first principles. We present a first application of this approach to anomalous transport phenomena such as the chiral magnetic effect (CME) and the chiral separation effect (CSE) by studying the dynamics of fermions during and after a S U (N ) sphaleron transition in the presence of a U (1 ) magnetic field. We investigate the fermion mass and magnetic field dependence of the suggested signatures of the CME and the CSE and point out some important aspects which need to be accounted for in the macroscopic description of anomalous transport phenomena.

  7. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo;

    2014-01-01

    This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... the transducer to the main imaging system, by including electronics in the transducer handle. The reduction of element channel count is achieved using a sequential beamforming scheme. The beamforming scheme is a combination of a fixed focus beamformer in the transducer and a second dynamic focus beamformer...... in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential...

  8. Practical Testing and Performance Analysis of Phasor Measurement Unit Using Real Time Digital Simulator (RTDS)

    DEFF Research Database (Denmark)

    Liu, Leo; Rather, Zakir Hussain; Stearn, Nathen

    2012-01-01

    visualisation and post event analysis of power systems. It is expected however, that through integration with traditional Supervisory Control and Data Acquisition (SCADA) systems, closed loop control applications will be possible. Phasor Measurement Units (PMUs) are fundamental components of WAMS. Large WAMS......Wide Area Measurement Systems (WAMS) and Wide Area Monitoring, Protection and Control Systems (WAMPACS) have evolved rapidly over the last two decades [1]. This fast emerging technology enables real time synchronized monitoring of power systems. Presently, WAMS are mainly used for real time...... may support PMUs from multiple manufacturers and therefore it is important that there is a way of standardising the measurement performance of these devices. Currently the IEEE Standard C37.118 is used to quantify the measurement performance of PMUs. While standard specifications are also available...

  9. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  10. Thermal imaginary part of a real-time static potential from classical lattice gauge theory simulations

    OpenAIRE

    M. Laine; Philipsen, O.(Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany); Tassler, M.

    2007-01-01

    Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number...

  11. A versatile DSP, FPGA structure optimized for rapid prototyping and digital real-time simulation of power electronic and electrical drive systems

    OpenAIRE

    Karipidis, Claus-Ulrich

    2001-01-01

    A Versatile DSP/ FPGA Structure optimized for Rapid Prototyping and Digital Real-Time Simulation of Power Electronic and Electrical Drive Systems This thesis is devoted to the development of a powerful digital computer equipped with flexible interfaces. It is designed to suit Rapid Prototyping and digital real-time simulation methods of power electronic and electrical drive (PE&ED) systems. This universal hardware basis unites the possibilities (benefit) to implement control equipment and com...

  12. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  13. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  14. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  15. OVNI: a full-size real-time power system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J. R.; Linares, L. R.; Rosales, R.; Dommel, H. W. [British Columbia Univ., Vancouver, BC (Canada)

    1997-12-31

    The concept and work-in-progress to develop a computer-based power system simulator that would mimic as closely as possible the behaviour of an actual power system, was described. The simulator, dubbed OVNI for Object Virtual Network Integrator, is capable of running continuously. It produces at each discreet time instant, the correct voltages and currents in a power system. OVNI is being implemented using a network of off-the-shelf Pentium Pro 200 MHz workstations. The Ada 95 language is used to satisfy object-oriented requirements and provide the code with the reliability required for mission-critical applications. An important characteristic of OVNI is its fully graphical and integrated simulation environment. System events can be directly applied to the simulator and outputs probed as the simulator is running. Input events can originate from user action or directly through A/D boards. Output probes can also be directed to the screen as running plots, or forwarded through D/A boards. 6 refs., 6 figs.

  16. Real-world-time simulation of memory consolidation in a large-scale cerebellar model

    Directory of Open Access Journals (Sweden)

    Masato eGosui

    2016-03-01

    Full Text Available We report development of a large-scale spiking network model of thecerebellum composed of more than 1 million neurons. The model isimplemented on graphics processing units (GPUs, which are dedicatedhardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation ofcerebellar activity for 1 sec completes within 1 sec in thereal-world time, with temporal resolution of 1 msec.This allows us to carry out a very long-term computer simulationof cerebellar activity in a practical time with millisecond temporalresolution. Using the model, we carry out computer simulationof long-term gain adaptation of optokinetic response (OKR eye movementsfor 5 days aimed to study the neural mechanisms of posttraining memoryconsolidation. The simulation results are consistent with animal experimentsand our theory of posttraining memory consolidation. These resultssuggest that realtime computing provides a useful means to studya very slow neural process such as memory consolidation in the brain.

  17. Simulation and real-time optimal scheduling: a framework for integration

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C.M.; Nevins, M.R. [Argonne National Lab., IL (United States); Williams, M.K.; Joines, J.C. [Military Traffic Management Command Transportation Engineering Agency, Newport News, VA (United States)

    1997-02-01

    Traditional scheduling and simulation models of the same system differ in several fundamental respects. These include the definition of a schedule, the existence of an objective function which orders schedules and indicates the performance of a given schedule according to specific criteria, and the level of fidelity at which the items are represented and processed through he system. This paper presents a conceptual, object-oriented, architecture for combining a traditional, high-level, scheduling system with a detailed, process- level, discrete-event simulation. A multi-echelon planning framework is established in the context of modeling end-to-end military deployments with the focus on detailed seaport operations.

  18. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion

    Science.gov (United States)

    Suzuki, Yasumitsu; Yamashita, Koichi

    2012-04-01

    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  19. Application of Hybrid Real-Time Power System Simulator for Designing and Researching of Relay Protection and Automation

    Science.gov (United States)

    Borovikov, Yu S.; Sulaymanov, A. O.; Andreev, M. V.

    2015-10-01

    Development, research and operation of smart grids (SG) with active-adaptive networks (AAS) are actual tasks for today. Planned integration of high-speed FACTS devices greatly complicates complex dynamic properties of power systems. As a result the operating conditions of equipment of power systems are significantly changing. Such situation creates the new actual problem of development and research of relay protection and automation (RPA) which will be able to adequately operate in the SGs and adapt to its regimes. Effectiveness of solution of the problem depends on using tools - different simulators of electric power systems. Analysis of the most famous and widely exploited simulators led to the conclusion about the impossibility of using them for solution of the mentioned problem. In Tomsk Polytechnic University developed the prototype of hybrid multiprocessor software and hardware system - Hybrid Real-Time Power System Simulator (HRTSim). Because of its unique features this simulator can be used for solution of mentioned tasks. This article introduces the concept of development and research of relay protection and automation with usage of HRTSim.

  20. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.

    Science.gov (United States)

    Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu

    2014-12-01

    High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Real-Time Simulation of Passage-of-Time Encoding in Cerebellum Using a Scalable FPGA-Based System.

    Science.gov (United States)

    Luo, Junwen; Coapes, Graeme; Mak, Terrence; Yamazaki, Tadashi; Tin, Chung; Degenaar, Patrick

    2016-06-01

    The cerebellum plays a critical role for sensorimotor control and learning. However, dysmetria or delays in movements' onsets consequent to damages in cerebellum cannot be cured completely at the moment. Neuroprosthesis is an emerging technology that can potentially substitute such motor control module in the brain. A pre-requisite for this to become practical is the capability to simulate the cerebellum model in real-time, with low timing distortion for proper interfacing with the biological system. In this paper, we present a frame-based network-on-chip (NoC) hardware architecture for implementing a bio-realistic cerebellum model with  ∼ 100 000 neurons, which has been used for studying timing control or passage-of-time (POT) encoding mediated by the cerebellum. The simulation results verify that our implementation reproduces the POT representation by the cerebellum properly. Furthermore, our field-programmable gate array (FPGA)-based system demonstrates excellent computational speed that it can complete 1sec real world activities within 25.6 ms. It is also highly scalable such that it can maintain approximately the same computational speed even if the neuron number increases by one order of magnitude. Our design is shown to outperform three alternative approaches previously used for implementing spiking neural network model. Finally, we show a hardware electronic setup and illustrate how the silicon cerebellum can be adapted as a potential neuroprosthetic platform for future biological or clinical application.

  2. A Systematic Evaluation of Feature Selection and Classification Algorithms Using Simulated and Real miRNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Sheng Yang

    2015-01-01

    Full Text Available Sequencing is widely used to discover associations between microRNAs (miRNAs and diseases. However, the negative binomial distribution (NB and high dimensionality of data obtained using sequencing can lead to low-power results and low reproducibility. Several statistical learning algorithms have been proposed to address sequencing data, and although evaluation of these methods is essential, such studies are relatively rare. The performance of seven feature selection (FS algorithms, including baySeq, DESeq, edgeR, the rank sum test, lasso, particle swarm optimistic decision tree, and random forest (RF, was compared by simulation under different conditions based on the difference of the mean, the dispersion parameter of the NB, and the signal to noise ratio. Real data were used to evaluate the performance of RF, logistic regression, and support vector machine. Based on the simulation and real data, we discuss the behaviour of the FS and classification algorithms. The Apriori algorithm identified frequent item sets (mir-133a, mir-133b, mir-183, mir-937, and mir-96 from among the deregulated miRNAs of six datasets from The Cancer Genomics Atlas. Taking these findings altogether and considering computational memory requirements, we propose a strategy that combines edgeR and DESeq for large sample sizes.

  3. Real-time Risk Assessment for Aids to Navigation Using Fuzzy-FSA on Three-Dimensional Simulation System

    Directory of Open Access Journals (Sweden)

    Jinbiao Chen

    2014-06-01

    Full Text Available The risk level of the Aids to Navigation (AtoNs can reflect the ship navigation safety level in the channel to some extent. In order to appreciate the risk level of the aids to navigation (AtoNs in a navigation channel and to provide some decision-making suggestions for the AtoNs Maintenance and Management Department, the risk assessment index system of the AtoNs was built considering the advanced experience of IALA. Under the Formal Safety Assessment frame, taking the advantages of the fuzzy comprehensive evaluation method, the fuzzy-FSA model of risk assessment for aids to navigation was established. The model was implemented for the assessment of aids to navigation in Shanghai area based on the aids to navigation three-dimensional simulation system. The real-time data were extracted from the existing information system of aids to navigation, and the real-time risk assessment for aids to navigation of the chosen channel was performed on platform of the three-dimensional simulation system, with the risk assessment software. Specifically, the deep-water channel of the Yangtze River estuary was taken as an example to illustrate the general assessment procedure. The method proposed presents practical significance and application prospect on the maintenance and management of the aids to navigation.

  4. A Systematic Evaluation of Feature Selection and Classification Algorithms Using Simulated and Real miRNA Sequencing Data.

    Science.gov (United States)

    Yang, Sheng; Guo, Li; Shao, Fang; Zhao, Yang; Chen, Feng

    2015-01-01

    Sequencing is widely used to discover associations between microRNAs (miRNAs) and diseases. However, the negative binomial distribution (NB) and high dimensionality of data obtained using sequencing can lead to low-power results and low reproducibility. Several statistical learning algorithms have been proposed to address sequencing data, and although evaluation of these methods is essential, such studies are relatively rare. The performance of seven feature selection (FS) algorithms, including baySeq, DESeq, edgeR, the rank sum test, lasso, particle swarm optimistic decision tree, and random forest (RF), was compared by simulation under different conditions based on the difference of the mean, the dispersion parameter of the NB, and the signal to noise ratio. Real data were used to evaluate the performance of RF, logistic regression, and support vector machine. Based on the simulation and real data, we discuss the behaviour of the FS and classification algorithms. The Apriori algorithm identified frequent item sets (mir-133a, mir-133b, mir-183, mir-937, and mir-96) from among the deregulated miRNAs of six datasets from The Cancer Genomics Atlas. Taking these findings altogether and considering computational memory requirements, we propose a strategy that combines edgeR and DESeq for large sample sizes.

  5. Promoting the Sustainable Building Market: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government

    Directory of Open Access Journals (Sweden)

    Xiuli Xie

    2014-05-01

    Full Text Available Purpose: The Chinese government takes measures to promote the development of green building (GB. But until 2013, there are only few green buildings in China. The real estate developers are skeptical in entering GB market, which requires theories to explain developers and government’s behaviors.Design/methodology/approach: In this study, we attempt Evolutionary game theory and System dynamics (SD into the analysis. A system dynamics model is built for studying evolutionary games between the government and developers in greening building decision making.Findings and Originality/value: The results of mixed-strategy stability analysis and SD simulation show that evolutionary equilibrium does not exist with a static government incentive. Therefore, a dynamical incentive is suggested in the SD model for promoting the green building market. The symmetric game and asymmetric game between two developers show, if the primary proportion who choose GB strategy is lower, all the group in game may finally evolve to GB strategy. In this case and in this time, the government should take measures to encourage developers to enter into the GB market. If the proportion who choose GB strategy is high enough, the government should gradually cancel or reduce those incentive measure.Research limitations/implications: an Evolution Analysis and System Dynamics Simulation on Behaviors of Real Estate Developers and Government could give some advice for the government to promote the green building market.

  6. ATOMIC-FORCE MICROSCOPY AND REAL ATOMIC-RESOLUTION - SIMPLE COMPUTER-SIMULATIONS

    NARCIS (Netherlands)

    KOUTSOS, [No Value; MANIAS, E; TENBRINKE, G; HADZIIOANNOU, G

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its regis

  7. In Patients with Cirrhosis, Driving Simulator Performance is Associated With Real-life Driving

    DEFF Research Database (Denmark)

    Lauridsen, Mette Enok Munk; Thacker, Leroy R; White, Melanie B

    2016-01-01

    months) seen at the Virginia Commonwealth University and McGuire Veterans Administration Medical Center, from November 2008 through April 2014. All participants were given paper-pencil tests to diagnose MHE (98 had MHE, 48%), and 163 patients completed a standardized driving simulation. Data were...

  8. A Prototype System for Real Time Computer Animation of Slow Traffic in a Driving Simulator

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Delden, Mattijs J.B. van; Hin, Andrea J.S.; Wolffelaar, Peter C. van

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with ‘intelligent’ computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  9. Real-Time Computer Animation of Bicyclists and Pedestrians in a Driving Simulator

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Delden, Mattijs J.B. van; Hin, Andrea J.S.; Wolffelaar, Peter C. van

    1996-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with ‘intelligent’ computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  10. A prototype system for real time computer animation of slow traffic in a driving simulator

    NARCIS (Netherlands)

    Roerdink, JBTM; van Delden, MJB; Hin, AJS; van Wolffelaar, PC; Thalmann, NM; Skala,

    1997-01-01

    The Traffic Research Centre (TRC) of the University of Groningen in the Netherlands has developed a driving simulator with 'intelligent' computer-controlled traffic, consisting at the moment only of saloon cars. The range of possible applications would be greatly enhanced if other traffic

  11. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Lindow, H. [Rostocker, Magdeburg (Germany)

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  12. Real simulation tools in introductory courses: packaging and repurposing our research code.

    Science.gov (United States)

    Heagy, L. J.; Cockett, R.; Kang, S.; Oldenburg, D.

    2015-12-01

    Numerical simulations are an important tool for scientific research and applications in industry. They provide a means to experiment with physics in a tangible, visual way, often providing insights into the problem. Over the last two years, we have been developing course and laboratory materials for an undergraduate geophysics course primarily taken by non-geophysics majors, including engineers and geologists. Our aim is to provide the students with resources to build intuition about geophysical techniques, promote curiosity driven exploration, and help them develop the skills necessary to communicate across disciplines. Using open-source resources and our existing research code, we have built modules around simulations, with supporting content to give student interactive tools for exploration into the impacts of input parameters and visualization of the resulting fields, fluxes and data for a variety of problems in applied geophysics, including magnetics, seismic, electromagnetics, and direct current resistivity. The content provides context for the problems, along with exercises that are aimed at getting students to experiment and ask 'what if...?' questions. In this presentation, we will discuss our approach for designing the structure of the simulation-based modules, the resources we have used, challenges we have encountered, general feedback from students and instructors, as well as our goals and roadmap for future improvement. We hope that our experiences and approach will be beneficial to other instructors who aim to put simulation tools in the hands of students.

  13. Motor simulation and the coordination of self and other in real-time joint action.

    Science.gov (United States)

    Novembre, Giacomo; Ticini, Luca F; Schütz-Bosbach, Simone; Keller, Peter E

    2014-08-01

    Joint actions require the integration of simultaneous self- and other-related behaviour. Here, we investigated whether this function is underpinned by motor simulation, that is the capacity to represent a perceived action in terms of the neural resources required to execute it. This was tested in a music performance experiment wherein on-line brain stimulation (double-pulse transcranial magnetic stimulation, dTMS) was employed to interfere with motor simulation. Pianists played the right-hand part of piano pieces in synchrony with a recording of the left-hand part, which had (Trained) or had not (Untrained) been practiced beforehand. Training was assumed to enhance motor simulation. The task required adaptation to tempo changes in the left-hand part that, in critical conditions, were preceded by dTMS delivered over the right primary motor cortex. Accuracy of tempo adaptation following dTMS or sham stimulations was compared across Trained and Untrained conditions. Results indicate that dTMS impaired tempo adaptation accuracy only during the perception of trained actions. The magnitude of this interference was greater in empathic individuals possessing a strong tendency to adopt others' perspectives. These findings suggest that motor simulation provides a functional resource for the temporal coordination of one's own behaviour with others in dynamic social contexts.

  14. Real-Time Animation Using a Mix of Physical Simulation and Kinematics

    NARCIS (Netherlands)

    Welbergen, van Herwin; Zwiers, Job; Ruttkay, Zsófia

    2009-01-01

    Expressive animation (such as gesturing or conducting) is typically generated using procedural animation techniques. These techniques offer precision in both timing and limb placement, but they lack physical realism. On the other hand, physical simulation offers physical realism, but does not provid

  15. Analytical Solution and Numerical Simulation of Real-Time Dispersion Monitoring Using Tone Subcarrier

    Institute of Scientific and Technical Information of China (English)

    HUANG He; CHEN Fushen; JIANG Yi

    2003-01-01

    A method for online dispersion monitoring by adding a single in-band subcarrier tone is introduced. According to the theoretical analysis, the dispersion monitor and measurement range are determined by the specific frequency of the subcarrier tone. By using simulation tools, figures about relationship between power of subcarrier tone and transmission distance in ideal condition are shown.

  16. Making It Real: Using a Collaborative Simulation to Teach Crisis Communications

    Science.gov (United States)

    Olson, K. S.

    2012-01-01

    Even seasoned public relations (PR) practitioners can find it difficult to handle communications during a crisis situation when the consequences of making poor decisions may seem overwhelming. This article shares results from using a collaborative simulation to teach college students about crisis communications in an advanced-level PR course.…

  17. Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes

    Science.gov (United States)

    West, Jan; Veenstra, Anneke

    2012-01-01

    Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…

  18. Real-Time Animation Using a Mix of Physical Simulation and Kinematics

    NARCIS (Netherlands)

    van Welbergen, H.; Zwiers, Jakob; Ruttkay, Z.M.

    2009-01-01

    Expressive animation (such as gesturing or conducting) is typically generated using procedural animation techniques. These techniques offer precision in both timing and limb placement, but they lack physical realism. On the other hand, physical simulation offers physical realism, but does not

  19. Simulating Real Life: Enhancing Social Work Education on Alcohol Screening and Brief Intervention

    Science.gov (United States)

    Osborne, Victoria A.; Benner, Kalea; Sprague, Debra J.; Cleveland, Ivy N.

    2016-01-01

    Social work students typically use role play with student colleagues to practice clinical intervention skills. Practice with simulated clients (SCs) rather than classmates changes the dynamics of the role play and may improve learning. This is the first known study to employ the SC model in substance use assessment in social work education. Social…

  20. Comparison of acceleration signals of simulated and real-world backward falls

    NARCIS (Netherlands)

    Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J. M.; van Lummel, R. C.; Chiari, L.; Lindemann, U.

    2011-01-01

    Most of the knowledge on falls of older persons has been obtained from oral reports that might be biased in many ways. Fall simulations are widely used to gain insight into circumstances of falls, but the results, at least concerning fall detection, are not convincing. Variation of acceleration and

  1. Face-based smoothed finite element method for real-time simulation of soft tissue

    Science.gov (United States)

    Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane

    2017-03-01

    In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.

  2. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins.

    Science.gov (United States)

    May, Ali; Pool, René; van Dijk, Erik; Bijlard, Jochem; Abeln, Sanne; Heringa, Jaap; Feenstra, K Anton

    2014-02-01

    To assess whether two proteins will interact under physiological conditions, information on the interaction free energy is needed. Statistical learning techniques and docking methods for predicting protein-protein interactions cannot quantitatively estimate binding free energies. Full atomistic molecular simulation methods do have this potential, but are completely unfeasible for large-scale applications in terms of computational cost required. Here we investigate whether applying coarse-grained (CG) molecular dynamics simulations is a viable alternative for complexes of known structure. We calculate the free energy barrier with respect to the bound state based on molecular dynamics simulations using both a full atomistic and a CG force field for the TCR-pMHC complex and the MP1-p14 scaffolding complex. We find that the free energy barriers from the CG simulations are of similar accuracy as those from the full atomistic ones, while achieving a speedup of >500-fold. We also observe that extensive sampling is extremely important to obtain accurate free energy barriers, which is only within reach for the CG models. Finally, we show that the CG model preserves biological relevance of the interactions: (i) we observe a strong correlation between evolutionary likelihood of mutations and the impact on the free energy barrier with respect to the bound state; and (ii) we confirm the dominant role of the interface core in these interactions. Therefore, our results suggest that CG molecular simulations can realistically be used for the accurate prediction of protein-protein interaction strength. The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.

  3. Real-time simulation of biologically realistic stochastic neurons in VLSI.

    Science.gov (United States)

    Chen, Hsin; Saighi, Sylvain; Buhry, Laure; Renaud, Sylvie

    2010-09-01

    Neuronal variability has been thought to play an important role in the brain. As the variability mainly comes from the uncertainty in biophysical mechanisms, stochastic neuron models have been proposed for studying how neurons compute with noise. However, most papers are limited to simulating stochastic neurons in a digital computer. The speed and the efficiency are thus limited especially when a large neuronal network is of concern. This brief explores the feasibility of simulating the stochastic behavior of biological neurons in a very large scale integrated (VLSI) system, which implements a programmable and configurable Hodgkin-Huxley model. By simply injecting noise to the VLSI neuron, various stochastic behaviors observed in biological neurons are reproduced realistically in VLSI. The noise-induced variability is further shown to enhance the signal modulation of a neuron. These results point toward the development of analog VLSI systems for exploring the stochastic behaviors of biological neuronal networks in large scale.

  4. Bias of genetic trend of genomic predictions based on both real dairy cattle and simulated data

    DEFF Research Database (Denmark)

    Ma, Peipei; Lund, Mogens Sandø; Nielsen, Ulrik Sander;

    population. In simulated data, there was no bias when the test animals were unselected cows. When the G matrix was derived from genotypes of causal genes, the bias was reduced. The results suggest that the main reasons for causing the bias of the prediction trends are the selection of bulls and bull dams......This study investigated the phenomenon of bias in the trend of genomic predictions and attempted to find the reason and solution for this bias. The data used in this study include Danish Jersey data and simulation data. In Jersey data, the bias was reduced when cows were included in the reference...... as well as the inaccurate relationship matrix. The possible strategies to eliminate the bias could be to use cow reference and improve genomic relationship matrix...

  5. Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    CERN Document Server

    Aceto, Luca; Ingolfsdottir, Anna; Reynisson, Arni Hermann; Sigurdarson, Steinar Hugi; Sirjani, Marjan; 10.4204/EPTCS.58.1

    2011-01-01

    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.

  6. [Training for real: simulation, team-training and communication to improve trauma management].

    Science.gov (United States)

    Happel, Oliver; Papenfuss, Tim; Kranke, Peter

    2010-06-01

    The focus on the role of non-technical skills such as communication, dynamic decision making, situational awareness and teamwork in emergency medicine has gained importance over the past few years. Especially during time-critical and complex treatment of severely injured patients in a multidisciplinary and interprofessional trauma-team these factors play an important role for patient-safety and process optimization and are a key factor influencing the perceived quality of a given scenario by the team members. Thus, apart from medical expertise and technical excellence of single actors within a trauma team, non-technical skills need to be incorporated in trainings for trauma management. For the improvement of non-technical skills, particularly team communication and teamwork, a simulator-based training represents a valuable tool. The technical performance of portable manikin-based simulators has improved tremendously during the last decade, which facilitates realistic and true-to-life multidisciplinary team-training in trauma management.

  7. Laser spectroscopic real time measurements of methanogenic activity under simulated Martian subsurface analog conditions

    Science.gov (United States)

    Schirmack, Janosch; Böhm, Michael; Brauer, Chris; Löhmannsröben, Hans-Gerd; de Vera, Jean-Pierre; Möhlmann, Diedrich; Wagner, Dirk

    2014-08-01

    On Earth, chemolithoautothrophic and anaerobic microorganisms such as methanogenic archaea are regarded as model organisms for possible subsurface life on Mars. For this reason, the methanogenic strain Methanosarcina soligelidi (formerly called Methanosarcina spec. SMA-21), isolated from permafrost-affected soil in northeast Siberia, has been tested under Martian thermo-physical conditions. In previous studies under simulated Martian conditions, high survival rates of these microorganisms were observed. In our study we present a method to measure methane production as a first attempt to study metabolic activity of methanogenic archaea during simulated conditions approaching conditions of Mars-like environments. To determine methanogenic activity, a measurement technique which is capable to measure the produced methane concentration with high precision and with high temporal resolution is needed. Although there are several methods to detect methane, only a few fulfill all the needed requirements to work within simulated extraterrestrial environments. We have chosen laser spectroscopy, which is a non-destructive technique that measures the methane concentration without sample taking and also can be run continuously. In our simulation, we detected methane production at temperatures down to -5 °C, which would be found on Mars either temporarily in the shallow subsurface or continually in the deep subsurface. The pressure of 50 kPa which we used in our experiments, corresponds to the expected pressure in the Martian near subsurface. Our new device proved to be fully functional and the results indicate that the possible existence of methanogenic archaea in Martian subsurface habitats cannot be ruled out.

  8. Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control

    Science.gov (United States)

    2016-08-16

    Attitude Control * Benjamin L. Reifler University at Buffalo, Buffalo, New York 1st Lt Dylan R. Penn Air Force Research Laboratory, Kirtland Air Force...Base, New Mexico 16 August 2016 Abstract The Attitude Control System Proving Ground (ACSPG) is a three-degree-of-freedom spacecraft simulator mounted...unlimited. DISTRIBUTION A. Approved for public release: distribution unlimited. 1 Introduction The attitude determination and control subsystem (ADCS

  9. Simulation of Satellite Water Vapour Lidar Measurements: Performance Assessment under Real Atmospheric Conditions.

    OpenAIRE

    Di Girolamo, Paolo; Behrendt, Andreas; Kiemle, Christoph; Wulfmeyer, Volker; Bauer, Heinz; Summa, Donato; Dörnbrack, Andreas; Ehret, Gerhard

    2008-01-01

    A lidar simulator has been applied to assess the performances of a satellite water vapour differential absorption lidar (DIAL) system. Measurements performed by the airborne Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapour DIAL on 15 May 2002 during ESA’s Water Vapour Lidar Experiment (WALEX), in combination with MM5 mesoscale model output, were used to obtain backscatter and water vapour fields with high resolution and accuracy. These data and model output serve as input for the ...

  10. Reduction of Biomechanical Models for Subject Specific Real-Time Simulation of Surgical Trocar Insertion

    OpenAIRE

    Channa Naik, Ravi Kumar

    2010-01-01

    Trocar insertion is the first step in Laparoscopy, Thoracoscopy and most other micro surgery procedures. It is a difficult procedure to learn and practice because procedure is carried out almost entirely without any visual feedback of the organs underlying the tissues being punctured. A majority of injuries is attributed to excessive use of force by surgeons. Practicing on cadavers and synthetic tissues may not accurately simulate the process. So there is a need for haptic based computer simu...

  11. Real-Time Million-Synapse Simulation of Rat Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Thomas eSharp

    2014-05-01

    Full Text Available Simulations of neural circuits are bounded in scale and speed by available computing resources, and particularly by the differences in parallelism and communication patterns between the brain and high-performance computers. SpiNNaker is a computer architecture designed to address this problem by emulating the structure and function of neural tissue, using very many low-power processors and an interprocessor communication mechanism inspired by axonal arbors. Here we demonstrate that thousand-processor SpiNNaker prototypes can simulate models of the rodent barrel system comprising fifty thousand neurons and fifty million synapses. We use the PyNN library to specify models, and the intrinsic features of Python to control experimental procedures and analysis. The models reproduce known thalamocortical response transformations, exhibit known, balanced dynamics of excitation and inhibition, and show a spatiotemporal spread of activity though the superficial cortical layers. These demonstrations are a significant step towards tractable simulations of entire cortical areas on the million-processor SpiNNaker machines in development.

  12. Development of the Real-time Core and Thermal-Hydraulic Models for Kori-1 Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Hyuk; Lee, Myeong Soo; Hwang, Do Hyun; Byon, Soo Jin [KEPRI, Daejeon (Korea, Republic of)

    2010-10-15

    The operation of the Kori-Unit 1 (1723.5MWt) is expanded to additional 10 years with upgrades of the Main Control Room (MCR). Therefore, the revision of the procedures, performance tests and works related with the exchange of the Main Control Board (MCB) are currently carried out. And as a part of it, the fullscope simulator for the Kori-1 is being developed for the purpose of the pre-operation and emergence response capability for the operators. The purpose of this paper is to report on the performance of the developed neutronics and thermal-hydraulic (TH) models of Kori Unit 1 simulator. The neutronics model is based on the NESTLE code and TH model based on the RELAP5/MOD3 thermal-hydraulics analysis code which was funded as FY-93 LDRD Project 7201 and is running on the commercial simulator environment tool (the 3KeyMaster{sup TM} of the WSC). As some examples for the verification of the developed neutronics and TH models, some figures are provided. The outputs of the developed neutronics and TH models are in accord with the Nuclear Design Report (NDR) and Final Safety Analysis Report (FSAR) of the reference plant

  13. Simulating the signature produced by a single airgun under real gas conditions

    Institute of Scientific and Technical Information of China (English)

    Wang Feng-Fan; Liu Huai-Shan

    2014-01-01

    Models that simulate the signature of single airguns form the basis for modeling the signals of airgun arrays. Most of the existing models assume that the air inside the produced bubble is ideal gas, which may lead to errors because of the high operating pressure of the airguns. In this study, we propose a model that precisely simulates the signals of single airguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We also consider a thermodynamically open quasistatic system, the heat transition between water and gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface. Modeling experiments show that (1) the energy of the source increases and the signal-to-noise ratio of the signature wavelet decreases with increasing seawater temperature, (2) the reflection coefficient of the sea surface under the actual state and depth of the source affects the notch caused by the surface reflection, (3) the computed signature with the proposed model is very close to the actual data, and (4) the proposed model accurately simulates the signature of single airguns.

  14. Real-time simulation of finite-frequency noise from a single-electron emitter

    Science.gov (United States)

    Jonckheere, T.; Stoll, T.; Rech, J.; Martin, T.

    2012-01-01

    We study the real-time emission of single electrons from a quantum dot coupled to a one dimensional conductor, using exact diagonalization on a discrete tight-binding chain. We show that, from the calculation of the time evolution of the one-electron states, we have simple access to all the relevant physical quantities in the system. In particular, we are able to compute accurately the finite-frequency current autocorrelation noise. The method that we use is general and versatile, allowing us to study the impact of many different parameters, such as the dot transparency or level position. Our results can be directly compared with existing experiments, and can also serve as a basis for future calculations including electronic interactions using the time-dependent density-matrix renormalization group and other techniques based on tight-binding models.

  15. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  16. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    2013-08-01

    was rendered in OpenGL . Urban Environment The environment consisted of a 3D mesh model of a city. The mesh was created using a commercial tool...system. We rendered the 3D scene (in OpenGL ) and read back the depth buffer in a raster that matched the raster characteristics of a typical LIDAR...configure the simulation. Visualization is done using custom 3D graphics software based on OGRE and OpenGL . The software runs on a standard Linux

  17. Statistical analysis of piloted simulation of real time trajectory optimization algorithms

    Science.gov (United States)

    Price, D. B.

    1982-01-01

    A simulation of time-optimal intercept algorithms for on-board computation of control commands is described. The effects of three different display modes and two different computation modes on the pilots' ability to intercept a moving target in minimum time were tested. Both computation modes employed singular perturbation theory to help simplify the two-point boundary value problem associated with trajectory optimization. Target intercept time was affected by both the display and computation modes chosen, but the display mode chosen was the only significant influence on the miss distance.

  18. Towards optimization of stress simulation in real casting-mould systems

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2010-10-01

    Full Text Available The simulation codes using from many years by foundry industry such e.g. Magmasoft, NovaFlow&Solid and ProCast, contain also thethermo-mechanical modules permitting the estimation of mechanical stresses/deformations in casting during its cooling. It is also knownthat these modules are rarely used because of the very limited thermo-mechanical database especially for ceramic materials such asfoundry sand mould. These technologies – castings pouring in non-permanent sand moulds, particularly iron alloys are most often applied in foundry. In our study the method of evaluating the algorithms quality applied in thermo-mechanical phenomena models based on parameters sensitivity testing from the proper database of the simulation system was used [1]. The comparative analyses of bothexperimental and virtual results were realized (by stress estimation. Methodology of experimental research was resemble to that described in provided that the applied gray cast iron casting of stress bars (grid were casted in sand mould bonded by organic resins. Also the usefulness of author's method called Hot Distortion Plus® consisting in acquisition of temperature/distortion curves of heated sample of sand mould material and correlation with curves of their dilatation and also the inverse solution method are signalized as new proposition to estimate the chosen mechanical moulds parameters.

  19. Extending the range of real time density matrix renormalization group simulations

    Science.gov (United States)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ > and operators A in the evaluation of ψ(t) = . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  20. Are you real? Visual simulation of social housing by mirror image stimulation in single housed mice.

    Science.gov (United States)

    Fuss, Johannes; Richter, S Helene; Steinle, Jörg; Deubert, Gerald; Hellweg, Rainer; Gass, Peter

    2013-04-15

    Individual housing of social species is a common phenomenon in laboratory animal facilities. Single housing, however, is known to inflict social deprivation with a number of detrimental consequences. Aiming to improve housing conditions of single housed rodents, we investigated the simulation of social housing by mirrors in a series of behavioural experiments and biochemical parameters in mice. We found that chronic mirror-image stimulation increased exploratory behaviours in the holeboard and novel cage tests, but did not alter anxiety, locomotor, or depression-like behaviours. Moreover, no influence on visual recognition memory was observed. Hippocampal brain-derived neurotrophic factor (BDNF) levels, a biomarker for enrichment effects, were unaltered. In line, mirror-image stimulation did not alter home cage behaviour in mice housed with and without mirrors when left undisturbed. Thus, though we found subtle behavioural effects after long-term mirror exposure, we conclude that the simulation of social housing by mirrors is not sufficient to gain the presumably beneficial outcomes induced by social housing.

  1. Roboneuron: a simple and robust real-time analog spike simulator and calibrator.

    Science.gov (United States)

    Dickerhoff, Tyler; Yildirim, Abidin; Gawne, Timothy J

    2013-09-15

    Modern computerized spike recording systems are increasingly powerful and sophisticated. However, this increases the importance of performing validation by recording signals from a system with a known input-output relationship. We present here a simple and robust analog circuit that uses a minimum number of commonly available components to simulate two independently spiking neurons. The two neurons generate asynchronous overlapping spikes. These can be independently set to spike at either a constant rate, or at a rate set by an external control voltage. The circuit is simple enough to easily assemble by hand, however, standard files for ordering commercial printed circuit boards are also supplied. Several units were built by different people, using both hand-assembly and commercially manufactured printed circuit boards: all worked well. The circuit is robust with respect to supply voltages and component values. Existing analog circuits tend to be complex, hard to assemble, and use hard-to-find components. Digital simulators typically require specific development systems that have steep learning curves and are likely to change radically or become unavailable very quickly. This system has been optimized to be robust, simple, and use only commonly available components. When validating a system there could be an advantage to using a calibrator that is robust, whose input-output relationship is simple, and whose design is stable over time. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations

    Science.gov (United States)

    Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick

    2017-01-01

    Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.

  3. Light intensity simulation in real space by viewing locations for autostereoscopic display design

    Science.gov (United States)

    Jo, Jungguen; Lee, Kwang-Hoon; Lee, Dong-Su; Park, Min-Chul; Son, Jung-Young; Ju, Byeong-Kwon

    2013-05-01

    Autostereoscopy is a common method for providing 3D perception to viewers without glasses. They produce 3D images with a wide perspective, and can achieve the effect of observing different images visible on the same plane from difference point of view. In autostereoscopic displays, crosstalk occurs when incomplete isolation of the left and right images so that one leakage into the other. This paper addresses a light intensity simulator that can calculate crosstalk according to variable viewing positions by automatically tracking heads of viewers. In doing so, we utilize head tracking technique based on infrared laser sensors to detect the observers' viewing positions. Preliminary results show that the proposed system was appropriate to be operated in designing the autostereoscopic displays ensuring human safety.

  4. Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation.

    Science.gov (United States)

    Joldes, Grand Roman; Wittek, Adam; Miller, Karol

    2010-12-15

    Application of biomechanical modeling techniques in the area of medical image analysis and surgical simulation implies two conflicting requirements: accurate results and high solution speeds. Accurate results can be obtained only by using appropriate models and solution algorithms. In our previous papers we have presented algorithms and solution methods for performing accurate nonlinear finite element analysis of brain shift (which includes mixed mesh, different non-linear material models, finite deformations and brain-skull contacts) in less than a minute on a personal computer for models having up to 50.000 degrees of freedom. In this paper we present an implementation of our algorithms on a Graphics Processing Unit (GPU) using the new NVIDIA Compute Unified Device Architecture (CUDA) which leads to more than 20 times increase in the computation speed. This makes possible the use of meshes with more elements, which better represent the geometry, are easier to generate, and provide more accurate results.

  5. Doppler-radar wind-speed measurements in tornadoes: A comparison of real and simulated spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bluestein, H.B.; LaDue, J.G.; Stein, H.; Speheger, D. (Oklahoma Univ., Norman, OK (United States)); Unruh, W.P. (Los Alamos National Lab., NM (United States))

    1993-01-01

    Bluestein and Unruh have discussed the advantages of using a portable doppler radar to map the wind field in tornadoes. during the spring of 1991 a storm-intercept team from the University of Oklahoma (OU) collected data near five supercell tornadoes in Oklahoma and Kansas. Details about the 1-W, 3-cm, 5-deg half-power beamwidth, CW/FM-CW Doppler radar we used and the methods of data collection and analysis are found in Bluestein and Unruh and Bluestein et al. Using the portable radar, we approximately doubled in only one year the number of tornado spectra that had been collected over a period of almost 20 years by NSSL's fixed-site Doppler radar. In this paper we will compare observed tornado wind spectra with simulated wind spectra (Zmic and Doviak 1975) in order to learn more about tornado structure.

  6. Passive hybrid force-position control for tele-operation based on real-time simulation of a virtual mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Joly, L.; Andriot, C.

    1995-12-31

    Hybrid force-position control aims at controlling position and force in separate directions. It is particularly useful to perform certain robotic tasks. In tele-operation context, passivity is important because it ensures stability when the system interacts with any passive environment. In this paper, we propose an original approach to hybrid force-position control of a force reflecting tele-robot system. It is based on real-time simulation of a virtual mechanism corresponding to the task. the resulting control law is passive. Experiments on a 6 degrees of freedom tele-operation system consisting in following a bent pipe under several control modes validate the approach. (authors). 12 refs., 6 figs.

  7. Responses of sympathoadrenal and renin angiotensin systems to stress stimuli in humans during real and simulated microgravity.

    Science.gov (United States)

    Kvetnansky, R; Koska, J; Ksinantova, L; Noskov, V B; Blazicek, P; Marko, M; Macho, L; Grigoriev, A I; Vigas, M

    2002-07-01

    Changes of plasma hormone levels were investigated in human subjects after exposure to physical exercise (WL) and insulin induced hypoglycemia (ITT) during space flight or after head down bed rest (HDBR). Exaggerated responses of plasma epinephrine (EPI), norepinephrine (NE) and aldosterone (ALD) were observed after WL during space flight as compared to preflight response. Hypoglycemia during space flight induced attenuated responses of EPI, NE and augmented response of ALD. Exposure to WL during HDBR was followed by significantly exaggerated responses of plasma EPI, NE, ALD, PRA and cortisol. In HDBR the responses of plasma EPI, NE and cortisol were reduced and PRA response was exaggerated during ITT. These data indicate that hormonal responses to ITT and WL are similar at real and simulated microgravity.

  8. Ab initio molecular dynamics simulations of the static, dynamic and electronic properties of liquid lead using real-space pseudopotentials

    Energy Technology Data Exchange (ETDEWEB)

    Alemany, Manuel M. G. [Universidad de Santiago de Compostela; Longo, Roberto [Universidad de Santiago de Compostela; Gallego, Luis [Universidad de Santiago de Compostela; Gonzales, D. J. [Universidad de Valladolid; Gonzales, L. E. [Universidad de Valladolid; Tiago, Murilo L [ORNL; Chelikowsky, James [University of Texas, Austin

    2007-01-01

    We performed a comprehensive study of the static, dynamic and electronic properties of liquid Pb at T = 650 kelvins, density 0.0309 angstroms^{-3} by means of 216-particle ab initio molecular dynamics simulations based on a real-space implementation of pseudopotentials constructed within density-functional theory. The predicted results and available experimental data are very in good agreement, which confirms the adequacy of this technique to achieve a reliable description of the behavior of liquid metals, including their dynamic properties. Although some of the computed properties of liquid Pb are similar to those of simple liquid metals, others differ markedly. Our results show that an appropriate description of liquid Pb requires the inclusion of relativistic effects in the determination of the pseudopotentials of Pb.

  9. Real time simulation application to monitor the stability limit of power system

    Science.gov (United States)

    Hartono, Kuo, Ming-Tse

    2017-06-01

    If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on

  10. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    Science.gov (United States)

    Eem, S. H.; Jung, H. J.; Koo, J. H.

    2013-05-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study.

  11. Effects of Self-Instructional Methods and Above Real Time Training (ARTT) for Maneuvering Tasks on a Flight Simulator

    Science.gov (United States)

    Ali, Syed Firasat; Khan, Javed Khan; Rossi, Marcia J.; Crane, Peter; Heath, Bruce E.; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    Personal computer based flight simulators are expanding opportunities for providing low-cost pilot training. One advantage of these devices is the opportunity to incorporate instructional features into training scenarios that might not be cost effective with earlier systems. Research was conducted to evaluate the utility of different instructional features using a coordinated level turn as an aircraft maneuvering task. In study I, a comparison was made between automated computer grades of performance with certified flight instructors grades. Every one of the six student volunteers conducted a flight with level turns at two different bank angles. The automated computer grades were based on prescribed tolerances on bank angle, airspeed and altitude. Two certified flight instructors independently examined the video tapes of heads up and instrument displays of the flights and graded them. The comparison of automated grades with the instructors grades was based on correlations between them. In study II, a 2x2 between subjects factorial design was used to devise and conduct an experiment. Comparison was made between real time training and above real time training and between feedback and no feedback in training. The performance measure to monitor progress in training was based on deviations in bank angle and altitude. The performance measure was developed after completion of the experiment including the training and test flights. It was not envisaged before the experiment. The experiment did not include self- instructions as it was originally planned, although feedback by experimenter to the trainee was included in the study.

  12. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

    Science.gov (United States)

    Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis

    2008-06-01

    The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.

  13. Real-time hybrid simulation technique for performance evaluation of full-scale sloshing dampers in wind turbines

    Science.gov (United States)

    Zhang, Zili; Basu, Biswajit; Nielsen, Saren R. K.

    2016-09-01

    As a variation of the pseudodynamic testing technique, the real-time hybrid simulation (RTHS) technique is executed in real time, thus allowing investigation of structural systems with rate-dependent components. In this paper, the RTHS is employed for performance evaluation of full-scale liquid sloshing dampers in multi-megawatt wind turbines, where the tuned liquid damper (TLD) is manufactured and tested as the physical substructure while the wind turbine is treated as the numerical substructure and modelled in the computer using a 13-degree-of-freedom (13-DOF) aeroelastic model. Wind turbines with 2 MW and 3 MW capacities have been considered under various turbulent wind conditions. Extensive parametric studies have been performed on the TLD, e.g., various tuning ratios by changing the water level, TLD without and with damping screens (various mesh sizes of the screen considered), and TLD with flat and sloped bottoms. The present study provides useful guidelines for employing sloshing dampers in large wind turbines, and indicates huge potentials of applying RTHS technique in the area of wind energy.

  14. 实时模拟固体燃烧现象%Simulation of Solid Burning Phenomenon in Real-Time

    Institute of Scientific and Technical Information of China (English)

    朱鉴; 鲍凯; 常元章; 柳有权; 吴恩华

    2011-01-01

    为了模拟固体燃烧时产生的火焰及其伴随的物质分解过程,提出一个实时的燃烧模型.为了在模拟速度和视觉效果间取得一个很好的折中,采用一套混合的网格模拟系统;整个空间的热传导过程在一个统一的框架下模拟,因此能够很好地耦合动态的火焰和燃烧的固体.提出了一个改进的燃面更新方案以及一个新的固体表面纹理映射算法,能够生成逼真的结果.还提出了一系列提高模型效率的加速算法.最终实时地模拟出了真实感的固体燃烧现象.%In this paper, we present a real-time combustion model to simulate fire phenomena with solid object decomposition process involved. To achieve a good tradeoff between performance and visual appearance, a hybrid structure of grids is employed in the model. Heat transfer is modeled in a compact framework, so the turbulent fire and the burning solid are well coupled. With an improved burning surface update scheme and a novel surface texture projection algorithm for its visualization,convincing results are produced. To increase the efficiency of our model, a few acceleration techniques are proposed as well. As a result, realistic solid burning phenomenon is well simulated in real time.

  15. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used.......Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...

  16. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation.

    Science.gov (United States)

    Hasegawa, Taisuke

    2016-11-07

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  17. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation

    Science.gov (United States)

    Hasegawa, Taisuke

    2016-11-01

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  18. The Atlas3D project - XXVI. HI discs in real and simulated fast and slow rotators

    CERN Document Server

    Serra, Paolo; Krajnovic, Davor; Naab, Thorsten; Oosterloo, Tom; Morganti, Raffaella; Cappellari, Michele; Emsellem, Eric; Young, Lisa M; Blitz, Leo; Davis, Timothy A; Duc, Pierre-Alain; Hirschmann, Michaela; Weijmans, Anne-Marie; Alatalo, Katherine; Bayet, Estelle; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Davies, Roger L; de Zeeuw, P T; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M; Sarzi, Marc; Scott, Nicholas

    2014-01-01

    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of HI with size from a few to tens of kpc and mass up to ~1e+9 solar masses. Here we investigate whether this HI is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of HI masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much HI and have a similar rate of HI discs/rings as FRs. Accretion of HI is therefore not always linked to the growth of an inner stellar disc. The weak relation between HI and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the HI is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that LCDM hydrodynamical simul...

  19. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    Science.gov (United States)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  20. Toward real-time high-fidelity simulation using integral boundary layer modeling

    CERN Document Server

    Marques, Alexandre; Larsson, Johan; Laskowski, Gregory; Bose, Sanjeeb

    2016-01-01

    One of the greatest challenges to using large-eddy simulations (LES) in engineering applications is the large number of grid points required near walls. To mitigate this issue, researchers often couple LES with a simplified model of the flow close to the wall, known as the wall model. One feature common to most wall models is that the first few (about 3) grid points must be located below the inviscid log-layer, and the grid must have near-isotropic resolution near the wall. Hence, wall-modeled LES may still require a large number of grid points in both the wall-normal and span-wise directions. Because of these requirements, wall-modeled LES is still unfeasible in many applications. We present a new formulation of wall-modeled LES that is being developed to address this issue. In this formulation, LES is used to solve only for the features of the velocity field that can be adequately represented on the LES grid. The effects of the unresolved features are captured by imposing an integral balance of kinetic ener...

  1. What can simulated molecular clouds tell us about real molecular clouds?

    CERN Document Server

    Duarte-Cabral, A

    2016-01-01

    We study the properties of giant molecular clouds (GMCs) from an SPH simulation of a portion of a spiral galaxy, modelled at high resolution, with robust representations of the physics of the interstellar medium. We examine the global molecular gas content of clouds, and investigate the effect of using CO or H2 densities to define the GMCs. We find that CO can reliably trace the high-density H2 gas, but misses less dense H2 clouds. We also investigate the effect of using 3D CO densities versus CO emission with an observer's perspective, and find that CO-emission clouds trace well the peaks of the actual GMCs in 3D, but can miss the lower density molecular gas between density peaks which is often CO-dark. Thus the CO emission typically traces smaller clouds within larger GMC complexes. We also investigate the effect of the galactic environment (in particular the presence of spiral arms), on the distribution of GMC properties, and we find that the mean properties are similar between arm and inter-arm clouds, bu...

  2. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    Science.gov (United States)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  3. Teaching water sustainability and STEM concepts using in-class, online, and real-world multiplayer simulations

    Science.gov (United States)

    Moysey, S. M.; Hannah, A. C.; Miller, S.; Mobley, C.

    2013-12-01

    Serious games are computer games with a primary purpose other than entertainment. Serious games are frequently used for training purposes, and can be used for educational and research purposes, increasing student interest and level of interaction as well as allowing researchers to collect data about emergent player behavior. The Naranpur Express simulation is based on a previously existing multiplayer role-playing game, where each player manages a small farm in rural India. Player goals include subsistence, upward economic mobility, and mitigation of environmental impact. Hydrologic and agricultural models are used to connect each player's small-scale decisions with their more far-reaching, and often difficult to perceive environmental impacts. This approach allows students to learn by discovery, experiencing first-hand the challenges of overuse of groundwater, fertilizers, and pesticides. Integration of new and rapidly developing social media techniques allows players to discuss solutions to their shared challenges, and help define a set of formal or informal rules governing their community. Previous versions of this game were implemented on paper, or in a spreadsheet run on each student's laptop. However, moving this simulation to an interactive online setting will allow us to study aggregate, as well as spatially varying effects of player decisions on economic and environmental outcomes. By coupling both physical and economic models with the real dynamics of player behavior, and considering the social and cultural aspects of agriculture, we can investigate the decision-making processes that control real environmental outcomes. By varying the types of information available to players, we can investigate how access to different kinds of information drives environmental decision-making. This can help identify key misunderstandings, thereby benefiting education and outreach efforts related to environmental justice and sustainability issues. Surveys collected from

  4. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  5. Real-time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms

    Science.gov (United States)

    Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-06-01

    Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.

  6. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  7. What can simulated molecular clouds tell us about real molecular clouds?

    Science.gov (United States)

    Duarte-Cabral, A.; Dobbs, C. L.

    2016-06-01

    We study the properties of giant molecular clouds (GMCs) from a smoothed particle hydrodynamics simulation of a portion of a spiral galaxy, modelled at high resolution, with robust representations of the physics of the interstellar medium. We examine the global molecular gas content of clouds, and investigate the effect of using CO or H2 densities to define the GMCs. We find that CO can reliably trace the high-density H2 gas, but misses less dense H2 clouds. We also investigate the effect of using 3D CO densities versus CO emission with an observer's perspective, and find that CO-emission clouds trace well the peaks of the actual GMCs in 3D, but can miss the lower density molecular gas between density peaks which is often CO-dark. Thus, the CO emission typically traces smaller clouds within larger GMC complexes. We also investigate the effect of the galactic environment (in particular the presence of spiral arms), on the distribution of GMC properties, and we find that the mean properties are similar between arm and inter-arm clouds, but the tails of some distributions are indicative of intrinsic differences in the environment. We find highly filamentary clouds (similar to the giant molecular filaments of our Galaxy) exclusively in the inter-arm region, formed by galactic shear. We also find that the most massive GMC complexes are located in the arm, and that as a consequence of more frequent cloud interactions/mergers in the arm, arm clouds are more sub-structured and have higher velocity dispersions than inter-arm clouds.

  8. Meristematic competence is disrupted by microgravity, real or simulated, in seedlings and cultured cells of Arabidopsis

    Science.gov (United States)

    Medina, Francisco Javier; Herranz, Raul; Van Loon, ing.. Jack J. W. A.; Kiss, John; Valbuena, Miguel A.; Youssef, Khaled

    In actively proliferating plant cells, the rate of cell proliferation is strictly coordinated with cell growth, and this coordination is called “meristematic competence”. Cell proliferation consists of the adequate progression of the cell division cycle throughout specific regulatory checkpoints, and cell growth consists of reaching the critical size making possible cell division, based on the increase of biomass, essentially by means of protein synthesis. There are two cellular models in which these processes can be studied, namely the meristematic tissues of plants and seedlings and the in vitro suspension cell cultures. Meristems are essential for the determination of the developmental pattern of the plant, which is primarily based on the balance between proliferating (meristematic) and differentiated cells. Auxin is a fundamental phytohormone, responsible for the maintenance of meristematic competence and for the control of the rate of differentiation. We first studied the proliferating activity of root meristematic cells in the International Space Station (ISS) and in a random positioning machine (RPM), a ground-based device for simulated microgravity. The result in both experiments was the increase of mitotic activity (cell proliferation) and the depletion of ribosome synthesis (cell growth), that is, the disruption of meristematic competence. We found these effects associated with changes in the auxin levels and polar transport, which is related to the role of auxin as a mediator of the transduction of the gravitropic signal sensed in the root columella. We plan to advance in the investigation of mechanisms of the auxin control of meristematic competence in microgravity conditions in a new experiment, “Seedling Growth”, to be performed in the ISS. We will use mutants of the auxin transport pathway and we will also test the potential activating role of red light, known to be a cell proliferation and gene expression enhancer. The role played by

  9. An Entropy Approach to Disclosure Risk Assessment: Lessons from Real Applications and Simulated Domains

    Science.gov (United States)

    Airoldi, Edoardo M.; Bai, Xue; Malin, Bradley A.

    2011-01-01

    leveraging the statistical characteristics of a visit distribution, as opposed to person-level data. It is computationally efficient and superior to existing risk assessment methods, which rely on ad hoc assessment that are often computationally expensive and unreliable. We evaluate our approach on a range of location access patterns in simulated environments. Our results demonstrate the approach is effective at estimating trail disclosure risks and the amount of self-information contained in a distributed system is one of the main driving factors. PMID:21647242

  10. Debris Flow Simulation using FLO-2D on the 2004 Landslide Area of Real, General Nakar, and Infanta, Philippines

    Science.gov (United States)

    Llanes, F.; dela Resma, M.; Ferrer, P.; Realino, V.; Aquino, D. T.; Eco, R. C.; Lagmay, A.

    2013-12-01

    From November 14 to December 3, 2004, Luzon Island was ravaged by 4 successive typhoons: Typhoon Mufia, Tropical Storm Merbok, Tropical Depression Winnie, and Super Typhoon Nanmadol. Tropical Depression Winnie was the most destructive of the four when it triggered landslides on November 29 that devastated the municipalities of Infanta, General Nakar, and Real in Quezon Province, southeast Luzon. Winnie formed east of Central Luzon on November 27 before it moved west-northwestward over southeastern Luzon on November 29. A total of 1,068 lives were lost and more than USD 170 million worth of damages to crops and infrastructure were incurred from the landslides triggered by Typhoon Winnie on November 29 and the flooding caused by the 4 typhoons. FLO-2D, a flood routing software for generating flood and debris flow hazard maps, was utilized to simulate the debris flows that could potentially affect the study area. Based from the rainfall intensity-duration-frequency analysis, the cumulative rainfall from typhoon Winnie on November 29 which was approximately 342 mm over a 9-hour period was classified within a 100-year return period. The Infanta station of the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) was no longer able to measure the amount of rainfall after this period because the rain gauge in that station was washed away by floods. Rainfall data with a 100-year return period was simulated over the watersheds delineated from a SAR-derived digital elevation model. The resulting debris flow hazard map was compared with results from field investigation and previous studies made on the landslide event. The simulation identified 22 barangays (villages) with a total of 45,155 people at risk of turbulent flow and flooding.

  11. Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion

    Directory of Open Access Journals (Sweden)

    S. Simon

    2009-09-01

    Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.

  12. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D. [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C. [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several

  13. Observation of development of breast cancer cell lines in real time by fluorescence microscopy under simulated microgravity

    Science.gov (United States)

    Lavan, David; Valdivia-Silva, Julio E.; Sanabria, Gabriela; Orihuela, Diego; Suarez, Juan; Quispe, Marco; Chuchon, Mariano; Martin, David; Maroto, Marcos; Egea, Javier

    2016-07-01

    This project consist in the implementation of a fluorescence microscope for the in real time monitoring of biological labeled samples by several fluorophores in microgravity conditions keeping the temperature, humidity, and (CO)2 controlled by an electronic platform. The system (fluorescence microscope and incubator) is integrated to a microgravity simulator machine which was presented on the "30th Annual American Society for Gravitation and Space Research Meeting" October 2014 in Pasadena, CA, USA. Currently, we have the microgravity machine biologically validated by genetic expression studies in pupal stage of Drosophila melanogaster. The fluorescence microscope has a platform designed to hold a culture flask, and a fluorescence camera (Leica DFC3000 G) connected to an optical system (Fluorescence Light source Leica EL6000, optic fiber, fiber adapter, and fluorescence filter) in order to take images in real time. The mechanical system of the fluorescence microsc ope is designed to allow the displacement of the fluorescence camera through a parallel plane to the culture flask's plane and also the movement of the platform through a perpendicular axis to the culture flask in order to focus the samples to the optical system. The mechanical system is propelled by four DC moto-reductors with encoder (A-max 26 Maxon motor, GP 32S screw and MR encoder) that generate displacements in the order of micrometers. The angular position control of the DC motoreductor's shaft of all the DC moto-reductors is done by PWM signals based on the interpretation of the signals provided by the encoders during the movement. The system is remotely operated by a graphic interface installed on a personal computer or any mobile device (smartphone, laptop or tablet) by using the internet. Acknowledgments: Grant of INNOVATE PERU (Formerly FINCYT)

  14. Vernier Caliper and Micrometer Computer Models Using Easy Java Simulation and Its Pedagogical Design Features--Ideas for Augmenting Learning with Real Instruments

    Science.gov (United States)

    Wee, Loo Kang; Ning, Hwee Tiang

    2014-01-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a…

  15. Vernier Caliper and Micrometer Computer Models Using Easy Java Simulation and Its Pedagogical Design Features--Ideas for Augmenting Learning with Real Instruments

    Science.gov (United States)

    Wee, Loo Kang; Ning, Hwee Tiang

    2014-01-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a…

  16. Getting Real about Suicide Prevention in the Classroom and Beyond: Using a Classroom Simulation to Create Communications for At-Risk Individuals

    Science.gov (United States)

    Bal, Anjali S.; Weidner, Kelly; Leeds, Christopher; Raaka, Brian

    2016-01-01

    Marketing faculties, as well as business schools in general, are placing increasing importance on finding ways to better tie theoretical concepts to real-world situations. In the article that follows, we describe a project wherein students were given an opportunity to apply core consumer behavior concepts to a simulated advertising project with…

  17. Changes in Gene Expression of Arabidopsis Thaliana Cell Cultures Upon Exposure to Real and Simulated Partial- g Forces

    Science.gov (United States)

    Fengler, Svenja; Spirer, Ina; Neef, Maren; Ecke, Margret; Hauslage, Jens; Hampp, Rüdiger

    2016-06-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial- g forces during parabolic flight and clinostat experiments (0.16 g, 0.38 g and 0.5 g were tested). In order to investigate gravity-dependent alterations in gene expression, samples were metabolically quenched by the fixative RNA later Ⓡ to stabilize nucleic acids and used for whole-genome microarray analysis. An attempt to identify the potential threshold acceleration for the gravity-dependent response showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term μ g during a parabolic flight, the number of differentially expressed genes under partial- g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial- g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and μ g). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold up- or down-regulated in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of homologuous genes was detected within seconds of exposure to 0.38 g (both flight and clinorotation). To a considerable part, these genes deal with cell wall properties. Additionally, responses specific for clinorotation were observed.

  18. Forecasting of the processing time as the base of simulation of the production system behavior in real conditions

    Directory of Open Access Journals (Sweden)

    Vukićević Milan

    2005-01-01

    Full Text Available The absence of precise information on the magnitudes that determine the behavior of the production system generates the disturbances of the system. The consequence is the low efficacy of the system and the high costs. Therefore, it is necessary to create the base for the prediction of individual magnitudes and thus enable the simulation of the production system behavior in real conditions. The information on time norms has a special significance. It is the base of planning the terms and of defining a part of direct costs. Modern approach in the identification of standard times should be established on new foundations. It should appreciate the specificities of the present moment, as well as the future tendencies in wood processing. They are the production system dynamistic, conditioned predominantly by discontinuous production, as well as by the necessity of cooperation of the production systems. In this study, the approach to the identification of standard times is original, supporting the modern tendencies in wood processing and it has an applicative character.

  19. Using machine learning and real-time workload assessment in a high-fidelity UAV simulation environment

    Science.gov (United States)

    Monfort, Samuel S.; Sibley, Ciara M.; Coyne, Joseph T.

    2016-05-01

    Future unmanned vehicle operations will see more responsibilities distributed among fewer pilots. Current systems typically involve a small team of operators maintaining control over a single aerial platform, but this arrangement results in a suboptimal configuration of operator resources to system demands. Rather than devoting the full-time attention of several operators to a single UAV, the goal should be to distribute the attention of several operators across several UAVs as needed. Under a distributed-responsibility system, operator task load would be continuously monitored, with new tasks assigned based on system needs and operator capabilities. The current paper sought to identify a set of metrics that could be used to assess workload unobtrusively and in near real-time to inform a dynamic tasking algorithm. To this end, we put 20 participants through a variable-difficulty multiple UAV management simulation. We identified a subset of candidate metrics from a larger pool of pupillary and behavioral measures. We then used these metrics as features in a machine learning algorithm to predict workload condition every 60 seconds. This procedure produced an overall classification accuracy of 78%. An automated tasker sensitive to fluctuations in operator workload could be used to efficiently delegate tasks for teams of UAV operators.

  20. Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGA Hardware-Software Toolset

    Directory of Open Access Journals (Sweden)

    Tommaso Caldognetto

    2013-12-01

    Full Text Available In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications.The paper shows how this high level programming language,together with its target hardware platforms, including CompactRIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are

  1. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    Science.gov (United States)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  2. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2014-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  3. Windows-based Distributed Real-time Simulation System%基于Windows平台的分布式实时仿真系统

    Institute of Scientific and Technical Information of China (English)

    孙亚红

    2012-01-01

    Two solutions for Windows-based distributed simulation are presented after an introduction to RTX-a real-time extension subsystem based on Windows,one being reflective memory network distributed simulation based on RTX,and the other being token ring distributed simulation based on Ethernet.A comparison of the differences in real-time performance between the two architectures and the traditional Windows solutions shows that the two solutions can offer flexible and reliable choice for different simulations while meeting the distributed simulation system's requirement of real-timeness.%通过介绍基于Windows的实时扩展子系统RTX,提出了解决Windows下分布式仿真的两种方案:基于RTX的反射内存网分布式仿真和基于以太网的令牌环分布式仿真架构。并比较了两种架构与传统Windows方案在实时性能上的差别。两种方案在满足分布式仿真系统实时性要求的基础上,能为不同要求的仿真提供灵活可靠的选择。

  4. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan; Baggu, Murali M.

    2017-05-11

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source to enable use by others.

  5. The Effect of Student Learning Styles on the Learning Gains Achieved When Interactive Simulations Are Coupled with Real-Time Formative Assessment via Pen-Enabled Mobile Technology

    CERN Document Server

    Kowalski, F V

    2013-01-01

    This paper describes results from a project in an undergraduate engineering physics course that coupled classroom use of interactive computer simulations with the collection of real-time formative assessment using pen-enabled mobile technology. Interactive simulations (free or textbook-based) are widely used across the undergraduate science and engineering curriculia to help actively engaged students increase their understanding of abstract concepts or phenomena which are not directly or easily observable. However, there are indications in the literature that we do not yet know the pedagogical best practices associated with their use to maximize learning. This project couples student use of interactive simulations with the gathering of real-time formative assessment via pen-enabled mobile technology (in this case, Tablet PCs). The research question addressed in this paper is: are learning gains achieved with this coupled model greater for certain types of learners in undergraduate STEM classrooms? To answer t...

  6. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan; Baggu, Murali M.

    2017-04-11

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source to enable use by others.

  7. A real-time flood forecasting and simulation system based on GIS and DEM: Analysis of sensitivity to scale factors

    Science.gov (United States)

    Garcia, Sandra G.

    The hydrometeorological telemetric networks in real time interrelated with weather forecasting and rainfall information obtained from remote sensing, constitute real forecasting and protection instruments in the event of flash flooding, so typical of semiarid environments. In this Thesis, spatial analysis approached with functions embedded in a Geographical Information System (GIS) are proposed. The aims are: (a) To combine efficiently information from different sources (telemetric networks and radar-satellite technology). (b) To develop methodology of application of spatially distributed and hybrid hydrologic models, which are topographically based and event-oriented. (c) To extract automatically from Digital Elevation Models (DEM) the relevant parameters of the hydrologic models used. When extracting the drainage networks from a DEM, various questions arise: what is the most suitable drainage density for the hydrographic network? What degree of affection does the selection of DEM cell size have on the hydrologic results, or are they not sensitive to it? Can any invariable property by defined with the scale which characterizes indexes or parameters based on the drainage network hierarchy? A clear inter-relationship can be seen between the geomorphological and hydrologic parameters and the DEM resolution. The morphometric parameters are also affected by threshold area variation. It is proposed a methodology to identify a priori the range of DEM resolutions and threshold areas for in which the parameters present a certain stability for modelling based on drainage networks topology. When working with spatially distributed models, several questions crop up: Are the distributed parameters derived from DEM and the complete hydrologic results affected by cell size? Is it feasible to identify invariable properties with the scale which characterizes the spatial distributions of the parameters? The terrain slope and the flow path length are affected by the DEM cell

  8. Real-Time Simulation of Aeolian Sand Movement and Sand Ripple Evolution: A Method Based on the Physics of Blown Sand

    Institute of Scientific and Technical Information of China (English)

    Ning Wang; Bao-Gang Hu

    2012-01-01

    Simulation and visualization of aeolian sand movement and sand ripple evolution are a challenging subject.In this paper,we propose a physically based modeling and simulating method that can be used to synthesize sandy terrain in various patterns.Our method is based on the mechanical behavior of individual sand grains,which are widely studied in the physics of blown sand.We accounted significant mechanisms of sand transportation into the sand model,such as saltation,successive saltation and collapsing,while simplified the vegetation model and wind field model to make the simulation feasible and affordable.We implemented the proposed method on the programming graphics processing unit (GPU) to get real-time simulation and rendering.Finally,we proved that our method can reflect many characteristics of sand ripple evolution through several demonstrations.We also gave several synthesized desert scenes made from the simulated height field to display its significance on application.

  9. The real and apparent convergence of N-body simulations of the dark matter structures: Is the Navarro-Frenk-White profile real?

    Science.gov (United States)

    Baushev, A. N.

    2015-03-01

    While N-body simulations suggest a cuspy profile in the centra of the dark matter halos of galaxies, the majority of astronomical observations favor a relatively soft cored density distribution of these regions. The routine method of testing the convergence of N-body simulations (in particular, the negligibility of two-body scattering effect) is to find the conditions under which formed structures is insensitive to numerical parameters. The results obtained with this approach suggest a surprisingly minor role of the particle collisions: the central density profile remains untouched and close to the Navarro-Frenk-White shape, even if the simulation time significantly exceeds the collisional relaxation time τr . In order to check the influence of the unphysical test body collisions we use the Fokker-Planck equation. It turns out that a profile ρ ∝r-β where β ≃ 1 is an attractor: the Fokker-Planck diffusion transforms any reasonable initial distribution into it in a time shorter than τr , and then the cuspy profile should survive much longer than τr , since the Fokker-Planck diffusion is self-compensated if β ≃ 1 . Thus the purely numerical effect of test body scattering may create a stable NFW-like pseudosolution. Moreover, its stability may be mistaken for the simulation convergence. We present analytical estimations for this potential bias effect and call for numerical tests. For that purpose, we suggest a simple test that can be performed as the simulation progresses and would indicate the magnitude of the collisional influence and the veracity of the simulation results.

  10. Effect of Above Real Time Training and Post Flight Feedback in Training of Novice Pilots in a PC-Based Flight Simulator

    Science.gov (United States)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce E.; Ali, Syed firasat; Crane, Peter; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    The use of Post-Flight Feedback (PFFB) and Above Real-Time Training (ARTT) while training novice pilots to perform a coordinated level turn on a PC-based flight simulator was investigated. One group trained at 1.5 ARTT followed by an equal number of flights at 2.0 ARTT; the second group experienced Real Time Training (RTT). The total number of flights for both groups was equal. Each group was further subdivided into two groups one of which was provided PFFB while the other was not. Then, all participants experienced two challenging evaluation missions in real time. Performance was assessed by comparing root-mean-square error in bank-angle and altitude. Participants in the 1.512.0 ARTT No-PFFB sequence did not show improvement in performance across training sessions. An ANOVA on performance in evaluation flights found that the PFFB groups performed significantly better than those with No-PFFB. Also, the RTT groups performed significantly better than the ARTT groups. Data from two additional groups trained under a 2.011.5 ARTT PFFB and No-PFFB regimes were collected and combined with data from the previously Trainers, Real-time simulation, Personal studied groups and reanalyzed to study the computers, Man-in-the-loop simulation influence of sequence. An ANOVA on test trials found no significant effects between groups. Under training situations involving ARTT we recommend that appropriate PFFB be provided.

  11. Searching for gravitational-waves from compact binary coalescences while dealing with challenges of real data and simulated waveforms

    Science.gov (United States)

    Dayanga, Waduthanthree Thilina

    Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of

  12. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    Directory of Open Access Journals (Sweden)

    Yasser A. Abdel-Hadi

    2015-12-01

    Full Text Available A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52′N, longitude λ = 31°21′E and elevation = 141 m as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC, while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC. The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  13. Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E. N.; Anton, H. J.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.; Almeida, E.

    2012-05-01

    The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.

  14. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    Science.gov (United States)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  15. You Do Not Talk about Fight Club if You Do Not Notice Fight Club: Inattentional Blindness for a Simulated Real-World Assault

    OpenAIRE

    2011-01-01

    Inattentional blindness—the failure to see visible and otherwise salient events when one is paying attention to something else—has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having sub...

  16. You do not talk about Fight Club if you do not notice Fight Club: Inattentional blindness for a simulated real-world assault.

    Science.gov (United States)

    Chabris, Christopher F; Weinberger, Adam; Fontaine, Matthew; Simons, Daniel J

    2011-01-01

    Inattentional blindness-the failure to see visible and otherwise salient events when one is paying attention to something else-has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case.

  17. You Do Not Talk about Fight Club if You Do Not Notice Fight Club: Inattentional Blindness for a Simulated Real-World Assault

    Directory of Open Access Journals (Sweden)

    Christopher F Chabris

    2011-02-01

    Full Text Available Inattentional blindness—the failure to see visible and otherwise salient events when one is paying attention to something else—has been proposed as an explanation for various real-world events. In one such event, a Boston police officer chasing a suspect ran past a brutal assault and was prosecuted for perjury when he claimed not to have seen it. However, there have been no experimental studies of inattentional blindness in real-world conditions. We simulated the Boston incident by having subjects run after a confederate along a route near which three other confederates staged a fight. At night only 35% of subjects noticed the fight; during the day 56% noticed. We manipulated the attentional load on the subjects and found that increasing the load significantly decreased noticing. These results provide evidence that inattentional blindness can occur during real-world situations, including the Boston case.

  18. BMI and risk of serious upper body injury following motor vehicle crashes: concordance of real-world and computer-simulated observations.

    Directory of Open Access Journals (Sweden)

    Shankuan Zhu

    2010-03-01

    Full Text Available Men tend to have more upper body mass and fat than women, a physical characteristic that may predispose them to severe motor vehicle crash (MVC injuries, particularly in certain body regions. This study examined MVC-related regional body injury and its association with the presence of driver obesity using both real-world data and computer crash simulation.Real-world data were from the 2001 to 2005 National Automotive Sampling System Crashworthiness Data System. A total of 10,941 drivers who were aged 18 years or older involved in frontal collision crashes were eligible for the study. Sex-specific logistic regression models were developed to analyze the associations between MVC injury and the presence of driver obesity. In order to confirm the findings from real-world data, computer models of obese subjects were constructed and crash simulations were performed. According to real-world data, obese men had a substantially higher risk of injury, especially serious injury, to the upper body regions including head, face, thorax, and spine than normal weight men (all p<0.05. A U-shaped relation was found between body mass index (BMI and serious injury in the abdominal region for both men and women (p<0.05 for both BMI and BMI(2. In the high-BMI range, men were more likely to be seriously injured than were women for all body regions except the extremities and abdominal region (all p<0.05 for interaction between BMI and sex. The findings from the computer simulation were generally consistent with the real-world results in the present study.Obese men endured a much higher risk of injury to upper body regions during MVCs. This higher risk may be attributed to differences in body shape, fat distribution, and center of gravity between obese and normal-weight subjects, and between men and women. Please see later in the article for the Editors' Summary.

  19. Low cost, high accuracy real-time simulation used for rapid prototyping and testing control algorithms on example of BLDC motor

    Directory of Open Access Journals (Sweden)

    Baszyński Marcin

    2016-09-01

    Full Text Available This article presents the simulation of a BLDC motor and its closed control system in FPGA. The simulation is based on a mathematical model of the motor, including the electromagnetic torque, phase currents, back electromotive force, etc. In order to ensure calculation precision, the equations describing the motor were solved using a floating point representation of real numbers, and a small step of numerical calculations of 1 μs was assumed. The time step selection methodology has been discussed in detail. The motor model was executed with the use of Textual Programming Languages (with HDL codes.

  20. Proof of Concept Simulations of the Multi-Isotope Process Monitor: An Online, Nondestructive, Near-Real-Time Safeguards Monitor for Nuclear Fuel Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Schwantes, Jon M.

    2011-02-11

    The International Atomic Energy Agency (IAEA) will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel approach to safeguarding reprocessing plants. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis (HCA) and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  1. Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities

    Science.gov (United States)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2011-02-01

    The International Atomic Energy Agency will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel addition to a safeguards system for reprocessing facilities. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  2. A two years simulation using a real data cellular automaton: A predictive case study with the schistosomiasis expansion process along the coastline of Brazil

    OpenAIRE

    Albuquerque,Jones O.; Bocanegra,Silvana; Ferrer-Savall, Jordi; López Codina, Daniel; Souza, Marco Antônio de; Souza Santos, Reinaldo; Barbosa, Constança

    2013-01-01

    This work presents a Cellular Automata model to characterize the social and environmental factors which contribute for the analysis of the expansion process of Schistosoma mansoni infection in Pernambuco - Brazil. The model has been experimented with a set of two years real data from a study area at North Coast of Pernambuco – Brazil. The main constraint equations, the modelling process and the results obtained until now with the simulating scenarios generated are presented here. The results ...

  3. Müller cell gliotic response in the retina of the newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, Eleonora N.; Poplinskaya, Valentina; Domaratskaya; Aleinikova, Karina; Novikova, Julia; Anton, Hermann J.; Almeida, Eduardo

    The effects of real and simulated microgravity on the eye tissue regeneration of newts (Pl. waltli) after lens and/or retina removal were investigated. Changes in Müller glial cells in the retina of eyes regenerating after lens extirpation were detected in newts exposed to clinostat-ing. The cells were hypertrophied, and their processes thickened. Such changes were viewed as specific of reactive gliosis [1]. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas of newts regenerating after a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of macroglial cells was found to be up-regulated [2]. In more recent experiments onboard Foton-2 (2005) and Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. It was found that Müller cell processes of non-operated animals dis-u played low GFAP immunolabeling. A low level of immunoreactivity was also observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher density of intermediate filaments [3]. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Although the exact mechanisms remain unknown, it can be hypothesized that GFAP up-regulation is mediated by HSPs and growth factors, particularly by FGF2. Taken together, these data suggest that the retinal population of macroglial cells is sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function. [1] Grigoryan E.N., Anton H.J., Mitashov V.I. Adv. Space Res. 1998. V. 22. N.2. P. 293-301. [2] Grigoryan E

  4. The use of best estimate codes to improve the simulation in real time; El uso de codigos best estimate y de entornos disenados para mejorar su productividad en simulacion en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, N.; Esteban, J. A.; Lenhardt, G.

    2007-07-01

    Best estimate codes are assumed to be the technology solution providing the most realistic and accurate response. Best estimate technology provides a complementary solution to the conservative simulation technology usually applied to determine plant safety margins and perform security related studies. Tecnatom in the early 90's, within the MAS project, pioneered the initiative to implement best estimate code in its training simulators. Result of this project was the implementation of the first six-equations thermal hydraulic code worldwide (TRAC{sub R}T), running in a training environment. To meet real time and other specific training requirements, it was necessary to overcome important difficulties. Tecnatom has just adapted the Global Nuclear Fuel core Design code: PANAC 11, and is about to complete the General Electric TRACG04 thermal hydraulic code adaptation. This technology features a unique solution for nuclear plants aiming at providing the highest fidelity in simulation, enabling to consider the simulator as a multipurpose: engineering and training, simulation platform. Besides, a visual environment designed to optimize the models life cycle, covering both pre and post-processing activities, is in its late development phase. (Author)

  5. CSIR optronic scene simulator finds real application in self-protection mechanisms of the South African Air Force

    CSIR Research Space (South Africa)

    Willers, CJ

    2010-09-01

    Full Text Available accurate and based on theoretical physics models. The image rendering is implemented in specialised algorithms and calculated in double precision floating point. The simulation system has been extensively used for near infrared and infrared simulations...

  6. Advanced real time monitoring system and simulation researches for Earthquakes and Tsunamis in Japan Part2-Towards disaster mitigation on Earthquakes and Tsunamis-

    Science.gov (United States)

    Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Araki, E.; Matsumoto, H.; Nakamura, T.; Kamiya, S.; Ariyoshi, K.; Hyodo, M.; Nakata, R.; Nakano, M.; Choi, J. K.; Nishida, S.; Aoi, S.

    2016-12-01

    The Ocean floor network is very important and significant for EEW and prediction research of mega thrust earthquakes. Based on lessons learned from 2004 Sumatra Earthquake/Tsunamis and 2011 East Japan Earthquake/Tsunami, we recognized the importance of real time monitoring of these natural hazards. As real time monitoring system, DONET1, 2 (Dense Ocean floor Network for Earthquakes and Tsunamis) were deployed around the Nankai trough Southwestern Japan for the understanding of mega thrust earthquake and EEW. Based on simulation researches, DONET1 and DONET2 with multi kinds of sensors such as broadband seismometers and precise pressure gauges will be expected to monitor slow events such as low frequency tremors and slow earthquakes for the estimation of seismic stage which is the inter-seismic or pre-seismic stage. In advanced simulation researches such as the recurrence cycle of mega thrust earthquakes, the data assimilation is very powerful tool to improve the reliability. Finally, real time monitoring data and advanced simulations will be integrated for precise Earthquake /Tsunami Early Warning and Estimation of damages in future compound disasters on Earthquakes and Tsunamis. And the information of crustal activity using Ocean floor network and land seismic network and GNSS is indispensable for outreaches/educations of disaster mitigation. We will introduce the present progress of advanced researches and future scope for disaster mitigation researches on earthquakes and Tsunamis.

  7. TRANSOL- Tool of energetical calculation for solar thermal system based in dynamic simulations of real models; Transol- Herramienta de calculo energetico para sistemas solares termicos basada en simulaciones dinamicas de modelos reales simplicados

    Energy Technology Data Exchange (ETDEWEB)

    Salom, J.; Schweiger, H.; Gonzalez, D.; Gurruchaga, J.; Grau, J.

    2004-07-01

    In recent years, the implementation, in different cities of Spain, of Municipal Solar Ordinances, as well as the stimulus of the aids and subsidies from the different administrations, has caused a growing proliferation of the thermal solar systems. This expansion and diversification has not gone accompanied by a regulation and a more exhaustive methodology of calculation neither by new calculation tools that would permit to evaluate the behavior of this diversity of thermal systems. It is proposed a new tool, TRANSOL, a software of accessible calculation for the designer, any its technical qualification would be, based on dynamic simulations of simplified real models of the solar systems of greater currently applications. (Author)

  8. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, T; Ono, M; Kozono, K; Fukuyoshi, R; Sato, S [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Toyofuku, F [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2014-06-01

    Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using the Microsoft Kinect sensor. A conventional radiographic simulator system can only measure the three-dimensional coordinates of an x-ray tube using angle sensors, but not measure the movement of the subject. Therefore, in this study, we developed a real-time simulator system using the Microsoft Kinect to measure both the x-ray tube and the subject, and evaluated its accuracy and feasibility by comparing the simulated and the measured x-ray images. Methods: This system can track a head phantom by using Face Tracking, which is one of the functions of the Kinect. The relative relationship between the Kinect and the head phantom was measured and the projection image was calculated by using the ray casting method, and by using three-dimensional CT head data with 220 slices at 512 × 512 pixels. X-ray images were thus obtained by using a computed radiography (CR) system. We could then compare the simulated projection images with the measured x-ray images from 0 degrees to 45 degrees at increments of 15 degrees by calculating the cross correlation coefficient C. Results: The calculation time of the simulated projection images was almost real-time (within 1 second) by using the Graphics Processing Unit(GPU). The cross-correlation coefficients C are: 0.916; 0.909; 0.891; and, 0.886 at 0, 15, 30, and 45 degrees, respectively. As a result, there were strong correlations between the simulated and measured images. Conclusion: This system can be used to perform head positioning more easily and accurately. It is expected that this system will be useful for learning radiographic techniques by students. Moreover, it could also be used for predicting the actual x-ray image prior to x-ray exposure in clinical environments.

  9. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas

  10. Design of a robotized workstation making use of the integration of CAD models and Robotic Simulation software as way of pairing and comparing real and virtual environments

    Directory of Open Access Journals (Sweden)

    Velíšek Karol

    2017-01-01

    Full Text Available Over the last years, there has been an increasing tendency and pressure on the faster implementation robotic devices and systems in manufacturing. Such transition involves several disciplines starting with the prototyping of CAD models itself. The paper addresses the creation of CAD models and is mainly aimed at their integration in a given simulation environment according to the conception and guidelines of Industry 4.0, where the part itself becomes the entity carrying most of the needed information at any time of a production process. The creation of such CAD models is key for the further and better customization of simulations. In other to better exemplify all this, the paper describes the whole process of “virtual to real life implementation” of a given robotized workplace needed to be developed at the Institute. The design of such robotized workplace included the use of an ABB IRB 120 robot and several other devices which were all designed, simulated and analyzed in a virtual environment before the final development and implementation. This paper helped demonstrating the importance of having exactly the same model (real and virtual with respect to the success of the offline simulations.

  11. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2015-02-01

    It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.

  12. Network Dynamics with BrainX3: A Large-Scale Simulation of the Human Brain Network with Real-Time Interaction

    Directory of Open Access Journals (Sweden)

    Xerxes D. Arsiwalla

    2015-02-01

    Full Text Available BrainX3 is a large-scale simulation of human brain activity with real-time interaction, rendered in 3D in a virtual reality environment, which combines computational power with human intuition for the exploration and analysis of complex dynamical networks. We ground this simulation on structural connectivity obtained from diffusion spectrum imaging data and model it on neuronal population dynamics. Users can interact with BrainX3 in real-time by perturbing brain regions with transient stimulations to observe reverberating network activity, simulate lesion dynamics or implement network analysis functions from a library of graph theoretic measures. BrainX3 can thus be used as a novel immersive platform for real-time exploration and analysis of dynamical activity patterns in brain networks, both at rest or in a task-related state, for discovery of signaling pathways associated to brain function and/or dysfunction and as a tool for virtual neurosurgery. Our results demonstrate these functionalities and shed insight on the dynamics of the resting-state attractor. Specifically, we found that a noisy network seems to favor a low firing attractor state. We also found that the dynamics of a noisy network is less resilient to lesions. Our simulations on TMS perturbations show that even though TMS inhibits most of the network, it also sparsely excites a few regions. This is presumably, due to anti-correlations in the dynamics and suggests that even a lesioned network can show sparsely distributed increased activity compared to healthy resting-state, over specific brain areas.

  13. Simulation of a real-time brain computer interface for detecting a self-paced hitting task

    DEFF Research Database (Denmark)

    Hammad, Sofyan H.; Kamavuako, Ernest N.; Farina, Dario;

    2016-01-01

    on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). CONCLUSION: Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research......OBJECTIVES: An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our...

  14. 2D and 3D rockfall simulations of a real-size experiment on weathered volcanic hillslopes in Tahiti, French Polynesia

    Science.gov (United States)

    Mathon, Christian; Kobayashi, Hiromi; Sedan, Olivier; Nachbaur, Aude; Dewez, Thomas; Berger, Frédéric; Des Garets, Emmanuel

    2010-05-01

    The Land Planning Authority of French Polynesia contracted BRGM to run a real-size rockfall experiment, called OFAI, in September 2009. The purposes of the experiments are two fold : first observe real-size rock trajectories in a context of variably weathered volcanic rock slopes; and second, use observed rockfall trajectories to calibrate block propagation models. 90 basalt blocks were dropped down a 150-m-long slope made of hard basalt veins, lenses of colluvium and erosion channels covered in blocks of various sizes. Parameters of the experiment concerned the shape (from nearly perfect sphere to elongated cubes) and mass of the blocks (from 300 kg to >5000 kg), and the launching point, in order to bounce the blocks both off stiff basalt veins and colluvium lenses. The data obtained from this real-size experiment were analyzed using two rockfall simulation models: a 2D model developed by the University of British Columbia, the Geological Survey of Canada and BRGM, and a 3D model which was developed from the 2D model, with the purpose of integrating the lateral dispersion of rockfalls. Both models are characterized by a 'hybrid approach' with a lumped mass assumption, taking indirectly the shape and rotational momentum of the block into account. Bouncing is simulated using soil restitution coefficients and plastic impact model (Falcetta, 1985). The input data are defined by probability density functions, thus allowing for both deterministic and probabilistic analysis. Usually calibrated with rare and punctual rockfall events, this recent experiment gave us a complete inventory of real 3D trajectories, associated with precise descriptions of the blocks (mass, shape) and accurate geomorphological characteristics of the impact points, so as to assess the performance of both models. The aims of the simulations were (i) comparing real trajectories to the simulated ones and evaluating their reliabilities (ii) calibrating material parameters for weathered volcanic

  15. High-Resolution, Near Real-Time Simulation of Microwave Radiance Using a Simple Land-Cover Based Emissivity Prior

    Directory of Open Access Journals (Sweden)

    Dimitrios Katsanos

    2014-01-01

    Full Text Available Satellite simulators are used to calculate the brightness temperature Tb that would be measured by a space borne sensor under a set of atmospheric conditions accounting for the radiometric characteristics of the sensor and the orbital parameters of the satellite. In this study, a simple approach is proposed for the parameterization of emissivity over land, a key parameter for the calculation of microwave Tb. The rationale is to simulate a large ensemble of emissivity values for each frequency and surface characteristics and then relate the most likely observed value with soil characteristics. The derived emissivity values are used for the simulation of Tb and simulated radiance is then compared with satellite observations. It is shown that this method improves the simulation of radiance and that it is suitable to provide a first guess of the emissivity value (a prior that can then be refined using iterative procedures.

  16. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    CERN Document Server

    Baushev, A N; Campusano, L E; Escala, A; Muñoz, R R; Palma, G A

    2016-01-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by (Baushev, 2015). We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. T...

  17. Forensic engineering: Learning by accident. Teaching investigation skills to graduate students using real-life accident simulations

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Schuurman, M.J.; Rans, C.D.

    2015-01-01

    This paper relates the experiences of lecturers at Delft University of Technology in the designing and running of a Master course in Forensic Engineering. Rather than traditional face-to-face lectures, use of real-life evidence-based learning was made in the form of training for and execution of a m

  18. Real-Time Digital Simulation of Inertial Response with Hardware-in-the-Loop Implementation on the CART3 Wind Turbine at the National Wind Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard; Gevorgian, Vahan; Scholbrock, Andrew

    2017-09-01

    With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. In this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare

  19. Delivery performance of conventional aircraft by terminal-area, time-based air traffic control: A real-time simulation evaluation

    Science.gov (United States)

    Credeur, Leonard; Houck, Jacob A.; Capron, William R.; Lohr, Gary W.

    1990-01-01

    A description and results are presented of a study to measure the performance and reaction of airline flight crews, in a full workload DC-9 cockpit, flying in a real-time simulation of an air traffic control (ATC) concept called Traffic Intelligence for the Management of Efficient Runway-scheduling (TIMER). Experimental objectives were to verify earlier fast-time TIMER time-delivery precision results and obtain data for the validation or refinement of existing computer models of pilot/airborne performance. Experimental data indicated a runway threshold, interarrival-time-error standard deviation in the range of 10.4 to 14.1 seconds. Other real-time system performance parameters measured include approach speeds, response time to controller turn instructions, bank angles employed, and ATC controller message delivery-time errors.

  20. Vernier caliper and micrometer computer models using Easy Java Simulation and its pedagogical design features—ideas for augmenting learning with real instruments

    Science.gov (United States)

    Wee, Loo Kang; Tiang Ning, Hwee

    2014-09-01

    This paper presents the customization of Easy Java Simulation models, used with actual laboratory instruments, to create active experiential learning for measurements. The laboratory instruments are the vernier caliper and the micrometer. Three computer model design ideas that complement real equipment are discussed. These ideas involve (1) a simple two-dimensional view for learning from pen and paper questions and the real world; (2) hints, answers, different scale options and the inclusion of zero error; (3) assessment for learning feedback. The initial positive feedback from Singaporean students and educators indicates that these tools could be successfully shared and implemented in learning communities. Educators are encouraged to change the source code for these computer models to suit their own purposes; they have creative commons attribution licenses for the benefit of all.

  1. Enhancing Curiosity Using Interactive Simulations Combined with Real-Time Formative Assessment Facilitated by Open-Format Questions on Tablet Computers

    CERN Document Server

    Kowalski, F V

    2013-01-01

    Students' curiosity often seems nearly nonexistent in a lecture setting; we discuss a variety of possible reasons for this, but it is the instructor who typically poses questions while only a few students, usually the better ones, respond. As we have developed and implemented the use of InkSurvey to collect real-time formative assessment, we have discovered that it can serve in an unanticipated role: to promote curiosity in engineering physics undergraduates. Curiosity often motivates creative, innovative people. To encourage such curiosity, we solicit questions submitted real-time via InkSurvey and pen-enabled mobile devices (Tablet PCs) in response to interactive simulations (applets) run either before or in class. This provides students with practice in asking questions, increases metacognition, and serves as a rich springboard from which to introduce content and/or address misconceptions. We describe the procedure for measuring curiosity and results from applying this method in a junior level electromagne...

  2. A high-resolution coupled meteorology-smoke modeling system HRRR-Smoke to simulate air quality over the CONUS domain in real time

    Science.gov (United States)

    Ahmadov, Ravan; Grell, Georg; James, Eric; Freitas, Saulo; Pereira, Gabriel; Csiszar, Ivan; Tsidulko, Marina; Pierce, Brad; McKeen, Stuart; Peckham, Steven; Alexander, Curtis; Saide, Pablo; Benjamin, Stan

    2017-04-01

    In this talk we discuss a new smoke modeling system High Resolution Rapid Refresh (HRRR-Smoke) to simulate biomass burning (BB) emissions, plume rise and smoke transport in real time. The HRRR (without smoke) is run operational at the National Weather Service, and includes an aerosol aware microphysics scheme. It is NOAA/ESRL's version of the Weather Research and Forecasting (WRF) model. Here we make use of WRF-Chem (the WRF model coupled with chemistry) and simulate fine particulate matter (PM2.5 or smoke) emissions emitted by BB as well as anthropogenic sources. The model also includes dry and wet deposition of aerosols. The modeling system ingests fire radiative power (FRP) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor to calculate BB emissions. Using the FRP data and simulated meteorology the model calculates plume rise in an online mode. The HRRR-Smoke model has been running in real-time, originally without any feedback effects, since June 2016 on 3km horizontal grid resolution over the contiguous US (CONUS) domain by NOAA/ESRL Global Systems Division. We simulate HRRR-Smoke for August 2015 and 2016 time periods over the CONUS domain to conduct the model evaluations. Simulated smoke concentrations are evaluated using hourly PM2.5 measurements from EPA's Air Quality System network. The HRRR-Smoke model uses a double moment aerosol aware microphysics scheme, which enables an efficient coupling between smoke and meteorology. We explore the impact of smoke on radiation, cloud and precipitation fields, whether the inclusion of the feedback processes improves the weather prediction skill of the model.

  3. Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons

    Directory of Open Access Journals (Sweden)

    J. Qiang

    2014-03-01

    Full Text Available In this paper we report on start-to-end simulation of a next generation light source based on a high repetition rate free electron laser (FEL driven by a CW superconducting linac. The simulation integrated the entire system in a seamless start-to-end model, including birth of photoelectrons, transport of electron beam through 600 m of the accelerator beam delivery system, and generation of coherent x-ray radiation in a two-stage self-seeding undulator beam line. The entire simulation used the real number of electrons (∼2 billion electrons/bunch to capture the details of the physical shot noise without resorting to artificial filtering to suppress numerical noise. The simulation results shed light on several issues including the importance of space-charge effects near the laser heater and the reliability of x-ray radiation power predictions when using a smaller number of simulation particles. The results show that the microbunching instability in the linac can be controlled with 15 keV uncorrelated energy spread induced by a laser heater and demonstrate that high brightness and flux 1 nm x-ray radiation (∼10^{12}  photons/pulse with fully spatial and temporal coherence is achievable.

  4. Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons

    Science.gov (United States)

    Qiang, J.; Corlett, J.; Mitchell, C. E.; Papadopoulos, C. F.; Penn, G.; Placidi, M.; Reinsch, M.; Ryne, R. D.; Sannibale, F.; Sun, C.; Venturini, M.; Emma, P.; Reiche, S.

    2014-03-01

    In this paper we report on start-to-end simulation of a next generation light source based on a high repetition rate free electron laser (FEL) driven by a CW superconducting linac. The simulation integrated the entire system in a seamless start-to-end model, including birth of photoelectrons, transport of electron beam through 600 m of the accelerator beam delivery system, and generation of coherent x-ray radiation in a two-stage self-seeding undulator beam line. The entire simulation used the real number of electrons (˜2 billion electrons/bunch) to capture the details of the physical shot noise without resorting to artificial filtering to suppress numerical noise. The simulation results shed light on several issues including the importance of space-charge effects near the laser heater and the reliability of x-ray radiation power predictions when using a smaller number of simulation particles. The results show that the microbunching instability in the linac can be controlled with 15 keV uncorrelated energy spread induced by a laser heater and demonstrate that high brightness and flux 1 nm x-ray radiation (˜1012 photons/pulse) with fully spatial and temporal coherence is achievable.

  5. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    Science.gov (United States)

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Simulations

    CERN Document Server

    Ngada, N M

    2015-01-01

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  7. Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time, interactive simulation and visualization

    CERN Document Server

    Tavakkol, Sasan

    2016-01-01

    In this paper, we introduce an interactive coastal wave simulation and visualization software, called Celeris. Celeris is an open source software which needs minimum preparation to run on a Windows machine. The software solves the extended Boussinesq equations using a hybrid finite volume - finite difference method and supports moving shoreline boundaries. The simulation and visualization are performed on the GPU using Direct3D libraries, which enables the software to run faster than real-time. Celeris provides a first-of-its-kind interactive modeling platform for coastal wave applications and it supports simultaneous visualization with both photorealistic and colormapped rendering capabilities. We validate our software through comparison with three standard benchmarks for non-breaking and breaking waves.

  8. HectoMAP and Horizon Run 4: Dense Structures and Voids in the Real and Simulated Universe

    CERN Document Server

    Hwang, Ho Seong; Park, Changbom; Fabricant, Daniel G; Kurtz, Michael J; Rines, Kenneth J; Kim, Juhan; Diaferio, Antonaldo; Zahid, H Jabran; Berlind, Perry; Calkins, Michael; Tokarz, Susan; Moran, Sean

    2016-01-01

    HectoMAP is a dense redshift survey of red galaxies covering a 53 $deg^{2}$ strip of the northern sky. HectoMAP is 97\\% complete for galaxies with $r1.0$, and $(r-i)>0.5$. The survey enables tests of the physical properties of large-scale structure at intermediate redshift against cosmological models. We use the Horizon Run 4, one of the densest and largest cosmological simulations based on the standard $\\Lambda$ Cold Dark Matter ($\\Lambda$CDM) model, to compare the physical properties of observed large-scale structures with simulated ones in a volume-limited sample covering 8$\\times10^6$ $h^{-3}$ Mpc$^3$ in the redshift range $0.22simulations to identify over- and under-dense large-scale features of the galaxy distribution. The richness and size distributions of observed over-dense structures agree well with the simulated ones. Observations and simulations also agree for the volume and size distributions of under-dense structures, voids. The ...

  9. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    Science.gov (United States)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  10. SpO2 and Heart Rate During a Real Hike at Altitude Are Significantly Different than at Its Simulation in Normobaric Hypoxia

    Science.gov (United States)

    Netzer, Nikolaus C.; Rausch, Linda; Eliasson, Arn H.; Gatterer, Hannes; Friess, Matthias; Burtscher, Martin; Pramsohler, Stephan

    2017-01-01

    Rationale: Exposures to simulated altitude (normobaric hypoxia, NH) are frequently used in preparation for mountaineering activities at real altitude (hypobaric hypoxia, HH). However, physiological responses to exercise in NH and HH may differ. Unfortunately clinically useful information on such differences is largely lacking. This study therefore compared exercise responses between a simulated hike on a treadmill in NH and a similar field hike in HH. Methods: Six subjects (four men) participated in two trials, one in a NH chamber and a second in HH at an altitude of 4,205 m on the mountain Mauna Kea. Subjects hiked in each setting for 7 h including breaks. In NH, hiking was simulated by walking on a treadmill. To achieve maximal similarity between hikes, subjects used the same nutrition, clothes, and gear weight. Measurements of peripheral oxygen saturation (SpO2), heart rate (HR) and barometrical pressure (PB)/inspired oxygen fraction (FiO2) were taken every 15 min. Acute mountain sickness (AMS) symptoms were assessed using the Lake-Louise-Score at altitudes of 2,800, 3,500, and 4,200 m. Results: Mean SpO2 values of 85.8% in NH were significantly higher compared to those of 80.2% in HH (p = 0.027). Mean HR values of 103 bpm in NH were significantly lower than those of 121 bpm in HH (p = 0.029). AMS scores did not differ significantly between the two conditions. Conclusion: Physiological responses to exercise recorded in NH are different from those provoked by HH. These findings are of clinical importance for subjects using simulated altitude to prepare for activity at real altitude. Trial registration: Registration at DRKS. (Approval No. 359/12, Trial No. DRKS00005241). PMID:28243206

  11. Do mental workload and presence experienced when driving a real car predispose drivers to simulator sickness? An exploratory study.

    Science.gov (United States)

    Milleville-Pennel, Isabelle; Charron, Camilo

    2015-01-01

    This study is aimed at determining whether the simulator sickness (SS) experienced by some drivers is influenced by psychological factors, such as cognitive solicitation, affective factors and a feeling of presence. We also wished to determine whether SS is caused by an individual reaction to the virtual environment (VE) itself or can be attributed to a more general personal predisposition. For this reason, we considered three conditions: driving a simulator, driving one's own vehicle and driving a school-owned vehicle. Fourteen expert drivers participated in the study. Each drove under a different experimental condition and then responded to various questionnaires (SSQ, NASA-TLX and QPF). Our results showed that it is possible to identify at least three sources of explanation of why some people are more liable to feel sick in a driving simulator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A new protocol from real joint motion data for wear simulation in total knee arthroplasty: stair climbing.

    Science.gov (United States)

    Battaglia, Santina; Belvedere, Claudio; Jaber, Sami Abdel; Affatato, Saverio; D'Angeli, Valentina; Leardini, Alberto

    2014-12-01

    In its normal lifespan, a knee prosthesis must bear highly demanding loading conditions, going beyond the sole activity of level walking required by ISO standard 14243. We have developed a protocol for in vitro wear simulation of stair climbing on a displacement controlled knee simulator. The flexion/extension angle, intra/extra rotation angle, and antero/posterior translation were obtained in patients by three-dimensional video-fluoroscopy. Axial load data were collected by gait analysis. Kinematics and load data revealed a good consistence across patients, in spite of the different prosthesis size. The protocol was then implemented and tested on a displacement controlled knee wear simulator, showing an accurate reproduction of stair climbing waveforms with a relative error lower than 5%.

  13. Toward a real-time simulation of ultrasound image sequences based on a 3-D set of moving scatterers.

    Science.gov (United States)

    Marion, Adrien; Vray, Didier

    2009-10-01

    Data simulation is an important research tool to evaluate algorithms. Two types of methods are currently used to simulate medical ultrasound data: those based on acoustic models and those based on convolution models. The simulation of ultrasound data sequences is very time-consuming. In addition, many applications require accounting for the out-of-plane motion induced by the 3-D displacement of scatterers. The purpose of this paper is to propose a model adapted to a fast simulation of ultrasonic data sequences with 3-D moving scatterers. Our approach is based on the convolution model. The scatterers are moved in a 3-D continuous medium between each pair of images and then projected onto the imaging plane before being convolved. This paper discusses the practical implementation of the convolution that can be performed directly or after a grid approximation. The grid approximation convolution is obviously faster than the direct convolution but generates errors resulting from the approximation to the grid's nodes. We provide the analytical expression of these errors and then define 2 intensity-based criteria to quantify them as a function of the spatial sampling. The simulation of an image requires less than 2 s with oversampling, thus reducing these errors. The simulation model is validated with first- and second-order statistics. The positions of the scatterers at each imaging time can be provided by a displacement model. An example applied to flow imaging is proposed. Several cases are used to show that this displacement model provides realistic data. It is validated with speckle tracking, a well-known motion estimator in ultrasound imaging.

  14. Comparison of ENVISAT's Attitude Simulation and Real Optical and SLR Observations in order to Refine the Satellite Attitude Model

    Science.gov (United States)

    Silha, J.; Schildknecht, T.; Pittet, J.; Bodenmann, D.; Kanzler, R.; Karrang, P.; Krag, H.

    2016-09-01

    The Astronomic Institute of the University of Bern (AIUB) in cooperation with other three partners is involved in an ESA study dedicated to the attitude determination of large spacecraft and upper stages. Two major goals are defined. First is the long term prediction of tumbling rates (e.g. 10 years) for selected targets for the future Active Debris Removal (ADR) missions. Second goal is the attitude state determination in case of contingencies, when a short response time is required between the observations themselves and the attitude determination. One of the project consortium partners, Hypersonic Technology Goettingen (HTG), is developing a highly modular software tool ιOTA to perform short- (days) to long-term (years) propagations of the orbit and the attitude motion of spacecraft in space. Furthermore, ιOTA's post-processing modules will generate synthetic measurements, e.g. light curves, SLR residuals and Inverse Synthetic Aperture Radar (ISAR) images that can be compared with the real measurements. In our work we will present the first attempt to compare real measurements with synthetic measurements in order to estimate the attitude state of tumbling satellite ENVISAT from observations performed by AIUB. We will shortly discuss the ESA project and ιOTA software tool. We will present AIUB's ENVISAT attitude state determined from the SLR ranges acquired by the Zimmerwald SLR station. This state was used as the initial conditions within the ιOTA software. Consequently the attitude of satellite was predicted by using ιOTA and compared with the real SLR residuals, as well with the high frame-rate light curves acquired by the Zimmerwald 1-m telescope.

  15. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2014-09-01

    It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.

  16. Real-time upper-body human pose estimation from depth data using Kalman filter for simulator

    Science.gov (United States)

    Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.

    2014-08-01

    Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.

  17. Real-time simulation of nonequilibrium transport of magnetization in large open quantum spin systems driven by dissipation

    Science.gov (United States)

    Banerjee, D.; Hebenstreit, F.; Jiang, F.-J.; Wiese, U.-J.

    2015-09-01

    Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-1/2 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

  18. Real-time PCR assay for rapid detection of Listeria monocytogenes in simulated milk specimens%奶液模拟标本中单增李斯特菌real-time PCR检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    王娉; 袁飞; 杨海荣; 赵勇胜; 胡玥; 赵贵明; 陈颖

    2011-01-01

    Objective To establish a real-time PCR assay for the rapid detection of Listeria monocytogenes in simulated milk specimens. Methods Based on part fragments of hlyO gene, a pair of primers and Taq-Man probe were designed for quantitative detection of L. Monocytogenes. The specificity of the primers and probe were tested by using different L monocytogenes strains and other common pathogenic bacteria. Results L. Monocytogenes strains were positive in the detection and other tested strains were negative. The sensitivity of assay was 9 copies per PCR reaction. Conclusion The specificity and sensitivity of Taq Man real-time PCR technology for detecting L. Monocytogenes in simulated dairy specimens were high, and the assay could be completed within 1. 5 h. This method could be used to detect other food samples contaminated by L. Monocytogenes and identify the cause of food-borne Listeriosis outbreaks.%目的 建立了基于TaqMan探针的real-time PCR技术针对奶液模拟标本中单增李斯特菌的快速检测方法.方法 用单增李斯特菌hlyO基因的部分片段作为靶基因,制作标准曲线,定量检测奶液中的单增李斯特菌.结果 通过对不同李斯特菌及一些较为常见的致病菌的DNA进行扩增,只有单增李斯特菌能够产生扩增曲线,其余菌株均不产生扩增曲线.单增孛斯特菌的检测灵敏度可以达到9copies/反应体系.结论 该方法特异性好,灵敏度高,整个实验可在1.5h内完成,可用于食品中单增李斯特菌的快速检测和疫情暴发时的相关病原调查.

  19. ARDressCode: Augmented Dressing Room with Tag-based Motion Tracking and Real-Time Clothes Simulation

    DEFF Research Database (Denmark)

    Kjærside, Krista; Kortbek, Karen Johanne; Møller, Henrik Hedegaard

    2005-01-01

    This paper introduces a new augmented reality concept for dressing rooms enabling a customer to combine a tactile experience of the fabrics with easy simulated try-on. The dressing room has a camera and a projection surface instead of a mirror. The customers stick a few visual tags to their normal...

  20. ARDressCode: Augmented Dressing Room with Tag-based Motion Tracking and Real-Time Clothes Simulation

    DEFF Research Database (Denmark)

    Kjærside, Krista; Kortbek, Karen Johanne; Møller, Henrik Hedegaard

    2005-01-01

    This paper introduces a new augmented reality concept for dressing rooms enabling a customer to combine a tactile experience of the fabrics with easy simulated try-on. The dressing room has a camera and a projection surface instead of a mirror. The customers stick a few visual tags to their normal...

  1. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  2. Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays

    Directory of Open Access Journals (Sweden)

    Javier Contreras

    2015-11-01

    Full Text Available A MATLAB/SIMULINK software simulation model (structure and component blocks has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array.

  3. Automated, real-time fresh gas flow recommendations alter isoflurane consumption during the maintenance phase of anesthesia in a simulator-based study.

    Science.gov (United States)

    Luria, Isaac; Lampotang, Samsun; Schwab, Wilhelm; Cooper, Lou Ann; Lizdas, David; Gravenstein, Nikolaus

    2013-11-01

    The Low Flow Wizard (LFW) provides real-time guidance for user optimization of fresh gas flow (FGF) settings during general inhaled anesthesia. The LFW can continuously inform users whether it determines their FGF to be too little, efficient, or too much, and its color-coded recommendations respond in real time to changes in FGF performed by users. Our study objective was to determine whether the LFW feature, as implemented in the Dräger Apollo workstation, alters FGF selection and thereby volatile anesthetic consumption without affecting patient care. To reduce potentially confounding variables, we used a human patient simulator that consumes and exhales volatile anesthetics. Standard monitoring was provided for the patient initially with invasive arterial blood pressure added after anesthetic induction. In this within-group study, each of 17 participants acted as his or her own control. Each participant was asked to anesthetize an identical simulated patient twice using a Dräger Apollo workstation, first with the LFW feature disabled and subsequently enabled. The volatile anesthetic was isoflurane. Both simulation runs were set up to have similar time durations for the different phases of anesthesia: induction, incision, and maintenance. Emergence was not simulated. The isoflurane vaporizer was weighed before and after each simulation run on a digital scale to verify total computed volatile liquid anesthetic consumption. In addition, the product of FGF (reported by the Apollo) times the isoflurane volumetric concentration (sampled by a multigas analyzer at the equivalent of the FGF hose for the Apollo) was integrated over time to obtain isoflurane consumption rate (on-the-fly anesthetic consumption rate measurement). The maintenance isoflurane consumption rate and FGF were significantly lower with the LFW display enabled than without (P = 0.005). The mean reduction in FGF was 53.6% (95% confidence interval, 39.2%-67.9%). There was no significant difference in

  4. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    Science.gov (United States)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the

  5. Simulation-based training for cardiology procedures: Are we any further forward in evidencing real-world benefits?

    Science.gov (United States)

    Harrison, Christopher M; Gosai, Jivendra N

    2017-04-01

    Simulation-based training as an educational tool for healthcare professionals continues to grow in sophistication, scope, and usage. There have been a number of studies demonstrating the utility of the technique, and it is gaining traction as part of the training curricula for the next generation of cardiologists. In this review, we focus on the recent literature for the efficacy of simulation for practical procedures specific to cardiology, focusing on transesophageal echocardiography, cardiac catheterization, coronary angioplasty, and electrophysiology. A number of studies demonstrated improved performance by those trained using SBT when compared to other methods, although evidence of this leading to an improvement in patient outcomes remains scarce. We discuss this evidence, and the implications for practice for training in cardiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation

    CERN Document Server

    Abdurashitov, D; Matushko, V; Suerfu, B

    2015-01-01

    The energy deposition spectra of $^{37}$Ar and $^{71}$Ge in a miniature proportional counter are measured and compared in detail to the model response simulated with Geant4. The spectrum of $^{71}$Ge is measured with total statistics of 1.7$\\cdot$10$^8$ events and is presented for the first time. A certain modification of the Geant4 code, making it possible to trace the deexcitation of atomic shells properly, is suggested. After the modification Geant4 is able to reproduce a response of particle detectors in detail in a keV energy range. This feature is very important in the laboratory experiments that search for massive sterile neutrinos as well as for dark matter directly by detection of recoil nuclei. We expect this work to convince physicists to trust Geant4 simulations at low energies.

  7. Accurate simulation of 802.11 indoor links: a “bursty” channel model based on real measurements

    OpenAIRE

    Luis Muñoz; Ramón Agüero; Marta García-Arranz

    2010-01-01

    We propose a novel channel model to be used for simulating indoor wireless propagation environments. An extensive measurement campaign was carried out to assess the performance of different transport protocols over 802.11 links. This enabled us to better adjust our approach, which is based on an autoregressive filter. One of the main advantages of this proposal lies in its ability to reflect the “bursty” behavior which characterizes indoor wireless scenarios, having a great impact...

  8. Use of DNA melting simulation software for in silico diagnostic assay design: targeting regions with complex melting curves and confirmation by real-time PCR using intercalating dyes

    Directory of Open Access Journals (Sweden)

    Saint Christopher P

    2007-03-01

    Full Text Available Abstract Background DNA melting curve analysis using double-stranded DNA-specific dyes such as SYTO9 produce complex and reproducible melting profiles, resulting in the detection of multiple melting peaks from a single amplicon and allowing the discrimination of different species. We compare the melting curves of several Naegleria and Cryptosporidium amplicons generated in vitro with in silico DNA melting simulations using the programs POLAND and MELTSIM., then test the utility of these programs for assay design using a genetic marker for toxin production in cyanobacteria. Results The SYTO9 melting curve profiles of three species of Naegleria and two species of Cryptosporidium were similar to POLAND and MELTSIM melting simulations, excepting some differences in the relative peak heights and the absolute melting temperatures of these peaks. MELTSIM and POLAND were used to screen sequences from a putative toxin gene in two different species of cyanobacteria and identify regions exhibiting diagnostic melting profiles. For one of these diagnostic regions the POLAND and MELTSIM melting simulations were observed to be different, with POLAND more accurately predicting the melting curve generated in vitro. Upon further investigation of this region with MELTSIM, inconsistencies between the melting simulation for forward and reverse complement sequences were observed. The assay was used to accurately type twenty seven cyanobacterial DNA extracts in vitro. Conclusion Whilst neither POLAND nor MELTSIM simulation programs were capable of exactly predicting DNA dissociation in the presence of an intercalating dye, the programs were successfully used as tools to identify regions where melting curve differences could be exploited for diagnostic melting curve assay design. Refinements in the simulation parameters would be required to account for the effect of the intercalating dye and salt concentrations used in real-time PCR. The agreement between the melting

  9. 海面连续溢油的三维实时绘制%3D Real-Time Rendering of Continuous Oil Spill on Simulated Ocean

    Institute of Scientific and Technical Information of China (English)

    任鸿翔; 张新宇; 尹勇

    2008-01-01

    对短时间尺度内的连续溢油进行研究.海面采用同心圆网格模型模拟,海浪高度图采用快速傅立叶变换方法生成.提出利用平面折射技术实现海面油膜的绘制,采用粒子系统实现油粒子模型,粒子所在位置的潮流速度采用分区方法高效计算.模拟试验表明,该方法可实现海面连续溢油的逼真、快速模拟.%The short-time processes of continuous oil spill were analyzed. To render the ocean, the ocean surface was represented with the grid model of concentric circles, and the height map was generated using the fast Fourier transform method. The technique of planar refraction map was used to render the oil slick on the simulated ocean. The particle system was adopted to implement the oil particle model. The current velocity of particle position was effectively calculated. The simulation test shows that the method developed can be used to realize the real-time and reality simulation of continuous oil spill.

  10. Real-Time Perceptual Simulation of Moving Sources: Application to the Leslie Cabinet and 3D Sound Immersion

    Directory of Open Access Journals (Sweden)

    T. Voinier

    2008-07-01

    Full Text Available Perception of moving sound sources obeys different brain processes from those mediating the localization of static sound events. In view of these specificities, a preprocessing model was designed, based on the main perceptual cues involved in the auditory perception of moving sound sources, such as the intensity, timbre, reverberation, and frequency shift processes. This model is the first step toward a more general moving sound source system, including a system of spatialization. Two applications of this model are presented: the simulation of a system involving rotating sources, the Leslie Cabinet and a 3D sound immersion installation based on the sonification of cosmic particles, the Cosmophone.

  11. Real-Time Perceptual Simulation of Moving Sources: Application to the Leslie Cabinet and 3D Sound Immersion

    Directory of Open Access Journals (Sweden)

    Kronland-Martinet R

    2008-01-01

    Full Text Available Perception of moving sound sources obeys different brain processes from those mediating the localization of static sound events. In view of these specificities, a preprocessing model was designed, based on the main perceptual cues involved in the auditory perception of moving sound sources, such as the intensity, timbre, reverberation, and frequency shift processes. This model is the first step toward a more general moving sound source system, including a system of spatialization. Two applications of this model are presented: the simulation of a system involving rotating sources, the Leslie Cabinet and a 3D sound immersion installation based on the sonification of cosmic particles, the Cosmophone.

  12. Does teaching of documentation of shoulder dystocia delivery through simulation result in improved documentation in real life?

    Science.gov (United States)

    Comeau, Robyn; Craig, Catherine

    2014-03-01

    Objectif : La documentation des accouchements compliqués par une dystocie de l’épaule constitue une compétence communicationnelle précieuse que les résidents doivent chercher à maîtriser au cours de leur formation. Nous avions pour objectif de déterminer si l’enseignement de la documentation de la dystocie de l’épaule dans le cadre d’une simulation se traduisait en une amélioration de la documentation d’un tel événement dans le cadre d’une situation clinique réelle. Méthodes : Nous avons mené, entre novembre 2010 et décembre 2012, une étude de cohorte portant sur des résidents en obstétrique-gynécologie qui en étaient rendus à la 2e, 3e, 4e ou 5e année de leur formation. Chacun de ces résidents a participé à une séance de simulation de la dystocie de l’épaule; à cette occasion, nous leur avons demandé de rédiger une note sur l’accouchement immédiatement à la suite de la séance de simulation. Des commentaires leur ont été offerts quant à leur rendement au cours de l’accouchement et à leur documentation des événements. Par la suite, les dossiers dictés liés aux accouchements compliqués par une dystocie de l’épaule ayant eu lieu immédiatement avant et après la séance de simulation ont été récupérés dans le système Meditech. Une liste de vérification détaillée a été utilisée pour évaluer la qualité de la documentation dictée par les résidents avant et après la séance de simulation. Résultats : Tous les résidents admissibles (18) se sont inscrits à l’étude et 17 d’entre eux ont répondu aux critères d’inclusion. Dix résidents (59 %) avaient procédé à la documentation d’un accouchement compliqué par une dystocie de l’épaule avant et après la séance de simulation, cinq résidents (29 %) n’avaient procédé à une telle documentation qu’avant la séance et deux résidents (18 %) ne l’avaient fait qu’après la séance. Lorsque l’évaluation a port

  13. Real & Simulated IFU Observations of Low-Mass Early-Type Galaxies: Environmental Influence Probed for Cluster Galaxies

    Science.gov (United States)

    Sybilska, Agnieszka; Łokas, Ewa Luiza; Fouquet, Sylvain

    2017-03-01

    We combine high-quality IFU data with a new set of numerical simulations to study low-mass early type galaxies (dEs) in dense environments. Our earlier study of dEs in the Virgo cluster has produced the first large-scale maps of kinematic and stellar population properties of dEs in those environments (Ryś et al. 2013, 2014, 2015). A quantitative discrimination between various (trans)formation processes proposed for these objects is, however, a complex issue, requiring a priori assumptions about the progenitors of galaxies we observe and study today. To bridge this gap between observations and theoretical predictions, we use the expertise gained in the IFU data analysis to look ``through the eye of SAURON'' at our new suite of high-resolution N-body simulations of dEs in the Virgo cluster. Mimicking the observers perspective as closely as possible, we can also indicate the existing instrumental and viewer limitations regarding what we are/are not able to detect as observers.

  14. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  15. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  16. Augmenting real-time video with virtual models for enhanced visualization for simulation, teaching, training and guidance

    Science.gov (United States)

    Potter, Michael; Bensch, Alexander; Dawson-Elli, Alexander; Linte, Cristian A.

    2015-03-01

    In minimally invasive surgical interventions direct visualization of the target area is often not available. Instead, clinicians rely on images from various sources, along with surgical navigation systems for guidance. These spatial localization and tracking systems function much like the Global Positioning Systems (GPS) that we are all well familiar with. In this work we demonstrate how the video feed from a typical camera, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the imaged surface, resulting in a simple augmented reality environment. This paper describes the software and hardware environment and methodology for augmenting the real world with virtual models extracted from medical images to provide enhanced visualization beyond the surface view achieved using traditional imaging. Following intrinsic and extrinsic camera calibration, the technique was implemented and demonstrated using a LEGO structure phantom, as well as a 3D-printed patient-specific left atrial phantom. We assessed the quality of the overlay according to fiducial localization, fiducial registration, and target registration errors, as well as the overlay offset error. Using the software extensions we developed in conjunction with common webcams it is possible to achieve tracking accuracy comparable to that seen with significantly more expensive hardware, leading to target registration errors on the order of 2 mm.

  17. Development of skull fracture criterion based on real-world head trauma simulations using finite element head model.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2016-04-01

    The objective of this study was to enhance an existing finite element (FE) head model with composite modeling and a new constitutive law for the skull. The response of the state-of-the-art FE head model was validated in the time domain using data from 15 temporo-parietal impact experiments, conducted with postmortem human surrogates. The new model predicted skull fractures observed in these tests. Further, 70 well-documented head trauma cases were reconstructed. The 15 experiments and 70 real-world head trauma cases were combined to derive skull fracture injury risk curves. The skull internal energy was found to be the best candidate to predict skull failure based on an in depth statistical analysis of different mechanical parameters (force, skull internal energy), head kinematic-based parameter, the head injury criterion (HIC), and skull fracture correlate (SFC). The proposed tolerance limit for 50% risk of skull fracture was associated with 453mJ of internal energy. Statistical analyses were extended for individual impact locations (frontal, occipital and temporo-parietal) and separate injury risk curves were obtained. The 50% risk of skull fracture for each location: frontal: 481mJ, occipital: 457mJ, temporo-parietal: 456mJ of skull internal energy.

  18. Modelisation and Simulation of Heat and Mass Transfers during Solar Drying of Sewage Sludge with Introduction of Real Climatic Conditions

    Directory of Open Access Journals (Sweden)

    N. Ben Hassine

    2017-01-01

    Full Text Available Sewage sludge presents a real problem with the urban and industrial expanding. So, the drying technique is indispensable in the sludge treatment process to minimize its volume and its revalorization. For cost and environmental reasons, the solar drying is becoming increasingly attractive for small and medium wastewater treatment plants. Therefore, the aim of this work is the modelisation of solar dryer of residual sludge. The model studied is a rectangular agricultural greenhouse. In the lower part, the sludge (assimilated to a porous medium, acts as an absorber. It is subjected to a forced laminar flow. The transfers in the greenhouse and the porous medium are described respectively by the classical equations of forced convection and the Darcy-Brinkman-Forchheimer model. The implicit finite difference method is used to discretize the governing differential equation. The algebraic systems obtained are solved using the Gauss, Thomas and Gauss-Seidel algorithms. In order to complete the model and to determine the drying rate we associate a model of the sewage sludge drying kinetics. This work is realized with the meteorological data of the Tataouine region in the south of Tunisia. This data have undergone statistical treatment using the Liu and Jordan method. In order to show the advantages of solar drying, we especially studied the various transfer modes, the drying kinetics and the dryer performance.

  19. Analysis of control system responses for aircraft stability and efficient numerical techniques for real-time simulations

    Science.gov (United States)

    Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin

    2017-01-01

    The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim

  20. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry.

    Science.gov (United States)

    Fiechtner, A; Boschung, M; Wernli, C

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed.