WorldWideScience

Sample records for real grid conditions

  1. Real-Time Business Intelligence in the MIRABEL Smart Grid System

    DEFF Research Database (Denmark)

    Fischer, Ulrike; Kaulakiene, Dalia; Khalefa, Mohamed

    2012-01-01

    of energy related data, and must be able to react rapidly (but intelligently) when conditions change, leading to substantial real-time business intelligence challenges. This paper discusses these challenges and presents data management solutions in the European smart grid project MIRABEL. These solutions......) data. Experimental studies show that the proposed solutions support important real-time business intelligence tasks in a smart grid system....

  2. Enhanced Operation of Electricity Distribution Grids Through Smart Metering PLC Network Monitoring, Analysis and Grid Conditioning

    Directory of Open Access Journals (Sweden)

    Iker Urrutia

    2013-01-01

    Full Text Available Low Voltage (LV electricity distribution grid operations can be improved through a combination of new smart metering systems’ capabilities based on real time Power Line Communications (PLC and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.

  3. Application of rule-based data mining techniques to real time ATLAS Grid job monitoring data

    CERN Document Server

    Ahrens, R; The ATLAS collaboration; Kalinin, S; Maettig, P; Sandhoff, M; dos Santos, T; Volkmer, F

    2012-01-01

    The Job Execution Monitor (JEM) is a job-centric grid job monitoring software developed at the University of Wuppertal and integrated into the pilot-based “PanDA” job brokerage system leveraging physics analysis and Monte Carlo event production for the ATLAS experiment on the Worldwide LHC Computing Grid (WLCG). With JEM, job progress and grid worker node health can be supervised in real time by users, site admins and shift personnel. Imminent error conditions can be detected early and countermeasures can be initiated by the Job’s owner immideatly. Grid site admins can access aggregated data of all monitored jobs to infer the site status and to detect job and Grid worker node misbehaviour. Shifters can use the same aggregated data to quickly react to site error conditions and broken production tasks. In this work, the application of novel data-centric rule based methods and data-mining techniques to the real time monitoring data is discussed. The usage of such automatic inference techniques on monitorin...

  4. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  5. LTE delay assessment for real-time management of future smart grids

    NARCIS (Netherlands)

    Jorguseski, L.; Zhang, H.; Chrysalos, M.; Golinski, M.; Toh, Y.

    2017-01-01

    This study investigates the feasibility of using Long Term Evolution (LTE), for the real-time state estimation of the smart grids. This enables monitoring and control of future smart grids. The smart grid state estimation requires measurement reports from different nodes in the smart grid and

  6. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  7. Evaluation of the Ride-Through Capability of an Active-Front-End Adjustable Speed Drive under Real Grid Conditions

    DEFF Research Database (Denmark)

    Liserre, Marco; Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    Better quality of the input currents, unity power factor and regenerative capability are not the only benefits of equipping an Adjustable Speed Drive (ASD) with an active front-end-stage. Controlling the power inflow may enable also the reduction of the dc-link energy storage, which will then lead...... to the replacement of the electrolytic capacitors with film capacitors, which have lower energy density meaning that the volume is similar, but will increase the ASD lifetime. In these circumstances, operation under unbalanced and distorted supply voltage as well as high dynamic operation of the ASD makes...... the control task more challenging. The aim of this paper is to investigate the ride-through capability of an ASD with active front-end under real grid conditions and in view of the minimum dc-link storage. Experiments validate the theoretical analysis....

  8. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  9. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  10. Real-Time Market Concept Architecture for EcoGrid EU—A Prototype for European Smart Grids

    DEFF Research Database (Denmark)

    Ding, Yi; Pineda Morente, Salvador; Nyeng, Preben

    2014-01-01

    Industrialized countries are increasingly committed to move towards a low carbon generating mix by increasing the penetration of renewable generation. Additionally, the Development in communication technologies will allow small end-consumers and small-scale distributed energy resources (DER......) to participate in electricity markets. Current electricity markets need to be tailored to incorporate these changes regarding how electricity will be generated and consumed in the future. The EcoGrid EU is a large-scale EU-funded project, which establishes the first prototype of the future European intelligent...... grids. In this project, small-scale DERs and small end-consumers can actively participate in a new real-time electricity market by responding to 5-min real time electricity prices. In this way, the market operator will also obtain additional balancing power to cancel out the production variation...

  11. Validation of a Robust Neural Real-Time Voltage Estimator for Active Distribution Grids on Field Data

    DEFF Research Database (Denmark)

    Pertl, Michael; Douglass, Philip James; Heussen, Kai

    2018-01-01

    network approach for voltage estimation in active distribution grids by means of measured data from two feeders of a real low voltage distribution grid. The approach enables a real-time voltage estimation at locations in the distribution grid, where otherwise only non-real-time measurements are available......The installation of measurements in distribution grids enables the development of data driven methods for the power system. However, these methods have to be validated in order to understand the limitations and capabilities for their use. This paper presents a systematic validation of a neural...

  12. A Real-Time Open Access Platform Towards Proof of Concept for Smart Grid Applications

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Petersen, Lennart; Iov, Florin

    2018-01-01

    : electrical grid layer, ICT & network emulation layer and control layer. DiSC-OPAL, a toolbox built for OPAL-RT real time grid simulation; comprising of models for wide variety of controllable flexible assets, stochastic power sources for wind and solar power plants, real consumption data’s and electrical...

  13. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  14. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  15. Real Time Monitor of Grid job executions

    International Nuclear Information System (INIS)

    Colling, D J; Martyniak, J; McGough, A S; Krenek, A; Sitera, J; Mulac, M; Dvorak, F

    2010-01-01

    In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.

  16. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...

  17. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  18. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    2017-05-08

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid condition response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.

  19. Battery Storage Systems as Grid-Balancing Measure in Low-Voltage Distribution Grids with Distributed Generation

    Directory of Open Access Journals (Sweden)

    Bernhard Faessler

    2017-12-01

    Full Text Available Due to the promoted integration of renewable sources, a further growth of strongly transient, distributed generation is expected. Thus, the existing electrical grid may reach its physical limits. To counteract this, and to fully exploit the viable potential of renewables, grid-balancing measures are crucial. In this work, battery storage systems are embedded in a grid simulation to evaluate their potential for grid balancing. The overall setup is based on a real, low-voltage distribution grid topology, real smart meter household load profiles, and real photovoltaics load data. An autonomous optimization routine, driven by a one-way communicated incentive, determines the prospective battery operation mode. Different battery positions and incentives are compared to evaluate their impact. The configurations incorporate a baseline simulation without storage, a single, central battery storage or multiple, distributed battery storages which together have the same power and capacity. The incentives address either market conditions, grid balancing, optimal photovoltaic utilization, load shifting, or self-consumption. Simulations show that grid-balancing incentives result in lowest peak-to-average power ratios, while maintaining negligible voltage changes in comparison to a reference case. Incentives reflecting market conditions for electricity generation, such as real-time pricing, negatively influence the power quality, especially with respect to the peak-to-average power ratio. A central, feed-in-tied storage performs better in terms of minimizing the voltage drop/rise and shows lower distribution losses, while distributed storages attached at nodes with electricity generation by photovoltaics achieve lower peak-to-average power ratios.

  20. Electrolyzers Enhancing Flexibility in Electric Grids

    Directory of Open Access Journals (Sweden)

    Manish Mohanpurkar

    2017-11-01

    Full Text Available This paper presents a real-time simulation with a hardware-in-the-loop (HIL-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.

  1. Connection and disconnection transients for micro-grids under unbalance load condition

    DEFF Research Database (Denmark)

    Rocabert, J.; Azevedo, Gustavo M.S.; Candela, I.

    2011-01-01

    in connection and disconnection transients. This paper focuses on the design of a method oriented to carry out a stable intentional disconnection, and later re-connection, of local grids from the main distribution grid in an intentional way; also under unbalance load condition. Seamless transfer between grid-connected......The recent grid integration of Distributed Energy Resources (DER) possibility the formation of intentional islands in the case of a grid fault conditions. For such island formation is required an active agent capable of governing the micro-grid connection state in a safe mode, especially...

  2. An Improved Current Controller to ensure the robust performance of grid-connected converters under weak grid conditions

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Voltage Source Converters (VSCs) operating in very weak grids with low Short Circuit Ratio (SCR) are known to meet stability challenges. This article investigates instability of a grid connected current-controlled converter under weak grid conditions, which is often attributed to the dynamic...

  3. Harmonizing electricity markets with physics : real time performance monitoring using grid-3PTM

    International Nuclear Information System (INIS)

    Budhraja, V.S.

    2003-01-01

    The Electric Power Group, LLC provides management and strategic consulting services for the electric power industry, with special emphasis on industry restructuring, competitive electricity markets, grid operations and reliability, power technologies, venture investments and start-ups. The Consortium for Electric Reliability Technology Solutions involves national laboratories, universities, and industry partners in researching, developing, and commercializing electric reliability technology solutions to protect and enhance the reliability of the American electric power system under the emerging competitive electricity market structure. Physics differentiate electric markets from other markets: there is real-time balancing, no storage, interconnected network, and power flows governed by physics. Some issues affecting both grid reliability and market issues are difficult to separate, such as security and congestion management, voltage management, reserves, frequency volatility, and others. The author examined the following investment challenges facing the electricity market: grid solutions, market solutions, and technology solutions. The real time performance monitoring and prediction platform, grid-3P was described and applications discussed, such as ACE-frequency monitoring, performance monitoring for automatic generation control (AGC) and frequency response, voltage/VAR monitoring, stability monitoring using phasor technology, and market monitoring. figs

  4. A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market

    International Nuclear Information System (INIS)

    Alagoz, B. Baykant; Kaygusuz, Asim; Akcin, Murat; Alagoz, Serkan

    2013-01-01

    Future smart grids will require a flexible, observable, and controllable network for reliable and efficient energy delivery under uncertain generation and demand conditions. One of the mechanisms for efficient and reliable energy generation is dynamic demand-responsive generation management based on energy price adjustments that creates a balance in energy markets. This study presents a closed-loop PID (proportional–integral–derivative) controller-based price control method for autonomous and real-time balancing of energy demand and generation in smart grid electricity markets. The PID control system can regulate energy prices online to respond dynamically and instantaneously to the varying energy demands of grid consumers. Independent energy suppliers in the smart grid decide whether to sell their energy to the grid according to the energy prices declared by the closed-loop PID controller system. Energy market simulations demonstrate that PID-controlled energy price regulation can effectively maintain an energy balance for hourly demand fluctuations of consumers. - Highlights: • This study presents a control theoretic approach for management of energy balance. • A closed-loop PID controller-based price controlling method is used in smart grid. • The simulation results demonstrate advantages of PID-based energy price control. • This method is appropriate for demand responsive management of smart grid markets

  5. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  6. The effect of spacer grid critical component on pressure drop under both single and two phase flow conditions

    International Nuclear Information System (INIS)

    Han, B.; Yang, B.W.; Zhang, H.; Mao, H.; Zha, Y.

    2016-01-01

    As pressure drop is one of the most critical thermal hydraulic parameters for spacer grids the accurate estimation of it is the key to the design and development of spacer grids. Most of the available correlations for pressure drop do not contain any real geometrical parameters that characterize the grid effect. The main functions for spacer grid are structural support and flow mixing. Once the boundary sublayer near the rod bundle is disturbed, the liquid forms swirls or flow separation that affect pressure drop. However, under two phase flow conditions, due to the existence of steam bubble, the complexity for spacer grid are multiplied and pressure drop calculation becomes much more challenging. The influence of the dimple location, distance of mixing vane to the nearest strip, and the effect of inter-subchannel mixing among neighboring subchannels on pressure drop and downstream flow fields are analyzed in this paper. Based on this study, more detailed space grid geometry parameters are recommended for adding into the correlation when predicting pressure drop.

  7. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  8. Study of the integration of distributed generation systems in the grid: application in micro-grids

    International Nuclear Information System (INIS)

    Gaztanaga Arantzamendi, H.

    2006-12-01

    The present PhD deals with an original micro-grid concept and its application as a Renewable Energy Source's (RES) grid integration scheme. This micro-grid is composed of RES generators as well as support systems that incorporate additional functionalities in order to improve RES integration into the grid. According to this concept, two practical micro-grid applications have been studied in detail: a residential micro-grid and a wind farm supported by DFACTS systems (STATCOM and DVR). In both applications, the control structures which are implemented at different levels and applied to the different micro-grid elements have been developed, analyzed by means of off-line simulations and finally validated in real-time conditions with physical reduced-scale prototypes. (author)

  9. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  10. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

  11. Control Strategy for Microgrid Inverter under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Liu, Wenzhao; Zhang, X.

    2014-01-01

    This paper presents the theoretical analysis of the inherent reason of current harmonic and power oscillation phenomena in case of operating the microgrid inverter under unbalanced grid voltage conditions. In order to flexibly control the current harmonic and power oscillation, a new stationary...... inverter. Finally, the performance evaluation tests are carried out under unbalanced grid voltage conditions. Results verify the effectiveness of the propose method....

  12. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  13. SMR and economics competitiveness in small grids. A real option analysis

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Giorgio [University of Lincoln - School of Engineering, Lincoln (United Kingdom). Faculty of Science; Mancino, Mauro; Lotti, Giovanni [Politecnico di Milano (Italy). Dept. of Management Economics and Industrial Engineering

    2014-03-15

    The optimal investment in power plants depends on many uncertain parameters (price of electricity, construction costs, cost of emissions, fuel cost..). Traditional approaches based on the Discounted Cash Flows methodologies, like the Net Present Value (NPV), do not properly take into account these uncertainties since they depend on the implicit assumption that all the decisions regarding the investment are evaluated in a specific moment (the time now) and cannot be postponed, waiting to acquire more information. An evolution of these methods is the Real Options Analysis (ROA) that considers a further value into the evaluation: the value of flexibility to choose when to invest. In this paper the ROA will be used to test a hypothesis made in literature, that small-medium sized plants (300-400 MWe) can be a suitable choice for small grids (or markets), thanks to their flexibility in the deployment. The assessment of this hypothesis is based on a ROA model that compares the investment in a Large Reactor (LR) vs. a group of Small Modular Reactors (SMR). Montecarlo simulations are used to approximate the probability distributions of the profitability indicators, both with a static approach, implying that investments are made immediately, and with a dynamic approach, letting the model decide when to invest (optimizing the profitability distribution). The result show as SMR, in small grid, can yield similar profitability in lower risky conditions. (orig.)

  14. SMR and economics competitiveness in small grids. A real option analysis

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancino, Mauro; Lotti, Giovanni

    2014-01-01

    The optimal investment in power plants depends on many uncertain parameters (price of electricity, construction costs, cost of emissions, fuel cost..). Traditional approaches based on the Discounted Cash Flows methodologies, like the Net Present Value (NPV), do not properly take into account these uncertainties since they depend on the implicit assumption that all the decisions regarding the investment are evaluated in a specific moment (the time now) and cannot be postponed, waiting to acquire more information. An evolution of these methods is the Real Options Analysis (ROA) that considers a further value into the evaluation: the value of flexibility to choose when to invest. In this paper the ROA will be used to test a hypothesis made in literature, that small-medium sized plants (300-400 MWe) can be a suitable choice for small grids (or markets), thanks to their flexibility in the deployment. The assessment of this hypothesis is based on a ROA model that compares the investment in a Large Reactor (LR) vs. a group of Small Modular Reactors (SMR). Montecarlo simulations are used to approximate the probability distributions of the profitability indicators, both with a static approach, implying that investments are made immediately, and with a dynamic approach, letting the model decide when to invest (optimizing the profitability distribution). The result show as SMR, in small grid, can yield similar profitability in lower risky conditions. (orig.)

  15. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    Science.gov (United States)

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  16. Power management and frequency regulation for microgrid and smart grid: A real-time demand response approach

    Science.gov (United States)

    Pourmousavi Kani, Seyyed Ali

    Future power systems (known as smart grid) will experience a high penetration level of variable distributed energy resources to bring abundant, affordable, clean, efficient, and reliable electric power to all consumers. However, it might suffer from the uncertain and variable nature of these generations in terms of reliability and especially providing required balancing reserves. In the current power system structure, balancing reserves (provided by spinning and non-spinning power generation units) usually are provided by conventional fossil-fueled power plants. However, such power plants are not the favorite option for the smart grid because of their low efficiency, high amount of emissions, and expensive capital investments on transmission and distribution facilities, to name a few. Providing regulation services in the presence of variable distributed energy resources would be even more difficult for islanded microgrids. The impact and effectiveness of demand response are still not clear at the distribution and transmission levels. In other words, there is no solid research reported in the literature on the evaluation of the impact of DR on power system dynamic performance. In order to address these issues, a real-time demand response approach along with real-time power management (specifically for microgrids) is proposed in this research. The real-time demand response solution is utilized at the transmission (through load-frequency control model) and distribution level (both in the islanded and grid-tied modes) to provide effective and fast regulation services for the stable operation of the power system. Then, multiple real-time power management algorithms for grid-tied and islanded microgrids are proposed to economically and effectively operate microgrids. Extensive dynamic modeling of generation, storage, and load as well as different controller design are considered and developed throughout this research to provide appropriate models and simulation

  17. Implementation of grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper presents the transfer of a microgrid converter from/to on-grid to/from off-grid when the converter is working in two different modes. In the first transfer presented method, the converter operates as a Current Source Inverter (CSI) when on-grid and as a Voltage Source Inverter (VSI) when off-grid. In the second transfer method, the converter is operated as a VSI both, when operated on-grid and off-grid. The two methods are implemented successfully in a real pla...

  18. First Tuesday@CERN - THE GRID GETS REAL !

    CERN Document Server

    2003-01-01

    A few years ago, "the Grid" was just a vision dreamt up by some computer scientists who wanted to share processor power and data storage capacity between computers around the world - in much the same way as today's Web shares information seamlessly between millions of computers. Today, Grid technology is a huge enterprise, involving hundreds of software engineers, and generating exciting opportunities for industry. "Computing on demand", "utility computing", "web services", and "virtualisation" are just a few of the buzzwords in the IT industry today that are intimately connected to the development of Grid technology. For this third First Tuesday @CERN, the panel will survey some of the latest major breakthroughs in building international computer Grids for science. It will also provide a snapshot of Grid-related industrial activities, with contributions from both major players in the IT sector as well as emerging Grid technology start-ups. Panel: - Les Robertson, Head of the LHC Computing Grid Project, IT ...

  19. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  20. First Thuesday - CERN, The Grid gets real

    CERN Multimedia

    Robertson, Leslie

    2003-01-01

    A few years ago, "the Grid" was just a vision dreamt up by some computer scientists who wanted to share processor power and data storage capacity between computers around the world - in much the same way as today's Web shares information seamlessly between millions of computers. Today, Grid technology is a huge enterprise, involving hundreds of software engineers, and generating exciting opportunities for industry. "Computing on demand", "utility computing", "web services", and "virtualisation" are just a few of the buzzwords in the IT industry today that are intimately connected to the development of Grid technology. For this third First Tuesday @CERN, the panel will survey some of the latest major breakthroughs in building international computer Grids for science. It will also provide a snapshot of Grid-related industrial activities, with contributions from both major players in the IT sector as well as emerging Grid technology start-ups.

  1. A Real Model of a Micro-Grid to Improve Network Stability

    Directory of Open Access Journals (Sweden)

    Petr Marcon

    2017-07-01

    Full Text Available This paper discusses the smart energy model of a smart grid using a significant share of renewable energy sources combined with intelligent control that processes information from a smart metering subsystem. An algorithm to manage the microgrid via the demand-response strategy is proposed, accentuating the requirement that the total volume of energy produced from renewable sources is consumed. Thus, the system utilizes the maximum of renewable sources to reduce CO2 emissions. Another major benefit provided by the algorithm lies in applying the current weather forecast to predict the amount of energy in the grid; electricity can then be transferred between the local and the main backup batteries within the grid, and this option enables the control elements to prepare for a condition yet to occur. Individual parts of the grid are described in this research report together with the results provided by the relevant algorithm.

  2. Real-Time Implementation of Islanded Microgrid for Remote Areas

    Directory of Open Access Journals (Sweden)

    Monika Jain

    2016-01-01

    Full Text Available Islanding is a condition in which a microgrid or a portion of power grid, consisting of distributed generation (DG sources, converter, and load, gets disconnected from the utility grid. Under this condition the DG sources in a microgrid must switch to a voltage control mode, in order to provide constant voltage to local loads. In grid connected mode, the microgrid works as current controller and injects power to the main grid, depending on the power generation and local load with suitable market policies. Providing constant voltage at a stable frequency with proper synchronization amongst each DG in a microgrid is a challenge. The complexity of such grid requires careful study and analysis before actual implementation. These challenges of microgrid are addressed using real time OPAL-RT simulation technology. Thus the paper describes an islanded microgrid with master slave controller for power balance, voltage/frequency regulation, and synchronization. Based on an advanced real-time platform named Real-Time Laboratory (RT-LAB, the impacts of the micro sources, load, and converters in an islanded microgrid is studied in this paper. The effectiveness of the proposed controller is analyzed through experimental results under balanced/unbalanced nonlinear loads condition.

  3. A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations

    International Nuclear Information System (INIS)

    Wang, Lin-Wang

    2006-01-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  4. Advanced technologies for scalable ATLAS conditions database access on the grid

    International Nuclear Information System (INIS)

    Basset, R; Canali, L; Girone, M; Hawkings, R; Valassi, A; Viegas, F; Dimitrov, G; Nevski, P; Vaniachine, A; Walker, R; Wong, A

    2010-01-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  5. Conditions and costs for renewables electricity grid connection: Examples in Europe

    International Nuclear Information System (INIS)

    Swider, Derk J.; Beurskens, Luuk; Davidson, Sarah; Twidell, John; Pyrko, Jurek; Prueggler, Wolfgang; Auer, Hans; Vertin, Katarina; Skema, Romualdas

    2008-01-01

    This paper compares conditions and costs for RES-E grid connection in selected European countries. These are Germany, the Netherlands, the United Kingdom, Sweden, Austria, Lithuania and Slovenia. Country specific case studies are presented for wind onshore and offshore, biomass and photovoltaic power systems, as based on literature reviews and stakeholder interviews. It is shown that, especially for wind offshore, the allocation of grid connection costs can form a significant barrier for the installation of new RES-E generation if the developer has to bear all such costs. If energy policy makers want to reduce the barriers for new large-scale RES-E deployment, then it is concluded that the grid connection costs should be covered by the respective grid operator. These costs may then be recouped by increasing consumer tariffs for the use of the grid. (author)

  6. Operating conditions of batteries in off-grid renewable energy systems

    DEFF Research Database (Denmark)

    Svoboda, V.; Wenzl, H.; Kaiser, R.

    2007-01-01

    for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems...

  7. Real-time pricing strategy of micro-grid energy centre considering price-based demand response

    Science.gov (United States)

    Xu, Zhiheng; Zhang, Yongjun; Wang, Gan

    2017-07-01

    With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.

  8. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  9. Decreasing the cost of ground grid installations under difficult environmental conditions

    International Nuclear Information System (INIS)

    Miranda, E.P.

    1992-01-01

    The purpose of a ground grid is to provide a means to carry and dissipate electrical currents into ground under normal and fault conditions. In some cases, especially in dry rock terrain, the soil resistivity can be very high, making it difficult and very expensive to install an acceptable ground grid. Usually a soil resistivity above 200 ohm-meter is considered high. This paper discusses and provides design calculations for a successful ground grid installation in a distribution substation located in one of the worst soil conditions encountered in the industry; a very rocky terrain where the resistivity is 1800 ohm-m. It is a practical application of the theories presented in ANSI/IEEE Std. 80-1986. The design application consists of bare copper combined with conventional and a new type of ground rod. The installation cost for this application was much less than the cost associated with that of a conventional installation

  10. Grid Voltage Modulated Control of Grid-Connected Voltage Source Inverters under Unbalanced Grid Conditions

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Quintero, Juan Carlos Vasquez

    2017-01-01

    In this paper, an improved grid voltage modulated control (GVM) with power compensation is proposed for grid-connected voltage inverters when the grid voltage is unbalanced. The objective of the proposed control is to remove the power ripple and to improve current quality. Three power compensation...... objectives are selected to eliminate the negative sequence components of currents. The modified GVM method is designed to obtain two separate second-order systems for not only the fast convergence rate of the instantaneous active and reactive powers but also the robust performance. In addition, this method...

  11. Power grid reliability and security

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Anjan [Washington State Univ., Pullman, WA (United States); Venkatasubramanian, Vaithianathan [Washington State Univ., Pullman, WA (United States); Hauser, Carl [Washington State Univ., Pullman, WA (United States); Bakken, David [Washington State Univ., Pullman, WA (United States); Anderson, David [Washington State Univ., Pullman, WA (United States); Zhao, Chuanlin [Washington State Univ., Pullman, WA (United States); Liu, Dong [Washington State Univ., Pullman, WA (United States); Yang, Tao [Washington State Univ., Pullman, WA (United States); Meng, Ming [Washington State Univ., Pullman, WA (United States); Zhang, Lin [Washington State Univ., Pullman, WA (United States); Ning, Jiawei [Washington State Univ., Pullman, WA (United States); Tashman, Zaid [Washington State Univ., Pullman, WA (United States)

    2015-01-31

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  12. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  13. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  14. A high control bandwidth design method for aalborg inverter under weak grid condition

    DEFF Research Database (Denmark)

    Wu, Weimin; Zhou, Cong; Wang, Houqin

    2017-01-01

    Aalborg Inverter is a kind of high efficient Buck-Boost inverter. Since it may work in “Buck-Boost” mode, the control bandwidth should be high enough to ensure a good performance under any grid condition. However, during the “Boost” operation, the control bandwidth depends much on the grid...

  15. Real-time Social Media Data Analytics for Situational Awareness of the Electric Grid

    Science.gov (United States)

    Mao, H.; Chinthavali, S.; Lee, S.; Shankar, M.; Thiagarajan, S.

    2016-12-01

    With the increasing frequency of extreme events due to climate change, wide area situational awareness (SA) of the electric grid has become a primary need for federal agencies like DOE,FEMA etc. for emergency preparedness and recovery purposes. While several sensor feeds from Genscape, GridEye, PMUs provide a comprehensive view of the transmission grid, national-scale situational awareness tools are still relying on utility websites for outage information at a distribution level. The inconsistency and the variety in outage website's data formats makes this approach unreliable and also incurs huge software maintenance costs. Social media has emerged as a great medium for the utilities to share outage information with their customers. Despite their potential usefulness, extracting relevant data from these social media data-streams is challenging due to the inherent noise and irrelevant information such as tips to customers during storms, marketing, etc. In this study, we implement a practical and novel machine learning based data-analytics pipeline (Fig 1) for SA, which extracts real-time tweets from around 300 utility companies, processes these tweets using keyword filtering and Naïve-Bayes text classifier trained using supervised learning techniques to detect only relevant tweets. We validated the results by comparing it with the results identified by a human analyst for a period of 48 hours, and it showed around 98.3% accuracy. In addition to the tweets posted by utility companies, millions of twitter users, who are considered as human "social sensors", report power outages online. Therefore, we use Twitter Streaming API to extract real-time tweets containing keywords such as "power outage", "blackout", and "power cuts". An advanced natural language processing technique is proposed to identify the geo-locations associated with this power outage data. The detected tweets are visualized as a color-coded state and a county US map based on the number of outage tweets

  16. Advanced technologies for scalable ATLAS conditions database access on the grid

    CERN Document Server

    Basset, R; Dimitrov, G; Girone, M; Hawkings, R; Nevski, P; Valassi, A; Vaniachine, A; Viegas, F; Walker, R; Wong, A

    2010-01-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysi...

  17. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids

    Science.gov (United States)

    Forbes, Kevin F.; St. Cyr, O. C.

    2008-10-01

    This study uses local (ground-based) magnetometer data as a proxy for geomagnetically induced currents (GICs) to address whether there is a space weather/electricity market relationship in 12 geographically disparate power grids: Eirgrid, the power grid that serves the Republic of Ireland; Scottish and Southern Electricity, the power grid that served northern Scotland until April 2005; Scottish Power, the power grid that served southern Scotland until April 2005; the power grid that serves the Czech Republic; E.ON Netz, the transmission system operator in central Germany; the power grid in England and Wales; the power grid in New Zealand; the power grid that serves the vast proportion of the population in Australia; ISO New England, the power grid that serves New England; PJM, a power grid that over the sample period served all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia; NYISO, the power grid that serves New York State; and the power grid in the Netherlands. This study tests the hypothesis that GIC levels (proxied by the time variation of local magnetic field measurements (dH/dt)) and electricity grid conditions are related using Pearson's chi-squared statistic. The metrics of power grid conditions include measures of electricity market imbalances, energy losses, congestion costs, and actions by system operators to restore grid stability. The results of the analysis indicate that real-time market conditions in these power grids are statistically related with the GIC proxy.

  18. Conference on grid integration of renewable energies

    International Nuclear Information System (INIS)

    Fontaine, Pierre; Goeke, Berthold; Mignon, Herve; Brakelmann, Heinrich; Huebner, Gundula; Tanja Schmedes; Remy Garaude Verdier; Pierre-Guy Therond; Werner Diwald

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on grid integration of renewable energies. In the framework of this French-German exchange of experience, about a hundred of participants exchanged views on the similarities and differences between the French and German approaches of renewable energies integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Power grid development - Policy and challenges (Pierre Fontaine); 2 - Grid Development: German Strategy (Berthold Goeke); 3 - Power grids development: situational analysis (Herve Mignon); 4 - Traditional Power Lines, Partial Underground Cabling and HVDC lines: Costs, Benefits and Acceptance (Heinrich Brakelmann); 5 - Transmission Lines - Local Acceptance (Gundula Huebner); 6 - eTelligence- energy meets Intelligence: experience feedback from the grid operator EWe on smart grids and the integration of renewable energies (Tanja Schmedes); 7 - Nice Grid, The French Smart Grid Project within Grid4eU (Remy Garaude Verdier); 8 - Economical Analysis Of energy Storage For Renewable energy Farms - experience of EDF en on the basis of 3 call for tender issued by the French Government in 01/2010, 11/2010, and 09/2011: what conditions for a real deployment (Pierre-Guy Therond); 9 - Hydrogen as a renewable energies storage mean (Werner Diwald)

  19. Study of the integration of distributed generation systems in the grid: application in micro-grids; Etude de structures d'integration des systemes de generation decentralisee: application aux microreseaux

    Energy Technology Data Exchange (ETDEWEB)

    Gaztanaga Arantzamendi, H

    2006-12-15

    The present PhD deals with an original micro-grid concept and its application as a Renewable Energy Source's (RES) grid integration scheme. This micro-grid is composed of RES generators as well as support systems that incorporate additional functionalities in order to improve RES integration into the grid. According to this concept, two practical micro-grid applications have been studied in detail: a residential micro-grid and a wind farm supported by DFACTS systems (STATCOM and DVR). In both applications, the control structures which are implemented at different levels and applied to the different micro-grid elements have been developed, analyzed by means of off-line simulations and finally validated in real-time conditions with physical reduced-scale prototypes. (author)

  20. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    OpenAIRE

    Ping Ju; Yongfei Liu; Feng Wu; Fei Dai; Yiping Yu

    2016-01-01

    According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO) mechanism is taken int...

  1. Visual SLAM Using Variance Grid Maps

    Science.gov (United States)

    Howard, Andrew B.; Marks, Tim K.

    2011-01-01

    An algorithm denoted Gamma-SLAM performs further processing, in real time, of preprocessed digitized images acquired by a stereoscopic pair of electronic cameras aboard an off-road robotic ground vehicle to build accurate maps of the terrain and determine the location of the vehicle with respect to the maps. Part of the name of the algorithm reflects the fact that the process of building the maps and determining the location with respect to them is denoted simultaneous localization and mapping (SLAM). Most prior real-time SLAM algorithms have been limited in applicability to (1) systems equipped with scanning laser range finders as the primary sensors in (2) indoor environments (or relatively simply structured outdoor environments). The few prior vision-based SLAM algorithms have been feature-based and not suitable for real-time applications and, hence, not suitable for autonomous navigation on irregularly structured terrain. The Gamma-SLAM algorithm incorporates two key innovations: Visual odometry (in contradistinction to wheel odometry) is used to estimate the motion of the vehicle. An elevation variance map (in contradistinction to an occupancy or an elevation map) is used to represent the terrain. The Gamma-SLAM algorithm makes use of a Rao-Blackwellized particle filter (RBPF) from Bayesian estimation theory for maintaining a distribution over poses and maps. The core idea of the RBPF approach is that the SLAM problem can be factored into two parts: (1) finding the distribution over robot trajectories, and (2) finding the map conditioned on any given trajectory. The factorization involves the use of a particle filter in which each particle encodes both a possible trajectory and a map conditioned on that trajectory. The base estimate of the trajectory is derived from visual odometry, and the map conditioned on that trajectory is a Cartesian grid of elevation variances. In comparison with traditional occupancy or elevation grid maps, the grid elevation variance

  2. Real-Time Pricing-Based Scheduling Strategy in Smart Grids: A Hierarchical Game Approach

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2014-01-01

    Full Text Available This paper proposes a scheduling strategy based on real-time pricing in smart grids. A hierarchical game is employed to analyze the decision-making process of generators and consumers. We prove the existence and uniqueness of Nash equilibrium and utilize a backward induction method to obtain the generation and consumption strategies. Then, we propose two dynamic algorithms for the generators and consumers to search for the equilibrium in a distributed fashion. Simulation results demonstrate that the proposed scheduling strategy can match supply with demand and shift load away from peak time.

  3. Research on the Automatic Fusion Strategy of Fixed Value Boundary Based on the Weak Coupling Condition of Grid Partition

    Science.gov (United States)

    Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.

    2018-03-01

    With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.

  4. Comparative Analysis of Inversors for Small PV Systems Grid Connected

    International Nuclear Information System (INIS)

    Sidrach de Cardona, M.; Ramirez, L.

    2001-01-01

    The energy produced by a grid connected photovoltaic system is a function of weather conditions, mainly available radiation and temperature, photovoltaic array efficiency and inverter characteristics. The results obtained in experimental measurements with four small grid-connected inverters are described in this work. The main goal is to know the inverter performance in real operation conditions. For this purpose a 2 kW photovoltaic system has been used. These results allow us to know both the inverter efficiency and its output power quality. The following parameters have been evaluated as a function of output inverter power: efficiency, point of maximum power tracking, intensity and voltage waveform, total harmonic distortion and harmonic values to 31 order, frequency, power factor and reactive power. Other interesting parameters like stand-by energy consumption and daily losses due to the inverter threshold have also been analyzed. The results allow us to know the inverter features as a function of its real work point. In our comparative study it is possible to observe remarkable differences between the inverters; these results show how important it is to have a unique standard for inverters to photovoltaic grid-connected systems. (Author) 10 refs

  5. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    Ouhrouche, Mohand [Department of Applied Sciences, University of Quebec at Chicoutimi, Quebec, G7H2B1 (Canada)

    2009-03-15

    Due to its simple construction, ruggedness and low cost, the induction generator driven by a wind turbine and feeding power to the grid appears to be an attractive solution to the problem of growing energy demand in the context of environmental issues. This paper investigates the integration of such a system into the main utility using RT-Lab trademark (Trademark of Opal-RT Technologies) software package running on a simple off-the-shelf PC. This real-time simulation platform is now adopted by many high-tech industries as a real-time laboratory package for rapid control prototyping and for Hardware-in-the-Loop applications. Real-time digital simulation results obtained during contingencies, such as islanding and unbalanced faults are presented and analysed. (author)

  6. CIRCUIT-DESIGN SOLUTIONS AND INFORMATION SUPPORT OF CITY ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID

    Directory of Open Access Journals (Sweden)

    M. I. Fursanov

    2017-01-01

    Full Text Available The structure, circuit-design solutions and information support of the city electric networks in the conditions of the SMART GRID have been analyzed. It is demonstrated that the new conditions of functioning of electric power engineering, increasing demands for its technological state and reliability in most countries determined the transition to a restructuring of electrical networks to be based on the SMART GRID (intelligent power networks innovative new structure. The definitions of the SMART GRID, its various attributes and characteristics in most developed countries including Belarus are presented. It is revealed that the existing and future circuit and constructive solutions that can automate the process of managing modes of urban electric networks under the SMART GRID conditions are manifold. At present, the most common in distribution networks are the sources of distributed generation (combustion turbines, wind turbines, photovoltaic installations, mini-hydro, etc.. The patterns and problems of information traceability of a traditional urban networks of the unified energy system of Belarus have been analyzed, and it is demonstrated that in the conditions of the SMART GRID most of the problems of the control mode that are characteristic for traditional distribution networks 6–10 kV and 0.38 kV, lose their relevance. Therefore, the present article presents and features the main directions of development of automatic control modes of the SMART GRID.

  7. TRIANA. A control strategy for Smart Grids. Forecasting, planning and real-time control

    International Nuclear Information System (INIS)

    Bakker, V.

    2012-01-01

    Increasing demand, extra fluctuation and a large share of distributed electricity generation will put more stress on the electricity supply chain. Therefore, changes are required in the supply chain to maintain a properly functioning, stable and affordable grid. Currently the supply chain is completely driven by demand by constantly adapting the production to the demand. The exploitation of flexibility on the demand side of the supply chain allows for a more efficient and sustainable electricity production. Techniques like controllable distributed generation, distributed storage, and smart appliances can introduce this required flexibility. To exploit the new flexibility, the grid has to become more intelligent, i.e. become a Smart Grid. In this thesis TRIANA, a three step control strategy for the Smart Grid is presented. In the first step of TRIANA, the forecasting step, the scheduling freedom (flexibility) of a device is determined for each individual device by a local controller. In the second step, a (central) planner tries to exploit the freedom of the devices determined in the first step for his objective. The last step of TRIANA is the real-time control step performed by the local controller achieving the planning in the best possible way. In order to analyze the impact of control methodologies for Smart Grid, a simulator based on an energy model has been built. The basic elements of the model are individual devices and between devices energy streams are defined. The energy streams are connected via so called pools, which represent the physical connections between the devices. To study the effectiveness of the control methodology and study the most economic use of the flexibility of devices, multiple scenarios have been simulated. Simulations show that TRIANA can optimize the energy flows and can control the operation of the domestic devices in an economic manner without discomfort for the residents. TRIANA is a methodology capable of adjusting the energy

  8. Leaving the grid: An ambition or a real choice?

    International Nuclear Information System (INIS)

    Khalilpour, Rajab; Vassallo, Anthony

    2015-01-01

    The recent rapid decline in PV prices has brought grid parity, or near grid parity for PV in many countries. This, together with an expectation of a similar reduction for battery prices has prompted a new wave of social and academic discussions about the possibility of installing PV–battery systems and “leaving the grid” or “living off-grid”. This, if uncontrolled, has been termed the “death spiral” for utility companies. We have developed a decision support tool for rigorous assessment of the feasibility of leaving the grid. Numerous sensitivity analyses are carried out over critical parameters such as technology costs, system size, consumer load, and feed-in-tariff. The results show that, in most cases, leaving-the-grid is not the best economic option and it might be more beneficial to keep the connection with the grid, but minimize the electricity purchased by installation of an optimized size of PV-battery systems. The policy implication of this study is that, from an economic perspective, widespread disconnection might not be a realistic projection of the future. Rather, a notable reduction of energy demand per connection point is a more realistic option as PV–battery system prices decline further. Therefore, policies could be devised to help electricity network operators develop other sources of revenue rather than increasing energy prices, which have been assumed to be the key driver of the death spiral. -- Highlights: •There is an increasing public and academic interest in “leaving the grid” or “living off-grid”. •Grid defection is argued as a “death spiral” for transmission and distribution industries. •An optimization methodology is developed for assessing the feasibility of leaving the grid. •Leaving the grid with PV–battery is found to be infeasible due to large system requirements. •The best is to preserve connection with the grid, but minimize the electricity purchase

  9. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  10. Performance Improvement of DFIG Wind Turbine Using Series Grid-Side Converter under Unbalanced Grid Voltage and Voltage Sag Conditions

    DEFF Research Database (Denmark)

    Shokri, Yunes; Ebrahimzadeh, Esmaeil; Lesani, Hamid

    2014-01-01

    under unbalanced grid voltage and small voltage sag conditions without needing additional DC link capacitor or energy storage unlike other methods. The control system includes negative and positive sequence controllers which make the stator voltage balanced and keep it constant at the nominal value...

  11. Optimal Operation and Management of Smart Grid System with LPC and BESS in Fault Conditions

    Directory of Open Access Journals (Sweden)

    Ryuto Shigenobu

    2016-12-01

    Full Text Available Distributed generators (DG using renewable energy sources (RESs have been attracting special attention within distribution systems. However, a large amount of DG penetration causes voltage deviation and reverse power flow in the smart grid. Therefore, the smart grid needs a solution for voltage control, power flow control and power outage prevention. This paper proposes a decision technique of optimal reference scheduling for a battery energy storage system (BESS, inverters interfacing with a DG and voltage control devices for optimal operation. Moreover, the reconfiguration of the distribution system is made possible by the installation of a loop power flow controller (LPC. Two separate simulations are provided to maintain the reliability in the stable power supply and economical aspects. First, the effectiveness of the smart grid with installed BESS or LPC devices is demonstrated in fault situations. Second, the active smart grid using LCPs is proposed. Real-time techniques of the dual scheduling algorithm are applied to the system. The aforementioned control objective is formulated and solved using the particle swarm optimization (PSO algorithm with an adaptive inertia weight (AIW function. The effectiveness of the optimal operation in ordinal and fault situations is verified by numerical simulations.

  12. Scheduling in Heterogeneous Grid Environments: The Effects of DataMigration

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this goal can be fully realized. One problem critical to the effective utilization of computational grids is efficient job scheduling. Our prior work addressed this challenge by defining a grid scheduling architecture and several job migration strategies. The focus of this study is to explore the impact of data migration under a variety of demanding grid conditions. We evaluate our grid scheduling algorithms by simulating compute servers, various groupings of servers into sites, and inter-server networks, using real workloads obtained from leading supercomputing centers. Several key performance metrics are used to compare the behavior of our algorithms against reference local and centralized scheduling schemes. Results show the tremendous benefits of grid scheduling, even in the presence of input/output data migration - while highlighting the importance of utilizing communication-aware scheduling schemes.

  13. Modelling, simulation and experimental verification for renewable agents connected to a distorted utility grid using a Real-Time Digital Simulation Platform

    International Nuclear Information System (INIS)

    Guerrero-Rodríguez, N.F.; Rey-Boué, Alexis B.

    2014-01-01

    Highlights: • A MSOGI-FLL is used to detect the frequency. • A PR harmonic-compensator is used. • Grid-connected PV system insensitive to harmonic pollution. • RTDS reinforced the final validation of the control algorithms. • Several algorithms are combined in this paper. - Abstract: The large number of Photovoltaic plants and its utilization as agents of a Distributed Generation Systems justified the increasing efforts towards the optimal design of the overall grid-connected System. In a Distributed Generation environment the low voltage 3-phase utility grid could be affected by some disturbances such as voltage unbalanced, variations of frequency and harmonics distortion and it is mandatory that the control algorithms used in the inverter can be able to maintain the power flow between the renewable agent and the low voltage 3-phase utility grid; in addition a unitary power factor must be attained. A Proportional-Resonant regulator is used to performance a current control with the output current of the inverter and a Multiple Second Order Generalized Integrator Frequency-Locked Loop (MSOGI-FLL) is used to detect the frequency of the low voltage 3-phase utility grid. Some low order harmonics are introduced in the low voltage 3-phase utility grid in order to see the effect of the harmonic compensator. In order to validate the model of the Photovoltaic Renewable agent, the synchronization algorithm and the inverter control algorithm, some simulations using MATLAB/SIMULINK from The MathWorks, Inc. are shown firstly, and secondly, some Real-Time Digital Simulation tests using a Real-Time Digital Simulation (RTDS) Platform are carried out

  14. HIL evaluation of control unit in grid-tied coverters

    Directory of Open Access Journals (Sweden)

    Porobić Vlado B.

    2016-01-01

    Full Text Available Hardware-in-the-Loop (HIL emulation is poised to become unsurpassed design tool for development, testing, and optimization of real-time control algorithms for grid connected power electronics converters for distributed generation, active filters and smart grid applications. It is strongly important to examine and test how grid connected converters perform under different operating conditions including grid disturbances and faults. In that sense, converter’s controller is a key component responsible for ensuring safe and high-performance operation. This paper demonstrates an example how ultra-low latency and high fidelity HIL emulator is used to easily, rapidly and exhaustively test and validate standard control strategy for grid connected power electronics converters, without need for expensive hardware prototyping and laboratory test equipment. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  15. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Rocabert, J.; Candela, I.

    2015-01-01

    on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters of distributed generation plants, have contributed to enhance their response under faulty and distorted scenarios and, hence, to fulfill these requirements. In order to achieve satisfactory......The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and PV systems, are becoming very demanding. The Transmission System Operators (TSOs) are especially concerned about the Low Voltage Ride Through requirements. Solutions based...

  16. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  17. Grid Databases for Shared Image Analysis in the MammoGrid Project

    CERN Document Server

    Amendolia, S R; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Reading, T; Rogulin, D; Schottlander, D; Solomonides, T

    2004-01-01

    The MammoGrid project aims to prove that Grid infrastructures can be used for collaborative clinical analysis of database-resident but geographically distributed medical images. This requires: a) the provision of a clinician-facing front-end workstation and b) the ability to service real-world clinician queries across a distributed and federated database. The MammoGrid project will prove the viability of the Grid by harnessing its power to enable radiologists from geographically dispersed hospitals to share standardized mammograms, to compare diagnoses (with and without computer aided detection of tumours) and to perform sophisticated epidemiological studies across national boundaries. This paper outlines the approach taken in MammoGrid to seamlessly connect radiologist workstations across a Grid using an "information infrastructure" and a DICOM-compliant object model residing in multiple distributed data stores in Italy and the UK

  18. Real-Time Thevenin Impedance Computation

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Jóhannsson, Hjörtur

    2013-01-01

    operating state, and strict time constraints are difficult to adhere to as the complexity of the grid increases. Several suggested approaches for real-time stability assessment require Thevenin impedances to be determined for the observed system conditions. By combining matrix factorization, graph reduction......, and parallelization, we develop an algorithm for computing Thevenin impedances an order of magnitude faster than previous approaches. We test the factor-and-solve algorithm with data from several power grids of varying complexity, and we show how the algorithm allows realtime stability assessment of complex power...

  19. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  20. Real goods solar living sourcebook your complete guide to living beyond the grid with renewable energy technologies and sustainable living

    CERN Document Server

    Schaeffer, John

    2014-01-01

    What book would you want if you were stranded on a desert island? Widely regarded as the ""bible"" of off-grid living, Real Goods Solar Living Source Book might be your best choice. With over six hundred thousand copies in print worldwide, it is the most comprehensive resource available for anyone interested in lessening their environmental footprint or increasing their energy independence. The Solar Living Sourcebook, Fourteenth Edition is the ultimate guide to renewable energy, sustainable living, natural and green building, off-grid living, and alternative transporta

  1. Off grid Solar power supply: the real green development

    International Nuclear Information System (INIS)

    Dellinger, B.; Mansard, M.

    2010-01-01

    Solar experience is now 30 years. In spite of the tremendous growth of the developed world grid connect market, quite a number of companies remain seriously involved in the off grid sector. Solar started in the field as the sole solution to give access to energy and water to rural communities. With major actors involved at early stage, a number of reliable technical solutions were developed and implemented. These solutions have gradually drawn the attention of industrial companies investing in emerging countries and needing reliable energy sources. On top of improving standard of living, Off grid solar solutions also create economical opportunity for the local private sector getting involved in maintenance and services around the energy system. As at today, hundreds thousand of sites daily operate on site. However the needs remain extremely high. That is the reasons why off grid solar remains a major tool for sustainable development. (author)

  2. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  3. Task-and-role-based access-control model for computational grid

    Institute of Scientific and Technical Information of China (English)

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  4. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  5. Control of power converters in distributed generation applications under grid fault conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Munoz-Aguilar, Raul

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  6. Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions

    International Nuclear Information System (INIS)

    Kupka, F.

    1997-11-01

    This thesis deals with the extension of sparse grid techniques to spectral methods for the solution of partial differential equations with periodic boundary conditions. A review on boundary and initial-boundary value problems and a discussion on numerical resolution is used to motivate this research. Spectral methods are introduced by projection techniques, and by three model problems: the stationary and the transient Helmholtz equations, and the linear advection equation. The approximation theory on the hyperbolic cross is reviewed and its close relation to sparse grids is demonstrated. This approach extends to non-periodic problems. Various Sobolev spaces with dominant mixed derivative are introduced to provide error estimates for Fourier approximation and interpolation on the hyperbolic cross and on sparse grids by means of Sobolev norms. The theorems are immediately applicable to the stability and convergence analysis of sparse grid spectral methods. This is explicitly demonstrated for the three model problems. A variant of the von Neumann condition is introduced to simplify the stability analysis of the time-dependent model problems. The discrete Fourier transformation on sparse grids is discussed together with its software implementation. Results on numerical experiments are used to illustrate the performance of the new method with respect to the smoothness properties of each example. The potential of the method in mathematical modelling is estimated and generalizations to other sparse grid methods are suggested. The appendix includes a complete Fortran90 program to solve the linear advection equation by the sparse grid Fourier collocation method and a third-order Runge-Kutta routine for integration in time. (author)

  7. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...

  8. Contextual Intelligent Load Management Considering Real Time Pricing in a Smart Grid Environment

    DEFF Research Database (Denmark)

    Gomes, Luis; Fernandes, Filipe; Faria, Pedro

    2013-01-01

    The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium...... size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper...... addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks....

  9. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  10. Real-Time Pricing Strategy Based on the Stability of Smart Grid for Green Internet of Things

    Directory of Open Access Journals (Sweden)

    Huwei Chen

    2017-01-01

    Full Text Available The ever increasing demand of energy efficiency and the strong awareness of environment have led to the enhanced interests in green Internet of things (IoTs. How to efficiently deliver power, especially, with the smart grid based on the stability of network becomes a challenge for green IoTs. Therefore, in this paper we present a novel real-time pricing strategy based on the network stability in the green IoTs enabled smart grid. Firstly, the outage is analyzed by considering the imbalance of power supply and demand as well as the load uncertainty. Secondly, the problem of power supply with multiple-retailers is formulated as a Stackelberg game, where the optimal price can be obtained with the maximal profit for retailers and users. Thirdly, the stability of price is analyzed under the constraints. In addition, simulation results show the efficiency of the proposed strategy.

  11. Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming

    OpenAIRE

    Xiao, Jingjie

    2013-01-01

    A key hurdle for implementing real-time pricing of electricity is a lack of con-sumers’ responses. Solutions to overcome the hurdle include the energy management system that automatically optimizes household appliance usage such as plug-in hybrid electric vehicle charging (and discharging with vehicle-to-grid) via a two-way com-munication with the grid. Real-time pricing, combined with household automation devices, has a potential to accommodate an increasing penetration of plug-in hybrid ele...

  12. Performance of grid-tied PV facilities: A case study based on real data

    International Nuclear Information System (INIS)

    Díez-Mediavilla, M.; Dieste-Velasco, M.I.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Alonso-Tristán, C.

    2013-01-01

    Highlights: • A new procedure to analyse the performance of PV facilities is presented. • It only requires limited amounts of data that are easily sourced. • Data sets on production were collected over two complete years. • The transformerless inverter outperforms the isolated inverter. - Abstract: A new procedure is presented to analyse the performance of grid-tied PV facilities. It needs limited amounts of data that are easily sourced and is based on knowledge of the analysed system and its mode of operation. The procedure is applied, in a case study, to compare real PV production at two 100 kW p grid-connected PV installations. Located in the same geographical region, the installation of these two facilities followed the same construction criteria – PV panels, panel support system and wiring – and the facilities were exposed to the same atmospheric temperature and solar radiation. They differ with regard to their inverter technology: one facility uses an inverter with an integrated transformer system and the other uses a transformerless inverter. The results show that the transformerless inverter system performed better than the isolated system by a factor of 1.2%, which, in economic terms, represents more than 2000 €/year

  13. Smart homes as a base for smart grids; Smart Home als Basis fuer Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Segbusch, Klaus von [ABB AG, Mannheim (Germany). Team Business Development Smart Grids; Struwe, Christian [Busch-Jaeger Elektro GmbH, Luedenscheid (Germany)

    2010-09-15

    Integration of renewable energy sources requires more intelligent distribution systems, i.e. so-called smart grids. For this, it is necessary to integrate the end customers in grid operation, giving them financial incentives, information in near real time from the utility, and means for automatic control of their consumption. (orig.)

  14. Real time process algebra with time-dependent conditions

    NARCIS (Netherlands)

    Baeten, J.C.M.; Middelburg, C.A.

    We extend the main real time version of ACP presented in [6] with conditionals in which the condition depends on time. This extension facilitates flexible dependence of proccess behaviour on initialization time. We show that the conditions concerned generalize the conditions introduced earlier

  15. Passivity-Based Stability Assessment of Grid-Connected VSCs - An Overview

    DEFF Research Database (Denmark)

    Harnefors, Lennart; Wang, Xiongfei; Yepes, Alejandro G.

    2016-01-01

    The interconnection stability of a grid-connected voltage-source converter (VSC) can be assessed by the passivity properties of the VSC input admittance. If critical grid resonances fall within regions where the input admittance acts passively, i.e., has nonnegative real part, then their destabil......The interconnection stability of a grid-connected voltage-source converter (VSC) can be assessed by the passivity properties of the VSC input admittance. If critical grid resonances fall within regions where the input admittance acts passively, i.e., has nonnegative real part...

  16. Southampton uni's computer whizzes develop "mini" grid

    CERN Multimedia

    Sherriff, Lucy

    2006-01-01

    "In a bid to help its students explore the potential of grid computing, the University of Southampton's Computer Science department has developed what it calls a "lightweight grid". The system has been designed to allow students to experiment with grid technology without the complexity of inherent security concerns of the real thing. (1 page)

  17. Real-Time Pricing Decision Making for Retailer-Wholesaler in Smart Grid Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Yeming Dai

    2014-01-01

    Full Text Available Real-time pricing DSM (demand side management is widely used to dynamically change or shift the electricity consumption in the smart grid. In this paper, a game decision making scheme is proposed in the smart grid with DSM. The interaction between two retailers and their wholesaler is modeled as a two-stage game model. Considering the competition between two retailers, two different game models are developed in terms of the different action order between retailers and their wholesaler. Through analyzing the equilibrium revenues of the retailers for different situations we find that although the wholesaler expects to decentralize certain management powers to the retailers, it has retained the right to change the rules of the game and frequently reneged on the promises. More specifically, the law should ensure that any change of the revenue-sharing formula must go through certain legal procedures. Imposing legal restrictions on the wholesaler’s discretionary policy suggests that the time-inconsistency problem is mitigated. Numerical simulation shows the effectiveness of proposed scheme.

  18. Grid computing infrastructure, service, and applications

    CERN Document Server

    Jie, Wei; Chen, Jinjun

    2009-01-01

    Offering a comprehensive discussion of advances in grid computing, this book summarizes the concepts, methods, technologies, and applications. It covers topics such as philosophy, middleware, architecture, services, and applications. It also includes technical details to demonstrate how grid computing works in the real world

  19. GRIDCC: A Real-Time Grid Workflow System with QoS

    Directory of Open Access Journals (Sweden)

    A. Stephen McGough

    2007-01-01

    Full Text Available The over-arching aim of Grid computing is to move computational resources from individual institutions where they can only be used for in-house work, to a more open vision of vast online ubiquitous `virtual computational' resources which support individuals and collaborative projects. A major step towards realizing this vision is the provision of instrumentation – such as telescopes, accelerators or electrical power stations – as Grid resources, and the tools to manage these resources online. The GRIDCC project attempts to satisfy these requirements by providing the following four co-dependent components; a flexible wrapper for publishing instruments as Grid resources; workflow support for the orchestration of multiple Grid resources in a timely manner; the machinery to make reservation agreements on Grid resources; and the facility to satisfy quality of service (QoS requirements on elements within workflows. In this paper we detail the set of services developed as part of the GRIDCC project to provide the last three of these components. We provide a detailed architecture for these services along with experimental results from load testing experiments. These services are currently deployed as a test-bed at a number of institutions across Europe, and are poised to provide a 'virtual lab' to production level applications.

  20. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  1. The Effect of Phase-to-earth Faults on the Operating Conditions of a Separated 110 kV Grid Normally Operated with Effectively Earthed Neutral, and Temporarily Supplied from a Compensated 110 kV Grid

    Directory of Open Access Journals (Sweden)

    Wilhelm Rojewski

    2015-06-01

    Full Text Available The paper discusses the interoperability of the German compensated 110 kV grid and the Polish effectively earthed 110 kV grid. It is assumed that an area of one grid, separated from its power system, will be temporarily supplied from the other grid in its normal regime. Reference is made to the risks associated with phase-to-earth faults in grids so interconnected. Particular attention is paid to the working conditions of surge arresters and voltage transformers in the Polish 110 kV grid deprived of its neutral earthing when supplied from the German grid.

  2. Intelligent and robust optimization frameworks for smart grids

    Science.gov (United States)

    Dhansri, Naren Reddy

    A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic

  3. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Becker-Dippmann, Angela S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  4. Smart grids are advancing, light and supple

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2016-01-01

    While indicating some innovations produced by the Greenlys laboratory (SmartScan to localize losses by means of smart counters, a system for grid self-healing, Sequoia to manage a low voltage network, a tool for the prediction of photovoltaic production in real time), and also the main smart grid projects in France (Nice Grid, Solenn, SoGrid, Smart Electric Lyon, Poste intelligent, Greenlys, Smart Grids Vendee, BienVEnu), this article comments the emergence of several experiments on smart grids in France, the first drawn conclusions and recommendations. Some issues for this new architecture are discussed: the active demand management, cut-offs and flexibility, and the search for profitability

  5. Implementation and Demonstration of Grid Frequency Support by V2G Enabled Electric Vehicle

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Marinelli, Mattia; Andersen, Peter Bach

    2014-01-01

    Safe operation of the electric power system relies on conventional power stations. In addition to providing electrical energy to the network, some power stations also provide a number of ancillary services for the grid stability. These services could potentially be provided by the growing number...... Frequency Regulation. The service is implemented following the technical conditions for ancillary services in the Danish grid. The real life system is developed using web-centric communication technologies between the components. Communication and control functions of the system are validated through...

  6. Real Time Load Optimisation of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdottir, Unnur Stella

    2011-01-01

    Energinet.dk has launched an investigation of dynamic current ratings of cable based transmission grids, where both internal and external parameters are variables. The first topic was to investigate state of the art within calculating the current carrying capacity (ampacity or loadability......) of cables embedded in larger cable systems. Some recently published research has been concerned with dynamic loadability, but such researches are based on many assumptions. It is shown in the paper, that only limited research has been concerned with larger cable grids, and no remarkable work could been...

  7. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    Science.gov (United States)

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  8. Wind energy in offshore grids

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    special characteristics of offshore grids. With an operational real options approach, it is furthermore illustrated how different support schemes and connections to additional countries affect the investment case of an offshore wind farm and the income of the transmission system operator. The investment...... and investment implications under different regulatory frameworks are a hitherto underrepresented research field. They are addressed by this thesis. Offshore grids between several countries combine the absorption of wind energy with international power trading. However, the inclusion into an offshore grid......This cumulative PhD thesis deals with wind integration in offshore grids from an economic point of view. It is composed of a generic part and eight papers. As the topic has mostly been analysed with a focus on topology and technical issues until now, market-operational questions in offshore grids...

  9. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  10. A Theorem on Grid Access Control

    Institute of Scientific and Technical Information of China (English)

    XU ZhiWei(徐志伟); BU GuanYing(卜冠英)

    2003-01-01

    The current grid security research is mainly focused on the authentication of grid systems. A problem to be solved by grid systems is to ensure consistent access control. This problem is complicated because the hosts in a grid computing environment usually span multiple autonomous administrative domains. This paper presents a grid access control model, based on asynchronous automata theory and the classic Bell-LaPadula model. This model is useful to formally study the confidentiality and integrity problems in a grid computing environment. A theorem is proved, which gives the necessary and sufficient conditions to a grid to maintain confidentiality.These conditions are the formalized descriptions of local (node) relations or relationship between grid subjects and node subjects.

  11. Synergisms between smart metering and smart grid; Synergien zwischen Smart Metering und Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-04-15

    With the implementation of a smart metering solution, it is not only possible to acquire consumption data for billing but also to acquire relevant data of the distribution grid for grid operation. There is still a wide gap between the actual condition and the target condition. Synergies result from the use of a common infrastructure which takes account both of the requirements of smart metering and of grid operation. An open architecture also enables the future integration of further applications of the fields of smart grid and smart home. (orig.)

  12. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-12-15

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  13. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-01-01

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  14. The Mini-Grid Framework: Application Programming Support for Ad hoc Volunteer Grids

    DEFF Research Database (Denmark)

    Venkataraman, Neela Narayanan

    2013-01-01

    To harvest idle, unused computational resources in networked environments, researchers have proposed different architectures for desktop grid infrastructure. However, most of the existing research work focus on centralized approach. In this thesis, we present the development and deployment of one......, and the performance of the framework in a real grid environment. The main contribution of this thesis are: i) modeling entities such as resources and applications using their context, ii) the context-based auction strategy for dynamic task distribution, iii) scheduling through application specific quality parameters...

  15. Virtual laboratory of electrical mini-grids with distributed generation

    International Nuclear Information System (INIS)

    Menezes Ramos, Vanessa; Barros Galhardo, Marcos André; Oliveira Barbosa, Claudomiro Fábio de; Tavares Pinho, João

    2015-01-01

    This paper presents a computing tool called Virtual Laboratory de Minirredes (Virtual Laboratory of Mini-grids). Using the virtual environment of the developed tool, it is possible to make remote connection/disconnection of switches and loads (resistive, inductive, capacitive and non-linear) at strategic points of the electric mini-grid with hybrid distributed generation systems (solar photovoltaic-diesel). The mini-grid has a length of about 1 km and is installed in the test area of the Grupo de Estudios e Desenvolvimento de Alternativas Exergética (GEDAE) of the Universidade Federal do Pará, located in the city of Belém, Pará, Brazil. The developed tool has communication functions with electric parameters transducers and programmable logic controllers (PLCs). This communication enables the opening and closing of contactors, resulting in different settings for the mini-grid. In addition to that, based on the proposed configuration by the user, the real-time operation status of mini-grid is presented in a graphic interface (for example, monitored electric parameters, distributed generators connected, status of disconnected switches, etc.) and the acquired data is stored. The use of the computing tool also focuses on the construction of a database, in order to obtain knowledge about the mini-grid performance under various conditions that can be set, depending on the operational strategy adopted, based on the choice of the layout, loads and power sources used in the mini-grid. (full text)

  16. An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.

  17. Observability of Low Voltage grids

    DEFF Research Database (Denmark)

    Martin-Loeches, Ruben Sánchez; Iov, Florin; Kemal, Mohammed Seifu

    2017-01-01

    Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid ...... an updated state of the art on DSSE-AMI based, adaptive data collection techniques and database management system types. Moreover, the ongoing Danish RemoteGRID project is presented as a realistic case study.......Low Voltage (LV) distribution power grids are experiencing a transformation from a passive to a more active role due to the increasing penetration of distributed generation, heat pumps and electrical vehicles. The first step towards a smarter operation of LV electrical systems is to provide grid....... It becomes unrealistic to provide near real time full observability of the LV grid by applying Distribution System State Estimation (DSSE) utilizing the classical data collection and storage/preprocessing techniques. This paper investigates up-todate the observability problem in LV grids by providing...

  18. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  19. Control of grid integrated voltage source converters under unbalanced conditions: development of an on-line frequency-adaptive virtual flux-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Suul, Jon Are

    2012-03-15

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor-less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly applied for operation during unbalanced conditions. Methods for voltage-sensor-less grid synchronization and control of VSCs under unbalanced grid voltage conditions will therefore be the main focus of this Thesis. Estimation methods based on the concept of Virtual Flux, considering the integral of the converter voltage in analogy to the flux of an electric machine, are among the simplest and most well known techniques for achieving voltage-sensor-less grid synchronization. Most of the established techniques for Virtual Flux estimation are, however, either sensitive to grid frequency variations or they are not easily adaptable for operation under unbalanced grid voltage conditions. This Thesis addresses both these issues by proposing a simple approach for Virtual Flux estimation by utilizing a frequency-adaptive filter based on a Second Order Generalized Integrator (SOGI). The proposed approach can be used to achieve on-line frequency-adaptive varieties of conventional strategies for Virtual Flux estimation. The main advantage is, however, that the SOGI-based Virtual Flux estimation can be arranged in a structure that achieves inherent symmetrical component sequence separation under unbalanced conditions. The proposed method for Virtual Flux estimation can be used as a general basis for voltage-sensor-less grid synchronization and control during unbalanced conditions. In this Thesis, the estimated Virtual Flux signals are used to develop a flexible strategy for control of active

  20. Numerical Simulation for Flow Distribution in ACE7 Fuel Assemblies affected by a Spacer Grid Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongpil; Jeong, Ji Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In spite of various efforts to understand hydraulic phenomena in a rod bundle containing deformed rods due to swelling and/or ballooning of clad, the studies for flow blockage due to spacer grid deformation have been limited. In the present work, 3D CFD analysis for flow blockage was performed to evaluate coolant flow within ACE7 fuel assemblies (FAs) containing a FA affected by a spacer grid deformation. The real geometry except for inner grids was used in the simulation and the region including inner grid was replaced by porous media. In the present work, the numerical simulation was performed to predict coolant flow within ACE7 FAs affected by a Mid grid deformation. The 3D CFD result shows that approximately 60 subchannel hydraulic diameter is required to fully recover coolant flow under normal operating condition.

  1. Importance of Grid Center Arrangement

    Science.gov (United States)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  2. Smart signal processing for an evolving electric grid

    Science.gov (United States)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  3. Measurement of grid spacer's enhanced droplet cooling under reflood condition in a PWR by LDA

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.; Hua, S.Q.

    1984-01-01

    Reported is an experiment designed for the measurements of grid spacer's enhanced droplet cooling under reflood condition at elevated temperatures in a steam environment. The flow channel consists of a simulated 1.60m-long pressurized water reactor (PWR) fuel rod bundle of 2 x 2 electrically heated rods. Embedded thermocouples are used to measure the rod cladding temperature at various axial levels and an unshielded Chromel-Alumel thermocouple sheathed by a small Inconel tube is traversed in the center of the subchannel to measure the temperatures of the water and steam coolant phases at various levels. The droplet dynamics across the grid spacer is directly obtained by a special laser-Doppler anemometry technique for the in situ simultaneous measurement of velocity and size of droplets through two observation windows on the test channel, one immediately before and one immediately after the grid spacer. Some results are presented and analyzed

  4. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    International Nuclear Information System (INIS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-01-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252 Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235 U(n th , f).

  5. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  6. Distribution grid reconfiguration reduces power losses and helps integrate renewables

    International Nuclear Information System (INIS)

    Lueken, Colleen; Carvalho, Pedro M.S.; Apt, Jay

    2012-01-01

    A reconfigurable network can change its topology by opening and closing switches on power lines. We use real wind, solar, load, and cost data and a model of a reconfigurable distribution grid to show that reconfiguration allows a grid operator to reduce operational losses as well as to accept more intermittent renewable generation than a static configuration can. Net present value analysis of automated switch technology shows that the return on investment is negative for this test network when considering only loss reduction, but that the investment is attractive under certain conditions when reconfiguration is used to minimize curtailment. - Highlights: ► Reconfiguration may reduce losses in grids with solar or wind distributed generation. ► Reconfigurable networks can accept more solar or wind DG than static ones. ► Using reconfiguration for loss reduction would not create a positive ROI. ► Using reconfiguration to reduce curtailment usually would create a positive ROI.

  7. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Renewable energy sources require accurate and appropriate performance not only under normal grid operation but also under abnormal and faulty grid conditions according to the modern grid codes. This paper proposes a novel phase-locked loop algorithm (MSHDC-PLL), which can enable the fast...... and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  8. Formal and legal conditions of Smart Grid deployment

    Directory of Open Access Journals (Sweden)

    Rafał Magulski

    2010-04-01

    Full Text Available This article presents an overview of the formal and legal issues arising from EU policies and national regulations affecting the capacity to implement Smart Grid solutions. EU legislation currently imposes on the Member States no obligation to apply any mechanisms to support implementation of Smart Grid solutions in the power sector. Directives call for the introduction of such national regulations that promote improved security and reliability of energy supply, development and integration of renewable and distributed energy resources with the power system, and development of the energy market to allow customers to respond to market incentives and to rationally change their behaviours as regards energy use. Not all of the obligations and recommendations have been fully transferred into the national legislation. However, directions of the Polish energy policy are in line with European trends and clearly indicate Smart Grids as one of the remedies to the challenges that the National Power System will have to cope with in the long term. Therefore, some significant legislative changes regarding the power sector should be expected in the near future.

  9. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  10. Optimal economic and environment operation of micro-grid power systems

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.

    2016-01-01

    Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.

  11. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    Science.gov (United States)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  12. Switching overvoltages in offshore wind power grids

    DEFF Research Database (Denmark)

    Arana Aristi, Ivan

    and cables are presented. In Chapter 4 results from time domain measurements and simulations of switching operations in offshore wind power grids are described. Specifically, switching operations on a single wind turbine, the collection grid, the export system and the external grid measured in several real...... offshore wind farms are shown together with simulation results. Switching operations in offshore wind power grids can be simulated with different electromagnetic transient programs. Different programs were used in the project and compared results are included in Chapter 4. Also in Chapter 4 different......Switching transients in wind turbines, the collection grid, the export system and the external grid in offshore wind farms, during normal or abnormal operation, are the most important phenomena when conducting insulation coordination studies. However, the recommended models and methods from...

  13. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  14. Wide-area, real-time monitoring and visualization system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    Science.gov (United States)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private

  16. Integrating renewables in distribution grids. Storage, regulation and the interaction of different stakeholders in future grids

    Energy Technology Data Exchange (ETDEWEB)

    Nykamp, S.

    2013-10-18

    In recent years, the transition of the power supply chain towards a sustainable system based on 'green' electricity generation out of renewable energy sources (RES-E) has become a main challenge for grid operators and further stakeholders in the power system. To enable the evaluation of new concepts for the integration of RES-E, first the feed-in characteristics of photovoltaic, wind and biomass generators located in a distribution grid area and based on numerous measured feed-in data are studied in this thesis. The achieved insights from the feed-in profiles can be used for the dimensioning of grid assets. Furthermore, the results are useful for the evaluation of congestion management or for the dimensioning of storage assets in distribution grids. The latter aspect is analyzed in detail such that suitable storage characteristics for an introduction in the grid are determined. An economic approach is presented to derive break-even points for storage assets as a substitute to conventional reinforcements. For a case study from a real world low voltage grid with reinforcement needs, these break-even points are determined and the main influencing parameters are evaluated. A further important question in this context concerns the role DSOs (distribution system operators) may play with the operation of decentralized storage assets since several stakeholders may be interested in using the flexibility provided by these assets. This unclear responsibility also applies to the steering of adjustable consumption devices such as electric heat pumps or electric cars. For decentralized storage assets as well as heat pump appliances, optimal operation modes based on the optimization objectives for a DSO and a trader are derived. It is shown based on real world data that choosing a 'copperplate' scenario is not only technically insufficient for a global balance of the consumption and generation. It may even be harmful for the society from a welfare economic

  17. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions....... It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method...... is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed...

  18. A Generic Danish Distribution Grid Model for Smart Grid Technology Testing

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    This paper describes the development of a generic Danish distribution grid model for smart grid technology testing based on the Bornholm power system. The frequency dependent network equivalent (FDNE) method has been used in order to accurately preserve the desired properties and characteristics...... as a generic Smart Grid benchmark model for testing purposes....... by comparing the transient response of the original Bornholm power system model and the developed generic model under significant fault conditions. The results clearly show that the equivalent generic distribution grid model retains the dynamic characteristics of the original system, and can be used...

  19. Grid-friendly wind power systems based on the synchronverter technology

    International Nuclear Information System (INIS)

    Zhong, Qing-Chang; Ma, Zhenyu; Ming, Wen-Long; Konstantopoulos, George C.

    2015-01-01

    Highlights: • A grid-friendly wind power system that uses the synchronverter technology is proposed. • Both the rotor-side and the grid-side converters act as synchronverters. • The complete generator–motor–generator system improves the performance under grid faults. • Real-time digital simulation results verify the effectiveness of the proposed method. - Abstract: Back-to-back PWM converters are becoming a realistic alternative to conventional converters in high-power wind power applications. In this paper, a control strategy based on the synchronverter technology is proposed for back-to-back PWM converters. Both converters are run as synchronverters, which are mathematically equivalent to the conventional synchronous generators. The rotor-side converter is responsible for maintaining the DC link voltage and the grid-side converter is responsible for the maximum power point tracking (MPPT). As the two converters are operated using the synchronverter technology, the formed wind power system becomes more friendly to the grid. Extensive real-time digital simulation results are presented to verify the effectiveness of the proposed method under normal operation and grid-fault scenarios

  20. Smart grids: Another step towards competition, energy security and climate change objectives

    International Nuclear Information System (INIS)

    Clastres, Cedric

    2011-01-01

    The deployment of smart grids in electricity systems has given rise to much interdisciplinary research. The new technology is seen as an additional instrument available to States to achieve targets for promoting competition, increasing the safety of electricity systems and combating climate change. But the boom in smart grids also raises many economic questions. Public policies will need to be adapted, firstly to make allowance for the potential gains from smart grids and the associated information flow, and secondly to regulate the new networks and act as an incentive for investors. The new competitive offerings and end-user pricing systems will contribute to improving allocative and productive efficiency, while minimizing the risks of market power. With real-time data on output and consumption, generators and consumers will be able to adapt to market conditions. Lastly smart grids will boost the development of renewable energy sources and new technologies, by assisting their integration and optimal use. - Highlights: → Smart grids could promote competition with new offerings and end-user pricing. → New information could induce demand response and demand-side management. → New regulatory policies are needed to favour the deployment of smart grids. → Development of new technologies could be improved.

  1. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  2. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  3. Improved Control Strategies for a DFIG-Based Wind-Power Generation System with SGSC under Unbalanced and Distorted Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Yu, Mengting; Hu, Weihao

    2016-01-01

    This paper investigates an improved control strategy for a doubly-fed induction generator (DFIG) based wind-power generation system with series grid-side converter (SGSC) under network unbalance and harmonic grid voltage distortion conditions. The integrated mathematical modeling of the DFIG system...... with SGSC is established by taking both the negative-sequence and harmonic components of the grid voltages into consideration with multiple synchronous rotating reference frames. Under network unbalance and harmonic distortion situations, stator voltage can be kept symmetrical and sinusoidal by the control...

  4. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Science.gov (United States)

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  5. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  6. Survey of cyber security issues in smart grids

    Science.gov (United States)

    Chen, Thomas M.

    2010-04-01

    The future smart grid will enable cost savings and lower energy use by means of smart appliances and smart meters which support dynamic load management and real-time monitoring of energy use and distribution. The introduction of two-way communications and control into power grid introduces security and privacy concerns. This talk will survey the security and privacy issues in smart grids using the NIST reference model, and relate these issues to cyber security in the Internet.

  7. Real-Time Pricing for Demand Response in Smart Grid Based on Alternating Direction Method of Multipliers

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    2018-01-01

    Full Text Available The real-time pricing (RTP scheme is an ideal method to adjust the power balance between supply and demand in smart grid systems. This scheme has a profound impact on users’ behavior, system operation, and overall grid management in the electricity industry. In this research, we conduct an extended discussion of a RTP optimization model and give a theoretical analysis of the existence and uniqueness of the Lagrangian multiplier. A distributed optimization method based on the alternating direction method of multipliers (ADMM algorithm with Gaussian back substitution (GBS is proposed in this study. On the one hand, the proposed algorithm takes abundant advantage of the separability among variables in the model. On the other hand, the proposed algorithm can not only speed up the convergence rate to enhance the efficiency of computing, but also overcome the deficiency of the distributed dual subgradient algorithm, the possibility of nonconvergence in the iteration process. In addition, we give the theoretical proof of the convergence of the proposed algorithm. Furthermore, the interdependent relationship between variables has been discussed in depth during numerical simulations in the study. Compared with the dual subgradient method, the simulation results validate that the proposed algorithm has a higher convergence speed and better implementation effect.

  8. Coordinated control of a DFIG-based wind-power generation system with SGSC under distorted grid voltage conditions

    DEFF Research Database (Denmark)

    Yao, Jun; Li, Qing; Chen, Zhe

    2013-01-01

    in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...

  9. Smart grid in Denmark 2.0. Implementing three key recommendations from the Smart Grid Network. [DanGrid]; Smart Grid i Danmark 2.0. Implementering af tre centrale anbefalinger fra Smart Grid netvaerket

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    smart grid technology. The second barrier is that network companies today do not have a real opportunity to use price signals as an instrument to recover customers' flexibility. This report has developed a roadmap with special focus on grid companies' role, describing the most important steps towards a smart grid. (LN)

  10. Comparative analysis of existing models for power-grid synchronization

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Motter, Adilson E

    2015-01-01

    The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations. (paper)

  11. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    International Nuclear Information System (INIS)

    Abdoulaye, D; Koalaga, Z; Zougmore, F

    2012-01-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  12. A GRID-CONNECTED HYBRID WIND-SOLAR POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    MAAMAR TALEB

    2017-06-01

    Full Text Available A hybrid renewable energy system consisting of a photovoltaic generator and a wind driven DC machine is interconnected with the power utilities grid. The interconnection is done through the use of two separate single phase full wave controlled bridge converters. The bridge converters are operated in the “inverter mode of operation”. That is to guaranty the extraction of the real powers from the wind driven generator as well as from the photovoltaic generator and inject them into the power utilities grid. At any pretended surrounding weather conditions, maximum extraction of powers from both renewable energy sources is targeted. This is done through the realization of self-adjusted firing angle controllers responsible of triggering the semiconductor elements of the controlled converters. An active power filter is shunted with the proposed setup to guaranty the sinusoid quality of the power utilities line current. The overall performance of the proposed system has been simulated in MATLAB/SIMULINK environment. Quite satisfactory and encouraging results have been obtained.

  13. Future electrical distribution grids: Smart Grids

    International Nuclear Information System (INIS)

    Hadjsaid, N.; Sabonnadiere, J.C.; Angelier, J.P.

    2010-01-01

    The new energy paradigm faced by distribution network represents a real scientific challenge. Thus, national and EU objectives in terms of environment and energy efficiency with resulted regulatory incentives for renewable energies, the deployment of smart meters and the need to respond to changing needs including new uses related to electric and plug-in hybrid vehicles introduce more complexity and favour the evolution towards a smarter grid. The economic interest group in Grenoble IDEA in connection with the power laboratory G2ELab at Grenoble Institute of technology, EDF and Schneider Electric are conducting research on the electrical distribution of the future in presence of distributed generation for ten years.Thus, several innovations emerged in terms of flexibility and intelligence of the distribution network. One can notice the intelligence solutions for voltage control, the tools of network optimization, the self-healing techniques, the innovative strategies for connecting distributed and intermittent generation or load control possibilities for the distributor. All these innovations are firmly in the context of intelligent networks of tomorrow 'Smart Grids'. (authors)

  14. Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.

    Science.gov (United States)

    Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro

    2018-03-01

    In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.

  15. A proposal for the GridPixel Tracker for the ATLAS sLHC upgrade.

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    A proposal for GridPix Tracker for the ATLAS sLHC upgrade. F. Hartjes, M.Fransen, W. Koppert, K.Konovalov, S.Morozov, A.Romaniouk, M. Rogers, H. van der Graaf. A concept of the GridPix detector as a tracker for the ATLAS Inner Detector proposed for SLHC upgrade is presented. The detector can combine precise vector tracking function and particle identification features using a transition radiation and dE/dX measurements. Test beam and MC studies of the tracking and the particle identification properties have been performed with the dedicated GridPix prototype. Data was taken with the different gas mixtures. Special accuracy achieved in the test beam is ~30 m. For one layer of the GridPix detector a vector angular accuracy of about 10 mrad was obtained. It was shown that for one layer of the real detector at very realistic conditions one should expect angular accuracy better than 5 mrad. For particle identification studies detector was filled with a Xe/CO2(70/30) mixture. A block of a transition radiation ra...

  16. EIAGRID: In-field optimization of seismic data acquisition by real-time subsurface imaging using a remote GRID computing environment.

    Science.gov (United States)

    Heilmann, B. Z.; Vallenilla Ferrara, A. M.

    2009-04-01

    The constant growth of contaminated sites, the unsustainable use of natural resources, and, last but not least, the hydrological risk related to extreme meteorological events and increased climate variability are major environmental issues of today. Finding solutions for these complex problems requires an integrated cross-disciplinary approach, providing a unified basis for environmental science and engineering. In computer science, grid computing is emerging worldwide as a formidable tool allowing distributed computation and data management with administratively-distant resources. Utilizing these modern High Performance Computing (HPC) technologies, the GRIDA3 project bundles several applications from different fields of geoscience aiming to support decision making for reasonable and responsible land use and resource management. In this abstract we present a geophysical application called EIAGRID that uses grid computing facilities to perform real-time subsurface imaging by on-the-fly processing of seismic field data and fast optimization of the processing workflow. Even though, seismic reflection profiling has a broad application range spanning from shallow targets in a few meters depth to targets in a depth of several kilometers, it is primarily used by the hydrocarbon industry and hardly for environmental purposes. The complexity of data acquisition and processing poses severe problems for environmental and geotechnical engineering: Professional seismic processing software is expensive to buy and demands large experience from the user. In-field processing equipment needed for real-time data Quality Control (QC) and immediate optimization of the acquisition parameters is often not available for this kind of studies. As a result, the data quality will be suboptimal. In the worst case, a crucial parameter such as receiver spacing, maximum offset, or recording time turns out later to be inappropriate and the complete acquisition campaign has to be repeated. The

  17. Comparison tomography relocation hypocenter grid search and guided grid search method in Java island

    International Nuclear Information System (INIS)

    Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.

    2016-01-01

    The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions. (paper)

  18. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  19. 15 MW HArdware-in-the-loop Grid Simulation Project

    Energy Technology Data Exchange (ETDEWEB)

    Rigas, Nikolaos [Clemson Univ., SC (United States); Fox, John Curtiss [Clemson Univ., SC (United States); Collins, Randy [Clemson Univ., SC (United States); Tuten, James [Clemson Univ., SC (United States); Salem, Thomas [Clemson Univ., SC (United States); McKinney, Mark [Clemson Univ., SC (United States); Hadidi, Ramtin [Clemson Univ., SC (United States); Gislason, Benjamin [Clemson Univ., SC (United States); Boessneck, Eric [Clemson Univ., SC (United States); Leonard, Jesse [Clemson Univ., SC (United States)

    2014-10-31

    The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at the Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA

  20. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  1. Wide-area situation awareness in electric power grid

    Science.gov (United States)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  2. Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Candela, Ignacio

    2011-01-01

    This paper presents a new multiresonant frequency-adaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmoni...

  3. Comprehensive analysis of the socioeconomic conditions of regions with use of the grid-technology

    Directory of Open Access Journals (Sweden)

    Людмила Володимирівна Зубик

    2015-10-01

    Full Text Available Ranking of the socioeconomic conditions of districts of Rivne region on statistical indicators of economic activity in the first half of 2015 was held based on Data Mining using Grid-technologies. System evaluation using the elements of methods of scaling, factor and cluster analysis was performed. Flexible and scalable module that extends the capabilities of the standard web-services and simplifies the procedures of collection and processing of data was designed

  4. Analysis gets on the starting Grid

    CERN Multimedia

    Roger Jones

    It is vital for ATLAS to have a functioning distributed analysis system to analyse its data. There are three major Grid deployments in ATLAS (Enabling Grids for E-sciencE, EGEE; the US Open Science Grid, OSG; and the Nordic DataGrid Facility, NGDF), and our data and jobs need to work across all of them, as well as on local machines and batch systems. Users must also be able to locate the data they want and register new small datasets so they can be used later. ATLAS has a suite of products to meet these needs, and a series of Distributed Analysis tutorials are training an increasing number of brave early adopters to use the system. Real users are vital to make sure that the tools are fit for their purpose and to refine our computing model. One such tutorial happened on the 1st and 2nd February at the National eScience Centre in Edinburgh, UK, sponsored by the GridPP Collaboration. The first day introduced an international set of tutees to the basic tools for Grid-based distributed analysis. The architecture...

  5. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  6. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  7. The taming of the Grid : virtual application services

    International Nuclear Information System (INIS)

    Keahey, K; Motawi, K.

    2004-01-01

    In this report we develop a view of the Grid based on the application service provider (ASP) model. This view enables the user to see the Grid as a collection of application services that can be published, discovered, and accessed in a relatively straightforward manner, hiding much of the complexity involved in using computational Grids and thus making it simpler and more accessible to a wider range of users. However, in order to satisfy the requirements of real-time scientific application clients, we combine the ASP model with representation of quality of service about the execution of services and the results they produce. Specifically, we focus on real-time, deadline-bound execution as the quality of service derived by a client. We describe an architecture implementing these ideas and the role of client and server in the context of the functionality we develop. We also describe preliminary experiments using an equilibrium fitting application for magnetic fusion in our architecture

  8. Autonomous Energy Grids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performance while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.

  9. A Framework for Counterfeit Smart Grid Device Detection

    Energy Technology Data Exchange (ETDEWEB)

    Babun, Leonardo [Florida Intl Univ., Miami, FL (United States); Aksu, Hidayet [Florida Intl Univ., Miami, FL (United States); Uluagac, A. Selcuk [Florida Intl Univ., Miami, FL (United States)

    2016-10-19

    The core vision of the smart grid concept is the realization of reliable two-­way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address these concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-­grid GOOSE messages with IEC-­61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.

  10. Smart Grid Control and Communication

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Pedersen, Rasmus; Kristensen, Thomas le Fevre

    2015-01-01

    to the reliability due to the stochastic behavior found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments and its Real-Time Hardware-In-the Loop (HIL) verification. An overview on the required Information...

  11. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bell, Frances [SolarCity, San Mateo, CA (United States); McCarty, Michael [SolarCity, San Mateo, CA (United States)

    2016-07-01

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly or indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC

  12. Local Adaptive Control of Solar Photovoltaics and Electric Water Heaters for Real-time Grid Support

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2016-01-01

    Overvoltage (OV) in a low voltage distribution network is one of the foremost issues observed even under moderate penetration of rooftop solar photovoltaics (PVs). Similarly, grid under-voltage (UV) is foreseen as a potential issue resulting from increased integration of large flexible loads......, such as electric vehicles, electric water heaters (EWHs) etc. An adaptive control using only local measurements for the EWHs and PVs is proposed in this study to alleviate OV as well as UV issues. The adaptive control is designed such that it monitors the voltage at the point of connection and adjusts active...... and reactive power injection/consumptions of the EWHs and PVs following the voltage violations. To effectively support the network in real-time, the controller allows EWHs to operate prior to PVs in OV and after the PVs in UV violations. The effectiveness of the proposed control strategy is demonstrated...

  13. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  14. On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions

    Science.gov (United States)

    Gonzalo, J.; Domínguez, D.; López, D.

    2014-12-01

    From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a

  15. Demand response evaluation and forecasting — Methods and results from the EcoGrid EU experiment

    DEFF Research Database (Denmark)

    Larsen, Emil Mahler; Pinson, Pierre; Leimgruber, Fabian

    2017-01-01

    Understanding electricity consumers participating in new demand response schemes is important for investment decisions and the design and operation of electricity markets. Important metrics include peak response, time to peak response, energy delivered, ramping, and how the response changes...... with respect to external conditions. Such characteristics dictate the services DR is capable of offering, like primary frequency reserves, peak load shaving, and system balancing. In this paper, we develop methods to characterise price-responsive demand from the EcoGrid EU demonstration in a way that was bid...... into a real-time market. EcoGrid EU is a smart grid experiment with 1900 residential customers who are equipped with smart meters and automated devices reacting to five-minute electricity pricing. Customers are grouped and analysed according to the manufacturer that controlled devices. A number of advanced...

  16. Smart EV Energy Management System to Support Grid Services

    Science.gov (United States)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  17. Comparative Analysis of Inversors for Small PV Systems Grid Connected; Analisis Comparativo de inversores para la conexion a Red de Pequnos Sistemas Fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Sidrach de Cardona, M.; Ramirez, L.

    2001-07-01

    The energy produced by a grid connected photovoltaic system is a function of weather conditions, mainly available radiation and temperature, photovoltaic array efficiency and inverter characteristics. The results obtained in experimental measurements with four small grid-connected inverters are described in this work. The main goal is to know the inverter performance in real operation conditions. For this purpose a 2 kW{sub p} photovoltaic system has been used. These results allow us to know both the inverter efficiency and its output power quality. The following parameters have been evaluated as a function of but put inverter power efficiency, point of maximum power tracking, intensity and voltage waveform, total harmonic distortion and harmonic values to 31 order, frequency, power factor and reactive power. Other interesting parameters like stand-by energy consumption and daily losses due to the inverter threshold have also been analyzed. the results allow us to know the inverter features as a function of its real work point. In our comparative study it is possible to observe remarkable differences between the inverters; these results show how important it is to have a unique standard for inverters to photovoltaic grid-connected systems. (Author)

  18. Real-Time Eye Detection and Tracking under Various Light Conditions

    Directory of Open Access Journals (Sweden)

    Feng Jiao

    2007-10-01

    Full Text Available This paper describes a real-time online prototype automobile and truck driver-fatigue monitor. It uses remotely located charge-coupled-device cameras equipped with active infrared illuminators to acquire video images of the driver. Various visual cues that typically characterize the level of alertness of a person are extracted in real time and systematically combined to infer the fatigue level of the driver. The visual cues employed characterize eyelid movement, gaze movement, head movement, and facial expression. A probabilistic model is developed to model human fatigue and to predict fatigue based on the visual cues obtained. The simultaneous use of multiple visual cues and their systematic combination yields a much more robust and accurate fatigue characterization than using a single visual cue. This system was validated under real-life fatigue conditions with human subjects of different ethnic backgrounds, genders, and ages; with/without glasses; and under different illumination conditions. It was found to be reasonably robust, reliable, and accurate in fatigue characterization.

  19. Field study evaluation of diffuse ceiling ventilation in classroom during real operating conditions

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Heiselberg, Per Kvols

    2017-01-01

    Highlights •Field experimental measurements during real operating conditions. •Evaluation of pressure chamber effect. •Evaluation of displacement effect. •Evaluation of thermal comfort.......Highlights •Field experimental measurements during real operating conditions. •Evaluation of pressure chamber effect. •Evaluation of displacement effect. •Evaluation of thermal comfort....

  20. 7 CFR 765.401 - Conditions for transfer of real estate and chattel security.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Conditions for transfer of real estate and chattel security. 765.401 Section 765.401 Agriculture Regulations of the Department of Agriculture (Continued) FARM... Security and Assumption of Debt § 765.401 Conditions for transfer of real estate and chattel security. (a...

  1. Grid connectivity issues and the importance of GCC. [GCC - Grid Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Das, A.; Schwartz, M.-K. [GL Renewable Certification, Malleswaram, Bangalore (India)

    2012-07-01

    In India, the wind energy is concentrated in rural areas with a very high penetration. In these cases, the wind power has an increasing influence on the power quality on the grids. Another aspect is the influence of weak grids on the operation of wind turbines. Hence it becomes very much essential to introduce such a strong grid code which is particularly applicable to wind sector and suitable for Indian environmental grid conditions. This paper focuses on different international grid codes and their requirement with regard to the connection of wind farms to the electric power systems to mitigate the grid connectivity issues. The requirements include the ways to achieve voltage and frequency stability in the grid-tied wind power system. In this paper, comparative overview and analysis of the main grid connecting requirements will be conducted, comprising several national and regional codes from many countries where high wind penetration levels have been achieved or are expected in the future. The objective of these requirements is to provide wind farms with the control and regulation capabilities encountered in conventional power plants and are necessary for the safe, reliable and economic operation of the power system. This paper also provides a brief idea on the Grid Code Compliance (GCC) certification procedure implemented by the leading accredited certifying body like Germanischer Lloyd Renewables Certification (GL RC), who checks the conformity of the wind turbines as per region specific grid codes. (Author)

  2. The often neglected yet crucial element in smart grid strategies

    Energy Technology Data Exchange (ETDEWEB)

    DiMarco, T. [Utility Industry Global Marketing Security, New York, NY (United States); Smith, W. [Intergraph Corp., Huntsville, AL (United States)

    2008-11-15

    Smart grids consist of automation technology that includes selfhealing networks, intelligent applications, and smart meters to improve load management. Electric utilities can benefit from making the transition from existing infrastructure to leading edge smart grid technology which offers better reliability and reduced maintenance costs. The smart grid improves the efficiency of electrical transmission and distribution, whether it involves carbon policies, grid modernization, renewable energy sources or smart end-use devices for the customer. Smart grids are expected to improve scheduling efficiency, dispatch management, transmission line surveillance and cyber security by enabling faster and better decisions from the control room. However, a smart grid control center is prone to human error. Operators must monitor data, locate work crews, analyze power system reports, and survey real-time transmission line data. They must choose optimal network configurations, whether it is to control voltage or to manage system restart following an outage. To do so, they need a system that will allow them to speed their analysis and take action. The true value of a smart grid is being able to see and control several critical applications in one unified system. A common operating picture improves overall situational awareness, reduces costs and increases efficiency in grid operations. The control center of the future will have 2D and 3D graphical visualization of complex real-time data to improve situational awareness, with multiple layers of information, including outages, distribution automation, geographic information systems, network analysis, and workforce management in a unified system. 1 fig.

  3. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    Science.gov (United States)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  4. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    International Nuclear Information System (INIS)

    Omar, R C; Ismail, A; Khalid, N H N; Din, N M; Hussain, H; Jamaludin, M Z; Abdullah, F; Arazad, A Z; Yusop, H

    2013-01-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300–500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  5. Grist: Grid-based Data Mining for Astronomy

    Science.gov (United States)

    Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.

    2005-12-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  6. Grist : grid-based data mining for astronomy

    Science.gov (United States)

    Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden; hide

    2004-01-01

    The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.

  7. European electricity grid. Status and perspective

    International Nuclear Information System (INIS)

    Maillard, Dominique

    2010-01-01

    There is no doubt about the need to expand and modernize the European electricity grid, especially in order to allow renewable energies to be fed stochastically into existing systems. As it is hardly possible at the present time and also in the near future to store electricity on a major scale and at adequate prices, electricity must be transmitted from the point of generation to the point of consumption directly and in real time. The development of grid systems, including cross-border transmission systems, is still behind expectations. This is not due to a shortage of projects or a lack of interest on the part of grid operators; the necessary political support is available as well, and investments at present are covered by the feed tariffs. The problem is the lack of acceptance. It is difficult to obtain new permits or commission new grids. This problem of the licensing authorities often results in considerable delays. Consequently, it is up to the grid operators to handle this situation and promote new, intelligent grid systems in an effort to achieve acceptance of a technical-scale infrastructure. This includes transparency in grid expansion, exchange with the public in order to reach mutual understanding and trust and also find compromises as well as the willingness to discuss various approaches to solutions (underground routing, upgrading of existing grid systems, smart systems, and intelligent designs) so as to optimize the use of the existing infrastructure. (orig.)

  8. Smart Solar Grid. Integration of high penetration of photovoltaic in municipal low voltage distribution grids; Smart Solar Grid. Integration hoher Anteile von Photovoltaik in kommunalen Niederspannungsverteilnetzen

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Holger; Heilscher, Gerd [Hochschule Ulm (Germany); Meier, Florian [SWU Netze GmbH, Ulm (Germany)

    2012-07-01

    The high rate of decentralized generation in low voltage grids especially photovoltaic (PV) put the distribution grid operators to new challenges. Grid operation and grid planning have to respect the volatility and dynamic of decentralized generation now and in the future and adapt their previous proceedings. In the frame of the project Smart Solar Grid was a test site defined in the grid area of the DSO Stadtwerke Ulm/Neu-Ulm GmbH (SWU) to analyze the impact of the PV rise and possible solutions for the grid planning in the future. The first analysis based upon secondly measurements of the first test site. From this were statistical evaluation of the load flows and power variations done. Furthermore were the roof potential analysis results of the test site validated. These data are the base for the development of a forecast system for grid condition parameter. (orig.)

  9. Grid-connected solar electricity going mainstream

    International Nuclear Information System (INIS)

    MacLellan, I.

    2004-01-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market, followed by Europe

  10. Grid-connected solar electricity going mainstream

    Energy Technology Data Exchange (ETDEWEB)

    MacLellan, I. [Arise Technologies Corp., Kitchener, ON (Canada)

    2004-06-01

    In 20 days, the sun provides the equivalent amount of energy found in all known fossil fuel reserves. This paper provides an outline of solar energy industry activities from the perspective of Arise Technologies, a Canadian-based solar energy company. An overview of the company's vision and marketing strategy was presented, including annual sales. Details of the company's commercial projects were reviewed, with specific reference to the first Canadian grid-connected solar electric subdivision. An introduction to photovoltaic electricity (PV) as an environmentally positive energy source was presented. Statistics included information on the current solar market worldwide as well as government and industry investment. Portable solar energy applications were provided, as well as grid-tied products in relation to private dwelling and commercial, industrial and institutional buildings. Details of an Arise solar home were presented. An outline of the Technology Early Action Measures (TEAM) was presented, with reference to the federal government's Climate Change Action Plan. The benefits of solar economics were given. PV factory production was overviewed, with a presentation of the experience curve and the number of grid-connected solar electric homes globally. Top global PV manufacturers were listed as well as a chart of world energy transitions underlining the emergence of renewable energy programs and systems. A summary of solar energy in Japan was provided, along with details of mid and long term solar energy planning, as well as other projects around the world. Canadian investment in PV was compared with other countries and details of past government spending on other energy sources were also presented. It was concluded that Canada was far behind other G-8 countries with reference to grid-connected PV, but that off-grid PV was a real business in Canada. It was also concluded that Japan would represent the first real mainstream grid-connected market

  11. Real-Time Tropospheric Product Establishment and Accuracy Assessment in China

    Science.gov (United States)

    Chen, M.; Guo, J.; Wu, J.; Song, W.; Zhang, D.

    2018-04-01

    Tropospheric delay has always been an important issue in Global Navigation Satellite System (GNSS) processing. Empirical tropospheric delay models are difficult to simulate complex and volatile atmospheric environments, resulting in poor accuracy of the empirical model and difficulty in meeting precise positioning demand. In recent years, some scholars proposed to establish real-time tropospheric product by using real-time or near-real-time GNSS observations in a small region, and achieved some good results. This paper uses real-time observing data of 210 Chinese national GNSS reference stations to estimate the tropospheric delay, and establishes ZWD grid model in the country wide. In order to analyze the influence of tropospheric grid product on wide-area real-time PPP, this paper compares the method of taking ZWD grid product as a constraint with the model correction method. The results show that the ZWD grid product estimated based on the national reference stations can improve PPP accuracy and convergence speed. The accuracy in the north (N), east (E) and up (U) direction increase by 31.8 %,15.6 % and 38.3 %, respectively. As with the convergence speed, the accuracy of U direction experiences the most improvement.

  12. Method for controlling power flow between an electrochemical cell and a power grid

    International Nuclear Information System (INIS)

    Coleman, A. K.

    1981-01-01

    A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected

  13. New grid-planning and certification approaches for the large-scale offshore-wind farm grid-connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Heising, C.; Bartelt, R. [Avasition GmbH, Dortmund (Germany); Zadeh, M. Koochack; Lebioda, T.J.; Jung, J. [TenneT Offshore GmbH, Bayreuth (Germany)

    2012-07-01

    Stable operation of the offshore-wind farms (OWF) and stable grid connection under stationary and dynamic conditions are essential to achieve a stable public power supply. To reach this aim, adequate grid-planning and certification approaches are a major advantage. Within this paper, the fundamental characteristics of the offshore-wind farms and their grid-connection systems are given. The main goal of this research project is to study the stability of the offshore grid especially in terms of subharmonic stability for the likely future extension stage of the offshore grids i.e. having parallel connection of two or more HVDC links and for certain operating scenarios e.g. overload scenario. The current requirements according to the grid code are not the focus of this research project. The goal is to study and define potential additional grid code requirements, simulations, tests and grid planning methods for the future. (orig.)

  14. Control of Grid Integrated Voltage Source Converters under Unbalanced Conditions: Development of an On-line Frequency-adaptive Virtual Flux-based Approach

    OpenAIRE

    Suul, Jon Are

    2012-01-01

    Three-Phase Voltage Source Converters (VSCs) are finding widespread applications in grid integrated power conversion systems. The control systems of such VSCs are in an increasing number of these applications required to operate during voltage disturbances and unbalanced conditions. Control systems designed for grid side voltagesensor- less operation are at the same time becoming attractive due to the continuous drive for cost reduction and increased reliability of VSCs, but are not commonly ...

  15. GEMSS: grid-infrastructure for medical service provision.

    Science.gov (United States)

    Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R

    2005-01-01

    The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.

  16. Real-time modeling and simulation of distribution feeder and distributed resources

    Science.gov (United States)

    Singh, Pawan

    The analysis of the electrical system dates back to the days when analog network analyzers were used. With the advent of digital computers, many programs were written for power-flow and short circuit analysis for the improvement of the electrical system. Real-time computer simulations can answer many what-if scenarios in the existing or the proposed power system. In this thesis, the standard IEEE 13-Node distribution feeder is developed and validated on a real-time platform OPAL-RT. The concept and the challenges of the real-time simulation are studied and addressed. Distributed energy resources include some of the commonly used distributed generation and storage devices like diesel engine, solar photovoltaic array, and battery storage system are modeled and simulated on a real-time platform. A microgrid encompasses a portion of an electric power distribution which is located downstream of the distribution substation. Normally, the microgrid operates in paralleled mode with the grid; however, scheduled or forced isolation can take place. In such conditions, the microgrid must have the ability to operate stably and autonomously. The microgrid can operate in grid connected and islanded mode, both the operating modes are studied in the last chapter. Towards the end, a simple microgrid controller modeled and simulated on the real-time platform is developed for energy management and protection for the microgrid.

  17. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-22

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.

  18. Photovoltaic-STATCOM with Low Voltage Ride through Strategy and Power Quality Enhancement in a Grid Integrated Wind-PV System

    Directory of Open Access Journals (Sweden)

    Lakshman Naik Popavath

    2018-04-01

    Full Text Available The traditional configurations of power systems are changing due to the greater penetration of renewable energy sources (solar and wind, resulting in reliability issues. At present, the most severe power quality problems in distribution systems are current harmonics, reactive power demands, and the islanding of renewables caused by severe voltage variations (voltage sag and swell. Current harmonics and voltage sag strongly affect the performance of renewable-based power systems. Various conventional methods (passive filters, capacitor bank, and UPS are not able to mitigate harmonics and voltage sag completely. Based on several studies, custom power devices can mitigate harmonics completely and slightly mitigate voltage sags with reactive power supplies. To ensure the generating units remain grid-connected during voltage sags and to improve system operation during abnormal conditions, efficient and reliable utilization of PV solar farm inverter as STATCOMs is needed. This paper elaborates the dynamic performance of a VSC-based PV-STATCOM for power quality enhancement in a grid integrated system and low voltage ride through (LVRT capability. LVRT requirements suggest that the injection of real and reactive power supports grid voltage during abnormal grid conditions. The proposed strategy was demonstrated with MATLAB simulations.

  19. Engineering of an Extreme Rainfall Detection System using Grid Computing

    Directory of Open Access Journals (Sweden)

    Olivier Terzo

    2012-10-01

    Full Text Available This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpose.

  20. Reliability analysis of reinforced concrete grids with nonlinear material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Rodrigo A [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil); Chateauneuf, Alaa [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)]. E-mail: alaa.chateauneuf@ifma.fr; Venturini, Wilson S [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil)]. E-mail: venturin@sc.usp.br; Lemaire, Maurice [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)

    2006-06-15

    Reinforced concrete grids are usually used to support large floor slabs. These grids are characterized by a great number of critical cross-sections, where the overall failure is usually sudden. However, nonlinear behavior of concrete leads to the redistribution of internal forces and accurate reliability assessment becomes mandatory. This paper presents a reliability study on reinforced concrete (RC) grids based on coupling Monte Carlo simulations with the response surface techniques. This approach allows us to analyze real RC grids with large number of failure components. The response surface is used to evaluate the structural safety by using first order reliability methods. The application to simple grids shows the interest of the proposed method and the role of moment redistribution in the reliability assessment.

  1. Control and EMS of a Grid-Connected Microgrid with Economical Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed El-Hendawi

    2018-01-01

    Full Text Available Recently, significant development has occurred in the field of microgrid and renewable energy systems (RESs. Integrating microgrids and renewable energy sources facilitates a sustainable energy future. This paper proposes a control algorithm and an optimal energy management system (EMS for a grid-connected microgrid to minimize its operating cost. The microgrid includes photovoltaic (PV, wind turbine (WT, and energy storage systems (ESS. The interior search algorithm (ISA optimization technique determines the optimal hour-by-hour scheduling for the microgrid system, while it meets the required load demand based on 24-h ahead forecast data. The control system consists of three stages: EMS, supervisory control and local control. EMS is responsible for providing the control system with the optimum day-ahead scheduling power flow between the microgrid (MG sources, batteries, loads and the main grid based on an economic analysis. The supervisory control stage is responsible for compensating the mismatch between the scheduled power and the real microgrid power. In addition, this paper presents the local control design to regulate the local power, current and DC voltage of the microgrid. For verification, the proposed model was applied on a real case study in Oshawa (Ontario, Canada with various load conditions.

  2. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  3. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  4. Multicast middleware for performance and topology analysis of multimedia grids

    Directory of Open Access Journals (Sweden)

    Jerry Z. Xie

    2017-04-01

    Full Text Available Since multicast reduces bandwidth consumption in multimedia grid computing, the middleware for monitoring the performance and topology of multicast communications is important to the design and management of multimedia grid applications. However, the current middleware technologies for multicast performance monitoring are still far from attaining the level of maturity and there lacks consistent approaches to obtain the evaluation data for multicast. In this study, to serve a clear guide for the design and implementation of the multicast middleware, two algorithms are developed for organising all constituents in multicast communications and analysing the multicast performance in two topologies – ‘multicast distribution tree’ and ‘clusters distribution’, and a definitive set of corresponding metrics that are comprehensive yet viable for evaluating multicast communications are also presented. Instead of using the inference data from unicast measurements, in the proposed middleware, the measuring data of multicast traffic are obtained directly from multicast protocols in real time. Moreover, this study makes a middleware implementation which is integrated into a real access grid multicast communication infrastructure. The results of the implementation demonstrate the substantial improvements in the accuracy and real time in evaluating the performance and topology of multicast network.

  5. A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid

    Science.gov (United States)

    Lau, Shing-hon

    2011-01-01

    America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.

  6. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  7. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  8. Effects of the core grids on the burnout

    International Nuclear Information System (INIS)

    Katsaounis, A.; Fulfs, H.; Stein, M.

    1977-01-01

    This paper reports on burnout experiments carried out using freon 12 at four test sections with 6 x 6, 8 x 8, 7 x 7 rod bundles, and with annular geometries. The axial heat flux distribution of the heated rods is either uniform or simulating reactor conditions. For the rod bundle test sections original reactor grids of PWR type are used with mixing vanes or similar grids of PWR without vanes. For the annular test sections an orifice simulates the spacer. At all experiments without any expection the burnout occurs in front of a grid. The film boiling condition moves always from one front to the next front of a grid, but never just behind a grid. (orig./HP) [de

  9. Development of a smart DC grid model

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Lab. of Instrumentation System and Functional Material Processing, Physics Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang KM21, Jatinangor 45363, Jawa Barat (Indonesia)

    2016-03-11

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  10. Development of a smart DC grid model

    International Nuclear Information System (INIS)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-01-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  11. ATLAS Data Challenge 2 A massive Monte Carlo production on the GRID

    CERN Document Server

    González de la Hoz, S; Lozano, J; Salt, J; Fassi, F; March, L; Adams, D; Deng, W; Nevski, P; Smith, J; Yu, D; Zhao, X; Poulard, G; Goossens, L; Nairz, A; Branco, M; Benekos, N C; Sturrock, R; Walker, R; Vetterli, M; Chudoba, J; Tas, P; Duckeck, G; Kennedy, J; Nielsen, J; Wäänänen, A; Bernardet, K; Negri, G; Rebatto, D; De Salvo, A; Perini, L; Vaccarossa, L; Ould-Saada, F; Read, A; Merino, G; Smirnova, O G; Ellert, M; Quing, D; Brochu, F; Gieraltowski, J; Youssef, S; De, K; Oz-turk, N; Sosebee, M; Severini, H; Gardner, R; Mambeli, M; Smirnov, Y; European Grid Conference

    2005-01-01

    The study and validation of the ATLAS Computing Model started three years ago and will continue for few years in the context of the so-called Data Chal-lenges (DC). DC1 was conducted during 2002-03; the main goals achieved were to set up the simulation data production infrastructure in a real worldwide collaborative effort and to gain experience in exercising an ATLAS wide production model. DC2 (from May until December 2004) is divided into three phases: (i) generate Monte Carlo data using GEANT4 on three different Grid projects: LCG, GRID3 and NorduGrid; (ii) simulate the first pass recon-struction of real data expected in 2007, and (iii) test the Distributed Analysis model. Experience with the use of the system in world-wide DC2 production of ten million events will be presented. We also present how the three Grid fla-vours are operated. Finally we discuss the first prototypes of Distributed Analy-sis systems.

  12. Visualizing Repertory Grid Data for Formative Assessment

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Vatrapu, Ravi; Hussain, Abid

    2013-01-01

    at facilitating data analysis through a visual and interactive approach, which allows users to understand their data, reflect, and make better decisions. This paper presents an interactive visualization tool for teachers and students. The tool visualizes repertory grid data using two dashboards, where teachers...... and students can investigate constructs and rating elements of students at the individual or group level. Visualizing the repertory grid data is an initial attempt towards teaching analytics. Future work will focus on evaluating the tool in a real setting with teachers and students, and collecting suggestions...

  13. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  14. Integrating GRID tools to build a computing resource broker: activities of DataGrid WP1

    International Nuclear Information System (INIS)

    Anglano, C.; Barale, S.; Gaido, L.; Guarise, A.; Lusso, S.; Werbrouck, A.

    2001-01-01

    Resources on a computational Grid are geographically distributed, heterogeneous in nature, owned by different individuals or organizations with their own scheduling policies, have different access cost models with dynamically varying loads and availability conditions. This makes traditional approaches to workload management, load balancing and scheduling inappropriate. The first work package (WP1) of the EU-funded DataGrid project is addressing the issue of optimizing the distribution of jobs onto Grid resources based on a knowledge of the status and characteristics of these resources that is necessarily out-of-date (collected in a finite amount of time at a very loosely coupled site). The authors describe the DataGrid approach in integrating existing software components (from Condor, Globus, etc.) to build a Grid Resource Broker, and the early efforts to define a workable scheduling strategy

  15. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  16. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  17. Improved Control of an Active-Front-End Adjustable Speed Drive with a Small dc-link Capacitor under Real Grid Conditions

    DEFF Research Database (Denmark)

    Klumpner, Christian; Liserre, Marco; Blaabjerg, Frede

    2004-01-01

    capacitors will be replaced by film capacitors in order to increase the ASD lifetime, but as this has lower energy density, the dc-link capacitance is expected to decrease. In these circumstances, operation under unbalanced and distorted supply voltage as well as high dynamic operation of the ASD makes...... the control task more challenging. This paper discusses problems related to the ASD dc-link both in respect to its stability (under regeneration as well as in the case of constant power absorbed by the inverter stage) both also in respect to the dc voltage ripple generated by the grid unbalance and made more...

  18. A comprehensive WSN-based approach to efficiently manage a Smart Grid.

    Science.gov (United States)

    Martinez-Sandoval, Ruben; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Flynn, David

    2014-10-10

    The Smart Grid (SG) is conceived as the evolution of the current electrical grid representing a big leap in terms of efficiency, reliability and flexibility compared to today's electrical network. To achieve this goal, the Wireless Sensor Networks (WSNs) are considered by the scientific/engineering community to be one of the most suitable technologies to apply SG technology to due to their low-cost, collaborative and long-standing nature. However, the SG has posed significant challenges to utility operators-mainly very harsh radio propagation conditions and the lack of appropriate systems to empower WSN devices-making most of the commercial widespread solutions inadequate. In this context, and as a main contribution, we have designed a comprehensive ad-hoc WSN-based solution for the Smart Grid (SENSED-SG) that focuses on specific implementations of the MAC, the network and the application layers to attain maximum performance and to successfully deal with any arising hurdles. Our approach has been exhaustively evaluated by computer simulations and mathematical analysis, as well as validation within real test-beds deployed in controlled environments. In particular, these test-beds cover two of the main scenarios found in a SG; on one hand, an indoor electrical substation environment, implemented in a High Voltage AC/DC laboratory, and, on the other hand, an outdoor case, deployed in the Transmission and Distribution segment of a power grid. The results obtained show that SENSED-SG performs better and is more suitable for the Smart Grid than the popular ZigBee WSN approach.

  19. Mobile virtual synchronous machine for vehicle-to-grid applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, Christopher

    2012-03-20

    The Mobile Virtual Synchronous Machine (VISMA) is a power electronics device for Vehicle to Grid (V2G) applications which behaves like an electromechanical synchronous machine and offers the same beneficial properties to the power network, increasing the inertia in the system, stabilizing the grid voltage, and providing a short-circuit current in case of grid faults. The VISMA performs a real-time simulation of a synchronous machine and calculates the phase currents that an electromagnetic synchronous machine would produce under the same local grid conditions. An inverter with a current controller feeds the currents calculated by the VISMA into the grid. In this dissertation, the requirements for a machine model suitable for the Mobile VISMA are set, and a mathematical model suitable for use in the VISMA algorithm is found and tested in a custom-designed simulation environment prior to implementation on the Mobile VISMA hardware. A new hardware architecture for the Mobile VISMA based on microcontroller and FPGA technologies is presented, and experimental hardware is designed, implemented, and tested. The new architecture is designed in such a way that allows reducing the size and cost of the VISMA, making it suitable for installation in an electric vehicle. A simulation model of the inverter hardware and hysteresis current controller is created, and the simulations are verified with various experiments. The verified model is then used to design a new type of PWM-based current controller for the Mobile VISMA. The performance of the hysteresis- and PWM-based current controllers is evaluated and compared for different operational modes of the VISMA and configurations of the inverter hardware. Finally, the behavior of the VISMA during power network faults is examined. A desired behavior of the VISMA during network faults is defined, and experiments are performed which verify that the VISMA, inverter hardware, and current controllers are capable of supporting this

  20. Mechanical test for fuel assembly spacer grid

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Jeong, Yeon Ho; Song, Kee Nam; Kim, Hyung Kyu; Yoon, Kyung Ho; Bang, Je Keun.

    1997-06-01

    In order to propose some tests for a new spacer grid, the grid mechanical tests performed by ABB-CE, KWU and Westinghouse have been investigated. It is known that a static compression test, a dynamic impact test, and a grid spring characteristic test were commonly carried out by the vendors when a prototype spacer grid was developed. The static compression test is to measure the stresses on the strips as well as to obtain the grid stiffness. The dynamic impact test is to get some basic data for accident analysis such as impact stiffness, impact strength, and coefficient of restitution. Since each fuel vendor has his theory on an accident analysis, every vendor employs his particular method for the dynamic impact test. The dynamic impact test can be divided into two in accordance with the number of impact face, and the duration of impact pulse. One is an one-sided impact test and the other is an through-gird impact test. The duration of the impact pulse for the former is considerably shorter than the latter. Therefore, the grid can endure much higher load under the one-sided impact condition than under the through-grid impact condition. The grid spring characteristic test is to obtain a force versus deflection curve. This curve is very important in designing the spacer grid to provide fuel rods with a sound supports in core. (author). 18 tabs., 26 figs

  1. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov (United States)

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  2. The optimization of demand response programs in smart grids

    International Nuclear Information System (INIS)

    Derakhshan, Ghasem; Shayanfar, Heidar Ali; Kazemi, Ahad

    2016-01-01

    The potential to schedule portion of the electricity demand in smart energy systems is clear as a significant opportunity to enhance the efficiency of the grids. Demand response is one of the new developments in the field of electricity which is meant to engage consumers in improving the energy consumption pattern. We used Teaching & Learning based Optimization (TLBO) and Shuffled Frog Leaping (SFL) algorithms to propose an optimization model for consumption scheduling in smart grid when payment costs of different periods are reduced. This study conducted on four types residential consumers obtained in the summer for some residential houses located in the centre of Tehran city in Iran: first with time of use pricing, second with real-time pricing, third one with critical peak pricing, and the last consumer had no tariff for pricing. The results demonstrate that the adoption of demand response programs can reduce total payment costs and determine a more efficient use of optimization techniques. - Highlights: •An optimization model for the demand response program is made. •TLBO and SFL algorithms are applied to reduce payment costs in smart grid. •The optimal condition is provided for the maximization of the social welfare problem. •An application to some residential houses located in the centre of Tehran city in Iran is demonstrated.

  3. Secure Real-Time Monitoring and Management of Smart Distribution Grid using Shared Cellular Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Ganem, Hervé; Jorguseski, Ljupco

    2017-01-01

    capabilities. Thanks to the advanced measurement devices, management framework, and secure communication infrastructure developed in the FP7 SUNSEED project, the Distribution System Operator (DSO) now has full observability of the energy flows at the medium/low voltage grid. Furthermore, the prosumers are able......, where the smart grid ICT solutions are provided through shared cellular LTE networks....

  4. Smart grid overview and current industry activities

    Energy Technology Data Exchange (ETDEWEB)

    Dignard-Bailey, L. [Natural Resources Canada, Ottawa, ON (Canada). Renewable Energy Integration Div.

    2009-07-01

    Electricity demand continues to increase among growing concerns about security, power quality, and grid reliability. This presentation discussed reviewed programs and strategies developed to merge grid applications with existing utility infrastructure in Canada. Smart grid applications include real-time simulation and contingency analysis; distributed generation and alternative energy sources; self-healing wide-area protection and islanding; asset management and on-line equipment monitoring; demand response and dynamic pricing; and participation in energy markets. Distributed automation and advanced metering programs are currently underway in various provinces throughout Canada, and many utilities are exploring methods of improving the integration of renewable energy sources. Canadian utilities are now involved in large data transfers to ensure that rural networks receive spectrum with good propagation. WiFi meshed installations have also been installed throughout the country, and various advanced distribution automation technologies are being implemented. A smart grid working group has been formed to identify technology gaps, and programs have been developed to educate industry leaders on smart grid drivers, technologies, and opportunities. Various pilot and research programs were outlined, legislation related to utility regulation was discussed. tabs., figs.

  5. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  6. Real-time measurements and their effects on state estimation of distribution power system

    DEFF Research Database (Denmark)

    Han, Xue; You, Shi; Thordarson, Fannar

    2013-01-01

    between the estimated values (voltage and injected power) and the measurements are applied to evaluate the accuracy of the estimated grid states. Eventually, some suggestions are provided for the distribution grid operators on placing the real-time meters in the distribution grid.......This paper aims at analyzing the potential value of using different real-time metering and measuring instruments applied in the low voltage distribution networks for state-estimation. An algorithm is presented to evaluate different combinations of metering data using a tailored state estimator....... It is followed by a case study based on the proposed algorithm. A real distribution grid feeder with different types of meters installed either in the cabinets or at the customer side is selected for simulation and analysis. Standard load templates are used to initiate the state estimation. The deviations...

  7. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    Science.gov (United States)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  8. Experimental evaluation of BZ-GW (BACnet-ZigBee smart grid gateway) for demand response in buildings

    International Nuclear Information System (INIS)

    Hong, Seung Ho; Kim, Se Hwan; Kim, Gi Myung; Kim, Hyung Lae

    2014-01-01

    The SG (smart grid) is a modernized and a future-oriented electric grid that deals with the whole energy chain, from generation to consumer. Among the SG applications, DR (demand response) is an important control mechanism to manage the electricity consumption of the customer in response to supply conditions. In buildings, DR is managed through installed communication networks which support DR applications. BACnet is an international standard communication protocol for building automation and control systems. BACnet uses ZigBee as a wireless communication protocol. Both BACnet and ZigBee have their own DR applications. In this study, we developed a BACnet-ZigBee gateway that maps the DR application of BACnet to that of ZigBee and vice versa. In addition, we developed an experimental facility to demonstrate how the BACnet-ZigBee gateway can be implemented for DR applications in buildings. We also measured the communication delay to verify that the BZ-GW (BACnet-ZigBee smart grid gateway) developed here satisfies the requirements of real-time DR service in buildings. - Highlights: • Developed a gateway that maps the DR application of BACnet to that of ZigBee. • Verified satisfaction for real-time requirement using experimental facility. • The gateway and other device will play a infrastructure role in buildings. • The implementation method could become a reference model for future similar

  9. Robust Control of Wide Bandgap Power Electronics Device Enabled Smart Grid

    Science.gov (United States)

    Yao, Tong

    In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, micro synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using Hinfinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID

  10. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  11. Hierarchical Data Replication and Service Monitoring Methods in a Scientific Data Grid

    Directory of Open Access Journals (Sweden)

    Weizhong Lu

    2009-04-01

    Full Text Available In a grid and distributed computing environment, data replication is an effective way to improve data accessibility and data accessing efficiency. It is also significant in developing a real-time service monitoring system for a Chinese Scientific Data Grid to guarantee the system stability and data availability. Hierarchical data replication and service monitoring methods are proposed in this paper. The hierarchical data replication method divides the network into different domains and replicates data in local domains. The nodes in a local domain are classified into hierarchies to improve data accessibility according to bandwidth and storage memory space. An extensible agent-based prototype of a hierarchical service monitoring system is presented. The status information of services in the Chinese Scientific Data Grid is collected from the grid nodes based on agent technology and then is transformed into real-time operational pictures for management needs. This paper presents frameworks of the hierarchical data replication and service monitoring methods and gives detailed resolutions. Simulation analyses have demonstrated improved data accessing efficiency and verified the effectiveness of the methods at the same time.

  12. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    OpenAIRE

    Jain, Bhavna; Singh, Sameer; Jain, Shailendra; Nema, R. K.

    2015-01-01

    Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL) and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding...

  13. Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles

    International Nuclear Information System (INIS)

    Marongiu, Andrea; Roscher, Marco; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • A study of a V2G strategy considering the state of health of EVs as fundamental parameter is proposed. • A Simulation environment with 100 electric vehicle models for two different lithium-ion battery chemistries is implemented. • Real aging and electrical characteristic data are used to parameterize the battery models. • Simulation of 1 year for 4 different scenarios for two different ambient temperatures are carried out and compared. - Abstract: The main goal of this paper is to study the effect of a vehicle-to-grid (V2G) strategy on the lifetime of two different lithium-ion batteries. The work investigates how the aging effect on the electric vehicles’ (EV) battery packs due to the additional V2G use can be reduced: it is assumed that the grid is able to identify the cars within the fleet for which the ulterior aging effects caused by V2G usage are restrained in respect of the others. The chosen EVs have to contain enough energy to satisfy the grid requests in terms of power regulation. In order to analyze the possible effects on the EVs due to the mentioned strategy, a V2G simulation environment has been implemented. The system consists of 100 EVs and a grid management strategy subsystem. Each EV is represented by a battery electrical model based on electrical impedance spectroscopy (EIS) data and an aging prediction model parameterized through accelerated aging tests. In order to reproduce real scenario conditions, both the electrical battery model and the aging prediction model have been parameterized for two different cells, a LiFePO 4 -cathode based and an NMC-cathode based lithium-ion cell. In particular, the accelerated aging tests have been carried out for more than one year, both for calendar and cycling operation, involving around 45 cells for each of the two technologies. The grid subsystem is represented by an algorithm which is able to consider information in terms of aging and type of battery installed in the EV. This

  14. Grid production with the ATLAS Event Service

    CERN Document Server

    Benjamin, Douglas; The ATLAS collaboration

    2018-01-01

    ATLAS has developed and previously presented a new computing architecture, the Event Service, that allows real time delivery of fine grained workloads which process dispatched events (or event ranges) and immediately streams outputs. The principal aim was to profit from opportunistic resources such as commercial cloud, supercomputing, and volunteer computing, and otherwise unused cycles on clusters and grids. During the development and deployment phase, its utility also on the grid and conventional clusters for the exploitation of otherwise unused cycles became apparent. Here we describe our experience commissioning the Event Service on the grid in the ATLAS production system. We study the performance compared with standard simulation production. We describe the integration with the ATLAS data management system to ensure scalability and compatibility with object stores. Finally, we outline the remaining steps towards a fully commissioned system.

  15. The Experiment Method for Manufacturing Grid Development on Single Computer

    Institute of Scientific and Technical Information of China (English)

    XIAO Youan; ZHOU Zude

    2006-01-01

    In this paper, an experiment method for the Manufacturing Grid application system development in the single personal computer environment is proposed. The characteristic of the proposed method is constructing a full prototype Manufacturing Grid application system which is hosted on a single personal computer with the virtual machine technology. Firstly, it builds all the Manufacturing Grid physical resource nodes on an abstraction layer of a single personal computer with the virtual machine technology. Secondly, all the virtual Manufacturing Grid resource nodes will be connected with virtual network and the application software will be deployed on each Manufacturing Grid nodes. Then, we can obtain a prototype Manufacturing Grid application system which is working in the single personal computer, and can carry on the experiment on this foundation. Compared with the known experiment methods for the Manufacturing Grid application system development, the proposed method has the advantages of the known methods, such as cost inexpensively, operation simple, and can get the confidence experiment result easily. The Manufacturing Grid application system constructed with the proposed method has the high scalability, stability and reliability. It is can be migrated to the real application environment rapidly.

  16. Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Meg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-03-01

    This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of the discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.

  17. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  18. Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds

    Science.gov (United States)

    Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano

    Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.

  19. Analysis of the optimized H type grid spring by a characterization test and the finite element method under the in-grid boundary

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Lee, Kang Hee; Kang, Heung Seok; Song, Kee Nam

    2006-01-01

    Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized regions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed

  20. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  1. SW-platform for R&D in Applications of Synchrophasor Measurements for Wide-Area Assessment, Control and Visualization in Real-Time

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Morais, Hugo; Pedersen, Allan Henning Birger

    2014-01-01

    The Danish research project “Secure Operation of Sustainable Power Systems (SOSPO)” is currently being conducted in a collaboration by a group of partners from academia and industry. The focus of the project is on how to achieve secure operation of the power grid as large scale thermal power plants......, supplied by fossil fuel, are phased out in favor of non - controllable renewable energy sources like wind and solar energy. In particular, the SOSPO project aims to develop real - time stability and security assessment methods as well as wide - area control methods to re - establish stable and secure...... realistic conditions, the future system scenarios are represented in a real time grid simulator that is an integrated part of the platform. The SW - platform provides structured access to any model parameter as well as access to real - time phasor measurement unit (PMU) and remote terminal unit (RTU...

  2. VLAM-G: Interactive Data Driven Workflow Engine for Grid-Enabled Resources

    Directory of Open Access Journals (Sweden)

    Vladimir Korkhov

    2007-01-01

    Full Text Available Grid brings the power of many computers to scientists. However, the development of Grid-enabled applications requires knowledge about Grid infrastructure and low-level API to Grid services. In turn, workflow management systems provide a high-level environment for rapid prototyping of experimental computing systems. Coupling Grid and workflow paradigms is important for the scientific community: it makes the power of the Grid easily available to the end user. The paradigm of data driven workflow execution is one of the ways to enable distributed workflow on the Grid. The work presented in this paper is carried out in the context of the Virtual Laboratory for e-Science project. We present the VLAM-G workflow management system and its core component: the Run-Time System (RTS. The RTS is a dataflow driven workflow engine which utilizes Grid resources, hiding the complexity of the Grid from a scientist. Special attention is paid to the concept of dataflow and direct data streaming between distributed workflow components. We present the architecture and components of the RTS, describe the features of VLAM-G workflow execution, and evaluate the system by performance measurements and a real life use case.

  3. Disaster Monitoring using Grid Based Data Fusion Algorithms

    Directory of Open Access Journals (Sweden)

    Cătălin NAE

    2010-12-01

    Full Text Available This is a study of the application of Grid technology and high performance parallelcomputing to a candidate algorithm for jointly accomplishing data fusion from different sensors. Thisincludes applications for both image analysis and/or data processing for simultaneously trackingmultiple targets in real-time. The emphasis is on comparing the architectures of the serial andparallel algorithms, and characterizing the performance benefits achieved by the parallel algorithmwith both on-ground and in-space hardware implementations. The improved performance levelsachieved by the use of Grid technology (middleware for Parallel Data Fusion are presented for themain metrics of interest in near real-time applications, namely latency, total computation load, andtotal sustainable throughput. The objective of this analysis is, therefore, to demonstrate animplementation of multi-sensor data fusion and/or multi-target tracking functions within an integratedmulti-node portable HPC architecture based on emerging Grid technology. The key metrics to bedetermined in support of ongoing system analyses includes: required computational throughput inMFLOPS; latency between receipt of input data and resulting outputs; and scalability, processorutilization and memory requirements. Furthermore, the standard MPI functions are considered to beused for inter-node communications in order to promote code portability across multiple HPCcomputer platforms, both in space and on-ground.

  4. A grid-based tropospheric product for China using a GNSS network

    Science.gov (United States)

    Zhang, Hongxing; Yuan, Yunbin; Li, Wei; Zhang, Baocheng; Ou, Jikun

    2017-11-01

    Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (2.0{°}× 2.5{°} latitude-longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP

  5. ON THE MANAGEMENT OF URBAN ELECTRIC NETWORKS IN THE CONDITIONS OF THE SMART GRID

    Directory of Open Access Journals (Sweden)

    M. А. Fursanov

    2018-01-01

    Full Text Available The issues of prospective operation of the city electric networks in the conditions of the MART GRID, which will be quite different as compared to the traditional understanding and approaches, are under consideration. This requires the selection and application of appropriate analytical criteria and approaches to assessment, analysis and control of the networks. With this regard the following criteria are recommended: in a particular case – the optimal (minimal technological electric power consumption (losses, while in general – economically reasonable (minimal cost value of electric power transmission. It should be also borne in mind that contemporary urban networks are actively saturated with distributed sources of small generation that have radically changed the structure of electrical networks; therefore, account for such sources is an absolutely necessary objective of management regimes of urban electric networks, both traditional and in associated with the SMART GRID. A case of the analysis and control of urban electric 10 kV networks with distributed small sources of generation has been developed and presented according to the theoretical criterion of minimum relative active power losses in the circuit as a control case. The conducted research makes it possible to determine the magnitude of the tolerance network mode from the point of the theoretical minimum. 

  6. Optimized Scheduling of Smart Meter Data Access for Real-time Voltage Quality Monitoring

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Olsen, Rasmus Løvenstein; Schwefel, Hans-Peter

    2018-01-01

    Abstract—Active low-voltage distribution grids that support high integration of distributed generation such as photovoltaics and wind turbines require real-time voltage monitoring. At the same time, countries in Europe such as Denmark have close to 100% rollout of smart metering infrastructure....... The metering infrastructure has limitations to provide real-time measurements with small-time granularity. This paper presents an algorithm for optimized scheduling of smart meter data access to provide real-time voltage quality monitoring. The algorithm is analyzed using a real distribution grid in Denmark...

  7. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb; Muljadi, Eduard

    2017-02-01

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

  8. An improved fuzzy synthetic condition assessment of a wind turbine generator system

    DEFF Research Database (Denmark)

    Li, H.; Hu, Y. G.; Yang, Chao

    2013-01-01

    This paper presents an improved fuzzy synthetic model that is based on a real-time condition assessment method of a grid-connected wind turbine generator system (WTGS) to improve the operational reliability and optimize the maintenance strategy. First, a condition assessment framework is proposed...... by analyzing the monitoring data of the WTGS. An improved fuzzy synthetic condition assessment method is then proposed that utilizes the concepts of deterioration degree, dynamic limited values and variable weight calculations of the assessment indices. Finally, by using on-line monitoring data of an actual...... 850 kW WTGS, real-time condition assessments are performed that utilize the proposed fuzzy synthetic method; the model’s effectiveness is also compared to a traditional fuzzy assessment method in which constant limited values and constant weights are adopted. The results show that the condition...

  9. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  10. An Informatics Approach to Demand Response Optimization in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  11. Comprehensive analysis of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions

    DEFF Research Database (Denmark)

    Alsmadi, Yazan M.; Xu, Longya; Blaabjerg, Frede

    2015-01-01

    ) capability of wind turbines during grid faults is one of the core requirements to ensure stability in the power grid during transients. The doubly-fed induction generators (DFIGs) offer several advantages when utilized in wind turbines, but discussions about their LVRT capabilities are limited. This paper...... presents a comprehensive study of the LVRT of grid-connected DFIG-based wind turbines. It provides a detailed investigation of the transient characteristics and the dynamic behavior of DFIGs during symmetrical and asymmetrical grid voltage sags. A detailed theoretical study supported by computer......Power generation and grid stability have become key issues in the last decade. The high penetration of large capacity wind generation into the electric power grid has led to serious concerns about their influence on the dynamic behavior of power systems. The Low-Voltage Ride-Through (LVRT...

  12. Deployment of a Grid-based Medical Imaging Application

    CERN Document Server

    Amendolia, S R; Frate, C; Gálvez, J; Hassan, W; Hauer, T; Manset, D; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T; Warren, R

    2005-01-01

    The MammoGrid project has deployed its Service-Oriented Architecture (SOA)-based Grid application in a real environment comprising actual participating hospitals. The resultant setup is currently being exploited to conduct rigorous in-house tests in the first phase before handing over the setup to the actual clinicians to get their feedback. This paper elaborates the deployment details and the experiences acquired during this phase of the project. Finally the strategy regarding migration to an upcoming middleware from EGEE project will be described. This paper concludes by highlighting some of the potential areas of future work.

  13. Mitigating Space Weather Impacts on the Power Grid in Real-Time: Applying 3-D EarthScope Magnetotelluric Data to Forecasting Reactive Power Loss in Power Transformers

    Science.gov (United States)

    Schultz, A.; Bonner, L. R., IV

    2017-12-01

    Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields

  14. The International Symposium on Grids and Clouds and the Open Grid Forum

    Science.gov (United States)

    The International Symposium on Grids and Clouds 20111 was held at Academia Sinica in Taipei, Taiwan on 19th to 25th March 2011. A series of workshops and tutorials preceded the symposium. The aim of ISGC is to promote the use of grid and cloud computing in the Asia Pacific region. Over the 9 years that ISGC has been running, the programme has evolved to become more user community focused with subjects reaching out to a larger population. Research communities are making widespread use of distributed computing facilities. Linking together data centers, production grids, desktop systems or public clouds, many researchers are able to do more research and produce results more quickly. They could do much more if the computing infrastructures they use worked together more effectively. Changes in the way we approach distributed computing, and new services from commercial providers, mean that boundaries are starting to blur. This opens the way for hybrid solutions that make it easier for researchers to get their job done. Consequently the theme for ISGC2011 was the opportunities that better integrated computing infrastructures can bring, and the steps needed to achieve the vision of a seamless global research infrastructure. 2011 is a year of firsts for ISGC. First the title - while the acronym remains the same, its meaning has changed to reflect the evolution of computing: The International Symposium on Grids and Clouds. Secondly the programming - ISGC 2011 has always included topical workshops and tutorials. But 2011 is the first year that ISGC has been held in conjunction with the Open Grid Forum2 which held its 31st meeting with a series of working group sessions. The ISGC plenary session included keynote speakers from OGF that highlighted the relevance of standards for the research community. ISGC with its focus on applications and operational aspects complemented well with OGF's focus on standards development. ISGC brought to OGF real-life use cases and needs to be

  15. Electric arc discharge damage to ion thruster grids

    Science.gov (United States)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  16. POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid

    International Nuclear Information System (INIS)

    Orvis, W.J.

    1988-01-01

    1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic

  17. Novel Simulation Approaches for Smart Grids

    Directory of Open Access Journals (Sweden)

    Eleftherios Tsampasis

    2016-06-01

    Full Text Available The complexity of the power grid, in conjunction with the ever increasing demand for electricity, creates the need for efficient analysis and control of the power system. The evolution of the legacy system towards the new smart grid intensifies this need due to the large number of sensors and actuators that must be monitored and controlled, the new types of distributed energy sources that need to be integrated and the new types of loads that must be supported. At the same time, integration of human-activity awareness into the smart grid is emerging and this will allow the system to monitor, share and manage information and actions on the business, as well as the real world. In this context, modeling and simulation is an invaluable tool for system behavior analysis, energy consumption estimation and future state prediction. In this paper, we review current smart grid simulators and approaches for building and user behavior modeling, and present a federated smart grid simulation framework, in which building, control and user behavior modeling and simulation are decoupled from power or network simulators and implemented as discrete components. This framework enables evaluation of the interactions between the communication infrastructure and the power system taking into account the human activities, which are at the focus of emerging energy-related applications that aim to shape user behavior. Validation of the key functionality of the proposed framework is also presented.

  18. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC for grid-connected systems

    Directory of Open Access Journals (Sweden)

    Ayetül Gelen

    2015-05-01

    Full Text Available This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU, which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI, their controller, transformer and filter, is designed for grid-connected systems. The voltage-source inverter with six Insulated Gate Bipolar Transistor (IGBT switches inverts the DC voltage that comes from the converter into a sinusoidal voltage synchronized with the grid. The simulations and modeling of the system are developed on Matlab/Simulink environment. The performance of SOFC with converter is examined under step and random load conditions. The simulation results show that the designed boost converter for the proposed thermal based modified SOFC model has fairly followed different DC load variations. Finally, the AC bus of 400 Volt and 50 Hz is connected to a single-machine infinite bus (SMIB through a transmission line. The real and reactive power managements of the inverter are analyzed by an infinite bus system. Thus, the desired nominal values are properly obtained by means of the inverter controller.

  19. Hydrography-driven coarsening of grid digital elevation models

    Science.gov (United States)

    Moretti, G.; Orlandini, S.

    2017-12-01

    A new grid coarsening strategy, denoted as hydrography-driven (HD) coarsening, is developed in the present study. The HD coarsening strategy is designed to retain the essential hydrographic features of surface flow paths observed in high-resolution digital elevation models (DEMs): (1) depressions are filled in the considered high-resolution DEM, (2) the obtained topographic data are used to extract a reference grid network composed of all surface flow paths, (3) the Horton order is assigned to each link of the reference grid network, and (4) within each coarse grid cell, the elevation of the point lying along the highest-order path of the reference grid network and displaying the minimum distance to the cell center is assigned to this coarse grid cell center. The capabilities of the HD coarsening strategy to provide consistent surface flow paths with respect to those observed in high-resolution DEMs are evaluated over a synthetic valley and two real drainage basins located in the Italian Alps and in the Italian Apennines. The HD coarsening is found to yield significantly more accurate surface flow path profiles than the standard nearest neighbor (NN) coarsening. In addition, the proposed strategy is found to reduce drastically the impact of depression-filling procedures in coarsened topographic data. The HD coarsening strategy is therefore advocated for all those cases in which the relief of the extracted drainage network is an important hydrographic feature. The figure below reports DEMs of a synthetic valley and extracted surface flow paths. (a) 10-m grid DEM displaying no depressions and extracted surface flow path (gray line). (b) 1-km grid DEM obtained from NN coarsening. (c) 1-km grid DEM obtained from NN coarsening plus depression-filling and extracted surface flow path (light blue line). (d) 1-km grid DEM obtained from HD coarsening and extracted surface flow path (magenta line).

  20. Research on control strategy based on fuzzy PR for grid-connected inverter

    Science.gov (United States)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  1. Identification of necessary and sufficient conditions for real non-negativeness of rational matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-12-01

    The necessary and sufficient conditions for real non-negativeness of rational matrices have been identified. A programmable algorithm is developed and is given with its computer flow chart. This algorithm can be used as a general solution to test the real non-negativeness of rational matrices. The computer program assures the feasibility of the suggested algorithm. (author)

  2. Thundercloud: Domain specific information security training for the smart grid

    Science.gov (United States)

    Stites, Joseph

    In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.

  3. For smart electric grids

    International Nuclear Information System (INIS)

    Tran Thiet, Jean-Paul; Leger, Sebastien; Bressand, Florian; Perez, Yannick; Bacha, Seddik; Laurent, Daniel; Perrin, Marion

    2012-01-01

    The authors identify and discuss the main challenges faced by the French electric grid: the management of electricity demand and the needed improvement of energy efficiency, the evolution of consumer's state of mind, and the integration of new production capacities. They notably outline that France have been living until recently with an electricity abundance, but now faces the highest consumption peaks in Europe, and is therefore facing higher risks of power cuts. They also notice that the French energy mix is slowly evolving, and outline the problems raised by the fact that renewable energies which are to be developed, are decentralised and intermittent. They propose an overview of present developments of smart grids, and outline their innovative characteristics, challenges raised by their development and compare international examples. They show that smart grids enable a better adapted supply and decentralisation. A set of proposals is formulated about how to finance and to organise the reconfiguration of electric grids, how to increase consumer's responsibility for peak management and demand management, how to create the conditions of emergence of a European market of smart grids, and how to support self-consumption and the building-up of an energy storage sector

  4. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  5. Gridded precipitation dataset for the Rhine basin made with the genRE interpolation method

    NARCIS (Netherlands)

    Osnabrugge, van B.; Uijlenhoet, R.

    2017-01-01

    A high resolution (1.2x1.2km) gridded precipitation dataset with hourly time step that covers the whole Rhine basin for the period 1997-2015. Made from gauge data with the genRE interpolation scheme. See "genRE: A method to extend gridded precipitation climatology datasets in near real-time for

  6. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    OpenAIRE

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...

  7. Ion extraction capabilities of two-grid accelerator systems

    International Nuclear Information System (INIS)

    Rovang, D.C.; Wilbur, P.J.

    1984-02-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems

  8. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  9. Triana: a control strategy for Smart Grids: Forecasting, planning & real-time control

    NARCIS (Netherlands)

    Bakker, Vincent

    2012-01-01

    Increasing demand, extra fluctuation and a large share of distributed electricity generation will put more stress on the electricity supply chain. Therefore, changes are required in the supply chain to maintain a properly functioning, stable and affordable grid. Currently the supply chain is

  10. An Overview of the Smart Grid in Great Britain

    Directory of Open Access Journals (Sweden)

    Nick Jenkins

    2015-12-01

    Full Text Available This paper presents an overview of the current status of the development of the smart grid in Great Britain (GB. The definition, policy and technical drivers, incentive mechanisms, technological focus, and the industry's progress in developing the smart grid are described. In particular, the Low Carbon Networks Fund and Electricity Network Innovation Competition projects, together with the rollout of smart metering, are detailed. A more observable, controllable, automated, and integrated electricity network will be supported by these investments in conjunction with smart meter installation. It is found that the focus has mainly been on distribution networks as well as on real-time flows of information and interaction between suppliers and consumers facilitated by improved information and communications technology, active power flow management, demand management, and energy storage. The learning from the GB smart grid initiatives will provide valuable guidelines for future smart grid development in GB and other countries.

  11. Hiding Critical Targets in Smart Grid Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Wei [Univ. of Arkansas, Fayetteville, AR (United States); Li, Qinghua

    2017-10-23

    With the integration of advanced communication technologies, the power grid is expected to greatly enhance efficiency and reliability of future power systems. However, since most electrical devices in power grid substations are connected via communication networks, cyber security of these communication networks becomes a critical issue. Real-World incidents such as Stuxnet have shown the feasibility of compromising a device in the power grid network to further launch more sophisticated attacks. To deal with security attacks of this spirit, this paper aims to hide critical targets from compromised internal nodes and hence protect them from further attacks launched by those compromised nodes. In particular, we consider substation networks and propose to add carefully-controlled dummy traffic to a substation network to make critical target nodes indistinguishable from other nodes in network traffic patterns. This paper describes the design and evaluation of such a scheme. Evaluations show that the scheme can effectively protect critical nodes with acceptable communication cost.

  12. Controllable Load Management Approaches in Smart Grids

    Directory of Open Access Journals (Sweden)

    Jingshuang Shen

    2015-10-01

    Full Text Available With rapid smart grid technology development, the customer can actively participate in demand-side management (DSM with the mutual information communication between the distributor operation company and the smart devices in real-time. Controllable load management not only has the advantage of peak shaving, load balance, frequency regulation, and voltage stability, but is also effective at providing fast balancing services to the renewable energy grid in the distributed power system. The load management faces an enormous challenge as the customer has a large number of both small residential loads and dispersed renewable sources. In this paper, various controllable load management approaches are discussed. The traditional controllable load approaches such as the end users’ controllable appliances, storage battery, Vehicle-to-Grid (V2G, and heat storage are reviewed. The “broad controllable loads” management, such as the microgrid, Virtual Power Plant (VPP, and the load aggregator are also presented. Furthermore, the load characteristics, control strategies, and control effectiveness are analyzed.

  13. Job scheduling in a heterogenous grid environment

    Energy Technology Data Exchange (ETDEWEB)

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-02-11

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  14. Smart grid for comfort; Smart grid voor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W.; Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Vissers, D.R.; Maaijen, H.N. [Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Kling, W.L. [Faculteit Electrical Engineering, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Larsen, J.P. [Sense Observation Systems, Rotterdam (Netherlands)

    2012-04-15

    A new control strategy was developed based on the application of wireless sensor network with the connection to a smart grid to investigate if it is possible to save energy on the level of the user under the condition of maintaining the same or even improved level of individual comfort. By using different scenarios, for individual comfort and energy consumption, agents provide the steering of the process control This forms the basis of a new approach to optimize the energy consumption, after which the effect of it can be used on the level of residential building to optimize the interaction with the electrical infrastructure, the smart grid. [Dutch] Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er zijn verschillende scenario's voor individueel comfort en energiegebruik van apparatuur met behulp van agents die voor de aansturing kunnen zorgen. Zo wordt de kern van de energievraag geoptimaliseerd. De doorwerking hiervan tot op het niveau van woninggebouw en de koppeling met het externe elektriciteitsnet kan vervolgens worden geoptimaliseerd.

  15. Grid sensitivity capability for large scale structures

    Science.gov (United States)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  16. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    Science.gov (United States)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  17. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  18. Intelligent Control of Micro Grid: A Big Data-Based Control Center

    Science.gov (United States)

    Liu, Lu; Wang, Yanping; Liu, Li; Wang, Zhiseng

    2018-01-01

    In this paper, a structure of micro grid system with big data-based control center is introduced. Energy data from distributed generation, storage and load are analized through the control center, and from the results new trends will be predicted and applied as a feedback to optimize the control. Therefore, each step proceeded in micro grid can be adjusted and orgnized in a form of comprehensive management. A framework of real-time data collection, data processing and data analysis will be proposed by employing big data technology. Consequently, a integrated distributed generation and a optimized energy storage and transmission process can be implemented in the micro grid system.

  19. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    Science.gov (United States)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  20. Characterization test of the optimized H type grid spring under the in-grid boundary condition

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Hyung Tae; Lee, Kang Hee; Kang, Heung Seok

    2004-01-01

    This paper is dealing with the simplified method for the characterization test. In reality, the spring should be tested with the test specimen of spacer grid assembly itself (assembly-based test). But the available space for loading is very small due to the dimples and the spring of the adjacent straps, much care should be necessary in conducting the assembly-based test. Test results are compared with the previous test results for checking the usability of the assembly-based test

  1. Flames in fractal grid generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)

    2013-12-15

    Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)

  2. Enabling Campus Grids with Open Science Grid Technology

    International Nuclear Information System (INIS)

    Weitzel, Derek; Fraser, Dan; Pordes, Ruth; Bockelman, Brian; Swanson, David

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  3. Enabling demand response by extending the European electricity markets with a real-time market

    NARCIS (Netherlands)

    Nyeng, P.; Kok, K.; Pineda, S.; Grande, O.; Sprooten, J.; Hebb, B.; Nieuwenhout, F.

    2013-01-01

    The EcoGrid concept proposes to extend the current wholesale electricity market to allow participation of Distributed Energy Resources (DERs) and domestic end-consumers in system balancing. Taking advantage of the smart grid technology, the EcoGrid market publishes the real-time prices that entail

  4. Increased Productivity for Emerging Grid Applications the Application Support System

    CERN Document Server

    Maier, Andrew; Mendez Lorenzo, Patricia; Moscicki, Jakub; Lamanna, Massimo; Muraru, Adrian

    2008-01-01

    Recently a growing number of various applications have been quickly and successfully enabled on the Grid by the CERN Grid application support team. This allowed the applications to achieve and publish large-scale results in a short time which otherwise would not be possible. We present the general infrastructure, support procedures and tools that have been developed. We discuss the general patterns observed in supporting new applications and porting them to the EGEE environment. The CERN Grid application support team has been working with the following real-life applications: medical and particle physics simulation (Geant4, Garfield), satellite imaging and geographic information for humanitarian relief operations (UNOSAT), telecommunications (ITU), theoretical physics (Lattice QCD, Feynman-loop evaluation), Bio-informatics (Avian Flu Data Challenge), commercial imaging processing and classification (Imense Ltd.) and physics experiments (ATLAS, LHCb, HARP). Using the EGEE Grid we created a standard infrastruct...

  5. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    Science.gov (United States)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  6. Development of a Photovoltaic Array Emulator System in Real Time Considering Climatic Conditions Variations

    Directory of Open Access Journals (Sweden)

    Camilo E. Ardila-Franco

    2013-11-01

    Full Text Available This paper presents the development of an emulator that has the ability to replicate, in real time, the behavior of photovoltaic panels (PV arrays considering different conditions of irradiation and temperature for each one. The emulator consists of a data acquisition card, a programmable source and a computer. It is based on the bypass diode model that provides a better approximation to real operating conditions. The solution is computed by a simplified equation that uses the Lambert W function, which reduces the computation time. After that, it generates a solution table of values of current as a function of voltage on terminals, temperature and irradiation. Real-time emulation is performed by means of a search algorithm in the solutions table of the closest value to the voltage imposed on the terminals.

  7. Improved Droop Control Strategy for Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Abusara, Mohammad; Sharkh, Suleiman; Guerrero, Josep M.

    2015-01-01

    An improved control strategy for grid-connected inverters within microgrids is presented in this paper. The strategy is based on the classical P-ω and Q-V droop method. The improvement in the proposed control strategy is twofold: Firstly, the transient response of the droop controller is improved...... by replacing the traditional method of measuring average power, which is based on using a first order low pass filter, by a real time integration filter. This is shown to reduce the imported transient energy when connecting to the grid. Secondly, the steady state output current quality is improved by utilising...... a virtual inductance, which is shown to reject grid voltage harmonics disturbance and thus improve the output current THD. A small signal model of the inverter based on the transfer function approach is developed to analyse is stability and determine droop gains. Simulation and experimental results...

  8. Enabling campus grids with open science grid technology

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Derek [Nebraska U.; Bockelman, Brian [Nebraska U.; Swanson, David [Nebraska U.; Fraser, Dan [Argonne; Pordes, Ruth [Fermilab

    2011-01-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  9. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  10. Development of real-time voltage stability monitoring tool for power system transmission network using Synchrophasor data

    Science.gov (United States)

    Pulok, Md Kamrul Hasan

    Intelligent and effective monitoring of power system stability in control centers is one of the key issues in smart grid technology to prevent unwanted power system blackouts. Voltage stability analysis is one of the most important requirements for control center operation in smart grid era. With the advent of Phasor Measurement Unit (PMU) or Synchrophasor technology, real time monitoring of voltage stability of power system is now a reality. This work utilizes real-time PMU data to derive a voltage stability index to monitor the voltage stability related contingency situation in power systems. The developed tool uses PMU data to calculate voltage stability index that indicates relative closeness of the instability by producing numerical indices. The IEEE 39 bus, New England power system was modeled and run on a Real-time Digital Simulator that stream PMU data over the Internet using IEEE C37.118 protocol. A Phasor data concentrator (PDC) is setup that receives streaming PMU data and stores them in Microsoft SQL database server. Then the developed voltage stability monitoring (VSM) tool retrieves phasor measurement data from SQL server, performs real-time state estimation of the whole network, calculate voltage stability index, perform real-time ranking of most vulnerable transmission lines, and finally shows all the results in a graphical user interface. All these actions are done in near real-time. Control centers can easily monitor the systems condition by using this tool and can take precautionary actions if needed.

  11. Grid workflow job execution service 'Pilot'

    Science.gov (United States)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-12-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  12. Grid workflow job execution service 'Pilot'

    International Nuclear Information System (INIS)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-01-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  13. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    decrease uncertainties by increasing the probability of occurrence and to create large database devoted for future satellite instrument. Some limitations are related to the combination of databases-outside the grid infrastructure like ESGF (Earth System Grid Federation) and grid compute resources; and to real-time applications that need resource reservation in order to insure results at given time. However some solutions have been developed. The major lesson we learnt with Grid is the impact of e-collaboration among various scientific technical domains on the development of ES research in Europe.

  14. Non-Pilot Protection of the HVDC Grid

    Science.gov (United States)

    Badrkhani Ajaei, Firouz

    This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.

  15. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    KAUST Repository

    Buse, Gerrit

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated grids, both with and without boundary grid points. Similar to the implicit data structures proposed in Feuersänger (Dünngitterverfahren für hochdimensionale elliptische partielle Differntialgleichungen. Diploma Thesis, Institut für Numerische Simulation, Universität Bonn, 2005) and Murarasu et al. (Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming. Cambridge University Press, New York, 2011, pp. 25–34) we also define a bijective mapping from the multi-dimensional space of grid points to a contiguous index, such that the grid data can be stored in a simple array without overhead. Our approach is especially well-suited to exploit all levels of current commodity hardware, including cache-levels and vector extensions. Furthermore, this kind of data structure is extremely attractive for today’s real-time applications, as it gives direct access to the hierarchical structure of the grids, while outperforming other common sparse grid structures (hash maps, etc.) which do not match with modern compute platforms that well. For dimensionality d ≤ 10 we achieve good speedups on a 12 core Intel Westmere-EP NUMA platform compared to the results presented in Murarasu et al. (Proceedings of the International Conference on Computational Science—ICCS 2012. Procedia Computer Science, 2012). As we show, this also holds for the results obtained on Nvidia Fermi GPUs, for which we observe speedups over our own CPU implementation of up to 4.5 when dealing with moderate dimensionality. In high-dimensional settings, in the order of tens to hundreds of dimensions, our sparse grid evaluation kernels on the CPU outperform any other known implementation.

  16. Utilizing Network QoS for Dependability of Adaptive Smart Grid Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Kristensen, Thomas le Fevre; Olsen, Rasmus Løvenstein

    2014-01-01

    A smart grid is a complex system consisting of a wide range of electric grid components, entities controlling power distribution, generation and consumption, and a communication network supporting data exchange. This paper focuses on the influence of imperfect network conditions on smart grid con...

  17. Electric vehicle integration in a real-time market

    DEFF Research Database (Denmark)

    Pedersen, Anders Bro

    with an externally simulated model of the power grid, it is be possible, in real-time, to simulate the impact of EV charging and help to identify bottlenecks in the system. In EDISON the vehicles are aggregated using an entity called a Virtual Power Plant (VPP); a central server monitoring and controlling...... the distributed energy resources registered with it, in order to make them appear as a single producer in the eyes of the market. Although the concept of a VPP is used within the EcoGrid EU project, the idea of more individual control is introduced through a new proposed real-time electricity market, where......This project is rooted in the EDISON project, which dealt with Electrical Vehicle (EV) integration into the existing power grid, as well as with the infrastructure needed to facilitate the ever increasing penetration of fluctuating renewable energy resources like e.g. wind turbines. In the EDISON...

  18. Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming

    Science.gov (United States)

    Xiao, Jingjie

    A key hurdle for implementing real-time pricing of electricity is a lack of consumers' responses. Solutions to overcome the hurdle include the energy management system that automatically optimizes household appliance usage such as plug-in hybrid electric vehicle charging (and discharging with vehicle-to-grid) via a two-way communication with the grid. Real-time pricing, combined with household automation devices, has a potential to accommodate an increasing penetration of plug-in hybrid electric vehicles. In addition, the intelligent energy controller on the consumer-side can help increase the utilization rate of the intermittent renewable resource, as the demand can be managed to match the output profile of renewables, thus making the intermittent resource such as wind and solar more economically competitive in the long run. One of the main goals of this dissertation is to present how real-time retail pricing, aided by control automation devices, can be integrated into the wholesale electricity market under various uncertainties through approximate dynamic programming. What distinguishes this study from the existing work in the literature is that whole- sale electricity prices are endogenously determined as we solve a system operator's economic dispatch problem on an hourly basis over the entire optimization horizon. This modeling and algorithm framework will allow a feedback loop between electricity prices and electricity consumption to be fully captured. While we are interested in a near-optimal solution using approximate dynamic programming; deterministic linear programming benchmarks are use to demonstrate the quality of our solutions. The other goal of the dissertation is to use this framework to provide numerical evidence to the debate on whether real-time pricing is superior than the current flat rate structure in terms of both economic and environmental impacts. For this purpose, the modeling and algorithm framework is tested on a large-scale test case

  19. Distributed Optimization of Sustainable Power Dispatch and Flexible Consumer Loads for Resilient Power Grid Operations

    Science.gov (United States)

    Srikantha, Pirathayini

    Today's electric grid is rapidly evolving to provision for heterogeneous system components (e.g. intermittent generation, electric vehicles, storage devices, etc.) while catering to diverse consumer power demand patterns. In order to accommodate this changing landscape, the widespread integration of cyber communication with physical components can be witnessed in all tenets of the modern power grid. This ubiquitous connectivity provides an elevated level of awareness and decision-making ability to system operators. Moreover, devices that were typically passive in the traditional grid are now `smarter' as these can respond to remote signals, learn about local conditions and even make their own actuation decisions if necessary. These advantages can be leveraged to reap unprecedented long-term benefits that include sustainable, efficient and economical power grid operations. Furthermore, challenges introduced by emerging trends in the grid such as high penetration of distributed energy sources, rising power demands, deregulations and cyber-security concerns due to vulnerabilities in standard communication protocols can be overcome by tapping onto the active nature of modern power grid components. In this thesis, distributed constructs in optimization and game theory are utilized to design the seamless real-time integration of a large number of heterogeneous power components such as distributed energy sources with highly fluctuating generation capacities and flexible power consumers with varying demand patterns to achieve optimal operations across multiple levels of hierarchy in the power grid. Specifically, advanced data acquisition, cloud analytics (such as prediction), control and storage systems are leveraged to promote sustainable and economical grid operations while ensuring that physical network, generation and consumer comfort requirements are met. Moreover, privacy and security considerations are incorporated into the core of the proposed designs and these

  20. Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.

  1. Contract networks for competition in transmission grids

    International Nuclear Information System (INIS)

    Hogan, W.W.

    1992-01-01

    Increased reliance on competition in energy markets requires pricing, access, and investment reform for the essential transmission grids. Due to the complexity of the network interactions, the usual analogies to economic concepts from other settings have little or no meaning in transmission grids. A contract network framework builds from first principles to define the conditions of an efficient market. 8 refs

  2. Research on Frequency Control of Grid Connected Sodium-Sulfur Battery

    Directory of Open Access Journals (Sweden)

    Zhang Fenglin

    2018-01-01

    Full Text Available Sodium sulfur battery is the only energy storage battery with large capacity and high energy density. It has a great application prospect in the peak load shifting of power grid, due to the lack of domestic research on it, it is urgent to evaluate the effect of grid-connection of sodium sulfur battery scientifically. According to the experimental data of the sodium sulfur battery project, the battery model is built. Compared with the real discharge curve, the error of the model simulation curve is small, so the battery model is effective. The AC / DC power grid model is built, and the rectifier and inverter control circuits are designed to simulate the scenario that the wind turbine and the battery are supplied to the passive load. The simulation results show that the grid-connected model of the sodium sulfur battery under the two control strategies can stabilize the larger frequency fluctuation.

  3. Computation for LHC experiments: a worldwide computing grid

    International Nuclear Information System (INIS)

    Fairouz, Malek

    2010-01-01

    In normal operating conditions the LHC detectors are expected to record about 10 10 collisions each year. The processing of all the consequent experimental data is a real computing challenge in terms of equipment, software and organization: it requires sustaining data flows of a few 10 9 octets per second and recording capacity of a few tens of 10 15 octets each year. In order to meet this challenge a computing network implying the dispatch and share of tasks, has been set. The W-LCG grid (World wide LHC computing grid) is made up of 4 tiers. Tiers 0 is the computer center in CERN, it is responsible for collecting and recording the raw data from the LHC detectors and to dispatch it to the 11 tiers 1. The tiers 1 is typically a national center, it is responsible for making a copy of the raw data and for processing it in order to recover relevant data with a physical meaning and to transfer the results to the 150 tiers 2. The tiers 2 is at the level of the Institute or laboratory, it is in charge of the final analysis of the data and of the production of the simulations. Tiers 3 are at the level of the laboratories, they provide a complementary and local resource to tiers 2 in terms of data analysis. (A.C.)

  4. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Science.gov (United States)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  5. GridCom, Grid Commander: graphical interface for Grid jobs and data management; GridCom, Grid Commander: graficheskij interfejs dlya raboty s zadachami i dannymi v gride

    Energy Technology Data Exchange (ETDEWEB)

    Galaktionov, V V

    2011-07-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  6. Progress in Grid Generation: From Chimera to DRAGON Grids

    Science.gov (United States)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  7. The LHC Computing Grid in the starting blocks

    CERN Multimedia

    Danielle Amy Venton

    2010-01-01

    As the Large Hadron Collider ramps up operations and breaks world records, it is an exciting time for everyone at CERN. To get the computing perspective, the Bulletin this week caught up with Ian Bird, leader of the Worldwide LHC Computing Grid (WLCG). He is confident that everything is ready for the first data.   The metallic globe illustrating the Worldwide LHC Computing GRID (WLCG) in the CERN Computing Centre. The Worldwide LHC Computing Grid (WLCG) collaboration has been in place since 2001 and for the past several years it has continually run the workloads for the experiments as part of their preparations for LHC data taking. So far, the numerous and massive simulations of the full chain of reconstruction and analysis software could only be carried out using Monte Carlo simulated data. Now, for the first time, the system is starting to work with real data and with many simultaneous users accessing them from all around the world. “During the 2009 large-scale computing challenge (...

  8. A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms

    KAUST Repository

    Buse, Gerrit

    2012-06-01

    The name sparse grids denotes a highly space-efficient, grid-based numerical technique to approximate high-dimensional functions. Although employed in a broad spectrum of applications from different fields, there have only been few tries to use it in real time visualization (e.g. [1]), due to complex data structures and long algorithm runtime. In this work we present a novel approach inspired by principles of I/0-efficient algorithms. Locally applied coefficient permutations lead to improved cache performance and facilitate the use of vector registers for our sparse grid benchmark problem hierarchization. Based on the compact data structure proposed for regular sparse grids in [2], we developed a new algorithm that outperforms existing implementations on modern multi-core systems by a factor of 37 for a grid size of 127 million points. For larger problems the speedup is even increasing, and with execution times below 1 s, sparse grids are well-suited for visualization applications. Furthermore, we point out how a broad class of sparse grid algorithms can benefit from our approach. © 2012 IEEE.

  9. Real-time ischemic condition monitoring in normoglycemic and hyperglycemic rats

    International Nuclear Information System (INIS)

    Choi, Samjin; Kang, Sung Wook; Lee, Gi-Ja; Chae, Su-Jin; Park, Hun-Kuk; Choi, Seok Keun; Chung, Joo-Ho

    2010-01-01

    An increase in excitotoxic amino acid glutamate (GLU) concentration associated with neuronal damage might be the cause of the ischemic damage observed in stroke patients suffering from hyperglycemia. However, the effect has never been investigated by real-time in vivo monitoring. Therefore, this study examined the effects of the functional responses of ischemia-evoked electroencephalography (EEG), cerebral blood flow (%CBF) and ΔGLU in hyperglycemia through real-time in vivo monitoring. Five Sprague-Dawley rats were treated with streptozocin (hyperglycemia) and five normal rats were used as the controls. Global ischemia was induced using an 11-vessel occlusion model. The experimental protocols consisting of 10 min pre-ischemic, 10 min ischemic and 40 min reperfusion periods were applied to both groups. Under these conditions, the responses of the ischemia-evoked EEG, %CBF and ΔGLU were monitored in real time. The EEG showed flat patterns during ischemia followed by poor recovery during reperfusion. The peak reperfusion %CBF was decreased significantly in the hyperglycemia group compared to the control group (p < 0.05, n = 5). The extracellular ΔGLU releases increased significantly during ischemia (p < 0.0001, n = 5) and reperfusion (p < 0.001, n = 5) in the hyperglycemia group compared to the control group. The decrease in reperfusion %CBF during short-term hyperglycemia might be related to the increased plasma osmolality, decreased adenosine levels and swollen endothelial cells with decreased vascular luminal diameters under hyperglycemic conditions. And, the increase in ΔGLU during short-term hyperglycemia might be related to the neurotoxic effects of the high extracellular concentrations of ΔGLU and the inhibition of GLU uptake

  10. Experiences with the GLUE information schema in the LCG/EGEE production grid

    International Nuclear Information System (INIS)

    Burke, S; Andreozzi, S; Field, L

    2008-01-01

    A common information schema for the description of Grid resources and services is an essential requirement for interoperating Grid infrastructures, and its implementation interacts with every Grid component. In this context, the GLUE information schema was originally defined in 2002 as a joint project between the European DataGrid and DataTAG projects and the US iVDGL. The schema has major components to describe Computing and Storage Elements, and also generic Service and Site information. It has been used extensively in the LCG/EGEE Grid, for job submission, data management, service discovery and monitoring. In this paper we present the experience gained over the last five years, highlighting both successes and problems. In particular, we consider the importance of having a clear definition of schema attributes; the construction of standard information providers and difficulties encountered in mapping an abstract schema to diverse real systems; the configuration of publication in a way which suits system managers and the varying characteristics of Grid sites; the validation of published information; the ways in which information can be used (and misused) by Grid services and users; and issues related to managing schema upgrades in a large distributed system

  11. Wind energy in offshore grids

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, S.T.

    2013-01-15

    This cumulative PhD thesis deals with wind integration in offshore grids from an economic point of view. It is composed of a generic part and eight papers. As the topic has mostly been analysed with a focus on topology and technical issues until now, market-operational questions in offshore grids and investment implications under different regulatory frameworks are a hitherto underrepresented research field. They are addressed by this thesis. Offshore grids between several countries combine the absorption of wind energy with international power trading. However, the inclusion into an offshore grid affects the economics of an offshore wind park. It is shown that the spot market income is lower if an offshore wind farm is placed in an interconnector and subject to nodal pricing instead of having a national affiliation. Moreover, congestion in the interconnector can prevent the wind farm from correcting its wind forecast errors in a specific onshore balancing group. An analytical approach with a transmission system operator and a wind farm as stakeholders illustrates resulting incentives for strategic behaviour. Depending on the regulatory regime, they may be inclined to announce more or less generation than expected at the closure of the day-ahead spot market. This can lead to a suboptimal utilisation of the infrastructure and associated socio-economic losses. These and possibly undesired reallocative effects between the parties can be avoided if the regulatory regime is adjusted to reflect special characteristics of offshore grids. With an operational real options approach, it is furthermore illustrated how different support schemes and connections to additional countries affect the investment case of an offshore wind farm and the income of the transmission system operator. The investment framework has also been addressed with a policy study about possible combinations of support schemes and international cooperation mechanisms between countries to achieve their

  12. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  13. Intelligent Scheduling of a Grid-Connected Heat Pump in a Danish Detached House

    DEFF Research Database (Denmark)

    Gianniou, Panagiota; Foteinaki, Kyriaki; Heller, Alfred

    This study proposes a methodology for intelligent scheduling of a heat pump installed in a refurbished grid-connected detached house in Denmark. This scheduling is conducted through the coupling of a dynamic building simulation tool with an optimization tool. The optimization of the operation of ...... thermal comfort conditions. The proposed methodology bridges dynamic building modelling with optimization of real-time operation of HVAC systems offering a detailed model for building physics, especially regarding thermal mass and a stochastic price-based control....... of the system is based on a price-signal considering a three-day period for different weather cases. The results show that the optimal scheduling of the system is successful in terms of reducing the peak load during times when electricity prices are high, thus achieving cost savings as well as maintaining good......This study proposes a methodology for intelligent scheduling of a heat pump installed in a refurbished grid-connected detached house in Denmark. This scheduling is conducted through the coupling of a dynamic building simulation tool with an optimization tool. The optimization of the operation...

  14. MICROARRAY IMAGE GRIDDING USING GRID LINE REFINEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-05-01

    Full Text Available An important stage in microarray image analysis is gridding. Microarray image gridding is done to locate sub arrays in a microarray image and find co-ordinates of spots within each sub array. For accurate identification of spots, most of the proposed gridding methods require human intervention. In this paper a fully automatic gridding method which enhances spot intensity in the preprocessing step as per a histogram based threshold method is used. The gridding step finds co-ordinates of spots from horizontal and vertical profile of the image. To correct errors due to the grid line placement, a grid line refinement technique is proposed. The algorithm is applied on different image databases and results are compared based on spot detection accuracy and time. An average spot detection accuracy of 95.06% depicts the proposed method’s flexibility and accuracy in finding the spot co-ordinates for different database images.

  15. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    Science.gov (United States)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  16. Grid3: An Application Grid Laboratory for Science

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  17. Computer Simulation of the UMER Gridded Gun

    CERN Document Server

    Haber, Irving; Friedman, Alex; Grote, D P; Kishek, Rami A; Reiser, Martin; Vay, Jean-Luc; Zou, Yun

    2005-01-01

    The electron source in the University of Maryland Electron Ring (UMER) injector employs a grid 0.15 mm from the cathode to control the current waveform. Under nominal operating conditions, the grid voltage during the current pulse is sufficiently positive relative to the cathode potential to form a virtual cathode downstream of the grid. Three-dimensional computer simulations have been performed that use the mesh refinement capability of the WARP particle-in-cell code to examine a small region near the beam center in order to illustrate some of the complexity that can result from such a gridded structure. These simulations have been found to reproduce the hollowed velocity space that is observed experimentally. The simulations also predict a complicated time-dependent response to the waveform applied to the grid during the current turn-on. This complex temporal behavior appears to result directly from the dynamics of the virtual cathode formation and may therefore be representative of the expected behavior in...

  18. Grid-connected to/from off-grid transference for micro-grid inverters

    OpenAIRE

    Heredero Peris, Daniel; Chillón Antón, Cristian; Pages Gimenez, Marc; Gross, Gabriel Igor; Montesinos Miracle, Daniel

    2013-01-01

    This paper compares two methods for controlling the on-line transference from connected to stand-alone mode and vice versa in converters for micro-grids. The first proposes a method where the converter changes from CSI (Current Source Inverter) in grid-connected mode to VSI (Voltage Source Inverter) in off-grid. In the second method, the inverter always works as a non-ideal voltage source, acting as VSI, using AC droop control strategy.

  19. Voltage conditions at motor starting in household power supply of nuclear power plants

    International Nuclear Information System (INIS)

    Heretik, P.

    2014-01-01

    The main purpose of this contribution is to develop a procedure for design verification of electrical devices. The design takes into account operating conditions where voltage drop on bus bars of respective electrical devices is of particular importance. Calculations for design verification are focused on the voltage drop condition for household operation. For simulation of the household operation simplified model which consists of main grid, auxiliary transformer, and motors is considered. For calculation data of these components provided by real manufacturers as an input for program ETAP and MATLAB. Results in ETAP and MATLAB simulations are compared with theoretical calculations without comparison with real experiment. Based on these verified simulations, design of electrical devices in NPPs can be performed. (authors)

  20. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  1. Current Grid operation and future role of the Grid

    Science.gov (United States)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  2. Current Grid operation and future role of the Grid

    International Nuclear Information System (INIS)

    Smirnova, O

    2012-01-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  3. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    International Nuclear Information System (INIS)

    Armas, O; Gómez, A; Mata, C

    2011-01-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers

  4. Methodology for measurement of diesel particle size distributions from a city bus working in real traffic conditions

    Science.gov (United States)

    Armas, O.; Gómez, A.; Mata, C.

    2011-10-01

    The study of particulate matter (PM) and nitrogen oxides emissions of diesel engines is nowadays a necessary step towards pollutant emission reduction. For a complete evaluation of PM emissions and its size characterization, one of the most challenging goals is to adapt the available techniques and the data acquisition procedures to the measurement and to propose a methodology for the interpretation of instantaneous particle size distributions (PSD) of combustion-derived particles produced by a vehicle during real driving conditions. In this work, PSD from the exhaust gas of a city bus operated in real driving conditions with passengers have been measured. For the study, the bus was equipped with a rotating disk diluter coupled to an air supply thermal conditioner (with an evaporating tube), the latter being connected to a TSI Engine Exhaust Particle Sizer spectrometer. The main objective of this work has been to propose an alternative procedure for evaluating the influence of several transient sequences on PSD emitted by a city bus used in real driving conditions with passengers. The transitions studied were those derived from the combination of four possible sequences or categories during real driving conditions: idle, acceleration, deceleration with fuel consumption and deceleration without fuel consumption. The analysis methodology used in this work proved to be a useful tool for a better understanding of the phenomena related to the determination of PSD emitted by a city bus during real driving conditions with passengers.

  5. Key figures for the regional- and distribution grid

    International Nuclear Information System (INIS)

    Vikingstad, S.

    1996-02-01

    In Norway, improving the efficiency of the hydroelectric grid operation is a stated goal of the Energy Act. Several studies have identified potential profits of such improvement. This publication focuses on costs and improvement potentials. Publication of key figures may stimulate grid owners, boards and administrations to improve the operating efficiency of their grids. The publication shows key figures for the regional- and distribution grid and is based on accounting data for 1994. The key figures are divided into: (1) Cost structure: The key figures express the relative contributions of each cost component to the total income of the grid, (2) Costs and physical quantities: The key figures show the cost of delivering the transport services, (3) Physical quantities: The key figures describe the working conditions of the energy utility. It appears that the cost structure of the sector varies considerably. The same is true of the cost related to the delivery of grid services. 30 figs., 6 tabs

  6. GRID[subscript C] Renewable Energy Data Streaming into Classrooms

    Science.gov (United States)

    DeLuca, V. William; Carpenter, Pam; Lari, Nasim

    2010-01-01

    For years, researchers have shown the value of using real-world data to enhance instruction in mathematics, science, and social studies. In an effort to help develop students' higher-order thinking skills in a data-rich learning environment, Green Research for Incorporating Data in the Classroom (GRID[subscript C]), a National Science…

  7. Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions

    Directory of Open Access Journals (Sweden)

    Mahdi Shahparasti

    2018-02-01

    Full Text Available In renewable energy based systems Grid-Connected Voltage Source Converters (GC-VSC are used in many applications as grid-feeding converters, which transfer the power coming from the renewable energy sources to the grid. In some cases, the operation of GC-VSC may become unstable or uncontrollable due to, among others: a grid fault or an inappropriate current-power reference, that give rise to fast electrical transients or a saturation of the controller. In this paper, an improved control scheme is proposed to enhance the controllability of GC-VSC in all these situations. This solution consists of two parts, on the one hand a new Proportional-Resonant (PR controller with anti-windup capability to be used as current controller, and secondly a new current/power reference modifier, which defines the suitable reactive current/power reference to keep the system stable. It is worth to mention that the proposed scheme does not need information about the grid parameters as it only uses the converter current, and the voltage at the capacitors of Inductor-Capacitor (LC output filter.

  8. A policy system for Grid Management and Monitoring

    International Nuclear Information System (INIS)

    Stagni, Federico; Santinelli, Roberto

    2011-01-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resources are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.

  9. A policy system for Grid Management and Monitoring

    Science.gov (United States)

    Stagni, Federico; Santinelli, Roberto; LHCb Collaboration

    2011-12-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resoures are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.

  10. Real Hypersurfaces of Nonflat Complex Projective Planes Whose Jacobi Structure Operator Satisfies a Generalized Commutative Condition

    Directory of Open Access Journals (Sweden)

    Theocharis Theofanidis

    2016-01-01

    Full Text Available Real hypersurfaces satisfying the condition ϕl=lϕ(l=R(·,ξξ have been studied by many authors under at least one more condition, since the class of these hypersurfaces is quite tough to be classified. The aim of the present paper is the classification of real hypersurfaces in complex projective plane CP2 satisfying a generalization of ϕl=lϕ under an additional restriction on a specific function.

  11. Creating a Smarter U.S. Electricity Grid

    OpenAIRE

    Paul L. Joskow

    2012-01-01

    This paper focuses on efforts to build what policymakers call the "smart grid," involving 1) improved remote monitoring and automatic and remote control of facilities in high-voltage electricity transmission networks; 2) improved remote monitoring, two-way communications, and automatic and remote control of local distribution networks; and 3) installation of "smart" metering and associated communications capabilities on customer premises so that customers can receive real-time price informati...

  12. Electricity distribution management Smart Grid system model

    Directory of Open Access Journals (Sweden)

    Wiesław Nowak

    2012-06-01

    Full Text Available This paper presents issues concerning the implementation of Smart Grid solutions in a real distribution network. The main components possible to quick implementation were presented. Realization of these ideas should bring tangible benefi ts to both customers and distribution system operators. Moreover the paper shows selected research results which examine proposed solutions in area of improving supply reliability and reducing energy losses in analysed network.

  13. LLCL-Filtered Grid Converter with Improved Stability and Robustness

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2016-01-01

    impedance variations, making its design more challenging. To address these concerns, a new parameter design method for LLCL-filter has been formulated in the paper, which when enforced, guarantees robust and stable grid current control regardless of how the grid conditions change. It is thus an enhanced...

  14. Grid requirements applicable to future NPPs in the new European Electricity Framework

    International Nuclear Information System (INIS)

    Beato Castro, D.; Padill, C. M.

    2000-01-01

    With a view to keeping nuclear energy as an option for future power generation in a competitive market and taking advantage of the current operating experience, a group of European electric utilities have come together to define common requirements for the design and supply of future Light Water Reactor (LWR) plants connected to the electrical system. These requirements, defined with the aim of standardizing and adapting design to the conditions of the new electricity framework, are being included in the European Utility Requirements (EUR) document. Although there are different types of power plants operating appropriately in large electrical systems, the idea is to find the minimum requirements that will allow growth of this type of energy in the European electricity industry without reducing quality, safety and reliability of interconnected electrical systems. It is therefore necessary to take into account the features of the existing power systems and the operating characteristics and design of nuclear power plants so as to harmonize their respective technical peculiarities in the framework of the deregulated electricity sector. The definition of these grid requirements is based primarily on the operating conditions of the Union pour la Coordination de la Production et le Transport de L'Electricite (UCPTE) grid and takes into account the current Grid Code of the main European countries, for the forthcoming Issue C. This paper sets outs the most relevant aspects of the grid requirements, included in Chapter 2.3 of the EUR document Grid Requirements, Issue B, for the connection of future nuclear power plants in the European electricity system, and others that are being considered in the preparation of the new issue of the document that will take into account the deregulated electricity market situation and deal with the following aspects: General characteristics. Operation of a plant under normal grid conditions. Operation of a plant under disturbed grid

  15. Macedonian transmission grid capability and development

    International Nuclear Information System (INIS)

    Naumoski, K.; Achkoska, E.; Paunoski, A.

    2015-01-01

    The main task of the transmission grid is to guarantee evacuation of electricity from production facilities and, at the same time, supply the electricity to all customers, in a secure, reliable and qualitative manner. During the last years, transmission grid goes through the period of fast and important development, as a result of implementation of renewable and new technologies and creation of internal European electricity market. Due to these reasons, capacity of the existing grid needs to be upgraded either with optimization of existing infrastructure or constructing the new transmission projects. Among the various solutions for strengthening the grid, the one with the minimal investment expenses for construction is selected. While planning the national transmission grid, MEPSO planners apply multi-scenarios analyses, in order to handle all uncertainties, particularly in the forecasts on loads, production and exchange of electricity, location and size of the new power plants, hydrological conditions, integration of renewable sources and the evolution of the electricity market. Visions for development of European transmission grid are also considered. Special attention in the development plan is paid to modelling of power systems in the region of South-Eastern Europe and covering a wider area of the regional transmission grid with simulations of various market transactions. Macedonian transmission grid is developed to satisfy all requirements for electricity production/supply and transits, irrespective which scenario will be realized on long-term basis. Transmission development plan gives the road map for grid evolution from short-term and mid-term period towards long-term horizons (15-20 years ahead). While creating long-term visions, a big challenge in front of transmission planners is implementation of NPP. The paper gives overview of the planning process of Macedonian transmission grid,comprising: definition of scenarios,planning methodology and assessment of

  16. Current Harmonics from Single-Phase Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    Environmental conditions and operational modes may significantly impact the distortion level of the injected current from single-phase grid-connected inverter systems, such as photovoltaic (PV) inverters, which may operate in cloudy days with a maximum power point tracking, in a non-unity power...... factor, or in the low voltage ride through mode with reactive current injection. In this paper, the mechanism of the harmonic current injection from grid-connected single-phase inverter systems is thus explored, and the analysis is conducted on single-phase PV systems. In particular, the analysis...... is focused on the impacts of the power factor and the feed-in grid current level on the quality of the feed-in grid current from single-phase inverters. As a consequence, an internal model principle based high performance current control solution is tailor-made and developed for single-phase grid-connected...

  17. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  18. Harmonic currents Compensator Grid-Connected Inverter at the Microgrid

    DEFF Research Database (Denmark)

    Asuhaimi Mohd Zin, A.; Naderipour, A.; Habibuddin, M.H.

    2016-01-01

    The main challenge associated with the grid-connected inverter in distributed generation (DG) systems is to maintain the harmonic contents in output current below the specified values and compensates for unbalanced loads even when the grid is subject to disturbances such as harmonic distortion...... and unbalanced loads. To overcome these challenges, a current control strategy for a three-phase grid-connected inverter under unbalanced and nonlinear load conditions is presented. It enables grid-connected inverter by the proposed control method to inject balanced clean currents to the grid even when the local...... loads are unbalanced and/or nonlinear and also compensate of the harmonic currents and control the active and reactive power. The main advantage and objective of this method is to effectively compensate for the harmonic currents content of the grid current and microgrid without using any compensation...

  19. SLGRID: spectral synthesis software in the grid

    Science.gov (United States)

    Sabater, J.; Sánchez, S.; Verdes-Montenegro, L.

    2011-11-01

    SLGRID (http://www.e-ciencia.es/wiki/index.php/Slgrid) is a pilot project proposed by the e-Science Initiative of Andalusia (eCA) and supported by the Spanish e-Science Network in the frame of the European Grid Initiative (EGI). The aim of the project was to adapt the spectral synthesis software Starlight (Cid-Fernandes et al. 2005) to the Grid infrastructure. Starlight is used to estimate the underlying stellar populations (their ages and metallicities) using an optical spectrum, hence, it is possible to obtain a clean nebular spectrum that can be used for the diagnostic of the presence of an Active Galactic Nucleus (Sabater et al. 2008, 2009). The typical serial execution of the code for big samples of galaxies made it ideal to be integrated into the Grid. We obtain an improvement on the computational time of order N, being N the number of nodes available in the Grid. In a real case we obtained our results in 3 hours with SLGRID instead of the 60 days spent using Starlight in a PC. The code has already been ported to the Grid. The first tests were made within the e-CA infrastrusture and, later, itwas tested and improved with the colaboration of the CETA-CIEMAT. The SLGRID project has been recently renewed. In a future it is planned to adapt the code for the reduction of data from Integral Field Units where each dataset is composed of hundreds of spectra. Electronic version of the poster at http://www.iaa.es/~jsm/SEA2010

  20. Synchrotron Imaging Computations on the Grid without the Computing Element

    International Nuclear Information System (INIS)

    Curri, A; Pugliese, R; Borghes, R; Kourousias, G

    2011-01-01

    Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.

  1. Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Stochastic energy management of retailer under smart grid environment is proposed. • Optimal selling price is determined in the smart grid environment. • Fixed, time-of-use and real-time pricing are determined for selling to customers. • Charge/discharge of ESS is determined to increase the expected profit of retailer. • Demand response program is proposed to increase the expected profit of retailer. - Abstract: In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.

  2. MANGO – Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.

    2010-10-18

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.

  3. Intelligent Demand Side Management within production systems. Towards Industrial Smart Grids; Intelligente Lastverschiebung in der Produktionstechnik. Ein Weg zum Industrial Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schriegel, Sebastian; Pethig, Florian; Jasperneite, Juergen [Fraunhofer-Anwendungszentrum Industrial Automation (IOSB-INA), Lemgo (Germany)

    2012-07-01

    Demand Side Management is a key technology of smart grids. Consumers adjust their energy consumption at current time-volatile energy generation capacity. The currently used energy consumption optimizations, such as the use of energy efficient actuators, pause functions and peak load management should be supplemented by a dynamic real-time energy management. For industrial consumers, such an energy management may be established at various levels of the automation pyramid. On plant level energy optimization is based on predictions, on control and field level optimization is based on process variables. The taxonomy of potential energy optimization differentiates between organizational, synchronization and single parameter optimization. This potential can be exploited with intelligent control technology based on qualified process models and tunable control programs. An Industrial Smart Grid results by interlinking the former mentioned intelligent control technologies with the plant infrastructure and thereby provides an optimal energy consumption behavior and a perfect integration into and interaction with the smart grid. (orig.)

  4. Control and performance analysis of grid connected photovoltaic systems of two different technologies in a desert environment

    Directory of Open Access Journals (Sweden)

    Layachi ZAGHBA

    2017-12-01

    Full Text Available In this study, is to investigate the effect of real climatic conditions on the performance parameters of a 9 kWp grid connected photovoltaic plant during one-year using typical days installed in the desert environment in south of Algeria (Ghardaia site. The PV plant contain the following components: solar PV array, with a DC/DC boost converter, neural MPPT, that allow maximal power conversion into the grid, have been included. These methods can extract maximum power from each of the independent PV arrays connected to DC link voltage level, a DC/AC inverter and a PI current control system. The PV array is divides in two parallel PV technology types; the first includes 100 PV modules mono-crystalline silicon (mc-Si arranged in 20 parallel groups of 5 modules in series, and the second of composed of 24 amorphous modules (Inventux X series, arranged in 6 parallel groups of 4 modules in series. The proposed system tested using MATLAB/SIMULINK platform in which a maximum power tracked under constant and real varying solar irradiance. The study concluded that output power and energy from two PV technology types (mc-Si and Amorphous-Si increases linearly with increase of solar irradiance.

  5. Enhancing the Observability of Traditional Distribution Grids by Strategic Meter Allocation

    DEFF Research Database (Denmark)

    Kouzelis, Konstantinos; Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte

    2015-01-01

    of load distribution in their networks, especially in real time. In this paper, the aforementioned problem is tackled by installing few measurements at strategic locations in low voltage distribution grids. By exploiting these strategic measurements, consumer load profiles, and state estimation techniques...

  6. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  7. Real-time Energy Resource Scheduling considering a Real Portuguese Scenario

    DEFF Research Database (Denmark)

    Silva, Marco; Sousa, Tiago; Morais, Hugo

    2014-01-01

    The development in power systems and the introduction of decentralized gen eration and Electric Vehicles (EVs), both connected to distribution networks, represents a major challenge in the planning and operation issues. This new paradigm requires a new energy resources management approach which...... scheduling in smart grids, considering day - ahead, hour - ahead and real - time scheduling. The case study considers a 33 - bus distribution network with high penetration of distributed energy resources . The wind generation profile is base d o n a rea l Portuguese wind farm . Four scenarios are presented...... taking into account 0, 1, 2 and 5 periods (hours or minutes) ahead of the scheduling period in the hour - ahead and real - time scheduling...

  8. Analysis and improvement of security of energy smart grids

    International Nuclear Information System (INIS)

    Halimi, Halim

    2014-01-01

    The Smart grid is the next generation power grid, which is a new self-healing, self-activating form of electricity network, and integrates power-flow control, increased quality of electricity, and energy reliability, energy efficiency and energy security using information and communication technologies. Communication networks play a critical role in smart grid, as the intelligence of smart grid is built based on information exchange across the power grid. Its two-way communication and electricity flow enable to monitor, predict and manage the energy usage. To upgrade an existing power grid into a smart grid, it requires an intelligent and secure communication infrastructure. Because of that, the main goal of this dissertation is to propose new architecture and implementation of algorithms for analysis and improvement of the security and reliability in smart grid. In power transmission segments of smart grid, wired communications are usually adopted to ensure robustness of the backbone power network. In contrast, for a power distribution grid, wireless communications provide many benefits such as low cost high speed links, easy setup of connections among different devices/appliances, and so on. Wireless communications are usually more vulnerable to security attacks than wired ones. Developing appropriate wireless communication architecture and its security measures is extremely important for a smart grid system. This research addresses physical layer security in a Wireless Smart Grid. Hence a defense Quorum- based algorithm is proposed to ensure physical security in wireless communication. The new security architecture for smart grid that supports privacy-preserving, data aggregation and access control is defined. This architecture consists of two parts. In the first part we propose to use an efficient and privacy-preserving aggregation scheme (EPPA), which aggregates real-time data of consumers by Local Gateway. During aggregation the privacy of consumers is

  9. IEEE NSS 2008 Short Course: How to use the Grid for Physics and Medical Applications

    CERN Document Server

    Moscicki, J T; Lechner, A

    2008-01-01

    This course is intended to introduce the Grid technology to scientists and engineers with no experience in this field. Participants will gain practical skills on how to quickly make use of distributed computing resources for their applications. The class begins will an introduction to the Grid technology and an overview of existing Grid applications. A case study will show the details of a real medical Geant 4 simulation running on the Grid. Hands-on exercises will give practical experience with using the application oriented tools such as Ganga (http://cern.ch/ganga) and DIANE (http://cern.ch/diane) to support solving scientific problems. The participants will have an opportunity to get involved into using the Grid beyond the scope of the course and get further support for their applications.

  10. Improved delayed signal cancellation-based SRF-PLL for unbalanced grid

    DEFF Research Database (Denmark)

    Messo, Tuomas; Sihvo, Jussi; Yang, Dongsheng

    2017-01-01

    Problems with power quality in the grid have gained a lot of attention recently due to rapid increase in the amount of grid-connected power converters. The converter should produce sinusoidal currents also during abnormal conditions, such as unbalanced grid voltages. Several methods, like...... the delayed signal cancellation-based method (DSC), have been proposed to alleviate the detrimental effect of unbalance. This paper proposes an improvement to a delayed signal cancellation based synchronization algorithm for unbalanced grids. The proposed PLL structure employs only half of the delay required...

  11. Radionuclide migration through porous cement-waste composition in semi-real conditions

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.; Kostadinovic, A.

    1989-01-01

    In this paper, result of examination of Leakage rate or radionuclides Co-60 and Cs-137 in semi-real conditions are given. Radionuclides Co-60 and Cs-137 were immobilized by cement process and conditioned in concrete containers trying to make similar scenario for storing radioactive waste materials as in engineering trench system, repository. Experiments were realized with two waste water, evaporator bottom and reactor cooling system, (EB) and (RCS), from Nuclear Power Plants Krsko, in which the main radionuclides are Co-60 and Cs-137. These results will be used for future Yugoslav radioactive waste storing center (author)

  12. Real-Time Implementation of Islanded Microgrid for Remote Areas

    OpenAIRE

    Jain, Monika; Gupta, Sushma; Masand, Deepika; Agnihotri, Gayatri; Jain, Shailendra

    2016-01-01

    Islanding is a condition in which a microgrid or a portion of power grid, consisting of distributed generation (DG) sources, converter, and load, gets disconnected from the utility grid. Under this condition the DG sources in a microgrid must switch to a voltage control mode, in order to provide constant voltage to local loads. In grid connected mode, the microgrid works as current controller and injects power to the main grid, depending on the power generation and local load with suitable ma...

  13. Standard Procedure for Grid Interaction Analysis

    International Nuclear Information System (INIS)

    Svensson, Bertil; Lindahl, Sture; Karlsson, Daniel; Joensson, Jonas; Heyman, Fredrik

    2015-01-01

    Grid events, simultaneously affecting all safety related auxiliary systems in a nuclear power plant, are critical and must be carefully addressed in the design, upgrading and operational processes. Up to now, the connecting grid has often been treated as either fully available or totally unavailable, and too little attention has been paid to specify the grid performance criteria. This paper deals with standard procedures for grid interaction analysis, to derive tools and criteria to handle grid events challenging the safety systems of the plant. Critical external power system events are investigated and characterised, with respect to severity and rate of occurrence. These critical events are then grouped with respect to impact on the safety systems, when a disturbance propagates into the plant. It is then important to make sure that 1) the impact of the disturbance will never reach any critical system, 2) the impact of the disturbance will be eliminated before it will hurt any critical system, or 3) the critical systems will be proven to be designed in such a way that they can withstand the impact of the disturbance, and the associated control and protection systems can withstand voltage and frequency transients associated with the disturbances. A number of representative disturbance profiles, reflecting connecting grid conditions, are therefore derived, to be used for equipment testing. (authors)

  14. Evaluation of Environmental Impact of Biodiesel Vehicles in Real Traffic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Susumu; Mizushima, Norifumi [National Traffic Safety and Environment Laboratory (NTSEL) (Japan); Saito, Akira; Takada, Yutaka [Organization for the Promotion of Low Emission Vehicles (LEVO)(Japan

    2012-01-15

    This report focuses on the comparison of the real-world emissions between the case of using diesel oil and BDF (biodiesel fuel) for fuel. For this purpose, the on-road driving tests were made, by applying BDF, with the latest diesel vehicles complying with the latest emission regulations while avoiding any particular modification to them. For measurement, a PEMS (Portable Emission Measurement System) was used. Note that the heavy diesel vehicles complying with the latest emission gas regulations of Japan also meet the heavy vehicle fuel economy regulations introduced by Japan ahead of other countries of the world. Since application of BDF presents problems not only for the emission gas, but also has non-negligible influence on the fuel economy, the survey was also made for the real-world fuel economy. This report has been produced as the final version deliverable from the International Energy Agency’s (IEA’s) Advanced Motor Fuels (AMF) Implementing Agreement (Annex XXXVIII - Evaluation of Environmental Impact of Biodiesel Vehicle in Real Traffic Conditions).

  15. Synchrophasor Sensor Networks for Grid Communication and Protection.

    Science.gov (United States)

    Gharavi, Hamid; Hu, Bin

    2017-07-01

    This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems.

  16. Smart Grid Risk Management

    Science.gov (United States)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  17. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  18. Application of a Steady Meandering River with Piers Using a Lattice Boltzmann Sub-Grid Model in Curvilinear Coordinate Grid

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2018-05-01

    Full Text Available A sub-grid multiple relaxation time (MRT lattice Boltzmann model with curvilinear coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9 model and standard Smagorinsky sub-grid scale (SGS model is introduced to simulate meandering flows. The interpolation supplemented lattice Boltzmann method (ISLBM and the non-equilibrium extrapolation method are used for second-order accuracy and boundary conditions. The proposed model was validated by a meandering channel with a 180° bend and applied to a steady curved river with piers. Excellent agreement between the simulated results and previous computational and experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method coupled with a Smagorinsky sub-grid scale (SGS model in a curvilinear coordinates grid is capable of simulating practical meandering flows.

  19. Health-e-Child: a grid platform for european paediatrics

    International Nuclear Information System (INIS)

    Skaburskas, K; Estrella, F; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integration and indicates how these will be resolved in the HeC system. HeC is presented as an example of how computer science (and, in particular Grid infrastructures) originating from high energy physics can be adapted for use by biomedical informaticians to deliver tangible real-world benefits

  20. Performance of R-GMA based grid job monitoring system for CMS data production

    CERN Document Server

    Byrom, Robert; Fisher, Steve M; Grandi, Claudio; Hobson, Peter R; Kyberd, Paul; MacEvoy, Barry; Nebrensky, Jindrich Josef; Tallini, Hugh; Traylen, Stephen

    2004-01-01

    High Energy Physics experiments, such as the Compact Muon Solenoid (CMS) at the CERN laboratory in Geneva, have large-scale data processing requirements, with stored data accumulating at a rate of 1 Gbyte/s. This load comfortably exceeds any previous processing requirements and we believe it may be most efficiently satisfied through Grid computing. Management of large Monte Carlo productions (~3000 jobs) or data analyses and the quality assurance of the results requires careful monitoring and bookkeeping, and an important requirement when using the Grid is the ability to monitor transparently the large number of jobs that are being executed simultaneously at multiple remote sites. R-GMA is a monitoring and information management service for distributed resources based on the Grid Monitoring Architecture of the Global Grid Forum. We have previously developed a system allowing us to test its performance under a heavy load while using few real Grid resources. We present the latest results on this system and comp...

  1. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moya, Christian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Jeffery E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-30

    implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  2. Agent-Based Smart Grid Market Simulation with Connection to Real Infrastructures

    DEFF Research Database (Denmark)

    Santos, Gabriel; Pinto, Tiago; Gomes, Luis

    2015-01-01

    The consensus behind Smart Grids (SG) as one of the most promising solutions for the massive integration of renewable energy sources in power systems has led to the practical implementation of several prototypes and pilots that aim at testing and validating SG methodologies. The urgent need...... to accommodate such resources of distributed and intermittent nature and the impact that a deficient management of energy sources has on the global population require that alternative solutions are experimented. This paper presents a multi-agent based SG simulation platform that is connected to physical...

  3. Real-time corrosion monitoring of steel influenced by microbial activity (SRB) under controlled seawater injection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Russell D. [InterCorr International, Inc., 14503 Bammel N. Houston Road, Suite 300, Houston, TX 77019 (United States); Campbell, Scott [Commercial Microbiology Inc., 10400 Westoffice Drive Suite 107, Houston, TX 77042 (United States)

    2004-07-01

    An experimental study of microbiologically influenced corrosion (MIC) was conducted involving online, real-time monitoring of a bio-film loop under controlled conditions simulating oil field water handling and injection. Bio-film growth, MIC and biocide efficacy were monitored using an automated, multi-technique monitoring system including linear polarization resistance, electrochemical noise and harmonic distortion analysis. This data was correlated with conventional off-line methods to differentiate conditions of varying MIC activity in real-time to facilitate quick assessment and operator intervention. (authors)

  4. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  5. Optimizing Energy Costs for Offices Connected to the Smart Grid

    NARCIS (Netherlands)

    Georgievski, Ilche; Degeler, Viktoriya; Pagani, Giuliano Andrea; Nguyen, Tuan Anh; Lazovik, Alexander; Aiello, Marco

    2012-01-01

    In addition to providing for a more reliable distribution infrastructure, the smart grid promises to give the end users better pricing and usage information. It is thus interesting for them to be ready to take advantage of features such as dynamic energy pricing and real-time choice of operators. In

  6. Generating Realistic Dynamic Prices and Services for the Smart Grid

    NARCIS (Netherlands)

    Pagani, G. A.; Aiello, M.

    2014-01-01

    The smart grid promises to change the way people manage their energy needs, to facilitate the inclusion of small-scale renewable sources, and to open the energy market to all. One of the enabling instruments is the real-time pricing of energy at the retail level: dynamic and flexible tariffs will

  7. LHCb: A Policy System for Grid Management and Monitoring

    CERN Multimedia

    Stagni, F; Sapunov, M

    2010-01-01

    Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a mask composed by services exposed b y local resources. In an ideal world, the more services in a mask, the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an e...

  8. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh; Nepal, Shaili; Hoke, Anderson; Asano, Marc; Ueda, Reid; Ifuku, Earle

    2017-05-08

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  9. Air Pollution Monitoring and Mining Based on Sensor Grid in London.

    Science.gov (United States)

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-06-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  10. Relationship between competitive power markets and grid reliability : the PJM RTO experience

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.G. [PJM Interconnection LLC, Philadelphia, PA (United States)

    2005-07-01

    PJM is one of the largest grid operators in North America, serving 51 million people. This white paper examined the causes of the 2003 blackout in relation to grid management tools, operator training and system planning and analysis. The aim of the paper was to explain how competition and regional transmission offices (RTOs) are addressing these issues and doing more to help improve reliability and strengthen the grid. It was suggested that consumer savings can be achieved while enhancing, rather than diminishing the reliability and security of the electricity system. Changes in the electricity industry were reviewed. Issues concerning the lack of data to measure grid reliability were discussed. It was suggested that key influences on grid reliability are regional dispatch and scheduling practices, as well as RTO coordination and system operator training. Security constrained unit commitment was discussed, as well as various new technologies to improve reliability, including real-time contingency analysis and generation dispatch; real time voltage analysis; and visualization technology. Applications scales and scopes were discussed, as well as issues concerning RTO coordination. Issues concerning enhanced operator information through data transfer protocols were discussed, as well as the development of enhanced reliability tools through joint operating agreements. It was suggested that regional planning and large wholesale markets support regional reliability. It was concluded that regional RTO markets have evolved to produce economic efficiency and enhanced reliability in short-term and mid-term operations, and provide transparent regional information that will assist in providing data in the future, in order to address the long-term infrastructure investment concerns that exist on a national level.

  11. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  12. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  13. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru; Hoke, Andy; Asano, Marc; Ueda, Reid; Nepal, Shaili

    2017-06-15

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digital testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.

  14. On the integration of wind generators on weak grids and island grids

    International Nuclear Information System (INIS)

    Laverdure, N.

    2005-12-01

    Wind energy is now an energy that can not be ignored. Because of intrinsic characteristics (scattered primary energy, generators with different technologies, use of power electronics interface), wind energy system integration in distribution grids leads to real problems in terms of impacts. With recent standard changes, it is necessary to study the possibilities of each technology of wind turbines to answer or not to these new constraints. This PhD thesis focuses on a comparison of the main present wind turbines concerning three points of discussion: energy quality, fault ride through, ancillary services (voltage and frequency). It insists on the possibilities in terms of control laws for variable speed wind turbines. (author)

  15. Active Control of Thermostatic Loads for Economic and Technical Support to Distribution Grids

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte

    2016-01-01

    Active control of electric water heaters (EWHs) is presented in this paper as a means of exploiting demand flexibility for supporting low-voltage (LV) distribution grids. A single-node model of an EWH is implemented in DIgSILENT PowerFactory using a thermal energy balancing equation and three...... decentralized control schemes are designed to ensure consumer comfort, economic benefit to the consumer, and technical support to LV grids. First, a price-based control that adaptively adjusts an allowable energy band per electricity price is implemented to ensure economic benefit. Next, an adaptive update...... of the energy band is done based on feeder loading to respect thermal grid constraints. Finally, a voltage-based control is implemented to provide real-time voltage support to the LV grids. Simulation results demonstrate the capability of the presented method to realize both economic and technical advantages...

  16. Numerical simulation of a hovering rotor using embedded grids

    Science.gov (United States)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  17. Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults

    DEFF Research Database (Denmark)

    Rodriguez, P.; Timbus, A.; Teodorescu, Remus

    2009-01-01

    This letter aims to present a generalized vector-based formulation for calculating the grid-side current reference to control reactive power delivered to the grid. Strategies for current reference generation were implemented on the abc stationary reference frame, and their effectivenesswas...... demonstrated experimentally, perhaps validating the theoretical analysis even under grid fault conditions....

  18. Grid: From EGEE to EGI and from INFN-Grid to IGI

    International Nuclear Information System (INIS)

    Giselli, A.; Mazzuccato, M.

    2009-01-01

    In the last fifteen years the approach of the computational Grid has changed the way to use computing resources. Grid computing has raised interest worldwide in academia, industry, and government with fast development cycles. Great efforts, huge funding and resources have been made available through national, regional and international initiatives aiming at providing Grid infrastructures, Grid core technologies, Grid middle ware and Grid applications. The Grid software layers reflect the architecture of the services developed so far by the most important European and international projects. In this paper Grid e-Infrastructure story is given, detailing European, Italian and international projects such as EGEE, INFN-Grid and NAREGI. In addition the sustainability issue in the long-term perspective is described providing plans by European and Italian communities with EGI and IGI.

  19. Frequency Based Real-time Pricing for Residential Prosumers

    Science.gov (United States)

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting

  20. From the grid to the smart grid, topologically

    Science.gov (United States)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  1. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    Science.gov (United States)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  2. On real-time assessment of post-emergency condition existence in complex electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vladimir I. [Irkutsk State Technical University 83, Lermontov Street, Irkutsk 664074 (Russian Federation)

    2008-12-15

    This paper presents two effective numerical criteria of estimating post-emergency operating conditions' non-existence in complicated electric power systems. These criteria are based on mathematic and programming tools of the regularized quadratic descent method and the regularized two-parameter minimization method. The proposed criteria can be effectively applied in calculations of real-time electric operating conditions. (author)

  3. Evaluation of the Voltage Support Strategies for the Low Voltage Grid Connected PV

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2010-01-01

    Admissible range of grid voltage is one of the strictest constraints for the penetration of distributed photovoltaic (PV) generators especially connection to low voltage (LV) public networks. Voltage limits are usually fulfilled either by network reinforcements or limiting of power injections from...... PVs. In order to increase PV penetration level further, new voltage support control functions for individual inverters are required. This paper investigates distributed reactive power regulation and active power curtailment strategies regarding the development of PV connection capacity by evaluation...... of reactive power efforts and requirement of minimum active power curtailment. Furthermore, a small scale experimental setup is built to reflect real grid interaction in the laboratory by achieving critical types of grid (weak and sufficiently stiff)....

  4. The footprint of atmospheric turbulence in power grid frequency measurements

    Science.gov (United States)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (renewable generation.

  5. Grid Data Management and Customer Demands at MeteoSwiss

    Science.gov (United States)

    Rigo, G.; Lukasczyk, Ch.

    2010-09-01

    near-real-time datasets to build up trust in the product in different applications. The implementation of a new method called RSOI for the daily production allowed to bring the daily precipitation field up to the expectations of customers. The main use of the grids were near-realtime and past event analysis in areas scarcely covered with stations, and inputs for forecast tools and models. Critical success factors of the product were speed of delivery and at the same time accuracy, temporal and spatial resolution, and configuration (coordinate system, projection). To date, grids of archived precipitation data since 1961 and daily/monthly precipitation gridsets with 4h-delivery lag of Switzerland or subareas are available.

  6. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  7. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  8. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  9. Optimizing Electric Vehicle Coordination Over a Heterogeneous Mesh Network in a Scaled-Down Smart Grid Testbed

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Maier, Martin

    2015-01-01

    High penetration of renewable energy sources and electric vehicles (EVs) create power imbalance and congestion in the existing power network, and hence causes significant problems in the control and operation. Despite investing huge efforts from the electric utilities, governments, and researchers......, smart grid (SG) is still at the developmental stage to address those issues. In this regard, a smart grid testbed (SGT) is desirable to develop, analyze, and demonstrate various novel SG solutions, namely demand response, real-time pricing, and congestion management. In this paper, a novel SGT...... is developed in a laboratory by scaling a 250 kVA, 0.4 kV real low-voltage distribution feeder down to 1 kVA, 0.22 kV. Information and communication technology is integrated in the scaled-down network to establish real-time monitoring and control. The novelty of the developed testbed is demonstrated...

  10. On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

    Directory of Open Access Journals (Sweden)

    Noroozian

    2009-06-01

    Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.

  11. Smart grids and e-mobility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    integration of electric vehicles and plug-in-vehicles in the power system (H. Seljeseth); (21) Implications of vehicle-to-grid strategies on lithium-ion batteries and grids (M. Hackmann); (22) A methodology for evaluating the hosting capacity margins for PEVs on distribution grids (I.M. Gianinoni); (23) Integration of fast EV charging systems into the distribution grid (M. Zamalloa); (24) The need for innovative functionalities for on-board electrical vehicle chargers (J.A. Pecas Lopes); (25) Towards a system for accessing real-time, cross-provider electric mobility charging station information (T. Lutz); (26) Concept evaluation of an inductive charging system for electric vehicles (H. Barth); (27) System integrated testing of EV batteries (O. Gehrke); (28) Requirements analysis for a smart charging infrastructure enabling maximum use of renewable energy (R. Ponnette); (29) The hybrid power supply system for Truong Sa Islands using solar and wind energy (T.Q. Vinh); (30) Intelligent local network management for the integration of distributed generation and storage systems (W. Heckmann); (31) Network of value creation networks for e-mobility - An analysis of the collaboration competitive advantage (R. Colmom); (32) Project netquality (R. Witzmann); (33) The interdependences between electric vehicles and offshore wind energy - An investigation for the North-Western Region of Germany (M. Buchmann); (34) Testing platform for e-mobility (TPE) (J. Prior); (35) Experiences from integrating DG in rural MV networks (M.K. Istad); (36) MUGIELEC: A comprehensive approach to EV recharge infrastructure (A. Arzuaga); (37) Model region electric mobility Munich - Drive eCharged (W. vom Eyser).

  12. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  13. Standardization of the energy performance of photovoltaic modules in real operating conditions

    Directory of Open Access Journals (Sweden)

    Viganó Davide

    2014-01-01

    Full Text Available The performance of a PV module at STC [1] is a useful indicator for comparing the peak performance of different module types, but on its own is not sufficient to accurately predict how much energy a module will deliver in the field when subjected to a wide range of real operating conditions [2]. An Energy Rating approach has to be preferred for that aim. It is currently under development the standard series IEC 61853 on Energy Rating, for which only part 1 [3] has been issued. It describes methods to characterize the module performance as a function of irradiance and temperature. The reproducibility of the power matrix measurements obtained by the three different methods specified in the standard, namely: under natural sunlight using a tracking system; under natural sunlight without tracker; and a large area pulsed solar simulator of Class AAA were evaluated and discussed [4,5]. The work here presented is focused on the second method listed above, which explores the real working conditions for a PV device and therefore it represents the situation where Energy Rating procedures are expected to give the largest deviations from the STC predictions. The system for continuous monitoring of module performances, already implemented at ESTI, has been recently replaced with a new system having a number of improvements described in the following. The two system results have been compared showing a discrete compatibility. The two power matrices are then merged together using a weighted average and compared to those acquired with the other two remaining “ideal” systems. An interesting tendency seems to come up from this comparison, making the power rating under real operating conditions an essential procedure for energy rating purposes.

  14. The MicroGrid: A Scientific Tool for Modeling Computational Grids

    Directory of Open Access Journals (Sweden)

    H.J. Song

    2000-01-01

    Full Text Available The complexity and dynamic nature of the Internet (and the emerging Computational Grid demand that middleware and applications adapt to the changes in configuration and availability of resources. However, to the best of our knowledge there are no simulation tools which support systematic exploration of dynamic Grid software (or Grid resource behavior. We describe our vision and initial efforts to build tools to meet these needs. Our MicroGrid simulation tools enable Globus applications to be run in arbitrary virtual grid resource environments, enabling broad experimentation. We describe the design of these tools, and their validation on micro-benchmarks, the NAS parallel benchmarks, and an entire Grid application. These validation experiments show that the MicroGrid can match actual experiments within a few percent (2% to 4%.

  15. Physical and clinical evaluation of new high-strip-density radiographic grids

    International Nuclear Information System (INIS)

    Doi, K.; Frank, P.H.; Chan, H.P.; Vyborny, C.J.; Makino, S.; Iida, N.; Carlin, M.

    1983-01-01

    The imaging performance of new high-strip-density (HSD) grids having 57 lines/cm was compared with that of conventional low-strip-density (LSD) grids having 33 or 40 lines/cm. The unique advantage of HSD grids is that, under most standard radiographic conditions, the grid lines are not noticeable on the final image, even if the grid is stationary. This is due to the combined effect of the high fundamental spatial frequency of HSD grids, the modulation transfer function of screen-film systems and of the human visual system, and scattered radiation. Monte Carlo simulation studies, phantom images, and clinical evaluation indicate that HSD grids can provide contrast improvement factors and Bucky factors that are comparable to or slightly better than those obtained with LSD grids. Therefore, it may now be possible to eliminate moving Bucky trays from radiographic tables and fluoroscopic devices

  16. Frequency Stabilizing Scheme for a Danish Island Grid

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    of wind power is necessary to avoid unwanted power oscillations, which lead to uncontrolled oscillations in the power plant control. Since this might deteriorate power quality including frequency in an island grid, a frequency stabilizing control scheme or strategies using intelligent controller......This paper describes the development of frequency stabilizing control scheme for a small Danish island of Bornholm. The Bornholm power system is able to transit from interconnected operation with the Nordic power system to isolated islanding operation. During islanding operation the shedding...... with a battery energy storage system (BESS) has been proposed. The real-time models of distribution grids of Bornholm power system were used to carry out case studies to illustrate the performance of centralized load frequency control as well as coordinated control scheme. Case study results show...

  17. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization

    NARCIS (Netherlands)

    Domínguez-Sáez, A.; Viana, M.; Barrios, C.C.; Rubio, J.R.; Amato, F.; Pujadas, M.; Querol, X.

    2012-01-01

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source

  18. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  19. Balancing services in smart electricity grids enabled by market-driven software agents

    NARCIS (Netherlands)

    Warmer, C.J.; Kamphuis, I.G.; Hermans, R.M.; Frunt, J.; Jokic, A.; Bosch, van den P.P.J.

    2010-01-01

    An important prerequisite for reliable and stable operation of electrical power grids is that supply and demand of power are balanced at all times. In traditional, centrally-controlled electrical power networks, real-time balancing is usually implemented by adjusting large-scale generation to

  20. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

    International Nuclear Information System (INIS)

    Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung

    2012-01-01

    Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

  1. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    Directory of Open Access Journals (Sweden)

    Luis Ruiz-Garcia

    2010-05-01

    Full Text Available Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  2. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines...

  3. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    Science.gov (United States)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  4. Faults in the Collection Grid of Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lunow, Morten Erlandsson; Holbøll, Joachim; Henriksen, Mogens

    2008-01-01

    This paper deals with transient conditions in the collection grid of offshore wind farms under different faults. A model of a standard wind farm was established in two versions, with a floating and a grounded collection grid respectively. Line to ground faults and three-phase to ground faults were...... applied at critical points at worst-case phase angle and the results compared. The simulations show that it is better with a grounded collection grid, since lack of a ground reference will prevent the system from recovering after a line to ground fault....

  5. A Low-Voltage Ride-Through Technique for Grid-Connected Converters with Reduced Power Transistors Stress

    DEFF Research Database (Denmark)

    Chen, Hsin-Chih; Lee, Chia-Tse; Cheng, Po-Tai

    2016-01-01

    With more and more distributed energy resources being installed in the utility grid, grid operators start imposing the low-voltage ride-through requirement on such systems to remain grid-connected and inject reactive and/or active current to support grid voltage during fault conditions. This pape...

  6. Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies

    Directory of Open Access Journals (Sweden)

    Gonzalo Abad

    2018-05-01

    Full Text Available This paper presents an analytical model, oriented to study harmonic mitigation aspects in AC grids. As it is well known, the presence of non-desired harmonics in AC grids can be palliated in several manners. However, in this paper, a power electronic-based active impedance at selective frequencies (ACISEF is used, due to its already proven flexibility and adaptability to the changing characteristics of AC grids. Hence, the proposed analytical model approach is specially conceived to globally consider both the model of the AC grid itself with its electric equivalent impedances, together with the power electronic-based ACISEF, including its control loops. In addition, the proposed analytical model presents practical and useful properties, as it is simple to understand and simple to use, it has low computational cost and simple adaptability to different scenarios of AC grids, and it provides an accurate enough representation of the reality. The benefits of using the proposed analytical model are shown in this paper through some examples of its usefulness, including an analysis of stability and the identification of sources of instability for a robust design, an analysis of effectiveness in harmonic mitigation, an analysis to assist in the choice of the most suitable active impedance under a given state of the AC grid, an analysis of the interaction between different compensators, and so on. To conclude, experimental validation of a 2.15 kA ACISEF in a real 33 kV AC grid is provided, in which real users (household and industry loads and crucial elements such as wind parks and HVDC systems are near inter-connected.

  7. Optimal real time cost-benefit based demand response with intermittent resources

    International Nuclear Information System (INIS)

    Zareen, N.; Mustafa, M.W.; Sultana, U.; Nadia, R.; Khattak, M.A.

    2015-01-01

    Ever-increasing price of conventional energy resources and related environmental concern enforced to explore alternative energy sources. Inherent uncertainty of power generation and demand being strongly influenced by the electricity market has posed severe challenges for DRPs (Demand Response Programs). Definitely, the success of such uncertain energy systems under new market structures is critically decided by the advancement of innovative technical and financial tools. Recent exponential growth of DG (distributed generations) demanded both the grid reliability and financial cost–benefits analysis for deregulated electricity market stakeholders. Based on the SGT (signaling game theory), the paper presents a novel user-aware demand-management approach where the price are colligated with grid condition uncertainties to manage the peak residential loads. The degree of information disturbances are considered as a key factor for evaluating electricity bidding mechanisms in the presence of independent multi-generation resources and price-elastic demand. A correlation between the cost–benefit price and variable reliability of grid is established under uncertain generation and demand conditions. Impacts of the strategies on load shape, benefit of customers and the reduction of energy consumption are inspected and compared with Time-of-Used based DRPs. Simulation results show that the proposed DRP can significantly reduce or even eliminate peak-hour energy consumption, leading to a substantial raise of revenues with 18% increase in the load reduction and a considerable improvement in system reliability is evidenced. - Highlights: • Proposed an optimal real time cost-benefit based demand response model. • Used signaling game theory for the information disturbances in deregulated market. • Introduced a correlation between the cost–benefit price and variable grid reliability. • Derive robust bidding strategies for utility/customers successful participation.

  8. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Science.gov (United States)

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895

  9. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Directory of Open Access Journals (Sweden)

    John Hassard

    2008-06-01

    Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  10. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  11. High-speed narrowband PLC - High-performance Access Powerline Communication structures in smart grid; High-Speed Narrowband PLC. Leistungsfaehige Access-Powerline-Kommunikationsstrukturen im Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Georg [devolo AG, Aachen (Germany)

    2012-07-01

    The smart grid provides a stable operation of a decentralized power system which is fed more and more by small providers by means of solar technology and wind power technology. Furthermore, commercial and private clients profit from the smart grid, as they may capture information about their current consumption in real time or can obtain these data from the Internet. The author of the contribution under consideration presents new approaches to access powerline communications that enable efficient communication between IPv6 based household meter and network station. The contribution under consideration describes the technologies used as well as practical experiences and initial results from field tests. Here insights from the integration of G3-PLC are in the foreground.

  12. Repeated research of biodegradability of plastics materials in real composting conditions

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2013-01-01

    Full Text Available The aim of this paper was to verify information obtained by repeated research provide in 2011 and 2012 in real composting conditions and check information about biodegradability of plastics bags in real composting conditions. In both cases samples were placed into frames and inserted into one clamp within the compost pile to investigate the biodegradation. The plastics bags were obtained from chain stores in the Czech Republic and Poland. The shopping bags were made of HDPE with the TDPA additive (sample 2, PP with an addition of pro-oxidants (d2w (sample 1, 3 and materials certified as compostable (starch, polycaprolactone (sample 4, 5, 6, 7. Control sample (cellulose filtering paper, sample 8 was to check the potential of biological decomposition in the tested environment. At the end of the 15-week experimental period it was found that the polyethylene samples with the additive (sample 1, 2, 3 had not been decomposed, their colour had not changed and that no degradation neither physical changes had occurred (did not biodegrade. Samples certified as compostable (sample 4, 5, 6, 7 were decomposed. The results at the municipal compost facility demonstrate that the compostable plastics biodegrade and polyethylene samples with the additive did not biodegrade in compost.

  13. Desain dan Aplikasi Internet of Thing (IoT untuk Smart Grid Power Sistem

    Directory of Open Access Journals (Sweden)

    Nur Asyik Hidayatullah

    2017-04-01

    Full Text Available Jaringan listrik cerdas atau yang lebih dikenal dengan istilah Smart Grid merupakan salah satu bentuk transformasi dan reformasi teknologi di industri ketenagalistrikan. Smart Grid adalah jaringan energi listrik modern yang secara cerdas dapat mengintegrasikan jaringan listrik dengan perangkat komunikasi yang mendukung pembangkit dan jaringan transmisi distribusi listrik menjadi lebih atraktif, komunikatif dan berkualitas. Smart Grid juga mampu untuk mencegah dan mengisolasi gangguan dengan cepat serta menyajikan informasi data kelistrikan secara real time. Sedangkan Internet of Thing (IoT adalah sebuah metode yang bertujuan untuk memaksimalkan manfaat dari konektivitas internet untuk melakukan transfer dan pemrosesan data-data atau informasi melalui sebuah jaringan internet secara nirkabel, virtual dan otonom. IoT secara teknis dapat mendorong dalam mengembangkan jaringan smart grid dengan mengintegrasikan insfrastruktur utama power sistem mulai dari sisi pembangkit sampai dengan konsumen akhir melalui wireless sensor network secara otomatis. Dengan pemanfaatan IoT diharapkan dapat meningkatkan keandalan sistem informasi dari jaringan listrik serta meningkatkan efisiensi terhadap insfrastruktur listrik yang sudah tersedia. Artikel ini akan menyajikan konsep teknologi smart grid, internet of thing dan membahas model desain dan aplikasi IoT di jaringan smart grid.

  14. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  15. Modeling and simulation for smart grid integration of solar/wind energy

    Directory of Open Access Journals (Sweden)

    Ali MEKKAOUI

    2017-07-01

    Full Text Available The complexity of the power grid, in conjunction with the ever increasing demand for electricity, creates the need for efficient analysis and control of the power system. The evolution of the legacy system towards the new smart grid intensifies this need due to the large number of sensors and actuators that must be monitored and controlled, the new types of distributed energy sources that need to be integrated and the new types of loads that must be supported. At the same time, integration of human-activity awareness into the smart grid is emerging and this will allow the system to monitor, share and manage information and actions on the business, as well as the real world. In this context, modelling and simulation is an invaluable tool for system behavior analysis, energy consumption estimation and future state prediction. In this paper, a Smart Grid has been designed by MATLAB/SIMULINK approach for analysis of Active Power. Analysis of active power gives the exact idea to know the range of maximum permissible loads that can be connected to their relevant bus bars. This paper presents the change in the value of Active Power with varying load angle in context with small signal analysis. The Smart Grid, regarded as the next generation power grid, uses two-way flow of electricity and information to create a widely distributed automated energy delivery network.

  16. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    Science.gov (United States)

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  17. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  18. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  19. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  20. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    Science.gov (United States)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  1. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  2. High enrichment to low enrichment core's conversion. Grid seismic calculation

    International Nuclear Information System (INIS)

    Magoia, J.E.; Benito, G.D.

    1990-01-01

    The grid of a reactor under severe seismic conditions was structurally verified, considering that it must have been maintained without failure. Values obtained from tensions and displacements are under the admissible ones, the existing grid responds to the structural assessment before a severe S2 earthquake (OIEA classification). (Author) [es

  3. Software-Based Challenges of Developing the Future Distribution Grid

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future

  4. Energy stable and high-order-accurate finite difference methods on staggered grids

    Science.gov (United States)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  5. Market partner orientation in power grid operation; Marktpartnerorientierung im Netzbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Claudia; Gebhardt, Andreas [Buelow und Consorten GmbH, Hamburg (Germany)

    2012-11-15

    Customer orientation is often neglected in power grid operation. Power grid owners have natural monopolies and defined territories and so far had little reason to consider their customers' needs. This is changing with changed boundary conditions. In the competition for concessions and customers for non-regulated services, those grid owners will prevail in the long run wo are aware of their market partners, their power and expectations, and wo are prepared to implement profit-oriented customer orientation measures. (orig.)

  6. Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.

    2012-01-01

    -sequence current components is becoming necessary for achieving new capabilities like the reactive power injection during a grid fault. This paper deals with a fundamental issue in this topic, i.e., the performance of the current controller. Classical dq controllers, which are extensively used in industrial...

  7. Solution of underdetermined systems of equations with gridded a priori constraints.

    Science.gov (United States)

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  8. Wildfire spread, hazard and exposure metric raster grids for central Catalonia

    Directory of Open Access Journals (Sweden)

    Fermín J. Alcasena

    2018-04-01

    Full Text Available We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain corresponding to node influence grid (NIG, crown fraction burned (CFB and fire transmission to residential houses (TR. Fire spread and behavior data (NIG, CFB and fire perimeters were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97th percentile. Moreover, CFB was also generated for prescribed fire (Rx mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events. Keywords: Catalonia, Wildfire exposure, Fire transmission, Crown fire activity, Prescribed fires

  9. GRID Prototype for imagery processing in scientific applications

    International Nuclear Information System (INIS)

    Stan, Ionel; Zgura, Ion Sorin; Haiduc, Maria; Valeanu, Vlad; Giurgiu, Liviu

    2004-01-01

    The paper presents the results of our study which is part of the InGRID project. This project is supported by ROSA (ROmanian Space Agency). In this paper we will show the possibility to take images from the optical microscope through web camera. The images are then stored on the PC in Linux operating system and distributed to other clusters through GRID technology (using http, php, MySQL, Globus or AliEn systems). The images are provided from nuclear emulsions in the frame of Becquerel Collaboration. The main goal of the project InGRID is to actuate developing and deploying GRID technology for images technique taken from space, different application fields and telemedicine. Also it will create links with the same international projects which use advanced Grid technology and scalable storage solutions. The main topics proposed to be solved in the frame of InGRID project are: - Implementation of two GRID clusters, minimum level Tier 3; - Adapting and updating the common storage and processing computing facility; - Testing the middelware packages developed in the frame of this project; - Testbed production of the prototype; - Build-up and advertise the InGRID prototype in scientific community through current dissemination. InGRID Prototype developed in the frame of this project, will be used by partner institutes as deploying environment of the imaging applications the dynamical features of which will be defined by conditions of contract. Subsequent applications will be deployed by the partners of this project with governmental, nongovernmental and private institutions. (authors)

  10. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Speer, Bethany [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-23

    In the United States and elsewhere, renewable energy (RE) generation supplies an increasingly large percentage of annual demand, including nine U.S. states where wind comprised over 10% of in-state generation in 2013. This white paper summarizes the challenges to integrating increasing amounts of variable RE, identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying concept—economic carrying capacity—that can provide a framework for evaluating actions to accommodate higher penetrations of RE. There is growing recognition that while technical challenges to variable RE integration are real, they can generally be addressed via a variety of solutions that vary in implementation cost. As a result, limits to RE penetration are primarily economic, driven by factors that include transmission and the flexibility of the power grid to balance supply and demand. This limit can be expressed as economic carrying capacity, or the point at which variable RE is no longer economically competitive or desirable to the system or society.

  11. Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.

  12. State-space-based harmonic stability analysis for paralleled grid-connected inverters

    DEFF Research Database (Denmark)

    Wang, Yanbo; Wang, Xiongfei; Chen, Zhe

    2016-01-01

    This paper addresses a state-space-based harmonic stability analysis of paralleled grid-connected inverters system. A small signal model of individual inverter is developed, where LCL filter, the equivalent delay of control system, and current controller are modeled. Then, the overall small signal...... model of paralleled grid-connected inverters is built. Finally, the state space-based stability analysis approach is developed to explain the harmonic resonance phenomenon. The eigenvalue traces associated with time delay and coupled grid impedance are obtained, which accounts for how the unstable...... inverter produces the harmonic resonance and leads to the instability of whole paralleled system. The proposed approach reveals the contributions of the grid impedance as well as the coupled effect on other grid-connected inverters under different grid conditions. Simulation and experimental results...

  13. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company; Ueda, Reid [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-10-03

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  14. Performance evaluation of grid-enabled registration algorithms using bronze-standards

    CERN Document Server

    Glatard, T; Montagnat, J

    2006-01-01

    Evaluating registration algorithms is difficult due to the lack of gold standard in most clinical procedures. The bronze standard is a real-data based statistical method providing an alternative registration reference through a computationally intensive image database registration procedure. We propose in this paper an efficient implementation of this method through a grid-interfaced workflow enactor enabling the concurrent processing of hundreds of image registrations in a couple of hours only. The performances of two different grid infrastructures were compared. We computed the accuracy of 4 different rigid registration algorithms on longitudinal MRI images of brain tumors. Results showed an average subvoxel accuracy of 0.4 mm and 0.15 degrees in rotation.

  15. Secure Real-Time Monitoring and Management of Smart Distribution Grid Using Shared Cellular Networks

    NARCIS (Netherlands)

    Nielsen, J.J.; Ganem, H.; Jorguseski, L.; Alic, K.; Smolnikar, M.; Zhu, Z.; Pratas, N.K.; Golinski, M.; Zhang, H.; Kuhar, U.; Fan, Z.; Svigelj, A.

    2017-01-01

    Electricity production and distribution is facing two major changes. First, production is shifting from classical energy sources such as coal and nuclear power toward renewable resources such as solar and wind. Second, consumption in the low voltage grid is expected to grow significantly due to the

  16. Interactive volume visualization of general polyhedral grids

    KAUST Repository

    Muigg, Philipp

    2011-12-01

    This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages. © 2011 IEEE.

  17. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality

    Directory of Open Access Journals (Sweden)

    Rita Pinto

    2016-09-01

    Full Text Available Photovoltaic (PV generation systems have been increasingly used to generate electricity from renewable sources, attracting a growing interest. Recently, grid connected PV micro-generation facilities in individual homes have increased due to governmental policies as well as greater attention by industry. As low voltage (LV distribution systems were built to make energy flow in one direction, the power feed-in of PV generation in rural low-voltage grids can influence power quality (PQ as well as facility operation and reliability. This paper presents results on PQ analysis of a real PV generation facility connected to a rural low-voltage grid. Voltage fluctuations and voltage harmonic contents were observed. Statistical analysis shows a negative impact on PQ produced by this PV facility and also that only a small fraction of the energy available during a sunny day is converted, provoking losses of revenue and forcing the converter to work in an undesirable operating mode. We discuss the disturbances imposed upon the grid and their outcome regarding technical and economic viability of the PV system, as well as possible solutions. A low-voltage grid strengthening has been suggested and implemented. After that a new PQ analysis shows an improvement in the impact upon PQ, making this facility economically viable.

  18. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  19. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  20. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  1. Comparison of ventilation measurement techniques in real conditions

    International Nuclear Information System (INIS)

    Jilek, K.; Tomasek, L.

    2001-01-01

    Ventilation and radon entry rate are the only two quantities that influence on indoor radon behaviour. In order to investigate the effect of ventilation and radon entry rate on indoor radon behaviour separately , the Institute was equipped with continuous monitor of carbon monoxide (CO). Carbon monoxide serves as a tracer gas for the determination of air exchange rate. The use of a continuous radon monitor and the continuous monitor of CO gas at the same time enables to measure the radon entry rate and the air exchange rate separately. In the lecture are summarized results of comparison of the following three basic methods performed in real living conditions: - constant decay method; - constant tracer method; and steady rate of tracer injection to determine the air exchange rate for 222 Rn and CO gas, which were used as tracer gases. (authors)

  2. Electromagnetic Transient Response Analysis of DFIG under Cascading Grid Faults Considering Phase Angel Jumps

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei

    2014-01-01

    This paper analysis the electromagnetic transient response characteristics of DFIG under symmetrical and asymmetrical cascading grid fault conditions considering phaseangel jump of grid. On deriving the dynamic equations of the DFIG with considering multiple constraints on balanced and unbalanced...... conditions, phase angel jumps, interval of cascading fault, electromagnetic transient characteristics, the principle of the DFIG response under cascading voltage fault can be extract. The influence of grid angel jump on the transient characteristic of DFIG is analyzed and electromagnetic response...

  3. Real-time electricity pricing mechanism in China based on system dynamics

    International Nuclear Information System (INIS)

    He, Yongxiu; Zhang, Jixiang

    2015-01-01

    Highlights: • The system dynamics is used to research the real-time electricity pricing mechanism. • Four kinds of the real-time electricity pricing models are carried out and simulated. • It analysed the electricity price, the user satisfaction and the social benefits under the different models. • Market pricing is the trend of the real-time electricity pricing mechanism. • Initial development path of the real-time price mechanism for China is designed between 2015 and 2030. - Abstract: As an important means of demand-side response, the reasonable formulation of the electricity price mechanism will have an important impact on the balance between the supply and demand of electric power. With the introduction of Chinese intelligence apparatus and the rapid development of smart grids, real-time electricity pricing, as the frontier electricity pricing mechanism in the smart grid, will have great significance on the promotion of energy conservation and the improvement of the total social surplus. From the perspective of system dynamics, this paper studies different real-time electricity pricing mechanisms based on load structure, cost structure and bidding and analyses the situation of user satisfaction and the total social surplus under different pricing mechanisms. Finally, through the comparative analysis of examples under different real-time pricing scenarios, this paper aims to explore and design the future dynamic real-time electricity pricing mechanism in China, predicts the dynamic real-time pricing level and provides a reference for real-time electricity price promotion in the future

  4. Staged Inference using Conditional Deep Learning for energy efficient real-time smart diagnosis.

    Science.gov (United States)

    Parsa, Maryam; Panda, Priyadarshini; Sen, Shreyas; Roy, Kaushik

    2017-07-01

    Recent progress in biosensor technology and wearable devices has created a formidable opportunity for remote healthcare monitoring systems as well as real-time diagnosis and disease prevention. The use of data mining techniques is indispensable for analysis of the large pool of data generated by the wearable devices. Deep learning is among the promising methods for analyzing such data for healthcare applications and disease diagnosis. However, the conventional deep neural networks are computationally intensive and it is impractical to use them in real-time diagnosis with low-powered on-body devices. We propose Staged Inference using Conditional Deep Learning (SICDL), as an energy efficient approach for creating healthcare monitoring systems. For smart diagnostics, we observe that all diagnoses are not equally challenging. The proposed approach thus decomposes the diagnoses into preliminary analysis (such as healthy vs unhealthy) and detailed analysis (such as identifying the specific type of cardio disease). The preliminary diagnosis is conducted real-time with a low complexity neural network realized on the resource-constrained on-body device. The detailed diagnosis requires a larger network that is implemented remotely in cloud and is conditionally activated only for detailed diagnosis (unhealthy individuals). We evaluated the proposed approach using available physiological sensor data from Physionet databases, and achieved 38% energy reduction in comparison to the conventional deep learning approach.

  5. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  6. High Order Sliding Mode Control of Doubly-fed Induction Generator under Unbalanced Grid Faults

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2013-01-01

    This paper deals with a doubly-fed induction generator-based (DFIG) wind turbine system under grid fault conditions such as: unbalanced grid voltage, three-phase grid fault, using a high order sliding mode control (SMC). A second order sliding mode controller, which is robust with respect...

  7. Buckling behavior analysis of spacer grid by lateral impact load

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kang, Heung Seok; Kim, Hyung Kyu; Song, Kee Nam

    2000-05-01

    The spacer grid is one of the main structural components in the fuel assembly, Which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing it. In this report, free fall type shock tests on the several kinds of the specimens of the spacer grids were also carried out in order to compare the results among the candidate grids. A free fall carriage on the specimen accomplishes the test. In addition to this, a finite element method for predicting the critical impact strength of the spacer grids is described. FE method on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic impact analysis using ABAQUS/explicit code. The simulated results results also similarly predicted the local buckling phenomena and were found to give good correspondence with the shock test results

  8. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  9. Demand side management scheme in smart grid with cloud computing approach using stochastic dynamic programming

    Directory of Open Access Journals (Sweden)

    S. Sofana Reka

    2016-09-01

    Full Text Available This paper proposes a cloud computing framework in smart grid environment by creating small integrated energy hub supporting real time computing for handling huge storage of data. A stochastic programming approach model is developed with cloud computing scheme for effective demand side management (DSM in smart grid. Simulation results are obtained using GUI interface and Gurobi optimizer in Matlab in order to reduce the electricity demand by creating energy networks in a smart hub approach.

  10. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing

    International Nuclear Information System (INIS)

    Jang, Yonghee; Byun, Doyoung; Kim, Jihoon

    2013-01-01

    Invisible Ag-grid transparent electrodes (TEs) were prepared by electrohydrodynamic (EHD) jet printing using Ag nano-particle inks. Ag-grid width less than 10 µm was achieved by the EHD jet printing, which was invisible to the naked eye. The Ag-grid line-to-line distance (pitch) was modulated in order to investigate the electrical and optical properties of the EHD jet-printed Ag-grid TEs. The decrease in the sheet resistance at the expense of the transmittance was observed as the Ag-grid pitch decreased. The figure of merit of Ag-grid TEs with various Ag-grid pitches was investigated in order to determine the optimum pitch condition for both electrical and optical properties. With the 150 µm Ag-grid pitch, the EHD jet-printed Ag-grid TE has the sheet resistance of 4.87 Ω sq −1 and the transmittance of 81.75% after annealing at 200 °C under near-infrared. Ag filling factor (FF) was defined to predict the electrical and optical properties of Ag-grid TEs. It was found that the measured electrical and optical properties were well simulated by the theoretical equations incorporating FF. The EHD jet-printed invisible Ag-grid TE with good electrical and optical properties implies its promising application to the printed optoelectronic devices. (paper)

  11. GridICE: monitoring the user/application activities on the grid

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A; Fantinel, S

    2008-01-01

    The monitoring of the grid user activity and application performance is extremely useful to plan resource usage strategies particularly in cases of complex applications. Large VOs, such as the LHC VOs, do their monitoring by means of dashboards. Other VOs or communities, like for example the BioinfoGRID one, are characterized by a greater diversification of the application types: so the effort to provide a dashboard like monitor is particularly heavy. The main theme of this paper is to show the improvements introduced in GridICE, a web tool built to provides an almost complete grid monitoring. These recent improvements allows GridICE to provide new reports on the resources usage with details of the VOMS groups, roles and users. By accessing the GridICE web pages, the grid user can get all information that is relevant to keep track of his activity on the grid. In the same way, the activity of a VOMS group can be distinguished from the activity of the entire VO. In this paper we briefly talk about the features and advantages of this approach and, after discussing the requirements, we describe the software solutions, middleware and prerequisite to manage and retrieve the user's credentials

  12. Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter

    International Nuclear Information System (INIS)

    Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim

    2016-01-01

    Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.

  13. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  14. Simulation model of a wind turbine pitch controller for grid frequency stabilisation

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens; Cronin, Tom

    2005-06-15

    This paper describes a pitch angle controller that enables an active-stall wind turbine to dampen actively grid frequency oscillations. This builds on previous work in the area of the transient stability control of active-stall turbines. The phenomenon of grid frequency oscillations is explained briefly and then the task for the wind turbine controller defined. The pitch controller that acts as a grid frequency stabiliser is explained in terms of its layout, control sequence and parameters. Finally, a transient fault situation with subsequent grid frequency oscillations is simulated and it is shown how the grid frequency stabiliser works. The performance of the controller is discussed and the conclusion is drawn that grid frequency stabilisation with an active-stall turbine is possible under certain conditions. (Author)

  15. Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction

    Directory of Open Access Journals (Sweden)

    Tian Li

    2017-01-01

    Full Text Available Smart grid is a potential infrastructure to supply electricity demand for end users in a safe and reliable manner. With the rapid increase of the share of renewable energy and controllable loads in smart grid, the operation uncertainty of smart grid has increased briskly during recent years. The forecast is responsible for the safety and economic operation of the smart grid. However, most existing forecast methods cannot account for the smart grid due to the disabilities to adapt to the varying operational conditions. In this paper, reinforcement learning is firstly exploited to develop an online learning framework for the smart grid. With the capability of multitime scale resolution, wavelet neural network has been adopted in the online learning framework to yield reinforcement learning and wavelet neural network (RLWNN based adaptive learning scheme. The simulations on two typical prediction problems in smart grid, including wind power prediction and load forecast, validate the effectiveness and the scalability of the proposed RLWNN based learning framework and algorithm.

  16. Modeling and control of sustainable power systems. Towards smarter and greener electric grids

    Energy Technology Data Exchange (ETDEWEB)

    Lingfeng Wang (ed.) [Toledo Univ., OH (United States). Electrical Engineering and Computer Science Dept.

    2012-07-01

    The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods. (orig.)

  17. A unified grid current control for grid-interactive DG inverters in microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittan...... locus analyses in the discrete z-domain are performed for elaborating the controller design. Simulations and experimental results demonstrate the performances of the proposed approach.......This paper proposes a unified grid current control for grid-interactive distributed generation inverters. In the approach, the grid-side current, instead of inverter-side current, is controlled as an inner loop, while the filter capacitor voltage is indirectly regulated through a virtual admittance...... in the outer loop. It, therefore, provides several superior features over traditional control schemes: 1) high-quality grid current in the grid-connected mode, 2) inherent derivative-less virtual output impedance control, and 3) the unified active damping for both grid-connected and islanded operations. Root...

  18. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . As an example, the latest published grid codes stress the ability of distributed generators, especially wind turbines, to stay connected during short grid disturbances and in addition to provide active/reactive power control at the point of common coupling. Based on the above facts, the need for improving...... reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power and an enhanced contribution of distributed power generation systems to power system stability...... and adding more features to the control of distributed power generation systems (DPGS) arises. As a consequence, this thesis focuses on grid monitoring methods and possible approaches in control in order to obtain a more reliable and  exible power generation system during normal and faulty grid conditions...

  19. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    Science.gov (United States)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  20. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  1. Construction and application research of Three-dimensional digital power grid in Southwest China

    Science.gov (United States)

    Zhou, Yang; Zhou, Hong; You, Chuan; Jiang, Li; Xin, Weidong

    2018-01-01

    With the rapid development of Three-dimensional (3D) digital design technology in the field of power grid construction, the data foundation and technical means of 3D digital power grid construction approaches perfection. 3D digital power grid has gradually developed into an important part of power grid construction and management. In view of the complicated geological conditions in Southwest China and the difficulty in power grid construction and management, this paper is based on the data assets of Southwest power grid, and it aims at establishing a 3D digital power grid in Southwest China to provide effective support for power grid construction and operation management. This paper discusses the data architecture, technical architecture and system design and implementation process of the 3D digital power grid construction through teasing the key technology of 3D digital power grid. The application of power grid data assets management, transmission line corridor planning, geological hazards risk assessment, environmental impact assessment in 3D digital power grid are also discussed and analysed.

  2. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  3. Shining the light on smart grid investments : a Duke energy case study

    International Nuclear Information System (INIS)

    Jackson, J.

    2010-01-01

    Utilities and other agencies must fully consider the costs, benefits, and strategies required for smart grid implementation. While pilot programs are useful for evaluating the features of utility smart grid applications, they do not provide an accurate account of peak period load savings for utility service areas over time. In addition, many factors are likely to influence peak hour electricity in the future, and may also influence smart grid savings projections. In this study, the market analysis and information system (MAISY) residential agent-based model was used to simulate a smart grid program at the individual customer level by smoothing individual central air conditioner and heating hourly loads over peak hours. The model was developed to reflect utility and customer-sited control technologies as well as reductions in electricity use based on price responsiveness. The model provided a more reliable simulation approach than aggregate elasticity modelling methods as it was able to estimate hourly load reductions based on real end use data. A case study of the Duke Energy Indiana service area was used to demonstrate the model. 3 figs.

  4. An overview of distributed microgrid state estimation and control for smart grids.

    Science.gov (United States)

    Rana, Md Masud; Li, Li

    2015-02-12

    Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method.

  5. An Overview of Distributed Microgrid State Estimation and Control for Smart Grids

    Science.gov (United States)

    Rana, Md Masud; Li, Li

    2015-01-01

    Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method. PMID:25686316

  6. Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi

    2016-01-01

    mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested...

  7. Desain Pengisian Optimal Kendaraan Listrik Berdasarkan Kebutuhan Daya Grid dan Kondisi Grid pada Stasiun Pengisian Kendaraan Listrik Menggunakan Kontroler Logika Fuzzy

    Directory of Open Access Journals (Sweden)

    Onang Surya Nugroho

    2017-01-01

    Full Text Available Electric vehicles has become one of alternatives in addressing energy crisis in the field of transportation. Increasing the number of electric vehicles that are not accompanied by a proper charging station management would give negative impact either to the distribution system on the network such as voltage fluctuation, voltage drop, voltage stress, lack of continuity of the power system, and even cause the blackout. Energy management design is needed for electric vehicles charging stations to obtain optimal power flow model between charging station and grid. This research will be designed an analysis and design of optimal charging by considering estimated power flow between charging station with the grid and load conditions on the grid (off-peak / peak using fuzzy logic controller. This charging management uses the concept vehicle to vehicle (V2V, vehicle to grid (V2G, and the grid to vehicle (G2V which adjust by charging index and charging rate results from rule fuzzy scoring result. The simulation results show that the fuzzy-based system can flatten the load curve peak of electric vehicle, reducing the impact of peak load to the grid, and can provide cost advantages in the form of cost saving.

  8. First Real-Time Detection of Surface Dust in a Tokamak

    International Nuclear Information System (INIS)

    Skinner, C.; Rais, B.; Roquemore, A.L.; Kugel, H.W.; Marsala, R.; Provost, T.

    2010-01-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 v. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of x10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to lab measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  9. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  10. The effects of meshed offshore grids on offshore wind investment – a real options analysis

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Kitzing, Lena

    2012-01-01

    Offshore wind farms in future meshed offshore grids could be subject to different regulatory regimes. Feed-in tariffs would absorb market risk from wind farm operators, whereas price premium mechanisms leave operators exposed to market price signals. In this case, it plays a decisive role which...... price applies to a node in an offshore grid. The offshore node will either be integrated into any of the neighbouring markets, with access to the respective maximum price, or be subject to separate nodal pricing. We investigate the different regulatory regimes for connections to one to four countries...... based on a stochastic model capturing uncertainties in prices and line failures. The stochastic analysis shows that in case the wind park is granted access to the respective maximum price, there is a significant option value connected to the operational flexibility of accessing several markets: The wind...

  11. The effects of meshed offshore grids on offshore wind investment – a real options analysis

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten; Kitzing, Lena

    2012-01-01

    based on a stochastic model capturing uncertainties in prices and line failures. The stochastic analysis shows that in case the wind park is granted access to the respective maximum price, there is a significant option value connected to the operational flexibility of accessing several markets: The wind......Offshore wind farms in future meshed offshore grids could be subject to different regulatory regimes. Feed-in tariffs would absorb market risk from wind farm operators, whereas price premium mechanisms leave operators exposed to market price signals. In this case, it plays a decisive role which...... price applies to a node in an offshore grid. The offshore node will either be integrated into any of the neighbouring markets, with access to the respective maximum price, or be subject to separate nodal pricing. We investigate the different regulatory regimes for connections to one to four countries...

  12. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  13. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  14. Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications

    Directory of Open Access Journals (Sweden)

    Matthias Stifter

    2018-04-01

    Full Text Available With the advent of Distribution Phasor Measurement Units (D-PMUs and Micro-Synchrophasors (Micro-PMUs, the situational awareness in power distribution systems is going to the next level using time-synchronization. However, designing, analyzing, and testing of such accurate measurement devices are still challenging. Due to the lack of available knowledge and sufficient history for synchrophasors’ applications at the power distribution level, the realistic simulation, and validation environments are essential for D-PMU development and deployment. This paper presents a vendor agnostic PMU real-time simulation and hardware-in-the-Loop (PMU-RTS-HIL testbed, which helps in multiple PMUs validation and studies. The network of real and virtual PMUs was built in a full time-synchronized environment for PMU applications’ validation. The proposed testbed also includes an emulated communication network (CNS layer to replicate bandwidth, packet loss and collisions conditions inherent to the PMUs data streams’ issues. Experimental results demonstrate the flexibility and scalability of the developed PMU-RTS-HIL testbed by producing large amounts of measurements under typical normal and abnormal distribution grid operation conditions.

  15. Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints

    Directory of Open Access Journals (Sweden)

    M. Nazif Faqiry

    2017-11-01

    Full Text Available In a transactive energy market, distributed energy resources (DERs such as dispatchable distributed generators (DGs, electrical energy storages (EESs, distribution-scale load aggregators (LAs, and renewable energy sources (RESs have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP, is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP, which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model.

  16. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    Science.gov (United States)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  17. Smart Grid: Network simulator for smart grid test-bed

    International Nuclear Information System (INIS)

    Lai, L C; Ong, H S; Che, Y X; Do, N Q; Ong, X J

    2013-01-01

    Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

  18. Modified Dual Second-order Generalized Integrator FLL for Frequency Estimation Under Various Grid Abnormalities

    Directory of Open Access Journals (Sweden)

    Kalpeshkumar Rohitbhai Patil

    2016-10-01

    Full Text Available Proper synchronization of Distributed Generator with grid and its performance in grid-connected mode relies on fast and precise estimation of phase and amplitude of the fundamental component of grid voltage. However, the accuracy with which the frequency is estimated is dependent on the type of grid voltage abnormalities and structure of the phase-locked loop or frequency locked loop control schemes. Among various control schemes, second-order generalized integrator based frequency- locked loop (SOGI-FLL is reported to have the most promising performance. It tracks the frequency of grid voltage accurately even when grid voltage is characterized by sag, swell, harmonics, imbalance, frequency variations etc. However, estimated frequency contains low frequency oscillations in case when sensed grid-voltage has a dc offset. This paper presents a modified dual second-order generalized integrator frequency-locked loop (MDSOGI-FLL for three-phase systems to cope with the non-ideal three-phase grid voltages having all type of abnormalities including the dc offset. The complexity in control scheme is almost the same as the standard dual SOGI-FLL, but the performance is enhanced. Simulation results show that the proposed MDSOGI-FLL is effective under all abnormal grid voltage conditions. The results are validated experimentally to justify the superior performance of MDSOGI-FLL under adverse conditions.

  19. Stable grid refinement and singular source discretization for seismic wave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B

    2009-10-30

    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  20. The task of the Smart Grid Network. Summary and recommendations; Denmark; Smart Grid Netvaerkets arbejde. Sammenfatning og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Lidegaard, M.

    2011-10-15

    The Smart Grid Network was established in 2010 by the Danish climate and energy minister tasked with developing recommendations for future actions and initiatives that make it possible to handle up to 50% electricity from wind energy in the power system in 2020. The present report presents a summary of the network's main recommendations. Smart Grid will not be realized without ensuring reasonable conditions for actors in the system. It is essential to establish a clear market model with clear roles and responsibilities. Additionally there is a need for development and implementation of a future communication and control concept, which makes it possible to achieve the best possible interaction between the management of power system, power generation and electricity consumption. The future demands that both the commercial and technical data communications paths and systems will be expanded and supplemented with connections for significantly more renewable energy production at all levels in the grid. And most importantly there must be established entirely new interoperable communication structures for both commercial and technical utilization of the consumption part of the power system. In order to realize an effective deployment of Smart Grid in 2020 with up to 50 % of renewable energy production there is a need to implement a number of initiatives. The Smart Grid Network identifies nine main recommendations. (LN)

  1. Relative dose efficiencies of antiscatter grids and air gaps in pediatric radiography

    International Nuclear Information System (INIS)

    McDaniel, D.L.; Cohen, G.; Wagner, L.K.; Robinson, L.H.

    1984-01-01

    The relative dose efficiencies (RDE) of various antiscatter grids and air gaps were determined for conditions simulating those found in pediatric radiography, using phantoms representing a newborn child, a 5-yr-old and a 10-yr-old child. Our data indicate than an air gap is best for the newborn, due to the low levels of scatter. The 8:1 fiber grid or 15.2-cm air gap without a grid can improve dose efficiency (DE) for the 5-yr-old child by 20%--25% relative to the 3.3-cm air gap and no-grid technique, while for the 10-yr-old child, DE can be improved by 40% with an 8:1 fiber grid

  2. Ten questions concerning integrating smart buildings into the smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve; Henze, Gregor; Mohammadpour, Javad; Noonan, Doug; Patteeuw, Dieter; Pless, Shanti; Watson, Richard T.

    2016-11-01

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.

  3. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets

    Directory of Open Access Journals (Sweden)

    Matthew H. Savoie

    2012-03-01

    Full Text Available Defined in the early 1990s for use with gridded satellite passive microwave data, the Equal-Area Scalable Earth Grid (EASE-Grid was quickly adopted and used for distribution of a variety of satellite and in situ data sets. Conceptually easy to understand, EASE-Grid suffers from limitations that make it impossible to format in the widely popular GeoTIFF convention without reprojection. Importing EASE-Grid data into standard mapping software packages is nontrivial and error-prone. This article defines a standard for an improved EASE-Grid 2.0 definition, addressing how the changes rectify issues with the original grid definition. Data distributed using the EASE-Grid 2.0 standard will be easier for users to import into standard software packages and will minimize common reprojection errors that users had encountered with the original EASE-Grid definition.

  4. Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment

    International Nuclear Information System (INIS)

    Murphy, M.D.; O’Mahony, M.J.; Upton, J.

    2015-01-01

    Highlights: • A cold thermal energy storage system model was created and validated. • Pseudo real time electricity pricing was derived to represent the smart grid. • A demand side management optimisation algorithm was developed. • Demand side management algorithm performance was compared to a standard controller. • Overall the demand side management algorithm produced modest cost savings. - Abstract: The objective of this study was to assess the benefits of introducing a demand side management optimisation controller to a cold thermal storage ice bank. This controller consisted of an ice bank model, an air temperature forecast model and an optimisation algorithm. The financial and grid utilisation benefits produced by implementation of this controller over the current state of the art in ice bank load shifting control was tested in a day ahead real time electricity pricing forecast environment. This hypothetical real time electricity price was based on the cost of electricity in the Irish wholesale market. Multiple ice bank charge levels were simulated in order to quantify the performance of two control methods for varying operating conditions. First, the “standard controller” was based on the current modus operandi for ice bank systems where ice was generated for food cooling at night when the off-peak electricity tariff is available (00:00–08:00 h). Second, the “upgraded controller” was developed as a bespoke Demand Side Management control system for food refrigeration in a future electricity pricing environment. It consisted of a dual function load shifting optimisation algorithm, an ice bank model, and a predictive air temperature model. A preliminary study was also carried out to test the robustness of the controller’s performance in an uncertain real time electricity pricing forecast scenario. Both economic and grid management benefits were found by simulating the operation of the cold thermal storage load shifting controller in a

  5. Characterization of Storage Sizing for an Off-Grid House in the US and the Netherlands

    Directory of Open Access Journals (Sweden)

    Diego Fernando Quintero Pulido

    2018-01-01

    Full Text Available This work uses experimental data to estimate the size of storage needed for an isolated off-grid household in two different regions (Austin, Texas, US, and Nunspeet, NL. In our study, an off-grid house is considered to be supplied with 100% renewable energy during the summer period, in which cooling demand is neglected, and a solar photovoltaic (PV system and batteries are the main electrical energy providers. Based on results achieved with the DEMkit simulation package we can conclude that, in both cases, using a solar PV system and a Sea-Salt battery would have been sufficient to provide the necessary electricity without showing a blackout during the summer of 2016. The Austin household needs a solar PV system of 38 kWp and storage of 452 kWh; in the case of Nunspeet, a solar PV system of 11.5 kWp and storage of 90 kWh is sufficient. Furthermore, using the DEMkit model, it is possible to determine an optimal value for the size of storage to half of the initial battery capacity (226 kWh for Austin and 45 kWh for Nunspeet and still be able to provide enough power to cover the load demand of the households during the summer. In a second part, data of the solar PV system and load from Austin for one specific week was used to create data of a ‘typical’ but downscaled day. This day was used to determine the fluctuation of electricity for a real Sea-Salt battery for the considered off-grid scenario in Austin. The downscaling of the data was needed in order to have load values that fit to the size of the real battery. The tests show that the Sea-Salt battery under real electricity fluctuations is possibly adequate for off-grid scenarios.

  6. Optimal operation control of low-voltage grids with a high share of distributed power generation[Dissertation 17063]; Optimierte Betriebsfuehrung von Niederspannungsnetzen mit einem hohen Anteil an dezentraler Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Malte, C. T.

    2007-07-01

    targets during development were that the system is able to manage autonomously a selected low-voltage grid including the installed (controllable) grid devices in order to improve power quality as well as to guarantee an economically optimised operation of the grid. Therefore, this system simplifies the integration of more and more DG units into already existing distribution grids and generates at the same time an economical and technical benefit for the concerned grid operator. All essential algorithms for the operation of PoMS have been developed within this PhD thesis. The approaches used in this work have been designed specially to fit for the application in limited low-voltage grid segments, e.g. area grids or industrial grids. It is a big advantage that the algorithms have been designed in such a general and scalable way, so that they can be used in a slightly modified form also for the optimisation of larger grids. From the very beginning the aim of the project was not only to design the system theoretically but also to test it under real conditions in an existing low-voltage grid. For that a fix time slot was given that had to be met under all circumstances. Therefore, the big challenge in the framework of this PhD thesis was not only to develop appropriate algorithms, but also to do this in the given time. With the successful test of PoMS it could be demonstrated that the developed algorithms are practical and allow an economically optimised grid management under real conditions. Further, it could be shown that PoMS can be used even for the operation of permanently islanded grids as well as for the operation of temporary islanded grids due to faults or interruptions on higher voltage levels ('Fault Ride Through'). (author)

  7. Optimal operation control of low-voltage grids with a high share of distributed power generation[Dissertation 17063]; Optimierte Betriebsfuehrung von Niederspannungsnetzen mit einem hohen Anteil an dezentraler Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Malte, C T

    2007-07-01

    able to manage autonomously a selected low-voltage grid including the installed (controllable) grid devices in order to improve power quality as well as to guarantee an economically optimised operation of the grid. Therefore, this system simplifies the integration of more and more DG units into already existing distribution grids and generates at the same time an economical and technical benefit for the concerned grid operator. All essential algorithms for the operation of PoMS have been developed within this PhD thesis. The approaches used in this work have been designed specially to fit for the application in limited low-voltage grid segments, e.g. area grids or industrial grids. It is a big advantage that the algorithms have been designed in such a general and scalable way, so that they can be used in a slightly modified form also for the optimisation of larger grids. From the very beginning the aim of the project was not only to design the system theoretically but also to test it under real conditions in an existing low-voltage grid. For that a fix time slot was given that had to be met under all circumstances. Therefore, the big challenge in the framework of this PhD thesis was not only to develop appropriate algorithms, but also to do this in the given time. With the successful test of PoMS it could be demonstrated that the developed algorithms are practical and allow an economically optimised grid management under real conditions. Further, it could be shown that PoMS can be used even for the operation of permanently islanded grids as well as for the operation of temporary islanded grids due to faults or interruptions on higher voltage levels ('Fault Ride Through'). (author)

  8. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  9. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    Science.gov (United States)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on

  10. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Science.gov (United States)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  11. Building Input Adaptive Parallel Applications: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Murarasu, Alin

    2012-12-01

    The well-known power wall resulting in multi-cores requires special techniques for speeding up applications. In this sense, parallelization plays a crucial role. Besides standard serial optimizations, techniques such as input specialization can also bring a substantial contribution to the speedup. By identifying common patterns in the input data, we propose new algorithms for sparse grid interpolation that accelerate the state-of-the-art non-specialized version. Sparse grid interpolation is an inherently hierarchical method of interpolation employed for example in computational steering applications for decompressing highdimensional simulation data. In this context, improving the speedup is essential for real-time visualization. Using input specialization, we report a speedup of up to 9x over the nonspecialized version. The paper covers the steps we took to reach this speedup by means of input adaptivity. Our algorithms will be integrated in fastsg, a library for fast sparse grid interpolation. © 2012 IEEE.

  12. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    DEFF Research Database (Denmark)

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders i.e. wind turbines and PV....... However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...

  13. Main report for the task of the Smart Grid Network; Denmark; Hovedrapport for Smart Grid Netvaerkets arbejde

    Energy Technology Data Exchange (ETDEWEB)

    Lidegaard, M.

    2011-07-01

    The Smart Grid Network was established in 2010 by the Danish climate and energy minister tasked with developing recommendations for future actions and initiatives that make it possible to handle up to 50% electricity from wind energy in the power system in 2020. Smart Grid will not be realized without ensuring reasonable conditions for actors in the system. It is essential to establish a clear market model with clear roles and responsibilities. Additionally there is a need for development and implementation of a future communication and control concept, which makes it possible to achieve the best possible interaction between the management of power system, power generation and electricity consumption. The future demands that both the commercial and technical data communications paths and systems will be expanded and supplemented with connections for significantly more renewable energy production at all levels in the grid. And most importantly there must be established entirely new interoperable communication structures for both commercial and technical utilization of the consumption part of the power system. In order to realize an effective deployment of Smart Grid in 2020 with up to 50 % of renewable energy production there is a need to implement a number of initiatives. The present report presents the network's nine main recommendations and 35 specific sub-recommendations. (LN)

  14. Viability of using energy storage for frequency regulation on power grid

    Science.gov (United States)

    Lim, Y. S.; Hau, L. C.; Loh, K. Y.; Lim, K. Y.; Lyons, P. F.; Taylor, P. C.

    2018-05-01

    This project is about the development and integration of a real-time network simulator in the laboratory using hardware in the loop (HIL) for the purpose of frequency regulation. Frequency regulation is done using the energy storage system (ESS) and a real-time network test bed developed in the smart energy laboratory in Newcastle University. An IEEE Test System was built in the OPAL-RT network simulator to mimic the power grid with renewable energy sources. The study demonstrates the viability of using an ESS to regulate the frequency under an increased penetration of renewable energy sources.

  15. Asymmetrical Grid Fault Ride-Through Strategy of Three-phase Grid-connected Inverter Considering Network Impedance Impact in Low Voltage Grid

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Zhang, Xue; Wang, Baocheng

    2014-01-01

    This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... of the proposed solution for the flexible voltage support in a low-voltage grid, where thenetwork impedance is mainly resistive.......This letter presents a new control strategy of threephase grid-connected inverter for the positive sequence voltage recovery and negative sequence voltage reduction under asymmetrical grid faults. Unlike the conventional control strategy based on an assumption that the network impedance is mainly...... inductive, the proposed control strategy is more flexible and effective by considering the network impedance impact, which is of great importance for the high penetration of grid-connected renewable energy systems into low-voltage grids. The experimental tests are carried out to validate the effectiveness...

  16. Simulation of vibration modes of the fuel rod damaged due to the grid-to-rod fretting wear

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Kyeong Koo; Jang, Young Ki; Lee, Kyou Seok

    1997-01-01

    The flow-induced fuel fretting wear observed in some PWRs mainly proceeds in the grid-to-rod contact positions. The grid-to-rod fretting wear in the PWR fuel assembly depends on grid-to-rod gap size, its axial profile and flow-induced vibration. This paper describes the GRIDFORCE program which generates the axially dependent grid-to-rod gap size as a function of burnup. The axially dependent grid-to-rod gap profiles are employed to predict the fuel rod vibration mode shapes by the ANSYS code. With the help of the Paidousis empirical formula, this paper also calculates the fuel rod vibration amplitudes under various supporting conditions, which indicates that the increase of the number of unsupported mid-grids will increase the fuel rod vibration amplitude. On the other hand, the comparison of the predicted vibration mode shapes and the observed mid-grid fretting wear pattern indicates that the 1st and 6th vibration mode shapes under the supporting inactive condition at the mid-grids can simulate the observed mid-grid fretting wear profile. This paper also proposes design guidelines against the grid-to-rod fretting wear. (author). 3 refs., 8 figs

  17. The GRID seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The Grid infrastructure is a key part of the computing environment for the simulation, processing and analysis of the data of the LHC experiments. These experiments depend on the availability of a worldwide Grid infrastructure in several aspects of their computing model. The Grid middleware will hide much of the complexity of this environment to the user, organizing all the resources in a coherent virtual computer center. The general description of the elements of the Grid, their interconnections and their use by the experiments will be exposed in this talk. The computational and storage capability of the Grid is attracting other research communities beyond the high energy physics. Examples of these applications will be also exposed during the presentation.

  18. Communication solutions for intelligent electricity grid; Kommunikationsloesungen fuer intelligente Stromnetze

    Energy Technology Data Exchange (ETDEWEB)

    Fielhauer, Jochen; Wieserner, Gerhard [Siemens AG, Nuernberg (Germany). Business Unit Sensors and Communication

    2013-06-01

    A central role in the construction of power transmission and power distribution systems are solutions that withstand even the harsh environmental conditions and meet performance-critical applications reliably and without interference. This also applies to all ethernet networks in the power generation and power distribution. Secure and robust communication solutions for smart grids which enable a cost-effective remote monitoring and control of smart grids are decisive.

  19. Initial results of local grid control using wind farms with grid support

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.

    2005-09-01

    This report describes initial results with simulation of local grid control using wind farms with grid support. The focus is on simulation of the behaviour of the wind farms when they are isolated from the main grid and establish a local grid together with a few other grid components. The isolated subsystems used in the work presented in this report do not intend to simulate a specific subsystem, but they are extremely simplified single bus bar systems using only a few more components than the wind farm. This approach has been applied to make it easier to understand the dynamics of the subsystem. The main observation is that the fast dynamics of the wind turbines seem to be able to contribute significantly to the grid control, which can be useful where the wind farm is isolated with a subsystem from the main grid with surplus of generation. Thus, the fast down regulation of the wind farm using automatic frequency control can keep the subsystem in operation and thereby improve the reliability of the grid. (LN)

  20. How should grid operators govern smart grid innovation projects? An embedded case study approach

    International Nuclear Information System (INIS)

    Reuver, Mark de; Lei, Telli van der; Lukszo, Zofia

    2016-01-01

    Grid operators increasingly have to collaborate with other actors in order to realize smart grid innovations. For routine maintenance, grid operators typically acquire technologies in one-off transactions, but the innovative nature of smart grid projects may require more collaborate relationships. This paper studies how a transactional versus relational approach to governing smart grid innovation projects affects incentives for other actors to collaborate. We analyse 34 cases of smart grid innovation projects based on extensive archival data as well as interviews. We find that projects relying on relational governance are more likely to provide incentives for collaboration. Especially non-financial incentives such as reputational benefits and shared intellectual property rights are more likely to be found in projects relying on relational governance. Policy makers that wish to stimulate smart grid innovation projects should consider stimulating long-term relationships between grid operators and third parties, because such relationships are more likely to produce incentives for collaboration. - Highlights: • Smart grids require collaboration between grid operators and other actors. • We contrast transactional and relational governance of smart grid projects. • Long-term relations produce more incentives for smart grid collaboration. • Non-financial incentives are more important in long-term relations. • Policy makers should stimulate long-term relations to stimulate smart grids.